ADP8860ACBZ-R7 [ADI]

Charge Pump, 7-Channel Smart LED Driver with I<sup>2</sup>C Interface;
ADP8860ACBZ-R7
型号: ADP8860ACBZ-R7
厂家: ADI    ADI
描述:

Charge Pump, 7-Channel Smart LED Driver with I<sup>2</sup>C Interface

驱动 接口集成电路
文件: 总53页 (文件大小:689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Charge Pump, 7-Channel  
Smart LED Driver with I2C Interface  
ADP8860  
FEATURES  
TYPICAL OPERATING CIRCUIT  
V
ALS  
Charge pump with automatic gain selection of 1×, 1.5×, and  
2× for maximum efficiency  
Up to two built-in comparator inputs with programmable  
modes for ambient light sensing  
OPTIONAL  
PHOTOSENSOR  
V
OUT  
PHOTOSENSOR  
Outdoor, office, and dark modes for maximum backlight  
power savings  
7 independent and programmable LED drivers  
6 drivers capable of 30 mA (typical)  
0.1µF  
0.1µF  
D1  
D3  
D2  
E3  
D3  
E4  
D4  
D4  
D5  
C4  
D7 CMP_IN  
B4  
B3  
C3  
V
D6/  
A3  
IN  
CMP_IN2  
1 driver capable of 60 mA (typical)  
1µF  
VDDIO  
Programmable maximum current limit (128 levels)  
Standby mode for <1 μA current consumption  
16 programmable fade in and fade out times  
0.1 sec to 5.5 sec  
Choose from linear, square, or cubic rates  
Fading override  
I2C-compatible interface for all programming  
Dedicated reset pin and built-in power-on reset (POR)  
Short-circuit, overvoltage, and overtemperature protection  
Internal soft start to limit inrush currents  
Input-to-output isolation during faults or shutdown  
Operation down to VIN = 2.5 V with undervoltage lockout  
(UVLO) at VIN = 2.0 V  
A2  
V
OUT  
1µF  
nRST  
SDA  
SCL  
E1  
C2  
E2  
D2  
C1+  
C1–  
C2+  
C2–  
VDDIO  
VDDIO  
VDDIO  
A1  
C1  
B1  
B2  
C1  
1µF  
ADP8860  
C2  
1µF  
nINT  
A4  
D1  
GND1  
GND2  
Figure 1.  
Small wafer level chip scale package (WLCSP) or lead frame  
chip scale package (LFCSP)  
APPLICATIONS  
Mobile display backlighting  
Mobile phone keypad backlighting  
Dual RGB backlighting  
LED indication  
General backlighting of small format displays  
The ADP8860 allows as many as six LEDs to be independently  
driven up to 30 mA (typical). A seventh LED can be driven to  
60 mA (typical). All LEDs are programmable for minimum/max-  
imum current and fade in/out times via the I2C interface. These  
LEDs can also be combined into groups to reduce the processor  
instructions during fade in/out.  
GENERAL DESCRIPTION  
Driving this entire configuration is a two-capacitor charge pump  
with gains of 1×, 1.5×, and 2×. This setup is capable of driving a  
maximum IOUT of 240 mA from a supply of 2.5 V to 5.5 V. The  
device includes a variety of safety features including short-circuit,  
overvoltage, and overtemperature protection. These features  
allow easy implementation of a safe and robust design. Addi-  
tionally, input inrush currents are limited via an integrated soft  
start combined with controlled input-to-output isolation.  
The ADP8860 combines a programmable backlight LED charge  
pump driver with automatic phototransistor control. This combi-  
nation allows for significant power savings because it changes the  
current intensity in office and dark ambient light conditions. By  
performing this function automatically, it eliminates the need for  
a processor to monitor the phototransistor.  
The light intensity thresholds are fully programmable via the  
I2C® interface. A second phototransistor input, with dedicated  
comparators, improves the ambient light detection levels for  
various user operating conditions.  
The ADP8860 is available in two package types, either a compact  
2 mm × 2.4 mm × 0.6 mm WLCSP (wafer level chip scale package)  
or a small LFCSP (lead frame chip scale package).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADP8860* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP8860 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADP8860 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADP8860 EngineerZone Discussions.  
ADP8860: Charge Pump, 7-Channel Smart LED Driver with  
I2C Interface Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-005: Software User Guide  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
ADP8860 Back-light LED Linux Driver  
TOOLS AND SIMULATIONS  
DOCUMENT FEEDBACK  
• ADIsimPower™ Voltage Regulator Design Tool  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Technical Articles  
Innovative Power Reduction Techniques Enable Handset  
Manufacturers to Provide Media Rich Devices  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP8860  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Backlight Turn On/Turn Off/Dim........................................... 17  
Automatic Dim and Turn Off Timers ..................................... 18  
Fade Override ............................................................................. 19  
Ambient Light Sensing .............................................................. 19  
Automatic Backlight Adjustment............................................. 20  
Independent Sink Control ........................................................ 20  
Short-Circuit Protection Mode ................................................ 21  
Overvoltage Protection.............................................................. 21  
Thermal Shutdown/Overtemperature Protection ................. 21  
Interrupts..................................................................................... 23  
Applications Information.............................................................. 24  
Layout Guidelines....................................................................... 24  
Example Circuits ........................................................................ 25  
I2C Programming and Digital Control........................................ 26  
Backlight Register Descriptions ............................................... 30  
Independent Sink Register Descriptions................................. 37  
Comparator Register Descriptions .......................................... 45  
Outline Dimensions....................................................................... 49  
Ordering Guide .......................................................................... 50  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Operating Circuit................................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Diagram..................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Maximum Temperature Ranges ................................................. 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
Power Stage.................................................................................. 13  
Operating Modes........................................................................ 14  
Backlight Operating Levels ....................................................... 16  
Backlight Maximum and Dim Settings ................................... 17  
Automated Fade In and Fade Out............................................ 17  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 52  
 
ADP8860  
SPECIFICATIONS  
VIN = 3.6 V, SCL = 2.7 V, SDA = 2.7 V, nINT = open, nRST = 2.7 V, CMP_IN = 0 V, VD1:D7 = 0.4 V, C1 = 1 μF, C2 = 1 μF, COUT = 1 μF,  
typical values are at TA = 25°C and are not guaranteed, minimum and maximum limits are guaranteed from TA = −40°C to +85°C, unless  
otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
SUPPLY  
Input Voltage  
Operating Range  
VIN  
2.5  
5.5  
V
Startup Level  
Low Level  
VIN(START)  
VIN(STOP)  
VIN(HYS)  
tUVLO  
VIN increasing  
VIN decreasing  
After startup  
2.05  
1.97  
80  
2.30  
V
V
mV  
μs  
1.75  
VIN(START) Hysteresis  
UVLO Noise Filter  
Quiescent Current  
Prior to VIN(START)  
During Standby  
After Startup and Switching  
10  
IQ  
IQ(START)  
IQ(STBY)  
IQ(ACTIVE)  
VIN = VIN(START) − 100 mV  
VIN = 3.6 V, Bit nSTBY = 0, SCL = SDA = 0 V  
VIN = 3.6 V, Bit nSTBY = 1, IOUT = 0 mA,  
gain = 2×  
10  
0.3  
4.5  
μA  
μA  
mA  
1.0  
7.2  
OSCILLATOR  
Switching Frequency  
Duty Cycle  
fSW  
D
0.8  
1
50  
1.32 MHz  
%
OUPUT CURRENT CONTROL  
Maximum Drive Current  
D1 to D7  
ID1:D7(MAX)  
VD1:D7 = 0.4 V  
Bit SCR = 0 in the ISC7 register  
TJ = 25°C  
26.2  
24.4  
30  
60  
34.1 mA  
34.1 mA  
TJ = −40°C to +85°C  
D7 Only (60 mA Setting)  
TJ = 25°C  
TJ = −40°C to +85°C  
LED Current Source Matching1  
All Current Sinks  
D2 to D7 Current Sinks  
Leakage Current on LED Pins  
Equivalent Output Resistance  
Gain = 1×  
ID7(60 mA)  
VD7 = 0.4 V, Bit SCR = 1 in the ISC7 register  
52.5  
48.8  
67  
67  
mA  
mA  
IMATCH  
IMATCH7  
IMATCH6  
ID1:D7(LKG)  
ROUT  
VD1:D7 = 0.4 V  
VD2:D7 = 0.4 V  
VIN = 5.5 V, VD1:D7 = 2.5 V, Bit nSTBY = 1  
2.0  
1.5  
%
%
0.5  
μA  
VIN = 3.6 V, IOUT = 100 mA  
VIN = 3.1 V, IOUT = 100 mA  
VIN = 2.5 V, IOUT = 100 mA  
VIN = 3 V, gain = 2×, IOUT = 10 mA  
0.5  
3.0  
3.8  
4.9  
Ω
Ω
Ω
V
Gain = 1.5×  
Gain = 2×  
Regulated Output Voltage  
AUTOMATIC GAIN SELECTION  
Minimum Voltage  
Gain Increases  
Minimum Current Sink Headroom VHR(MIN)  
Voltage  
VOUT(REG)  
4.3  
5.5  
VHR(UP)  
Decrease VD1:D7 until the gain switches up 162  
IDX = IDX(MAX) × 95%  
200  
180  
276  
mV  
mV  
Gain Delay  
tGAIN  
The delay after gain has changed and  
before gain is allowed to change again  
100  
μs  
Rev. 0 | Page 3 of 52  
 
