ADP5072ACBZ-R7 [ADI]

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs;
ADP5072ACBZ-R7
型号: ADP5072ACBZ-R7
厂家: ADI    ADI
描述:

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs

文件: 总24页 (文件大小:646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 A/0.6 A DC to DC Switching Regulator with  
Independent Positive and Negative Outputs  
Data Sheet  
ADP5072  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
V
IN  
Input supply voltage range: 2.85 V to 5.5 V  
Generates well regulated, independently resistor  
programmable VPOS and VNEG outputs  
Boost regulator to generate VPOS output  
Adjustable positive output to 35 V  
ADP5072  
L1  
SS  
V
POS  
R
C1  
SW1  
SW1  
COMP1  
EN1  
D1  
C
C1  
R
FT1  
FB1  
R
Integrated 1.0 A main switch  
Inverting regulator to generate VNEG output  
Adjustable negative output to −30 V  
FB1  
C
OUT1  
PVIN  
PVIN  
AVIN  
V
IN  
PGND  
PGND  
VREF  
C
IN  
C
VREF  
Integrated 0.6 A main switch  
EN2  
1.2 MHz/2.4 MHz switching frequency with optional external  
frequency synchronization from 1.0 MHz to 2.6 MHz  
Resistor programmable soft start timer  
Slew rate control for lower system noise  
Individual precision enable and flexible start-up sequence  
control for symmetric start, VPOS first, or VNEG first  
Out of phase operation  
C
R
OUT2  
FB2  
R
C2  
FB2  
COMP2  
R
FT2  
C
C2  
SYNC  
SLEW  
SEQ  
SW2  
V
NEG  
D2  
AGND  
L2  
Figure 1.  
UVLO, OCP, OVP, and TSD protection  
1.61 mm × 2.18 mm, 20-ball WLCSP  
−40°C to +125°C junction temperature range  
APPLICATIONS  
Bipolar amplifiers, analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), and multiplexers  
Charge coupled device (CCD) bias supplies  
Optical module supplies  
RF power amplifier bias  
Time of flight module supplies  
GENERAL DESCRIPTION  
The ADP5072 is a dual, high performance dc-to-dc regulator that  
generates independently regulated positive and negative rails.  
Other key safety features in the ADP5072 include overcurrent  
protection (OCP), overvoltage protection (OVP), thermal  
shutdown (TSD), and input undervoltage lockout (UVLO).  
The input voltage range of 2.85 V to 5.5 V supports a wide  
variety of applications. The integrated main switch in both  
regulators enables generation of an adjustable positive output  
voltage up to 35 V and a negative output voltage down to −30 V.  
The ADP5072 is available in a 20-ball WLCSP and is rated for a  
−40°C to +125°C junction temperature range.  
Table 1. Family Models  
Boost  
Inverter  
The ADP5072 operates at a pin selected 1.2 MHz or 2.4 MHz  
switching frequency. The ADP5072 can synchronize with an  
external oscillator from 1.0 MHz to 2.6 MHz to ease noise filtering  
in sensitive applications. Both regulators implement programma-  
ble slew rate control circuitry for the MOSFET driver stage to  
reduce electromagnetic interference (EMI). Flexible start-up  
sequencing is provided with the options of manual enable,  
simultaneous mode, positive supply first, and negative supply first.  
Model  
Switch (A) Switch (A) Package  
ADP5070 1.0  
0.6  
1.2  
20-lead LFCSP (4 mm× 4 mm) and  
20-lead TSSOP  
20-lead LFCSP (4 mm × 4 mm) and  
20-lead TSSOP  
ADP5071 2.0  
ADP5072 1.0  
ADP5073 N/A  
ADP5074 N/A  
ADP5075 N/A  
0.6  
1.2  
2.4  
0.8  
20-ball WLCSP (1.61 mm × 2.18 mm)  
16-lead LFCSP (3 mm × 3 mm)  
16-lead LFCSP (3 mm × 3 mm)  
12-ball WLCSP (1.61 mm × 2.18 mm)  
The ADP5072 includes a fixed internal or resistor programmable  
soft start timer to prevent inrush current at power-up.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5072  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Precision Enabling...................................................................... 14  
Soft Start ...................................................................................... 14  
Slew Rate Control....................................................................... 14  
Current-Limit Protection ............................................................ 14  
Overvoltage Protection.............................................................. 14  
Thermal Shutdown .................................................................... 14  
Start-Up Sequence...................................................................... 14  
Applications Information .............................................................. 16  
Component Selection ................................................................ 16  
Output Capacitors...................................................................... 17  
Loop Compensation .................................................................. 19  
Common Applications .............................................................. 21  
Layout Considerations............................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 13  
PWM Mode................................................................................. 13  
PSM Mode................................................................................... 13  
Undervoltage Lockout (UVLO) ............................................... 13  
Oscillator and Synchronization................................................ 13  
Internal Regulator....................................................................... 13  
REVISION HISTORY  
1/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADP5072  
SPECIFICATIONS  
PVIN = AVIN = 2.85 V to 5.5 V, positive output voltage (VPOS) = 15 V, negative output voltage (VNEG) = −15 V, fSW = 1200 kHz, TJ = −40°C  
to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT SUPPLY VOLTAGE RANGE  
QUIESCENT CURRENT  
Operating Quiescent Current  
PVIN, AVIN (Total)  
VIN  
2.85  
5.5  
V
PVIN, AVIN  
IQ  
3.5  
4.0  
2.2  
mA  
mA  
No switching, EN1 = EN2 =  
high, PVIN = AVIN = 5 V  
No switching, EN1 = EN2 =  
low, PVIN = AVIN = 5 V  
Standby Current  
ISTNDBY  
2.05  
UVLO  
System UVLO Threshold  
Rising  
Falling  
AVIN  
VUVLO_RISING  
VUVLO_FALLING  
VHYS  
2.8  
2.55  
0.25  
2.85  
V
V
V
2.5  
Hysteresis  
OSCILLATOR CIRCUIT  
Switching Frequency  
fSW  
1.130 1.2  
2.240 2.4  
1.270  
2.560  
MHz  
MHz  
SYNC = low  
SYNC = high (connect to  
PVIN)  
SYNC Input  
Input Clock Range  
fSYNC  
1.0  
100  
100  
2.6  
1.3  
MHz  
ns  
ns  
V
Input Clock Minimum On Pulse Width  
Input Clock Minimum Off Pulse Width  
Input Clock High Logic  
Input Clock Low Logic  
tSYNC_MIN_ON  
tSYNC_MIN_OFF  
VH (SYNC)  
VL (SYNC)  
0.4  
V
PRECISION ENABLING (EN1, EN2)  
High Level Threshold  
Low Level Threshold  
VTH_H  
VTH_L  
VTH_S  
1.125 1.15  
1.025 1.05  
0.4  
1.175  
1.075  
V
V
V
Shutdown Mode  
Internal circuitry disabled to  
achieve ISTNDBY  
Pull-Down Resistance  
BOOST REGULATOR  
REN  
1.48  
MΩ  
Adjustable Positive Output Voltage  
Feedback Voltage  
Feedback Voltage Accuracy  
VPOS  
VFB1  
35  
V
V
%
%
µA  
V
0.8  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
Load Regulation  
IFB1  
VOV1  
0.86  
0.0003  
0.002  
At FB1 pin  
(∆VFB1/VFB1)/ΔILOAD1  
(∆VFB1/VFB1)/ΔVPVIN  
%/mA ILOAD11 = 5 mA to 150 mA  
%/V  
Line Regulation  
VPVIN = 2.85 V to 5.5 V, ILOAD1  
50 mA  
=
Error Amplifier (EA) Transconductance  
Power FET On Resistance  
Power FET Maximum Drain Source  
Voltage  
Current-Limit Threshold, Main Switch  
Minimum On Time  
Minimum Off Time  
gM1  
RDS (ON) BOOST  
VDS (MAX) BOOST  
260  
1.0  
300  
175  
39  
340  
1.3  
µA/V  
mΩ  
V
ILIM (BOOST)  
1.1  
50  
25  
A
ns  
ns  
Rev. 0 | Page 3 of 24  
 
ADP5072  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
1.60  
0.8  
Max  
Unit  
Test Conditions/Comments  
INVERTING REGULATOR  
Adjustable Negative Output Voltage  
Reference Voltage  
VNEG  
VREF  
−30  
V
V
%
%
V
Reference Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Voltage  
VREF − VFB2  
Feedback Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
%
%
µA  
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
IFB2  
VOV2  
0.74  
At FB2 pin after soft start  
has completed  
Load Regulation  
Line Regulation  
(∆(VREF − VFB2)/(VREF − VFB2))/  
ILOAD2  
(∆(VREF − VFB2)/(VREF − VFB2))/  
VPVIN  
0.0004  
0.003  
%/mA ILOAD2 = 5 mA to 75 mA  
%/V  
VPVIN = 2.85 V to 5.5 V, ILOAD2  
25 mA  
=
EA Transconductance  
Power FET On Resistance  
Power FET Maximum Drain Source  
Voltage  
Current-Limit Threshold, Main Switch  
Minimum On Time  
gM2  
RDS (ON) INVERTER  
VDS (MAX) INVERTER  
260  
600  
300  
350  
39  
340  
750  
µA/V  
mΩ  
V
ILIM (INVERTER)  
660  
60  
mA  
ns  
Minimum Off Time  
50  
ns  
SOFT START  
Soft Start Timer for DC to DC Regulators  
tSS  
4
32  
8 × tSS  
ms  
ms  
ms  
SS = open  
SS resistor = 50 kΩ to GND  
Hiccup Time  
THERMAL SHUTDOWN  
Threshold  
tHICCUP  
TSHDN  
THYS  
150  
15  
°C  
°C  
Hysteresis  
1 ILOADx is the current through a resistive load connected across the output capacitor (where x is 1 for the boost regulator load and 2 for the inverting regulator load).  
Rev. 0 | Page 4 of 24  
Data Sheet  
ADP5072  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
PVIN, AVIN  
SW1  
Rating  
−0.3 V to +6V  
−0.3 V to +40 V  
PVIN − 40 V to PVIN + 0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +6 V  
SW2  
θ
JA is the natural convection junction to ambient thermal  
PGND, AGND  
EN1, EN2, FB1, FB2, SYNC,  
COMP1, COMP2, SLEW, SS,  
SEQ, VREF  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance. ψJT is the junction to  
case thermal characterization parameter.  
−0.3 V to AVIN + 0.3 V  
Operating Junction  
Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−40°C to +125°C  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJT  
Unit  
−65°C to +150°C  
JEDEC J-STD-020  
CB-20-141, 2  
50  
0.54  
0.13  
C/W  
1 θJA and ΨJT are based on a 4-layer printed circuit board (PCB) (two signal and  
two power planes) with nine thermal vias connecting the exposed pad to the  
ground plane as recommended in the Layout Considerations section. θJC is  
measured at the top of the package and is independent of the PCB. The ΨJT  
value is more appropriate for calculating junction to case temperature in the  
application.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
2 The thermal resistance values specified in Table 4 are simulated based on  
JEDEC specifications, unless specified otherwise, and must be used in  
compliance with JESD51-12.  
ESD CAUTION  
Rev. 0 | Page 5 of 24  
 
 
 
 
ADP5072  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
A
B
C
D
E
PVIN  
SW2  
SW1  
PGND  
AVIN  
EN2  
PVIN  
SW1  
SEQ  
SS  
PGND  
EN1  
SYNC  
AGND SLEW  
COMP2 FB2  
FB1  
VREF COMP1  
Figure 2. Pin Configuration (Top View)  
Table 5. Pin Function Descriptions  
Pin No.  
A1, B2  
A2  
A3, B3  
A4, B4  
B1  
Mnemonic  
Description  
PVIN  
SW2  
SW1  
PGND  
AVIN  
Power Input for the Boost Regulator.  
Switching Node for the Inverting Regulator.  
Switching Node for the Boost Regulator.  
Power Ground for the Boost Regulator.  
System Power Supply for the ADP5072.  
C1  
EN2  
Inverting Regulator Precision Enable. The EN2 pin is compared to an internal precision reference to enable  
the inverting regulator output.  
C2  
C3  
SYNC  
SEQ  
Frequency Setting and Synchronization Input. To set the switching frequency to 2.4 MHz, pull the SYNC pin high.  
To set the switching frequency to 1.2 MHz, pull the SYNC pin low. To synchronize the switching frequency,  
connect the SYNC pin to an external clock.  
Start-Up Sequence Control. For manual VPOS/VNEG startup using an individual precision enabling pin, ENx,  
leave the SEQ pin open. For simultaneous VPOS/VNEG startup when the EN2 pin rises, connect the SEQ pin to  
PVIN (the EN1 pin can be used to enable the internal references early, if required). For a sequenced startup, pull the  
SEQ pin low. Either EN1 or EN2 can be used, and the corresponding supply is the first in sequence. Hold the  
other enable pin low.  
C4  
EN1  
Boost Regulator Precision Enable. The EN1 pin is compared to an internal precision reference to enable the  
boost regulator output.  
D1  
D2  
AGND  
SLEW  
Analog Ground.  
Driver Stage Slew Rate Control. The SLEW pin sets the slew rate for the SW1 and SW2 drivers. For the fastest  
slew rate (optimal efficiency), leave the SLEW pin open. For normal slew rate, connect the SLEW pin to PVIN.  
For the slowest slew rate (optimal noise performance), connect the SLEW pin to AGND.  
D3  
D4  
E1  
E2  
SS  
Soft Start Programming. Leave the SS pin open to obtain the fastest soft start time. To program a slower soft  
start time, connect a resistor between the SS pin and AGND.  
Feedback Input for the Boost Regulator. Connect a resistor divider between the positive side of the boost  
regulator output capacitor and AGND to program the output voltage.  
Error Amplifier Compensation for the Inverting Regulator. Connect the compensation network between this  
pin and AGND.  
Feedback Input for the Inverting Regulator. Connect a resistor divider between the negative side of the  
inverting regulator output capacitor and VREF to program the output voltage.  
FB1  
COMP2  
FB2  
E3  
E4  
VREF  
COMP1  
Inverting Regulator Reference Output. Connect a 1.0 µF ceramic filter capacitor between the VREF pin and AGND.  
Error Amplifier Compensation for the Boost Regulator. Connect the compensation network between this pin  
and AGND.  
Rev. 0 | Page 6 of 24  
 
Data Sheet  
ADP5072  
TYPICAL PERFORMANCE CHARACTERISTICS  
700  
350  
300  
250  
200  
150  
100  
50  
V
V
V
V
= 3.3V, L = 6.8µH  
= 3.3V, L = 4.7µH  
= 5.0V, L = 10.0µH  
= 5.0V, L = 6.8µH  
V
V
V
V
= 3.3V, L = 10.0µH  
= 3.3V, L = 6.8µH  
= 5.0V, L = 10.0µH  
= 5.0V, L = 15.0µH  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
600  
500  
400  
300  
200  
100  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
–35  
–30  
–25  
–20  
V
–15  
(V)  
–10  
–5  
0
V
(V)  
POS  
NEG  
Figure 3. Maximum Output Current (IOUT) vs. VPOS for Boost Regulator,  
Figure 6. Maximum Output Current (IOUT) vs. VNEG for Inverting Regulator,  
SW = 1.2 MHz, TA = 25°C, Based on Target of 70% ILIM (INVERTER)  
f
SW = 1.2 MHz, TA = 25°C, Based on Target of 70% ILIM (BOOST)  
f
700  
350  
300  
250  
200  
150  
100  
50  
V
V
V
V
= 3.3V, L = 6.8µH  
= 3.3V, L = 3.3µH  
= 5.0V, L = 10.0µH  
= 5.0V, L = 3.3µH  
V
V
V
V
= 3.3V, L = 10.0µH  
= 3.3V, L = 6.8µH  
= 5.0V, L = 10.0µH  
= 5.0V, L = 15.0µH  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
600  
500  
400  
300  
200  
100  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
–35  
–30  
–25  
–20  
V
–15  
(V)  
–10  
–5  
0
V
(V)  
POS  
NEG  
Figure 4. Maximum Output Current (IOUT) vs. VPOS for Boost Regulator,  
Figure 7. Maximum Output Current (IOUT) vs. VNEG for Inverting Regulator,  
SW = 2.4 MHz, TA = 25°C, Based on Target of 70% ILIM (INVERTER)  
f
SW = 2.4 MHz, TA = 25°C, Based on Target of 70% ILIM (BOOST)  
f
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1.0  
0.001  
0.01  
0.1  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 5. Efficiency vs. Load Current for Boost Regulator, VIN = 3.3 V,  
POS = 5 V, TA = 25°C  
Figure 8. Efficiency vs. Load Current for Inverting Regulator, VIN = 3.3 V,  
NEG = −5 V, TA = 25°C  
V
V
Rev. 0 | Page 7 of 24  
 