 
ADP8860  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
AMBIENT LIGHT SENSING  
COMPARATORS  
Ambient Light Sensor Current  
DAC Bit Step  
IALS  
CMP_IN = VD6 = 2.8 V, Bit CMP2_SEL = 1  
0.70  
1.08  
1.33 mA  
Threshold L2 Level  
Threshold L3 Level  
FAULT PROTECTION  
Startup Charging Current Source  
Output Voltage Threshold  
Exit Soft Start  
Short-Circuit Protection  
Output Overvoltage Protection  
Activation Level  
IL2BIT  
IL3BIT  
IL2BIT = IALS/250  
IL3BIT = IALS/2000  
4.3  
0.54  
μA  
μA  
ISS  
VOUT  
VIN = 3.6 V, VOUT = 0.8 × VIN  
2.5  
3.75  
5.5  
mA  
VOUT(START) VOUT rising  
VOUT(SC)  
VOVP  
0.92 × VIN  
0.55 × VIN  
V
V
VOUT falling  
5.8  
V
OVP Recovery Hysteresis  
Thermal Shutdown  
Threshold  
Hysteresis  
Isolation from Input to Output  
During Fault  
500  
mV  
TSD  
TSD(HYS)  
IOUTLKG  
150  
20  
°C  
°C  
μA  
VIN = 5.5 V, VOUT = 0 V, Bit nSTBY = 0  
1.5  
Time to Validate a Fault  
I2C INTERFACE  
tFAULT  
2
μs  
VDDIO Voltage Operating Range  
Logic Low Input2  
Logic High Input3  
VDDIO  
VIL  
VIH  
5.5  
0.6  
V
V
V
VIN = 3.6 V  
VIN = 3.6 V  
1.30  
I2C TIMING SPECIFICATIONS  
Guaranteed by design  
Delay from Reset Deassertion to  
I2C access  
tRESET  
20  
μs  
SCL Clock Frequency  
SCL High Time  
SCL Low Time  
Setup Time  
fSCL  
tHIGH  
tLOW  
400  
KHz  
μs  
μs  
0.6  
1.3  
Data  
tSU, DAT  
tSU, STA  
tSU, STO  
100  
0.6  
0.6  
ns  
μs  
μs  
Repeated Start  
Stop Condition  
Hold Time  
Data  
tHD, DAT  
tHD, STA  
tBUF  
0
0.6  
1.3  
0.9  
μs  
μs  
μs  
Start/Repeated Start  
Bus Free Time (Stop and Start  
Conditions)  
Rise Time (SCL and SDA)  
Fall Time (SCL and SDA)  
Pulse Width of Suppressed Spike  
Capacitive Load Per Bus Line  
tR  
tF  
tSP  
CB  
20 + 0.1 CB  
20 + 0.1 CB  
0
300  
300  
50  
ns  
ns  
ns  
pF  
400  
1 Current source matching is calculated by dividing the difference between the maximum and minimum current from the sum of the maximum and minimum.  
2 VIL is a function of the input voltage. See Figure 16 in the Typical Performance Characteristics section for typical values over operating ranges.  
3 VIH is a function of the input voltage. See Figure 16 in the Typical Performance Characteristics section for typical values over operating ranges.  
Rev. 0 | Page 4 of 52  
ADP8860  
I2C TIMING DIAGRAM  
SDA  
tBUF  
tF  
tLOW  
tR  
tR  
tF  
tSP  
tSU, DAT  
tHD, STA  
SCL  
tHIGH  
tSU, STA  
tSU, STO  
tHD, DAT  
S
S = START CONDITION  
Sr  
P
S
Sr = REPEATED START CONDITION  
P = STOP CONDITION  
Figure 2. I2C Interface Timing Diagram  
Rev. 0 | Page 5 of 52  
 
ADP8860  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA (junction to air) is specified for the worst-case conditions,  
that is, a device soldered in a circuit board for surface-mount  
packages. The θJA, θJB (junction to board), and θJC (junction to  
case) are determined according to JESD51-9 on a 4-layer  
printed circuit board (PCB) with natural convection cooling.  
For the LFCSP package, the exposed pad must be soldered to  
the GND1 and/or GND2 terminal(s) on the board.  
Parameter  
VIN, VOUT  
D1, D2, D3, D4, D5, D6, and D7  
CMP_IN  
nINT, nRST, SCL, and SDA  
Output Short-Circuit Duration  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
ESD (Electrostatic Discharge)  
Human Body Model (HBM)  
Charged Device Model (CDM)  
Rating  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
Indefinite  
–40°C to +85°C1  
–40°C to +125°C  
–65°C to +150°C  
JEDEC J-STD-020  
Table 3. Thermal Resistance1  
Package Type  
WLCSP  
LFCSP_VQ  
θJA  
48  
49.5  
θJB  
9
N/A  
θJC  
N/A  
5.3  
Unit  
°C/W  
°C/W  
2 kV  
2 kV  
1 N/A means not applicable.  
1 The maximum operating junction temperature (TJ(MAX)) supersedes the  
maximum operating ambient temperature (TA(MAX)). See the Maximum  
Temperature Ranges section for more information.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all voltages are  
referenced to GND.  
MAXIMUM TEMPERATURE RANGES  
The maximum operating junction temperature (TJ(MAX)  
)
supersedes the maximum operating ambient temperature  
(TA(MAX)). Therefore, in situations where the ADP8860 is  
exposed to poor thermal resistance and a high power  
dissipation (PD), the maximum ambient temperature may need  
to be derated. In these cases, the ambient temperature  
maximum can be calculated with the following equation:  
TA(MAX) = TJ(MAX) − (θJA × PD(MAX))  
Rev. 0 | Page 6 of 52  
 
 
 
 
ADP8860  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADP8860  
1
2
3
4
C1+  
VOUT  
VIN  
GND1  
A
D6/  
C2+  
C1–  
C2–  
D7  
CMP_IN2  
PIN 1  
INDICATOR  
B
C
D
E
D3  
D2  
D1  
SCL  
nRST  
1
2
3
4
5
15 GND1  
14 VIN  
13 VOUT  
12 C2+  
SDA CMP_IN  
D5  
D4  
D3  
ADP8860  
TOP VIEW  
(Not to Scale)  
11 C1+  
GND2  
nRST  
nINT  
SCL  
D1  
D2  
NOTES  
1. CONNECT THE EXPOSED PADDLE  
TO GND1 AND/OR GND2.  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 4. WLCSP Pin Configuration  
Figure 3. LFCSP Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
LFCSP WLCSP Mnemonic  
Description  
Input Voltage 2.5 V to 5.5 V.  
LED Sink 1.  
LED Sink 2.  
LED Sink 3.  
14  
3
2
A3  
D3  
E3  
E4  
D4  
C4  
B4  
VIN  
D1  
D2  
D3  
D4  
D5  
1
20  
19  
17  
LED Sink 4.  
LED Sink 5.  
D6/CMP_IN2 LED Sink 6/Comparator Input for Second Phototransistor. When using this pin as a second  
phototransistor input, a capacitor (0.1 μF recommended) must be connected from this pin to ground.  
16  
18  
B3  
C3  
D7  
CMP_IN  
LED Sink 7.  
Comparator Input for Phototransistor. When using this function, a capacitor (0.1 μF recommended) must  
be connected from this pin to ground.  
13  
11  
9
12  
10  
15  
8
A2  
A1  
C1  
B1  
B2  
A4  
D1  
D2  
VOUT  
C1+  
C1−  
C2+  
C2−  
GND1  
GND2  
nINT  
Charge Pump Output.  
Charge Pump C1+.  
Charge Pump C1−.  
Charge Pump C2+.  
Charge Pump C2−.  
Ground. Connect the exposed pad to GND1 and/or GND2.  
Ground. Connect the exposed pad to GND1 and/or GND2.  
Processor Interrupt (Active Low). Requires an external pull-up resistor. If this pin is not used, it can be left  
floating.  
6
5
E1  
nRST  
Hardware Reset (Active Low). This bit resets the device to the default conditions. If not used, this pin  
must be tied above VIH(MIN)  
.
7
4
C2  
E2  
SDA  
SCL  
I2C Serial Data. Requires an external pull-up resistor.  
I2C Clock. Requires an external pull-up resistor.  
Rev. 0 | Page 7 of 52  
 
ADP8860  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.6 V, SCL = 2.7 V, SDA = 2.7 V, nRST = 2.7 V, VD1:D7 = 0.4 V, CIN = 1 μF, C1 = 1 μF, C2 = 1 μF, COUT = 1 μF, TA= 25°C, unless  
otherwise noted.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
30  
25  
20  
15  
10  
5
V
= 3.6V  
= 30mA  
IN  
I
= NO LOAD  
OUT  
I
D1:D7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
–40°C  
+25°C  
+85°C  
+105°C  
0
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V (V)  
HR  
1.2  
1.4  
1.6  
1.8  
2.0  
V
IN  
Figure 5. Typical Operating Current, G = 1×  
Figure 8. Typical Diode Current vs. Current Sink Headroom Voltage (VHR)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
V
= 0.4V  
D1:D7  
I
= NO LOAD  
OUT  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
–40°C  
+25°C  
+85°C  
+105°C  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 6. Typical Operating Current, G = 2×, IQ(ACTIVE)  
Figure 9. Typical Diode Matching vs. VIN  
10  
6
5
4
3
2
1
0
SCL = SDA = 0V  
V
= 3.6V  
= 30mA  
–40°C  
+25°C  
+85°C  
+105°C  
IN  
nRST = 2.7V  
I
D1:D7  
1
0.1  
0.01  
0.001  
–40°C  
+25°C  
+85°C  
+105°C  
0
1
2
3
4
5
6
0.2  
0.4  
0.6  
0.8  
1.0  
V
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
V
(V)  
IN  
HR  
Figure 7. Typical Standby IQ  
Figure 10. Typical Diode Matching vs. Current Sink Headroom Voltage (VHR)  
Rev. 0 | Page 8 of 52  
 
 
ADP8860  
35  
30  
25  
20  
15  
10  
5
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.6V  
= 30mA  
I
= 100mA  
OUT  
IN  
I
D1:D7  
–40°C  
+25°C  
+85°C  
+105°C  
–40°C  
+25°C  
+85°C  
+105°C  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
2.0  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
5.5  
5.5  
V
V
IN  
HR  
Figure 11. Typical Diode Current vs. Current Sink Headroom Voltage (VHR  
)
Figure 14. Typical ROUT (G = 1×) vs. VIN  
1
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 3.6V  
V
= 80% OF V  
OUT IN  
IN  
D1:D7  
= 0.40V  
0
–1  
–2  
–3  
–4  
–5  
–6  
–40°C  
+25°C  
+85°C  
+105°C  
–40  
–10  
20  
50  
80  
110  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
JUNCTION TEMPERATURE (°C)  
V
IN  
Figure 12. Typical Change In Diode Current vs. Temperature  
Figure 15. Typical Soft Start Current, ISS  
7
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 100mA  
OUT  
V
V
V
= +25°C  
= +85°C  
= –40°C  
IH  
IH  
IH  
6
5
4
3
2
1
0
G = 2× @ V = 2.5V  
IN  
V
V
V
= +25°C  
= +85°C  
= –40°C  
IL  
IL  
IL  
G = 1.5× @ V = 3V  
IN  
G = 1× @ V = 3.6V  
IN  
–40  
–20  
0
20  
40  
60  
80  
100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
TEMPERATURE (°C)  
V
IN  
Figure 16. Typical I2C Thresholds, VIH and VIL  
Figure 13. ROUT vs. Temperature  
Rev. 0 | Page 9 of 52  
 
 
 
ADP8860  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
–40°C  
+25°C  
+85°C  
+105°C  
I
I
= 140mA, Vf = 3.1V  
= 210mA, Vf = 3.2V  
OUT  
OUT  
0.7  
2.5  
0
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
110  
110  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
V
V
IN  
IN  
Figure 17. Typical ALS Current, IALS  
Figure 20. Typical Efficiency (Low Vf Diode)  
5.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 3V  
IN  
GAIN = 2×  
= 10mA  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
I
OUT  
I
= 140mA, Vf = 3.85V  
OUT  
I
= 210mA, Vf = 4.25V  
OUT  
3.0  
0
5.5  
–40  
–10  
20  
50  
80  
2.5  
3.5  
4.0  
(V)  
4.5  
5.0  
JUNCTION TEMPERATURE (°C)  
V
IN  
Figure 21. Typical Efficiency (High Vf Diode)  
Figure 18. Typical Regulated Output Voltage (VOUT(REG)  
)
6.0  
5.8  
5.6  
5.4  
5.2  
T
V
(AC-COUPLED) 50mV/DIV  
IN  
1
2
3
OVP THRESHOLD  
V
(AC-COUPLED) 50mV/DIV  
OUT  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
I
= 1µF, C  
= 3.6V  
= 120mA  
IN  
IN  
OVP RECOVERY  
80  
500ns/DIV  
OUT  
–40  
–10  
20  
50  
JUNCTION TEMPERATURE (°C)  
Figure 19. Typical Overvoltage Protection (OVP) Threshold  
Figure 22. Typical Operating Waveforms, G = 1×  
Rev. 0 | Page 10 of 52  
ADP8860  
V
= 3.7V  
T
IN  
V
(AC-COUPLED) 50mV/DIV  
IN  
1
2
3
V
(1V/DIV)  
OUT  
V
(AC-COUPLED) 50mV/DIV  
OUT  
2
I (10mA/DIV)  
IN  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
= 1µF, C  
= 3.0V  
= 120mA  
IN  
IN  
4
500ns/DIV  
I (10mA/DIV)  
OUT  
100µs/DIV  
I
OUT  
Figure 23. Typical Operating Waveforms, G = 1.5×  
Figure 25. Typical Start-Up Waveform  
T
V
(AC-COUPLED) 50mV/DIV  
IN  
1
2
3
V
(AC-COUPLED) 50mV/DIV  
OUT  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
= 1µF, C  
= 2.5V  
IN  
IN  
500ns/DIV  
I
= 120mA  
OUT  
Figure 24. Typical Operating Waveforms, G = 2×  
Rev. 0 | Page 11 of 52  
ADP8860  
THEORY OF OPERATION  
The ADP8860 combines a programmable backlight LED charge  
pump driver with automatic phototransistor control. This combi-  
nation allows for significant power savings because it is able to  
change the current intensity based on the lighting conditions. It  
performs this function automatically thereby removing the  
need for a processor to monitor the phototransistor. The light  
intensity levels are fully programmable via the I2C interface. A  
second phototransistor input, with dedicated comparators,  
improves the ambient light detection abilities for various user-  
operating conditions.  
The ADP8860 allows up to seven LEDs to be independently  
driven up to 30 mA (typical). The seventh LED can also be  
driven to 60 mA (typical). All LEDs can be individually pro-  
grammed or combined into a group to operate backlight LEDs.  
A full set of safety features including short-circuit, overvoltage,  
and overtemperature protection with input-to-output isolation  
allow for a robust and safe design. The integrated soft start  
limits inrush currents at startup, restart attempts, and gain  
transitions.  
V
ALS  
OPTIONAL  
PHOTOSENSOR  
CMP_IN  
D1  
D4  
D5  
C4  
D2  
D3  
D6  
D7  
B3  
D3  
D4  
E3  
E4  
B4  
C3  
GAIN  
SELECT  
LOGIC  
V
IN  
PHOTOSENSOR  
CONVERSION  
ID1  
ID3  
ID2  
ID4  
ID5  
ID6  
ID7  
I
SS  
SOFT START  
A3  
CHARGE  
PUMP  
LOGIC  
V
REFS  
VBAT  
C
VIN  
VIN  
IN  
VOUT  
A2  
A1  
I
UVLO  
STNDBY  
REFS  
C
OUT  
VDDIO  
EN  
CLK  
NOISE FILTER  
50µs  
C1+  
LIGHT  
SENSOR  
LOGIC  
E1  
C1  
1µF  
nRST  
C1  
B1  
CHARGE  
PUMP  
(1×, 1.5×, 2×)  
C1–  
C2+  
STNDBY  
RESET  
C2  
1µF  
SCL  
SDA  
E2  
C2  
B2  
2
I C  
C2–  
LOGIC  
SWITCH CONTROL  
ILED CONTROL  
nINT  
D2  
A4  
D1  
GND1  
GND2  
Figure 26. Detailed Block Diagram  
Rev. 0 | Page 12 of 52  
 