ADP5072  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5.0V, fSW = 1.2MHz  
= 5.0V, fSW = 2.4MHz  
V
V
V
V
= 3.3V, fSW = 1.2MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.3V, fSW = 2.4MHz  
= 5.0V, fSW = 1.2MHz  
= 5.0V, fSW = 2.4MHz  
0
0.001  
0.01  
0.1  
1.0  
0.001  
0.01  
0.1  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 9. Efficiency vs. Load Current for Boost Regulator, VPOS = 9 V, TA = 25°C  
Figure 12. Efficiency vs. Load Current for Inverting Regulator, VNEG = −9 V,  
TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5.0V, fSW = 1.2MHz  
= 5.0V, fSW = 2.4MHz  
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5.0V, fSW = 1.2MHz  
= 5.0V, fSW = 2.4MHz  
20  
10  
0
20  
10  
0
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1.0  
0.001  
0.01  
0.1  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 10. Efficiency vs. Load Current for Boost Regulator, VPOS = 15 V,  
A = 25°C  
Figure 13. Efficiency vs. Load Current for Inverting Regulator, VNEG = −15 V,  
T
T
A = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 3.3V, fSW = 1.2MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
IN  
IN  
IN  
V
V
V
= 3.3V, fSW = 1.2MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
IN  
IN  
IN  
0.001  
0.01  
LOAD CURRENT (A)  
0.1  
0.001  
0.01  
0.1  
LOAD CURRENT (A)  
Figure 11. Efficiency vs. Load Current for Boost Regulator, VPOS = 35 V,  
A = 25°C  
Figure 14. Efficiency vs. Load Current for Inverting Regulator, VNEG = −30 V,  
A = 25°C  
T
T
Rev. 0 | Page 8 of 24  
Data Sheet  
ADP5072  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +125°C  
= +25°C  
= 40°C  
T
T
T
= +125°C  
= +25°C  
= 40°C  
A
A
A
A
A
A
0
0.001  
0.01  
0.1  
1.0  
0.001  
0.01  
0.1  
1.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 15. Efficiency vs. Load Current for Boost Regulator over Temperature,  
IN = 5 V, VPOS = 15 V, fSW = 1.2 MHz  
Figure 18. Efficiency vs. Load Current for Inverting Regulator over  
Temperature, VIN = 5 V, VNEG = −15 V, fSW = 1.2 MHz  
V
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
V
V
V
ACCURACY  
ACCURACY  
ACCURACY  
NEG  
REF  
FB2  
–0.4  
V
V
ACCURACY  
ACCURACY  
POS  
FB1  
–0.5  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
V
IN  
IN  
Figure 16. Boost Regulator Line Regulation, VPOS = 15 V,  
SW = 1.2 MHz, 15 mA Load, TA = 25°C  
Figure 19. Inverting Regulator Line Regulation, VNEG = −15 V,  
f
f
SW = 1.2 MHz, 15 mA Load, TA = 25°C  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
1.2MHz  
2.4MHz  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1.2MHz  
2.4MHz  
0
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0
0.05  
0.10  
0.15  
0.20  
0.25  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 17. Boost Regulator Load Regulation, VIN = 5 V, VPOS = 15 V  
Figure 20. Inverting Regulator Load Regulation, VIN = 5 V, VNEG = −15 V  
Rev. 0 | Page 9 of 24  
ADP5072  
Data Sheet  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.1  
–0.2  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12  
INVERTING REGULATOR LOAD (A)  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12  
BOOST REGULATOR LOAD (A)  
Figure 21. Cross Regulation, Boost Regulator VFB1 Regulation, VIN = 5 V,  
POS = 15 V, VNEG = −15 V, fSW = 2.4 MHz, TA = 25°C, Boost Regulator Run in  
Continuous Conduction Mode with Fixed Load for Test  
Figure 24. Cross Regulation, Inverting Regulator VFB2 Regulation,  
VIN = 5 V, VPOS = 15 V, VNEG = −15 V, fSW = 2.4 MHz, TA = 25°C, Inverting  
Regulator Run in Continuous Conduction Mode with Fixed Load for Test  
V
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
0.75  
0.72  
0.69  
0.66  
0.63  
T
T
T
= +125°C  
= +25°C  
= 40°C  
T
T
T
= +125°C  
= +25°C  
= 40°C  
A
A
A
A
A
A
1.00  
2.5  
0.60  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 25. Inverting Regulator Current Limit (ILIMIT) vs. Input Voltage (VIN  
over Temperature  
)
Figure 22. Boost Regulator Current Limit (ILIMIT) vs. Input Voltage (VIN  
over Temperature  
)
1.27  
1.25  
1.23  
1.21  
1.19  
1.17  
2.54  
2.49  
2.44  
2.39  
2.34  
2.29  
1.15  
1.13  
T
T
T
= +125°C  
= +25°C  
= 40°C  
T
T
T
= +125°C  
= +25°C  
= 40°C  
A
A
A
A
A
A
2.24  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 26. Oscillator Frequency vs. Input Voltage (VIN) over Temperature,  
SYNC Pin = Low  
Figure 23. Oscillator Frequency vs. Input Voltage (VIN) over Temperature,  
SYNC Pin = High  
Rev. 0 | Page 10 of 24  
Data Sheet  
ADP5072  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= 40°C  
A
A
A
A
A
A
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
5.7  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
5.7  
V
V
IN  
IN  
Figure 30. Operating Quiescent Current vs. Input Voltage (VIN) over  
Temperature, Both ENx Pins On  
Figure 27. Standby Current vs. Input Voltage (VIN) over Temperature, Both  
ENx Pins Below Shutdown Threshold  
V
IN  
V
IN  
V
POS  
2
1
3
V
V
NEG  
FB2  
2
1
V
FB1  
3
B
B
B
W
B
B
CH2 50.0mV  
CH1 1.00V  
CH3 20.0mV  
CH2 200mV  
W
M2.00ms A CH1  
5.16V  
CH1 1.00V  
CH3 10.0mV  
M1.00ms A CH1  
4.96V  
W
W
W
B
T
1.906000ms  
T
5.772000ms  
W
Figure 31. Inverting Regulator Line Transient, VIN = 4.5 V to 5.5 V Step,  
NEG = −15 V, RLOAD2 = 300 Ω, fSW = 2.4 MHz, TA = 25°  
Figure 28. Boost Regulator Line Transient, VIN = 4.5 V to 5.5 V Step, VPOS = 15 V,  
V