 
ADP8860  
from VIN in parallel and are discharged to VOUT in parallel. In  
certain fault modes, the switches are opened and the output is  
physically isolated from the input.  
POWER STAGE  
Because typical white LEDs require up to 4 V to drive them,  
some form of boosting is required over the typical variation in  
battery voltage. The ADP8860 accomplishes this with a high  
efficiency charge pump capable of producing a maximum IOUT  
of 240 mA over the entire input voltage range (2.5 V to 5.5 V).  
Charge pumps use the basic principle that a capacitor stores  
charge based on the voltage applied to it, as shown in the  
following equation:  
Automatic Gain Selection  
Each LED that is driven requires a current source. The voltage  
on this current source must be greater than a minimum head-  
room voltage (200 mV typical) to maintain accurate current  
regulation. The gain is automatically selected based on the  
minimum voltage (VDx) at all of the current sources. At startup,  
the device is placed into G = 1× mode and the output charges  
to VIN. If any VDx level is less than the required headroom  
(200 mV), the gain is increased to the next step (G = 1.5×).  
A 100 μs delay is allowed for the output to stabilize prior to  
the next gain switching decision. If there remains insufficient  
current sink headroom, then the gain is increased again to 2×.  
Conversely, to optimize efficiency, it is not desirable for the  
output voltage to be too high. Therefore, the gain reduces when  
the headroom voltage is great enough. This point (labeled  
Q = C × V  
(1)  
By charging the capacitors in different configurations, the  
charge, and therefore the gain, can be optimized to deliver  
the voltage required to power the LEDs. Because a fixed  
charging and discharging combination must be used, only  
certain multiples of gain are available. The ADP8860 is capable  
of automatically optimizing the gain (G) from 1×, 1.5×, and 2×.  
These gains are accomplished with two capacitors (labeled C1  
and C2 in Figure 26) and an internal switching network.  
VDMAX in Figure 27) is internally calculated to ensure that the  
In G = 1× mode, the switches are configured to pass VIN  
directly to VOUT. In this mode, several switches are connected  
in parallel to minimize the resistive drop from input to output.  
In G = 1.5× and 2× modes, the switches alternatively charge  
from the battery and discharge into the output. For G = 1.5×,  
the capacitors are charged from VIN in series and are discharged  
to VOUT in parallel. For G = 2×, the capacitors are charged  
lower gain still results in ample headroom for all the current  
sinks. The entire cycle is illustrated in Figure 27.  
Note that the gain selection criteria apply only to active current  
sources. If current sources have been deactivated through an  
I2C command (for example, only five LEDs are used), then the  
voltages on the deactivated current sources are ignored.  
Rev. 0 | Page 13 of 52  
 
 
ADP8860  
STATUP:  
CHARGE  
EXIT STBY  
STBY  
V
TO V  
IN  
OUT  
0
1
EXIT  
STARTUP  
VOUT > V  
OUT(START)  
0
WAIT  
100µs (TYP)  
MIN (V  
) < V  
HR(UP)  
G = 1  
D1:D7  
0
0
WAIT  
100µs (TYP)  
G = 3/2  
MIN (V  
) < V  
MIN (V  
) > V  
D1:D7  
HR(UP)  
D1:D7 DMAX  
0
WAIT  
100µs (TYP)  
MIN (V  
) < V  
DMAX  
G = 2  
D1:D7  
NOTES  
1. V  
IS THE CALCULATED GAIN DOWN TRANSITION POINT.  
DMAX  
Figure 27. State Diagram for Automatic Gain Selection  
Soft Start Feature  
Shutdown Mode  
At startup (either from UVLO activation or fault/standby  
recovery), the output is first charged by ISS (3.75 mA typical)  
until it reaches about 92% of VIN. This soft start feature reduces  
the inrush current that is otherwise present when the output  
capacitance is initially charged to VIN. When this point is  
reached, the controller enters 1× mode. If the output voltage is  
not sufficient, then the automatic gain selection determines the  
optimal point as defined in the Automatic Gain Selection section.  
Shutdown mode disables all circuitry, including the I2C receivers.  
Shutdown occurs when VIN is below the undervoltage thresholds.  
When VIN rises above VIN(START) (2.05 V typical), all registers are  
reset and the part is placed into standby mode.  
Reset Mode  
In reset mode, all registers are set to their default values and the  
part is placed into standby. There are two ways to reset the part:  
power-on reset (POR) and the nRST pin. POR is activated any-  
time that the part exits shutdown mode. After a POR sequence  
is complete, the part automatically enters standby mode.  
OPERATING MODES  
There are four different operating modes: active, standby,  
shutdown, and reset.  
After startup, the part can be reset by pulling the nRST pin low.  
As long as the nRST pin is low, the part is held in a standby state  
but no I2C commands are acknowledged (all registers are kept  
at their default values). After releasing the nRST pin, all registers  
remain at their default values, and the part remains in standby;  
however, the part does accept I2C commands.  
Active Mode  
In active mode, all circuits are powered up and in a fully  
operational state. This mode is entered when nSTBY (in  
Register MDCR) is set to 1.  
Standby Mode  
The nRST pin has a 50 μs (typical) noise filter to prevent inad-  
vertent activation of the reset function. The nRST pin must be  
held low for this entire time to activate reset.  
Standby mode disables all circuitry except for the I2C receivers.  
Current consumption is reduced to less than 1 μA. This mode is  
entered when nSTBY is set to 0 or when the nRST pin is held  
low for more than 100 μs (maximum). When standby is exited,  
a soft start sequence is performed.  
The operating modes function according to the timing diagram  
in Figure 28.  
Rev. 0 | Page 14 of 52  
 
 
ADP8860  
SHUTDOWN  
V
CROSSES ~2.05V AND TRIGGERS POWER ON RESET  
nRST MUST BE HIGH FOR 20µs (MAX)  
BEFORE SENDING I C COMMANDS  
V
IN  
IN  
2
BIT nSTBY IN REGISTER  
MDCR GOES HIGH  
~100µs DELAY BETWEEN POWER UP AND  
WHEN I C COMMANDS CAN BE RECEIVED  
nSTBY  
nRST  
2
nRST IS LOW, WHICH FORCES nSTBY LOW  
25µs TO 100µs NOISE FILTER  
2
AND RESETS ALL I C REGISTERS  
2×  
~3.75mA CHARGES  
1.5×  
V
OUT  
V
TO V LEVEL  
GAIN CHANGES ONLY OCCUR WHEN NECESSARY,  
BUT HAVE A MIN TIME BEFORE CHANGING  
OUT  
IN  
V
1×  
IN  
SOFT START  
SOFT START  
10µs 100µs  
Figure 28. Typical Timing Diagram  
Rev. 0 | Page 15 of 52  
 
ADP8860  
By default, the backlight operates at daylight level (BLV = 00),  
where the maximum brightness is set using Register 0x09  
(BLMX1). A daylight dim setting can also be set using  
Register 0x0A (BLDM1). When operating at office level (BLV =  
01), the backlight maximum and dim brightness settings are set  
by Register 0x0B (BLMX2) and Register 0x0C (BLDM2). When  
operating at the dark level (BLV = 10), the backlight maximum  
and dim brightness settings are set by Register 0x0D (BLMX3)  
and Register 0x0E (BLDM3).  
BACKLIGHT OPERATING LEVELS  
Backlight brightness control operates in three distinct levels:  
daylight (L1), office (L2), and dark (L3). The BLV bits in  
Register 0x04 control the specific level in which the backlight  
operates. These bits can be changed manually, or if in automatic  
mode (CMP_AUTOEN is set high in Register 0x01), by the  
ambient light sensor (see the Ambient Light Sensing section).  
DAYLIGHT (L1)  
OFFICE (L2)  
DARK (L3)  
30mA  
DAYLIGHT_MAX  
OFFICE_MAX  
DARK_MAX  
DAYLIGHT_DIM  
OFFICE_DIM  
DARK_DIM  
0
BACKLIGHT OPERATING LEVELS  
Figure 29. Backlight Operating Levels  
Rev. 0 | Page 16 of 52  
 
 
ADP8860  
BACKLIGHT MAXIMUM AND DIM SETTINGS  
Table 5. Available Fade In and Fade Out Rates  
The backlight maximum and dim current settings are deter-  
mined by a 7-bit code programmed by the user into the  
registers previously listed in the Backlight Operating Levels  
section. The 7-bit resolution allows the user to set the backlight  
to one of 128 different levels between 0 mA and 30 mA. The  
ADP8860 can implement two distinct algorithms to achieve a  
linear and a nonlinear relationship between input code and  
backlight current. The law bits in Register 0x04 are used to  
change between these algorithms.  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Fade Rate (in sec per Full-Scale Current)  
0.1 (disabled)  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
By default, the ADP8860 uses a linear algorithm (law = 00),  
where the backlight current increases linearly for a  
corresponding increase of input code. Backlight current (in  
millamperes) is determined by the following equation:  
Backlight Current (mA) = Code × (Full-Scale Current/127) (2)  
where:  
Code is the input code programmed by the user.  
Full-Scale Current is the maximum sink current allowed per  
LED (typically 30 mA).  
The fade profile is based on the transfer law selected (linear,  
square, Cubic 10, or Cubic 11) and the delta between the actual  
current and the target current. Smaller changes in current  
reduce the fade time. For linear and square law fades, the fade  
time is given by  
The ADP8860 can also implement a nonlinear (square approxima-  
tion) relationship between input code and backlight current  
level. In this case (law = 01), the backlight current (in  
milliamperes) is determined by the following equation:  
2
Fade Time = Fade Rate × (Code/127)  
where the Fade Rate is shown in Table 5.  
(4)  
Full Scale Current  
Backlight Current(mA) = Code×  
(3)  
127  
The Cubic 10 and Cubic 11 laws also use the square backlight  
currents in Equation 3; however, the time between each step is  
varied to produce a steeper slope at higher currents and a  
shallower slope at lighter currents (see Figure 31).  
30  
Figure 30 shows the backlight current level vs. input code for  
both the linear and square law algorithms.  
30  
25  
20  
25  
LINEAR  
20  
15  
15  
LINEAR  
SQUARE  
10  
10  
SQUARE  
CUBIC 11  
5
0
5
CUBIC 10  
0.75  
0
0
32  
64  
96  
128  
0
0.25  
0.50  
1.00  
SINK CODE  
UNIT FADE TIME  
Figure 30. Backlight Current vs. Input Code  
Figure 31. Comparison of the Dimming Transfers Laws  
AUTOMATED FADE IN AND FADE OUT  
The LED drivers are easily configured for automated fade in  
and fade out. Sixteen fade in and fade out rates can be selected  
via the I2C interface. Fade in and fade out rates range from  
0.1 sec to 5.5 sec (per full-scale current, either 30 mA or 60 mA).  
BACKLIGHT TURN ON/TURN OFF/DIM  
With the device in active mode (nSTBY = 1), the backlight can  
be turned on using the BL_EN bit in Register 0x01. Before  
turning on the backlight, the user chooses which level (daylight  
(L1), office (L2), or dark (L3)) in which to operate, and ensures  
that maximum and dim settings are programmed for that level.  
Rev. 0 | Page 17 of 52  
 
 
 
 
 
 
 
ADP8860  
BACKLIGHT  
CURRENT  
The backlight turns on when BL_EN = 1. The backlight turns  
off when BL_EN = 0.  
DIM TIMER  
RUNNING  
DIM TIMER  
RUNNING  
BACKLIGHT  
CURRENT  
MAX  
MAX  
DIM  
BL_EN = 1 DIM_EN = 1  
DIM_EN = 0 DIM_EN = 1 BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATEMACHINE  
BL_EN = 1  
BL_EN = 0  
Figure 32. Backlight Turn On/Off  
Figure 34. Dim Timer  
While the backlight is on (BL_EN = 1), the user can change to  
the dim setting by programming DIM_EN = 1 in Register 0x01.  
If DIM_EN = 0, the backlight reverts to its maximum setting.  
If the user clears the DIM_EN bit, the backlight reverts to its  
maximum setting and the dim timer begins counting again.  
When the dim timer expires, the internal state machine again  
sets DIM_EN = 1, and the backlight enters its dim setting. The  
backlight can be turned off at any point during the dim timer  
countdown by clearing BL_EN.  
BACKLIGHT  
CURRENT  
MAX  
DIM  
The user can also program the backlight to turn off automati-  
cally by using the OFFT timer in Register 0x06. The off timer  
has 127 settings ranging from 1 sec to 127 sec. Program the off  
timer (OFFT) before turning on the backlight. If BL_EN = 1,  
the backlight turns on to its maximum setting and the off timer  
starts counting. When the off timer expires, the internal state  
machine clears the BL_EN bit, and the backlight turns off.  
BACKLIGHT  
BL_EN = 1 DIM_EN = 1 DIM_EN = 0 BL_EN = 0  
Figure 33. Backlight Turn On/Dim/Turn Off  
OFF TIMER  
CURRENT  
RUNNING  
The maximum and dim settings can be set between 0 mA and  
30 mA; therefore, it is possible to program a dim setting that is  
greater than a maximum setting. For normal expected opera-  
tion, ensure that the dim setting is programmed to be less than  
the maximum setting.  
MAX  
AUTOMATIC DIM AND TURN OFF TIMERS  
The user can program the backlight to dim automatically by  
using the DIMT timer in Register 0x07. The dim timer has 127  
settings ranging from 1 sec to 127 sec. Program the dim timer  
(DIMT) before turning on the backlight. If BL_EN = 1, the  
backlight turns on to its maximum setting and the dim timer  
starts counting. When the dim timer expires, the internal state  
machine sets DIM_EN = 1, and the backlight enters its dim  
setting.  
BL_EN = 1 BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATE MACHINE  
Figure 35. Off Timer  
The backlight can be turned off at any point during the off  
timer countdown by clearing BL_EN.  
The dim timer and off timer can be used together for sequential  
maximum-to-dim-to-off functionality. With both the dim and  
off timers programmed, if BL_EN is asserted, the backlight  
turns on to its maximum setting, and when the dim timer  
expires, the backlight changes to its dim setting. When the off  
timer expires, the backlight turns off.  
Rev. 0 | Page 18 of 52  
 