RLOAD1 = 300 Ω, fSW = 2.4 MHz, TA = 25°C  
I
LOAD1  
I
LOAD2  
4
1
4
1
V
V
V
NEG  
POS  
V
FB2  
FB1  
3
3
B
B
B
CH1 100mV  
CH3 10.0mV  
M1.00ms A CH4  
20.30%  
48.0mA  
W
W
CH1 50.0mV  
CH3 10.0mV  
M100µs A CH4  
20.30%  
140mA  
W
W
B
B
B
W
CH4 20.0mA  
T
W
CH4 50.0mA  
T
Figure 32. Inverting Regulator Load Transient, VIN = 5 V Step, VNEG = −15 V,  
LOAD2 = 35 mA to 45 mA Step, fSW = 2.4 MHz, TA = 25°C  
Figure 29. Boost Regulator Load Transient, VIN = 5 V Step, VPOS = 15 V,  
LOAD1 = 120 mA to 150 mA Step, fSW = 2.4 MHz, TA = 25°C  
I
I
Rev. 0 | Page 11 of 24  
ADP5072  
Data Sheet  
I
INDUCTOR  
3
I
INDUCTOR  
3
SW1  
SW2  
V
2
1
1
2
V
NEG  
POS  
B
B
B
B
CH1 500mV  
CH2 10.0V  
M2.00µs A CH3  
7.960000µs  
82.0mA  
CH1 5.00V  
CH2 500mV  
M4.00µs A CH3  
12.00000µs  
35.0mA  
W
W
W
W
B
B
W
CH3 100mA  
CH3 50.0mA  
T
T
W
Figure 33. Boost Regulator Skip Mode Operation Showing Inductor Current  
(IINDUCTOR), Switch Node Voltage, and Output Ripple, VIN = 12 V, VPOS = 15 V,  
Figure 36. Inverting Regulator Skip Mode Operation Showing Inductor  
Current (IINDUCTOR), Switch Node Voltage, and Output Ripple, VIN = 5 V,  
I
LOAD1 = 4 mA, fSW = 2.4 MHz, TA = 25°C  
VNEG = −5 V, ILOAD2 = 0 mA, fSW = 2.4 MHz, TA = 25°C  
I
I
INDUCTOR  
INDUCTOR  
3
3
SW1  
SW2  
2
1
1
2
V
V
NEG  
POS  
B
B
B
B
CH1 500mV  
CH2 10.0V  
M200ns A CH3  
7.960000µs  
100mA  
CH1 5.00V  
CH2 500mV  
M200ns A CH3  
24.46000µs  
42.0mA  
W
W
W
W
B
B
W
CH3 200mA  
CH3 50mA  
T
T
W
Figure 34. Boost Regulator Discontinuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VPOS = 15 V, ILOAD1 = 6 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 37. Inverting Regulator Discontinuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VNEG = −5 V, ILOAD2 = 6 mA, fSW = 2.4 MHz, TA = 25°C  
I
INDUCTOR  
I
INDUCTOR  
3
3
SW1  
SW2  
2
1
1
2
V
V
NEG  
POS  
B
B
B
B
CH1 500mV  
CH2 10.0V  
M200ns A CH4  
7.960000µs  
310mA  
CH1 5.00V  
CH2 500mV  
M100ns A CH3  
24.46000µs  
84.0mA  
W
W
W
W
B
B
W
CH3 500mA  
CH3 50mA  
T
T
W
Figure 35. Boost Regulator Continuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VPOS = 15 V, ILOAD1 = 90 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 38. Inverting Regulator Continuous Conduction Mode Operation  
Showing Inductor Current (IINDUCTOR), Switch Node Voltage, and Output  
Ripple, VIN = 5 V, VNEG = −5 V, ILOAD2 = 35 mA, fSW = 2.4 MHz, TA = 25°C  
Rev. 0 | Page 12 of 24  
Data Sheet  
ADP5072  
THEORY OF OPERATION  
V
IN  
C
IN  
SYNC  
AVIN  
PVIN  
CURRENT SENSE  
INVERTER  
PWM CONTROL  
D2  
C
V
SW2  
L2  
NEG  
L1  
SLEW  
REFERENCES  
D1  
V
OUT2  
POS  
SW1  
SLEW  
C
OUT1  
PLL  
BOOST PWM  
CONTROL  
R
FT1  
R
ERROR  
AMP  
FT2  
REF2  
+
OSCILLATOR  
PGND  
FB1  
FB2  
CURRENT  
SENSE  
BOOST_ENABLE  
SEQUENCE  
CONTROL  
R
FB2  
ERROR  
AMP  
+
INVERTER_ENABLE  
VREF  
REF_1V6  
R
REF1  
THERMAL  
SHUTDOWN  
FB1  
COMP1  
C
VREF  
COMP2  
1.5MΩ  
1.5MΩ  
R
C1  
4µA  
UVLO  
SLEW  
TRI-STATE  
BUFFER  
REF1  
REF2  
START-UP  
TIMERS  
REFERENCE  
GENERATOR  
R
C2  
FB1  
OVP  
FB2  
REF_1V6  
C
C1  
C
C2  
SLEW  
EN1  
EN2 SEQ  
SS  
R
(OPTIONAL)  
SS  
AGND  
Figure 39. Functional Block Diagram  
PWM MODE  
OSCILLATOR AND SYNCHRONIZATION  
The boost and inverting regulators in the ADP5072 operate at a  
fixed frequency set by an internal oscillator. At the start of each  
oscillator cycle, the MOSFET switch turns on, applying a positive  
voltage across the inductor. The inductor current increases until  
the current sense signal crosses the peak inductor current threshold  
that turns off the MOSFET switch; this threshold is set by the error  
amplifier output. During the MOSFET off time, the inductor  
current declines through the external diode until the next  
oscillator clock pulse starts a new cycle. It regulates the output  
voltage by adjusting the peak inductor current threshold.  
The ADP5072 initiates the drive of the boost regulator SW1 pin  
and the inverting regulator SW2 pin 180° out of phase to reduce  
peak current consumption and noise.  
A phase-locked loop (PLL)-based oscillator generates the internal  
clock and offers a choice of two internally generated frequency  
options or external clock synchronization. The switching frequency  
is configured using the SYNC pin options shown in Table 6.  
For external synchronization, connect the SYNC pin to a  
suitable clock source. The PLL locks to an input clock within  
the range specified by fSYNC  
.
PSM MODE  
Table 6. SYNC Pin Options  
During light load operation, the regulators can skip pulses to  
maintain output voltage regulation. Skipping pulses increases  
the device efficiency.  
SYNC Pin  
High  
Switching Frequency  
2.4 MHz  
Low  
1.2 MHz  
UNDERVOLTAGE LOCKOUT (UVLO)  
External Clock  
1 × clock frequency  
The undervoltage lockout circuitry monitors the AVIN pin  
voltage level. If the input voltage drops below the VUVLO_FALLING  
threshold, both regulators turn off. After the AVIN pin voltage  
rises above the VUVLO_RISING threshold, the soft start period initiates,  
and the regulators are enabled.  
INTERNAL REGULATOR  
The VREF regulator provides a reference voltage for the inverting  
regulator feedback network to ensure a positive feedback voltage on  
the FB2 pin.  
A current-limit circuit is included for the VREF regulator to protect  
the circuit from accidental loading.  
Rev. 0 | Page 13 of 24  
 
 
 
 
 
 
 
ADP5072  
Data Sheet  
PRECISION ENABLING  
CURRENT-LIMIT PROTECTION  
TheADP5072 has an individual enable pin for the boost and  
inverting regulators: EN1 and EN2. The enable pins feature a  
precision enable circuit with an accurate reference voltage. This  
reference allows the ADP5072 to be sequenced easily from other  
supplies. It can also be used as a programmable UVLO input by  
using a resistor divider.  
The boost and inverting regulators in the ADP5072 include  
current-limit protection circuitry to limit the amount of forward  
current through the MOSFET switch.  
When the peak inductor current exceeds the overcurrent limit  
threshold for a number of clock cycles during an overload or  
short-circuit condition, the regulator enters hiccup mode. The  
regulator stops switching and then restarts with a new soft start  
cycle after tHICCUP and repeats until the overcurrent condition is  
removed.  
The enable pins have an internal pull-down resistor that defaults  
each regulator to off when the pin is floating.  
When the voltage at the enable pins is greater than the VTH_H  
reference level, the regulator is enabled.  
OVERVOLTAGE PROTECTION  
An overvoltage protection mechanism is present on the FB1  
and FB2 pins for the boost and inverting regulators.  
SOFT START  
Each regulator in the ADP5072 includes soft start circuitry that  
ramps the output voltage in a controlled manner during startup,  
thereby limiting the inrush current. The soft start time is internally  
set to the fastest rate when the SS pin is open.  
On the boost regulator, when the voltage on the FB1 pin exceeds  
the VOV1 threshold, the switching on SW1 stops until the voltage  
falls below the threshold again. This functionality is permanently  
enabled on this regulator.  
Connecting a resistor between SS and AGND allows the adjust-  
ment of the soft start delay. The delay length is common to both  
regulators.  
On the inverting regulator, when the voltage on the FB2 pin  
drops below the VOV2 threshold, the switching stops until the  
voltage rises above the threshold. This functionality is enabled  
after the soft start period has elapsed.  
SLEW RATE CONTROL  
The ADP5072 employs programmable output driver slew rate  
control circuitry. This circuitry reduces the slew rate of the  
switching node as shown in Figure 40, resulting in reduced  
ringing and lower EMI. To program the slew rate, connect the  
SLEW pin to the PVIN pin for normal mode, to the AGND pin  
for slow mode, or leave it open for fast mode. This configuration  
allows the use of an open-drain output from a noise sensitive  
device to switch the slew rate from fast to slow, for example,  
during ADC sampling.  
THERMAL SHUTDOWN  
In the event that theADP5072 junction temperature rises above  
T
SHDN, the thermal shutdown circuit turns off the IC. Extreme  
junction temperatures can be the result of prolonged high current  
operation, poor circuit board design, and/or high ambient temper-  
ature. Hysteresis is included so that when thermal shutdown occurs,  
the ADP5072 does not return to operation until the on-chip  
temperature drops below TSHDN minus THYS. When resuming from  
thermal shutdown, a soft start is performed on each enabled  
channel.  
Note that slew rate control causes a trade-off between efficiency  
and low EMI.  
START-UP SEQUENCE  
The ADP5072 implements a flexible start-up sequence to meet  
different system requirements. Three different enabling modes  
can be implemented via the SEQ pin, as explained in Table 7.  
FASTEST  
SLOWEST  
Table 7. SEQ Pin Settings  
SEQ Pin  
Open  
PVIN  
Description  
Manual enable mode  
Simultaneous enable mode  
Sequential enable mode  
Low  
To configure the manual enable mode, leave the SEQ pin open.  
The boost and inverting regulators are controlled separately from  
their respective precision enable pins.  
Figure 40. Switching Node at Various Slew Rate Settings  
Rev. 0 | Page 14 of 24  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADP5072  
V
POS  
To configure the simultaneous enable mode, connect the SEQ pin  
to the PVIN pin. Both regulators power up simultaneously  
when the EN2 pin is taken high. The EN1 pin enable can be  
used to enable the internal references ahead of enabling the  
outputs, if desired. The simultaneous enable mode timing is  
shown in Figure 41.  
V
IN  
TIME  
V
POS  
V
V
NEG  
1. V  
FOLLOWED BY V  
NEG  
POS  
(SEQ = LOW, EN1 = HIGH, EN2 = LOW)  
V
IN  
POS  
TIME  
V
IN  
TIME  
V
NEG  
SIMULTANEOUS ENABLE MODE  
(SEQ = HIGH, EN2 = HIGH)  
V
NEG  
Figure 41. Simultaneous Enable Mode  
2. V  
FOLLOWED BY V  
POS  
NEG  
To configure the sequential enable mode, pull the SEQ pin low.  
In this mode, either VPOS or VNEG can be enabled first by using  
the EN1 pin or EN2 pin. Keep the other pin low. The secondary  
supply is enabled when the primary supply completes soft start and  
its feedback voltage reaches approximately 85% of the target  
value. The sequential enable mode timing is shown in Figure 42.  
(SEQ = LOW, EN2 = HIGH, EN1 = LOW)  
Figure 42. Sequential Enable Mode  
Rev. 0 | Page 15 of 24  
 
 
ADP5072  
Data Sheet  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Feedback Resistors  
Set the negative output for the inverting regulator by  
R
R
FT2  
FB2  
VNEG =VFB2  
where:  
V
VFB2  
(
)
REF  
The ADP5072 provides an adjustable output voltage for both boost  
and inverting regulators. An external resistor divider sets the output  
voltage where the divider output must equal the appropriate  
feedback reference voltage, VFB1 or VFB2. To limit the output voltage  
accuracy degradation due to feedback bias current, ensure that the  
V
V
NEG is the negative output voltage.  
FB2 is the FB2 reference voltage.  
RFT2 is the feedback resistor from VNEG to FB2.  
current through the divider is at least 10 times IFB1 or IFB2  
.
R
V
FB2 is the feedback resistor from FB2 to VREF.  
REF is the VREF pin reference voltage.  
Set the positive output for the boost regulator by  
FT1   
R
VPOS =VFB1 × 1+  
RFB1  
where:  
VPOS is the positive output voltage.  
V
FB1 is the FB1 reference voltage.  
R
R
FT1 is the feedback resistor from VPOS to FB1.  
FB1 is the feedback resistor from FB1 to AGND.  
Table 8. Recommended Feedback Resistor Values  
Boost Regulator  
Calculated  
Inverting Regulator  
Calculated  
Desired Output  
Voltage (V)  
RFT1 (MΩ)  
0.432  
0.604  
1.24  
RFB1 (kΩ)  
Output Voltage (V)  
RFT2 (MΩ)  
0.715  
1.15  
RFB2 (kΩ)  
Output Voltage (V)  
4.2  
5
9
102  
115  
121  
4.188  
5.002  
8.998  
115  
−4.174  
158  
−5.023  
1.62  
133  
−8.944  
12  
13  
15  
18  
20  
24  
30  
1.4  
2.1  
2.43  
2.15  
2.55  
3.09  
3.65  
100  
137  
137  
100  
107  
107  
100  
12.000  
13.063  
14.990  
18.000  
19.865  
23.903  
30.000  
1.15  
2.8  
2.32  
2.67  
2.94  
3.16  
4.12  
71.5  
162  
118  
113  
113  
−12.067  
−13.027  
−14.929  
−18.103  
−20.014  
−23.984  
−30.004  
102  
107  
Rev. 0 | Page 16 of 24  
 
 
Data Sheet  
ADP5072  
VREF Capacitor  
OUTPUT CAPACITORS  
A 1.0 μF ceramic capacitor (CVREF) is required between the VREF  
pin and AGND.  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
the output voltage dc bias.  
Soft Start Resistor  
A resistor can be connected between the SS pin and the AGND pin  
to increase the soft start time. The soft start time can be set by the  
resistor between 4 ms (268 kΩ) and 32 ms (50 kΩ). Leaving the  
SS pin open selects the fastest time of 4 ms. Figure 43 shows the  
behavior of this operation. Calculate the soft start time using the  
following formula:  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range and  
dc bias conditions. X5R or X7R dielectrics with a voltage rating of  
25 V or 50 V (depending on output) are recommended for optimal  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any dc-to-dc converter because of their poor  
temperature and dc bias characteristics.  
tSS = 38.4 × 10−3 − 1.28 × 10−7 × RSS (ꢀ)  
where 50 kꢀ ≤ RSS ≤ 268 kꢀ.  
SOFT START  
TIMER  
Calculate the worst case capacitance accounting for capacitor  
variation over temperature, component tolerance, and voltage  
using the following equation:  
32ms  
CEFFECTIVE = CNOMINAL × (1 − TEMPCO) × (1 − DCBIASCO) ×  
(1 − Tolerance)  
4ms  
where:  
SS PIN OPEN  
SOFT START  
RESISTOR  
C
C
EFFECTIVE is the effective capacitance at the operating voltage.  
NOMINAL is the nominal data sheet capacitance.  
R2  
R1  
Figure 43. Soft Start Behavior  
TEMPCO is the worst-case capacitor temperature coefficient.  
DCBIASCO is the dc bias coefficient derating at the output  
voltage.  
Diodes  
A Schottky diode with low junction capacitance is recommended  
for D1 and D2, diodes for VPOS and VNEG, respectively. At higher  
output voltages and especially at higher switching frequencies, the  
junction capacitance is a significant contributor to efficiency.  
Higher capacitance diodes also generate more switching noise. As a  
guide, a diode with less than 40 pF junction capacitance is preferred  
when the output voltage is greater than 5 V.  
Tolerance is the worst case component tolerance.  
To guarantee the performance of the device, it is imperative that  
the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Capacitors with lower effective series resistance (ESR) and  
effective series inductance (ESL) are preferred to minimize  
output voltage ripple.  
Inductor Selection for the Boost Regulator  
Note that the use of large output capacitors can require a slower  
soft start to prevent reaching the current limit during startup. A  
10 μF capacitor is suggested as a ideal balance between perfor-  
mance and size.  
The inductor stores energy during the on time of the power  
switch, and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 μH to 22 μH are recommended. In general,  
lower inductance values have higher saturation current and  
lower series resistance for a given physical size. However, lower  
inductance results in a higher peak current that can lead to reduced  
efficiency and greater input and/or output ripple and noise. A  
peak-to-peak inductor ripple current close to 30% of the maximum  
dc input current for the application typically yields an optimal  
compromise.  
Input Capacitor  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response.  
To minimize supply noise, place the input capacitor as close as  
possible to the AVIN pin and PVIN pin. A low ESR capacitor is  
recommended.  
The effective capacitance needed for stability is a minimum of 10 μF.  
If the power pins are individually decoupled, it is recommended  
to use a minimum of a 5.6 μF capacitor on the PVIN pin and a  
3.3 μF capacitor on the AVIN pin to prevent reaching the current  
limit. The minimum values specified exclude dc bias, temperature,  
and tolerance effects that are application dependent and must be  
taken into consideration.  
Rev. 0 | Page 17 of 24  
 