ADP8860  
BACKLIGHT  
CURRENT  
These comparators have two programmable trip points (L2 and  
L3) that select among three of the backlight operation modes  
(daylight, office, and dark) based on the ambient lighting  
conditions.  
DIM TIMER  
RUNNING  
MAX  
The L3 comparator controls the dark-to-office mode transition.  
The L2 comparator controls the office-to-daylight transition  
(see Figure 38). The currents for the different lighting modes  
are defined in the BLMXx and BLDMx registers (see the  
Backlight Operating Levels section).  
OFF TIMER  
RUNNING  
DIM  
L2_OUT = 1  
L3_OUT = 1  
L2_OUT = 1  
L3_OUT = 0  
L2_OUT = 0  
L3_OUT = 0  
BL_EN = 1  
DIM_EN = 1  
BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATE MACHINE  
Figure 36. Dim and Off Timers Used Together  
0 LUX  
0A  
FADE OVERRIDE  
DARK  
OFFICE  
DAYLIGHT  
A fade override feature (FOVR in Register CFGR (0x04)) enables  
the host to override the preprogrammed fade in or fade out  
settings. If FOVR is set and the backlight is enabled in the  
middle of a fade out process, the backlight instantly (within  
approximately 100 ms) returns to its maximum setting. Alter-  
natively, if the backlight is fading in, reasserting BL_EN overrides  
the programmed fade in time and the backlight instantly goes  
to its final fade value. This is useful for situations where a key  
is pressed during a fade sequence. However, if FOVR is cleared  
and the backlight is enabled in the middle of a fade process, the  
backlight gradually brightens from where it was interrupted (it  
does not go down to 0 and then come back on).  
L3  
L2  
BRIGHTNESS  
Figure 38. Light Sensor Modes Based on the Detected Ambient Light Level  
Each light sensor comparator uses an external capacitor together  
with an internal reference current source to form an analog-to-  
digital converter (ADC) that samples the output of the external  
photosensor. The ADC result is fed into two programmable trip  
comparators. The ADC has an input range of 0 ꢀA to 1080 ꢀA  
(typical).  
L2_EN  
BACKLIGHT  
CURRENT  
FADE-IN  
OVER-RIDDEN  
FADE-OUT  
OVER-RIDDEN  
L2_TRIP  
L2_HYS  
L2_OUT  
MAX  
FILTER  
SETTINGS  
PHOTO  
SENSOR  
OUTPUT  
ADC  
L3_TRIP  
L3_HYS  
L3_OUT  
L3_EN  
BL_EN = 1  
BL_EN = 1  
(RE-ASSERTED)  
BL_EN = 0 BL_EN = 1 BL_EN = 0  
Figure 39. Ambient Light Sensing and Trip Comparators  
Figure 37. Fade Override Function (FOVR is High)  
The L2_CMPR detects when the photosensor output has dropped  
below the programmable L2_TRP point (Register 0x1D). If this  
event occurs, then the L2_OUT status signal is set. L2_CMPR  
contains programmable hysteresis, meaning that the photo-  
sensor output must rise above L2_TRP + L2_HYS before  
L2_OUT clears. L2_CMPR is enabled via the L2_EN bit. The  
L2_TRP and L2_HYS values of L2_CMPR can be set between  
0 ꢀA and 1080 ꢀA (typical) in steps of 4.3 ꢀA (typical).  
AMBIENT LIGHT SENSING  
The ADP8860 integrates two ambient light sensing comparators.  
One of the ambient light sensing comparator pins (CMP_IN)  
is always available. The second pin (D6/CMP_IN2) can be  
activated rather than connecting an LED to D6. Activating  
the CMP_IN2 function of the pin is accomplished through  
Bit CMP2_SEL in Register CFGR. Therefore, when Bit CMP2_SEL  
is set to 0, Pin D6/CMP_IN2 is programmed as a current sink.  
When Bit CMP2_SEL is set to 1, Pin D6/CMP_IN2 becomes  
the input for a second phototransistor.  
The L3_CMPR detects when the photosensor output has  
dropped below the programmable L3_TRP point (Register 0x1F).  
If this event occurs, the L3_OUT status signal is set. L3_CMPR  
Rev. 0 | Page 19 of 52  
 
 
 
ADP8860  
contains programmable hysteresis, meaning that the photo-  
sensor output must rise above L3_TRP + L3_HYS before  
L3_OUT clears. L3_CMPR is enabled via the L3_EN bit. The  
L3_TRP and L3_HYS values of L3_CMPR can be set between  
0 ꢀA and 137.7 ꢀA (typical) in steps of 0.54 ꢀA (typical).  
AUTOMATIC BACKLIGHT ADJUSTMENT  
The ambient light sensor comparators can automatically  
transition the backlight between one of its three operating  
levels. To enable this mode, set the CMP_AUTOEN bit in  
Register 0x01.  
L2_TRP  
L2_HYS  
When enabled, the internal state machine takes control of the  
BLV bits and changes them based on the L2_OUT and L3_OUT  
status bits. When L2_OUT is set high, it indicates that the  
ambient light conditions have dropped below the L2_TRP point  
and the backlight should move to its office (L2) level. When  
L3_OUT is set high, it indicates that ambient light conditions  
have dropped below the L3_TRP point and the backlight should  
move to its dark (L3) level. Table 6 shows the relationship  
between backlight operation and the ambient light sensor  
comparator outputs.  
L3_TRP  
L3_HYS  
1
10  
100  
1000  
ADC RANGE (µA)  
Figure 40. Comparator Ranges  
Note that the full-scale value of the L2_TRP and L2_HYS  
registers is 250 (decimal). Therefore, if the value of L2_TRP +  
L2_HYS exceeds 250, the comparator output is unable to  
deassert. For example, if L2_TRP is set at 204 (80% of the full-  
scale value, or approximately 0.80 × 1080 μA = 864 μA), then  
L2_HYS must be set at less than 46 (250 − 204 = 46). If it is not,  
then the L2_HYS + L2_TRP exceeds 250 and the L2_CMPR  
comparator is never allowed to go low.  
The L3_OUT status bit has greater priority; therefore, the  
backlight operates at L3 (dark) even if L2_OUT is set.  
Filter times of between 80 ms and 10 sec can be programmed  
for the comparators (Register 0x1B and Register 0x1C) before  
they change state.  
Table 6. Comparator Output Truth Table  
CMP_AUTOEN L3_OUT L2_OUT Backlight Operation  
When both phototransistors are enabled and programmed  
in automatic mode (through Bit L3_EN and Bit L2_EN in  
Register 0x1B and Register 0x1C), the user application needs  
to determine which of the comparator outputs to use, selecting  
Bit SEL_AB in Register 0x04 for automatic light sensing  
transitions. For example, the users software may select the  
comparator of the phototransistor exposed to higher light  
intensity to control the transition between the programmed  
backlight intensity levels.  
0
1
1
1
X1  
X1  
BLV can be manually set  
by the user  
BLV = 00, backlight  
operates at L1 (daylight)  
BLV = 01, backlight  
operates at L2 (office)  
BLV = 10, backlight  
operates at L3 (dark)  
0
0
0
1
1
X1  
1 X is the don’t care bit.  
The L2_CMPR and L3_CMPR comparators can be enabled  
independently of each other, or can operate simultaneously. A  
single conversion from each ADC takes 80 ms (typical). When  
CMP_AUTOEN is set for automatic backlight adjustment (see  
the Automatic Backlight Adjustment section), the ADC and  
comparators run continuously. If the backlight is disabled and  
at least one independent sink is enabled, it is possible to use the  
light sensor comparators in a single shot mode. A single shot  
read of the photocomparators is performed by setting the  
FORCE_RD bit. After the single shot measurement is completed,  
the internal state machine clears the FORCE_RD bit.  
INDEPENDENT SINK CONTROL  
Each of the seven LEDs can be configured (in Register 0x05) to  
operate as either part of the backlight or to operate as an indepen-  
dent sink current (ISC). Each ISC can be enabled independently  
and has its own current level. All ISCs share the same fade in  
rates, fade out rates, and fade law.  
The ISCs have additional timers to facilitate blinking functions.  
A shared on timer (SCON) used in conjunction with the off  
timers of each ISC (SC1OFF, SC2OFF, SC3OFF, SC4OFF,  
SC5OFF, SC6OFF, and SC7OFF) allow the LED current sinks to  
be configured in various blinking modes. The on timer can be  
set to four different settings: 0.2 sec, 0.6 sec, 0.8 sec, and 1.2 sec.  
The off timers have four different settings: disabled, 0.6 sec,  
1.2 sec, and 1.8 sec. Blink mode is activated by setting the off  
timers to any setting other than disabled.  
The interrupt flags (CMP_INT and CMP_INT2) can be used to  
notify the system when either L2 or L3 changes state. Refer to  
the Interrupts section for more information.  
Rev. 0 | Page 20 of 52  
 