 
ADP5072  
Data Sheet  
For the inductor ripple current in continuous conduction mode  
(CCM) operation, the input (VIN) and output (VPOS) voltages  
determine the switch duty cycle (DUTY1) by the following  
equation:  
Inductor Selection for the Inverting Regulator  
The inductor stores energy during the on time of the power  
switch, and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 µH to 22 µH are recommended. In  
general, lower inductance values have higher saturation current  
and lower series resistance for a given physical size. However,  
lower inductance results in a higher peak current that can lead  
to reduced efficiency and greater input and/or output ripple and  
noise. A peak-to-peak inductor ripple current close to 30% of  
the maximum dc current in the inductor typically yields an  
optimal compromise.  
DIODE1   
V
POS VIN + V  
V
DUTY =  
1
POS + VDIODE1  
where VDIODE1 is the forward voltage drop of the Schottky diode  
(D1).  
The dc input current in CCM (IIN) can be determined by the  
following equation:  
IOUT1  
(1 DUTY1)  
IIN  
=
For the inductor ripple current in continuous conduction mode  
(CCM) operation, the input (VIN) and output (VNEG) voltages  
determine the switch duty cycle (DUTY2) by the following  
equation:  
Using the duty cycle (DUTY1) and switching frequency (fSW),  
determine the on time (tON1) using the following equation:  
DUTY1  
tON1  
=
|VNEG | + VDIODE2  
VIN + |VNEG | + V  
fSW  
The inductor ripple current (IL1) in steady state is calculated by  
DUTY =  
2
DIODE2   
where VDIODE2 is the forward voltage drop of the Schottky diode  
(D2).  
V
IN ×tON1  
L1  
IL1  
=
The dc current in the inductor in CCM (IL2) can be determined  
by the following equation:  
Solve for the inductance value (L1) using the following equation:  
VIN × tON1  
L1 =  
IOUT2  
(1 DUTY2 )  
IL2  
=
IL1  
Assuming an inductor ripple current of 30% of the maximum  
dc input current results in  
Using the duty cycle (DUTY2) and switching frequency (fSW),  
determine the on time (tON2) by the following equation:  
VIN × tON1 × (1 DUTY1 )  
DUTY2  
L1 =  
tON2  
=
0.3 × IOUT1  
fSW  
The inductor ripple current (IL2) in steady state is calculated by  
Ensure that the peak inductor current (the maximum input  
current plus half the inductor ripple current) is less than the  
rated saturation current of the inductor. Likewise, ensure that  
the maximum rated rms current of the inductor is greater than  
the maximum dc input current to the regulator.  
VIN ×tON2  
IL2  
=
L2  
Solve for the inductance value (L2) by the following equation:  
When the ADP5072 boost regulator is operated in CCM at duty  
cycles greater than 50%, slope compensation is required to stabilize  
the current mode loop. This slope compensation is built in to  
the ADP5072. For stable current mode operation, ensure that  
the selected inductance is equal to or greater than the minimum  
calculated inductance, LMIN1, for the application parameters in  
the following equation:  
VIN × tON2  
L2 =  
IL2  
Assuming an inductor ripple current of 30% of the maximum  
dc current in the inductor results in  
VIN × tON2 ×(1 DUTY2 )  
L2 =  
0.3× IOUT2  
0.13  
(1 DUTY1)  
Ensure that the peak inductor current (the maximum input current  
plus half the inductor ripple current) is less than the rated  
saturation current of the inductor. Likewise, ensure that the  
maximum rated rms current of the inductor is greater than the  
maximum dc input current to the regulator.  
L1 > LMIN1 =VIN  
×
0.16 (µH)  
Table 10 suggests a series of inductors to use with the ADP5072  
boost regulator.  
Rev. 0 | Page 18 of 24  
Data Sheet  
ADP5072  
When the ADP5072 inverting regulator is operated in CCM at  
duty cycles greater than 50%, slope compensation is required to  
stabilize the current mode loop. For stable current mode operation,  
ensure that the selected inductance is equal to or greater than  
the minimum calculated inductance, LMIN2, for the application  
parameters in the following equation:  
Z
OUT1 is the impedance of the load in parallel with the output  
capacitor.  
To determine the crossover frequency (fC1), it is important to  
note that, at that frequency, the compensation impedance (ZCOMP1  
is dominated by a resistor (RC1), and the output impedance (ZOUT1  
is dominated by the impedance of an output capacitor (COUT1).  
Therefore, when solving for the crossover frequency, the equation  
(by definition of the crossover frequency) is simplified to  
)
)
0.13  
(1 DUTY2 )  
L2 > LMIN2 =VIN  
×
0.16 (µH)  
VFB1 VIN  
VPOS VPOS  
AVL1  
=
×
× gM1 × RC1 × gCS1 ×  
Table 11 suggests a series of inductors to use with the ADP5072  
inverting regulator.  
1
=1  
LOOP COMPENSATION  
2π × fC1 ×COUT1  
The ADP5072 uses external components to compensate the  
regulator loop, allowing the optimization of the loop dynamics  
for a given application.  
where fC1 is the crossover frequency.  
To solve for RC1, use the following equation:  
2
Boost Regulator  
2π × fC1 ×COUT1 ×(VPOS  
)
RC1  
=
VFB1 ×VIN × gM1 × gCS1  
The boost converter produces an undesirable right half plane  
zero in the regulation feedback loop. This feedback loop requires  
compensating the regulator such that the crossover frequency  
occurs well below the frequency of the right half plane zero. The  
right half plane zero is determined by the following equation:  
where gCS1 = 6.25 A/V.  
Using typical values for VFB1 and GM1 results in  
2
4188 × fC1 ×COUT1 ×(VPOS  
)
RC1  
=
R
LOAD1(1 DUTY1)2  
2π × L1  
VIN  
fZ1(RHP) =  
For improved accuracy, it is recommended to use the value of the  
output capacitance, COUT1, expected for the dc bias conditions  
under which it operates in the calculation for RC1.  
where:  
fZ1(RHP) is the right half plane zero frequency.  
LOAD1 is the equivalent load resistance or the output voltage  
divided by the load current.  
R
After the compensation resistor is known, set the zero formed  
by the compensation capacitor and resistor, CC1 and RC1, to one-  
fourth of the crossover frequency, or  
DIODE1   
VPOS VIN + V  
DUTY =  
1
2
VPOS + VDIODE1  
CC1  
=
π × fC1 × RC1  
where VDIODE1 is the forward voltage drop of the Schottky  
diode (D1).  
where CC1 is the compensation capacitor value.  
ERROR  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
AMPLIFIER  
FB1  
COMP1  
g
M1  
REF1  
R
C1  
The boost regulator loop gain is  
C
C1  
VFB1 VIN  
VPOS VPOS  
AVL1  
=
×
× gM1 × ROUT1 ||Z COMP1 × gCS1 × ZOUT1  
Figure 44. Compensation Components  
where:  
A
V
V
V
VL1 is the loop gain.  
FB1 is the feedback regulation voltage  
POS is the regulated positive output voltage.  
IN is the input voltage.  
gM1 is the error amplifier transconductance gain.  
R
Z
OUT1 is the output impedance of the error amplifier and is 33 MΩ.  
COMP1 is the impedance of the series resistor/capacitor (RC)  
network from COMP1 to AGND.  
CS1 is the current sense transconductance gain (the inductor  
g
current divided by the voltage at COMP1), which is internally  
set by the ADP5072 and is 6.25 A/V.  
Rev. 0 | Page 19 of 24  
 
ADP5072  
Data Sheet  
Inverting Regulator  
To determine the crossover frequency, it is important to note  
that, at that frequency, the compensation impedance (ZCOMP2) is  
The inverting converter, like the boost converter, produces an  
undesirable right half plane zero in the regulation feedback loop.  
This feedback loop requires compensating the regulator such that  
the crossover frequency occurs well below the frequency of the  
right half plane zero. The right half plane zero frequency is  
determined by the following equation:  
dominated by a resistor, RC2, and the output impedance (ZOUT2  
)
is dominated by the impedance of the output capacitor, COUT2  
.
Therefore, when solving for the crossover frequency, the equation  
(by definition of the crossover frequency) is simplified to  
VFB2  
VIN  
AVL2  
=
×
× gM2  
×
LOAD2(1 DUTY2 )2  
|VNEG | (VIN + 2 ×|VNEG|)  
R
fZ2(RHP) =  
1
2π × L2 × DUTY2  
RC2 × gCS2 ×  
=1  
2π × fC2 ×COUT2  
where fC2 is the crossover frequency.  
To solve for RC2, use the following equation:  
2π × fC2 ×COUT2 ×|VNEG |×(VIN + (2 ×|VNEG|)  
where:  
fZ2(RHP) is the right half plane zero frequency.  
LOAD2 is the equivalent load resistance or the output voltage  
divided by the load current.  
R
RC2  
=
|VNEG | + VDIODE2  
VIN + |VNEG | + VDIODE2  
VFB2 ×VIN × gM2 × gCS2  
DUTY =  
2
where GCS2 = 6.25 A /V.  
where VDIODE2 is the forward voltage drop of the Schottky diode  
(D2).  
Using typical values for VFB2 and GM2 results in  
4188× fC2 ×COUT2×|VNEG|×(VIN + (2 ×|VNEG|)  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
RC2  
=
VIN  
For improved accuracy, it is recommended to use the value of the  
output capacitance, COUT2, expected for the dc bias conditions  
under which it operates in the calculation for RC2.  
The inverting regulator loop gain is  
VFB2  
|VNEG  
VIN  
AVL2  
=
×
× gM2 ×  
After the compensation resistor is known, set the zero formed  
by the compensation capacitor and resistor, CC2 and RC2, to one-  
fourth of the crossover frequency, or  
|
(VIN + 2 ×|VNEG|)  
ROUT2 ||ZCOMP2 × gCS2 × ZOUT2  
2
CC2  
=
where:  
π × fC2 × RC2  
A
V
V
V
VL2 is the loop gain.  
where CC2 is the compensation capacitor.  
FB2 is the feedback regulation voltage.  
NEG is the regulated negative output voltage.  
IN is the input voltage.  
ERROR  
AMPLIFIER  
FB2  
COMP2  
g
M2  
gM2 is the error amplifier transconductance gain.  
REF2  
R
C2  
ROUT2 is the output impedance of the error amplifier and is 33 MΩ.  
Z
COMP2 is the impedance of the series RC network from COMP2  
C
C2  
to AGND.  
CS2 is the current sense transconductance gain (the inductor  
g
Figure 45. Compensation Component  
current divided by the voltage at COMP2), which is internally  
set by the ADP5072 and is 6.25 A /V.  
ZOUT2 is the impedance of the load in parallel with the output  
capacitor.  
Rev. 0 | Page 20 of 24  
Data Sheet  
ADP5072  
Figure 47 shows the efficiency curves for the boost and  
COMMON APPLICATIONS  
inverting regulator using the recommended, small size  
components described in Table 9, Table 10, and Table 11  
for VPOS = 15 V and VNEG = −15 V at VIN = 5 V.  
100  
Table 9 through Table 11 list a number of common component  
selections for typical VIN, VPOS, and VNEG conditions. These  
components have been bench tested and are recommended for  
customer applications that are suited for these conditions. Note that  
when pairing a boost and inverting regulator bill of materials,  
choose the same VIN and switching frequency.  
V
V
V
V
= +15V, 1.2MHz  
= –15V, 1.2MHz  
= +15V, 2.4MHz  
= –15V, 2.4MHz  
POS  
NEG  
POS  
NEG  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
+5V  
ADP5072  
R
SS  
C1  
L1  
3.3µH  
102kΩ  
V
D1  
POS  
COMP1  
EN1  
PD3S140  
+15V  
C
C1  
1nF  
ON  
SW1  
SW1  
FB1  
OFF  
R
FT1  
2.43MΩ  
C
OUT1  
10µF  
R
FB1  
137kΩ  
0
PVIN  
PVIN  
AVIN  
0.001  
0.01  
0.1  
1
V
IN  
+5V  
PGND  
PGND  
VREF  
LOAD CURRENT (A)  
C
10µF  
C
IN  
VREF  
1µF  
Figure 47. Efficiency vs. Load Current for Boost Regulator and Inverting  
Regulator, TA = 25°C  
ON  
OFF  
EN2  
R
FB2  
C
OUT2  
10µF  
R
C2  
61.9kΩ  
118kΩ  
Table 10 and Table 11 are based on the smallest sized components.  
The maximum output current is limited by the ISAT rating of the  
2 mm × 2 mm inductor. A higher output current is possible by  
using larger inductors with higher ISAT ratings, as long as the  
inductor peak current remains below the appropriate current  
limit specifications.  
FB2  
COMP2  
R
FT2  
V
C
IN  
C2  
2.32MΩ  
SYNC  
SLEW  
SEQ  
+5V  
2.2nF  
SW2  
V
NEG  
D2  
PD3S140  
L2  
6.8µF  
–15V  
AGND  
Figure 46. Typical +5 V to 15 V Application  
It is important to verify the thermal performance of the small  
sized inductor at higher ambient temperature in actual application.  
Figure 46 shows the schematic referenced by Table 9 through  
Table 11 with example component values for 5 V input voltage  
to 15 V output voltage generation. Table 9 shows the  
components common to all of the VIN, VPOS, and VNEG  
conditions.  
Table 9. Recommended Common Components Selections  
Reference Designator  
Description  
Value (µF)  
Part Number  
Manufacturer  
Murata  
Murata  
CIN  
CVREF  
Input capacitor on PVIN  
VREF capacitor  
10  
1
GRM21BZ71C106KE15L  
GRM188R71C105KA12C  
Rev. 0 | Page 21 of 24  
 
 
 