 
 
 
 
ADP8860  
Program all fade, on, and off timers before enabling any of the  
LED current sinks. If ISCx is on during a blink cycle and  
SCx_EN is cleared, it turns off (or fades to off if fade out is  
enabled). If ISCx is off during a blink cycle and SCx_EN is  
cleared, it stays off.  
voltage, the ADP8860 detects when the output voltage rises to  
V
OUT(REG). It then increases the effective ROUT of the gain stage to  
reduce the voltage that is delivered. This effectively regulates  
OUT to VOUT(REG); however, there is a limit to the effect that this  
V
system can have on regulating VOUT. It is designed only for normal  
operation and it is not intended to protect against faults or sudden  
load changes. When the output voltage is regulated to VOUT(REG)  
no interrupt is set and the operation is transparent to the LEDs  
and the overall application.  
SCx  
CURRENT  
ON TIME  
ON TIME  
FADE-IN  
FADE-OUT FADE-IN  
FADE-OUT  
MAX  
Abnormal Overvoltage  
Because of the open-loop behavior of the charge pump as well  
as how the gain transitions are computed, a sudden load change  
or fault can abnormally force VOUT beyond 6 V. This causes an  
abnormal overvoltage situation. If the event happens slowly  
enough, the system first tries to regulate the output to 4.9 V as  
in a normal overvoltage scenario. However, if this is not  
sufficient, or if the event happens too quickly, then the  
ADP8860 enters overvoltage protection (OVP) mode when  
OFF  
TIME  
OFF  
TIME  
SCx_EN  
SET BY USER  
Figure 41. Independent Sink Blink Mode with Fading  
V
OUT exceeds the OVP threshold (typically 5.8 V). In the OVP  
SHORT-CIRCUIT PROTECTION MODE  
mode, only the charge pump is disabled to prevent VOUT from  
rising too high. The current sources and all other device  
functionality remain intact. When the output voltage falls by  
about 500 mV (to 5.3 V typical), the charge pump resumes  
operation. If the fault or load step recurs, the process may  
repeat. An interrupt flag is set at each OVP instance.  
The ADP8860 can protect against short circuits on the output  
(VOUT). Short-circuit protection (SCP) is activated at the point  
when VOUT < 55% of VIN. Note that this SCP sensing is disabled  
during both start-up and restart attempts (fault recovery). SCP  
sensing reenables 4 ms (typical) after activation. During a short-  
circuit fault, the device enters a low current consumption state  
and an interrupt flag is set. The device can be restarted at any  
time after receiving a short-circuit fault by simply rewriting  
nSTBY = 1. It then repeats another complete soft start sequence.  
Note that the value of the output capacitance (COUT) should be  
small enough to allow VOUT to reach approximately 55%  
(typical) of VIN within the 4 ms (typical) time. If COUT is too  
large, the device inadvertently enters short-circuit protection.  
THERMAL SHUTDOWN/OVERTEMPERATURE  
PROTECTION  
If the die temperature of the ADP8860 rises above a safe limit  
(150°C typical), the controllers enter thermal shutdown (TSD)  
protection mode. In this mode, most of the internal functions  
shut down, the part enters standby, and the TSD_INT interrupt  
is set. When the die temperature decreases below ~130°C, the  
part can be restarted. To restart the part, simply remove it from  
standby. No interrupt is generated when the die temperature  
falls below 130°C. However, if the software clears the pending  
TSD_INT interrupt and the temperature remains above 130°C,  
another interrupt is generated.  
OVERVOLTAGE PROTECTION  
Overvoltage protection (OVP) is implemented on the output.  
There are two types of overvoltage events: normal (no fault) and  
abnormal (from a fault or sudden load change).  
Normal Overvoltage  
The complete state machine for these faults (SCP, OVP, and  
TSD) is shown in Figure 42.  
In a normal (no fault) overvoltage, the output voltage approaches  
VOUT(REG) (4.9 V typical) during normal operation. This is not  
caused by a fault or load change, but it is simply a consequence  
of the input voltage times the gain reaching the same level as the  
clamped output voltage (VOUT(REG)). To prevent this type of over-  
Rev. 0 | Page 21 of 52  
 
 
ADP8860  
STBY  
0
EXIT STBY  
1
TSD FAULT  
DIE TEMP > TSD  
0
EXIT STBY  
1
STARTUP:  
CHARGE  
DIE TEMP <  
TSD – TSD  
SCP FAULT  
(HYS)  
V
TO V  
IN  
OUT  
0
V
> V  
OUT  
OUT(START)  
1
0
EXIT  
STARTUP  
VOUT < V  
OUT(SC)  
0
1
WAIT  
100µs (TYP)  
MIN (V  
< V  
)
VOUT < V  
D1:D7  
OVP  
0
G = 1  
V
HR(UP)  
OVP(HYS)  
0
VOUT > V  
OVP  
1
OVP FAULT  
1
0
0
1
MIN (V  
)
MIN (V  
> V  
)
WAIT  
100µs (TYP)  
D1:D7  
D1:D7  
DMAX  
G = 3/2  
< V  
HR(UP)  
0
VOUT < V  
OVP  
V
(HYS)  
OVP  
0
V
OUT  
> V  
OUT(REG)  
OVP FAULT  
1
1
TRY TO  
REGULATE  
VOUT TO  
V
OUT(REG)  
VOUT > V  
OVP  
0
1
MIN (V  
> V  
)
WAIT  
100µs (TYP)  
D1:D7  
VOUT < V  
G = 2  
OVP  
0
DMAX  
V
OVP (HYS)  
0
V
> V  
OUT  
OUT(REG)  
OVP FAULT  
1
1
TRY TO  
REGULATE  
VOUT TO  
NOTES  
1. V  
IS THE CALCULATED GAIN DOWN TRANSITION POINT.  
V
DMAX  
OUT(REG)  
VOUT > V  
OVP  
Figure 42. Fault State Machine  
Rev. 0 | Page 22 of 52  
 
ADP8860  
Overvoltage protection: OVP_INT is generated when the  
output voltage exceeds 5.8 V (typical).  
Thermal shutdown circuit: An interrupt (TSD_INT) is  
generated when entering overtemperature protection.  
Short-circuit detection: SHORT_INT is generated when  
the device enters short-circuit protection mode.  
INTERRUPTS  
There are five interrupt sources available on the ADP8860.  
Main light sensor comparator: CMP_INT sets every time  
the main light sensor comparator detects a threshold (L2  
or L3) transition (rising or falling conditions).  
Sensor Comparator 2: CMP2_INT interrupt works the  
same way as CMP_INT, except the sensing input derives  
from the second light sensor. The programmable thresholds  
are the same as the main light sensor comparator.  
The interrupt (if any) that appears on the nINT pin is deter-  
mined by the bits mapped in Register INTR_EN. To clear an  
interrupt, write a 1 to the interrupt in the MDCR2 register or  
reset the part. Reading the interrupt, or writing a 0, has no effect.  
Rev. 0 | Page 23 of 52  
 
 
ADP8860  
APPLICATIONS INFORMATION  
The ADP8860 allows the charge pump to operate efficiently  
with a minimum of external components. Specifically, the user  
must select an input capacitor (CIN), output capacitor (COUT),  
and two charge pump fly capacitors (C1 and C2). CIN should be  
1 μF or greater. The value must be high enough to produce a  
stable input voltage signal at the minimum input voltage and  
maximum output load. A 1 μF capacitor for COUT is recommended.  
Larger values are permissible, but care must be exercised to  
ensure that VOUT charges above 55% (typical) of VIN within  
4 ms (typical). See the Short-Circuit Protection Mode section  
for more details.  
VOUT is also equal to the largest Vf of the LEDs that are used  
plus the voltage drop across the regulating current source. This  
gives  
V
OUT = Vf(MAX) + VDx  
(6)  
Combining Equation 5 and Equation 6 gives  
VIN = (Vf(MAX) + VDx + IOUT × ROUT(G))/G  
(7)  
This equation is useful for calculating approximate bounds for  
the charge pump design.  
Determining the Transition Point of the Charge Pump  
Consider the following design example where:  
Vf(MAX) = 3.7 V  
For best practice, it is recommended that the two charge pump  
fly capacitors be 1 μF; larger values are not recommended and  
smaller values may reduce the ability of the charge pump to  
deliver maximum current. For optimal efficiency, the charge  
pump fly capacitors should have low equivalent series resistance  
(ESR). Low ESR X5R or X7R capacitors are recommended for  
all four components. Use voltage ratings of 10 V or greater for  
these capacitors.  
I
OUT = 140 mA (7 LEDs at 20 mA each)  
ROUT (G = 1.5×) = 3 Ω (obtained from Figure 13)  
At the point of a gain transition, VDx = VHR(UP), Table 1 gives the  
typical value of VHR(UP) as 0.2 V. Therefore, the input voltage  
level when the gain transitions from 1.5× to 2× is  
V
IN = (3.7 V + 0.2 V + 140 mA × 3 Ω)/1.5 = 2.88 V  
If one or both ambient light sensor comparator inputs (CMP_IN  
and D6/CMP_IN2) are used, a small capacitor (0.1 μF is  
recommended) must be connected from the input to ground.  
LAYOUT GUIDELINES  
For optimal noise immunity, place the CIN and COUT  
capacitors as close as possible to their respective pins.  
These capacitors should share a short ground trace. If the  
LEDs are a significant distance from the VOUT pin, another  
capacitor on VOUT, placed closer to the LEDs, is advisable.  
For optimal efficiency, place the charge pump fly capacitors  
as close to the part as possible.  
The ADP8860 does not distinguish between power ground  
and analog ground. Therefore, both ground pins can be  
connected directly together. It is recommended that these  
ground pins be connected at the ground for the input and  
output capacitors.  
Any color of LED can be used if the Vf (forward voltage) is less  
than 4.1 V. However, using lower Vf LEDs reduces the input  
power consumption by allowing the charge pump to operate at  
lower gain states.  
The equivalent circuit model for a charge pump is shown in  
Figure 43.  
V
OUT  
R
OUT  
I
OUT  
V
DX  
G × V  
IN  
C
OUT  
If using the LFCSP package, the exposed pad must be  
soldered at the board to the GND1 and/or GND2 pin(s).  
Unused diode pins (Pin D1 to Pin D7) can be connected to  
ground, VOUT, or remain floating. However, the unused  
diode current sinks must be disabled by setting them as  
independent sinks in Register 0x05 and then disabling  
them in Register 0x10. If they are not disabled, the charge  
pump efficiency may suffer.  
If the CMP_IN phototransistor input is not used, it can be  
connected to ground or remain floating.  
If the interrupt pin (nINT) is not used, connect it to  
ground or leave it floating. Never connect it to a voltage  
supply, except through a ≥1 kꢁ series resistor.  
Figure 43. Charge Pump Equivalent Circuit Model  
The input voltage is multiplied by the gain (G) and delivered to  
the output through an effective resistance (ROUT). The output  
current flows through ROUT and produces an IR drop to yield  
V
OUT = G ×VIN IOUT × ROUT(G)  
(5)  
The ROUT term is a combination of the RDSON resistance for the  
switches used in the charge pump and a small resistance that  
accounts for the effective dynamic charge pump resistance. The  
OUT level changes based upon the gain (the configuration of the  
switches). Typical ROUT values are given in Table 1 and Figure 13  
and Figure 14.  
R
Rev. 0 | Page 24 of 52  
 
 
 
 
ADP8860  
bypass capacitor on this pin. If the nRST pin is not used, it must  
be pulled well above the VIH(MIN) level (see Table 1). Do not allow  
the nRST pin to float.  
The ADP8860 has an integrated noise filter on the nRST  
pin. Under normal conditions, it is not necessary to filter  
the reset line. However, if exposed to an unusually noisy  
signal, then it is beneficial to add a small RC filter or  
EXAMPLE CIRCUITS  
V
ALS  
OPTIONAL  
PHOTOSENSOR  
V
OUT  
PHOTOSENSOR  
0.1µF  
0.1µF  
D1  
D3  
D2  
E3  
D3  
E4  
D4  
D4  
D5  
C4  
D6  
B4  
D7 CMP_IN  
B3  
C3  
V
A3  
IN  
1µF  
VDDIO  
V
A2  
OUT  
1µF  
nRST  
SDA  
SCL  
E1  
C2  
E2  
D2  
C1+  
C1–  
C2+  
C2–  
VDDIO  
VDDIO  
VDDIO  
A1  
C1  
B1  
B2  
C1  
ADP8860  
1µF  
C2  
1µF  
nINT  
A4  
D1  
GND1  
GND2  
Figure 44. Generic Application Schematic  
KEYPAD LIGHT  
UP TO 10 LEDs (6mA EACH)  
60mA MAX TOTAL CURRENT  
DL7  
R5  
DL8  
R6  
DL17  
R15  
2.8V  
ACCESSORY  
DISPLAY BACKLIGHT  
DL1 DL2 DL3 DL4  
LIGHTS OR  
SUB-DISPLAY BL  
PH2  
PH1  
OPTIONAL  
MAIN  
PHOTOSENSOR PHOTOSENSOR  
DL5 DL6  
D3  
E3  
E4  
D4  
C4  
B4  
B3  
C3  
0.1µF  
0.1µF  
D1  
D2  
D3  
D4  
D5 D6/  
CMP_IN2  
D7  
CMP_IN  
VIN  
V
A3  
IN  
1µF  
VOUT  
A2  
GND1  
GND2  
A4  
D1  
1µF  
VDDIO  
ADP8860  
R1 R2 R3 R4  
A1  
C1  
B1  
B2  
C1+  
C1–  
C2+  
C2–  
C1  
1µF  
nRST  
nRST  
SDA  
SCL  
E1  
C2  
E2  
D2  
2
I C  
CONTROL  
SIGNALS  
C2  
1µF  
nINT  
nINT  
Figure 45. Application Schematic with Keypad Light Control  
Rev. 0 | Page 25 of 52  
 
ADP8860  
I2C PROGRAMMING AND DIGITAL CONTROL  
The ADP8860 provides full software programmability to  
facilitate its adoption in various product architectures. The  
default I2C address is 0101010x (x = 0 during write, x = 1 during  
read). Therefore, the default write address is 0x54 and the read  
address is 0x55.  
All registers are read/write unless otherwise specified.  
Unused bits are read as zero.  
The following tables provide register and bit descriptions. The  
reset value for all bits in the bit map tables is all 0s, except in  
Table 9 (see Table 9 for its unique reset value). Wherever the  
acronym N/A appears in the tables, it means not applicable.  
Note the following general behavior of registers:  
All registers are set to their default values during reset or  
after a UVLO event.  
0 = WRITE  
1 = READ  
ST  
SP  
0
1
0
1
0
1
0
R/W  
0
0
0
CHIP ADDRESS  
REG ADDRESS  
DATA  
Figure 46. I2C Command Sequence  
Table 7. Register Set Definitions  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Register Name  