 
ADP5072  
Data Sheet  
Table 10. Recommended Boost Regulator Small Sized Components  
VIN VPOS ILOAD1 (MAX)  
Freq.  
L1  
L1 Manufacturer Part No.  
COUT1  
(µF)  
RFT1  
RFB1  
CC1  
RC1  
(V) (V)  
(mA)  
340  
360  
180  
200  
100  
110  
50  
(MHz) (µH) (Coilcraft)  
C
OUT1, Murata Part No.  
D1  
(MΩ) (kΩ) (nF) (kΩ)  
3.3  
3.3  
3.3  
3.3  
5
5
9
9
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
3.3  
2.2  
4.7  
3.3  
4.7  
4.7  
6.8  
6.8  
3.3  
2.2  
4.7  
3.3  
10  
EPL2014-332ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-332ML_  
EPL2014-472ML_  
EPL2014-472ML_  
EPL2014-682ML_  
EPL2014-682ML_  
EPL2014-332ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-332ML_  
EPL2014-103ML_  
EPL2014-682ML_  
EPL2014-103ML_  
EPL2014-822ML_  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
GRM21BR71A106KA73L  
GRM21BR71A106KA73L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L PD3S140  
GRM31CR71E106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L PD3S140  
GRM31CR71E106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
PMEG2005AELD 0.604 115  
PMEG2005AELD 0.604 115  
PMEG2005AELD 1.24  
PMEG2005AELD 1.24  
0.82 15.8  
0.47 29.4  
1.2  
121  
121  
137  
137  
107  
107  
121  
121  
137  
137  
107  
107  
102  
102  
26.1  
0.82 17.4  
3.3 15  
3.3 15  
3.3 24  
3.3 24  
2.43  
2.43  
3.09  
3.09  
1.5  
1.2  
1.8  
1.8  
0.56 16.9  
0.39 18.7  
14.3  
16.9  
28.7  
16.2  
55  
5
5
5
5
5
5
5
5
9
140  
280  
110  
170  
50  
80  
40  
45  
PMEG2005AELD 1.24  
PMEG2005AELD 1.24  
9
15  
15  
24  
24  
34  
34  
2.43  
2.43  
3.09  
3.09  
4.22  
4.22  
1
18.2  
0.56 20.5  
1.8  
1.2  
1.5  
1.2  
15.8  
10  
25.5  
18.2  
6.8  
10  
8.2  
GRM32ER71H106KA12L  
GRM32ER71H106KA12L  
PD3S140  
PD3S140  
Table 11. Recommended Inverting Regulator Small Sized Components  
VIN VNEG ILOAD2 (MAX)  
Freq.  
L2  
L2 Manufacturer Part No.  
COUT2  
(µF)  
RFT2  
RFB2  
CC2  
RC2  
(V) (V)  
3.3 −5  
3.3 −5  
3.3 −9  
3.3 −9  
3.3 −15  
3.3 −15  
3.3 −24  
3.3 −24  
(mA)  
120  
130  
70  
(MHz) (µH) (Coilcraft)  
C
OUT2, Murata Part No.  
D2  
(MΩ) (kΩ) (nF) (kΩ)  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
6.8  
4.7  
4.7  
4.7  
8.2  
6.8  
10  
6.8  
8.2  
6.8  
8.2  
8.2  
10  
EPL2014-682ML_  
EPL2014-472ML_  
EPL2014-472ML_  
EPL2014-472ML_  
EPL2014-822ML_  
EPL2014-682ML_  
EPL2014-103ML_  
EPL2014-682ML_  
EPL2014-822ML_  
EPL2014-682ML_  
EPL3015-822ML_  
EPL2014-822ML_  
EPL3015-103ML_  
EPL2014-103ML_  
EPL3015-103ML_  
EPL2014-822ML_  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
GRM21BR71A106KA73L  
GRM21BR71A106KA73L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
PMEG2005AELD 1.15  
PMEG2005AELD 1.15  
PMEG2005AELD 1.62  
PMEG2005AELD 1.62  
158  
158  
133  
133  
118  
118  
102  
102  
133  
133  
118  
118  
102  
102  
75  
8.2  
3.3  
3.9  
1.8  
3.3  
2.2  
3.3  
1.5  
5.6  
2.2  
4.7  
1.8  
4.7  
2.2  
3.9  
1.2  
7.5  
10.5  
8.06  
8.06  
10.5  
8.25  
10.5  
14.3  
4.87  
10  
10  
13.3  
10  
7.15  
15.8  
1.2  
90  
50  
55  
30  
30  
GRM31CR71E106MA12L PD3S140  
GRM31CR71E106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L PD3S140  
GRM31CR71E106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM32ER7YA106MA12L PD3S140  
GRM32ER71H106KA12L  
GRM32ER71H106KA12L  
2.32  
2.32  
3.16  
3.16  
5
5
5
5
5
5
5
5
−9  
−9  
90  
120  
60  
80  
40  
50  
30  
35  
PMEG2005AELD 1.62  
PMEG2005AELD 1.62  
−15  
−15  
−24  
−24  
−30  
−30  
2.32  
2.32  
3.16  
3.16  
4.99  
4.99  
10  
10  
8.2  
PD3S140  
PD3S140  
75  
Rev. 0 | Page 22 of 24  
 
 
Data Sheet  
ADP5072  
optimum output voltage sensing, or route traces to the RFT1  
and RFT2 resistors as close as possible from the top of  
COUT1 and COUT2.  
Place the compensation components as close as possible  
to COMP1 and COMP2. Do not share vias to the ground  
plane with the feedback resistors to avoid coupling high  
frequency noise into the sensitive COMP1 and COMP2 pins.  
Place the CVREF capacitor as close to the VREF pin as  
possible. Ensure that short traces are used between VREF  
and RFB2.  
LAYOUT CONSIDERATIONS  
Layout is important for all switching regulators but is particularly  
important for regulators with high switching frequencies. To  
achieve high efficiency, proper regulation, stability, and low  
noise, a well designed PCB layout is required. Follow these  
guidelines when designing PCBs (see Figure 48):  
Keep the input bypass capacitor, CIN, close to the PVIN pin  
and the AVIN pin.  
Keep the high current paths as short as possible. These  
paths include the connections between the following:  
CIN, L1, D1, COUT1, and PGND for the boost  
regulator, the connections  
L2, D2, COUT2, and PGND for the inverting  
regulator  
The connections of these components for both the  
boost and inverting regulators to the ADP5072.  
Keep AGND and PGND separate on the top layer of the  
board. This separation avoids pollution of AGND with  
switching noise. Connect both AGND and PGND to the  
board ground plane with vias. Ideally, connect PGND to the  
plane at a point between the input and output capacitors.  
Keep high current traces as short and wide as possible to  
minimize parasitic series inductance, which causes spiking  
and EMI.  
Figure 48. Suggested Layout for VIN = 3.3 V, VPOS = 12 V, ILOAD1 = 100 mA and  
NEG = −3.2 V, ILOAD2 = 60 mA; Not to Scale  
Avoid routing high impedance traces near any node con-  
nected to the SW1 and SW2 pins or near Inductors L1and  
L2 to prevent radiated switching noise injection.  
V
Place the feedback resistors as close to the FB1 and FB2 pins as  
possible to prevent high frequency switching noise injection.  
Place the top of the upper feedback resistors, RFT1 and RFT2,  
as close as possible to the top of COUT1 and COUT2 for  
Rev. 0 | Page 23 of 24  
 
 
ADP5072  
Data Sheet  
OUTLINE DIMENSIONS  
1.650  
1.610  
1.570  
0.310  
0.290  
0.270  
4
3
2
1
A
B
BALL A1  
IDENTIFIER  
2.220  
2.180  
2.140  
1.60 REF  
C
D
E
0.40  
BSC  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.225  
1.20 REF  
0.205  
0.185  
0.330  
0.300  
0.270  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.04  
0.300  
0.260  
0.220  
SEATING  
PLANE  
0.230  
0.200  
0.170  
Figure 49. 20-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-20-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADP5072ACBZ-R7  
ADP5072CB-EVALZ  
−40°C to +125°C  
20-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-20-14  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16646-0-1/19(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

ADP5072CB-EVALZ

1 A/0.6 A DC to DC Switching Regulator Independent Positive and Negative Outputs
ADI

ADP5073

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5073ACPZ-R7

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5073CP-EVALZ

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5074

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5074ACPZ-R7

2.4 A, DC-to-DC Inverting Regulator
ADI

ADP5074CP-EVALZ

2.4 A, DC-to-DC Inverting Regulator
ADI

ADP5075

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5075ACBZ-R7

800 mA, DC-to-DC Inverting Regulator
ADI

ADP5075CB-EVALZ

800 mA, DC-to-DC Inverting Regulator
ADI

ADP5076

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5076ACBZ-R7

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI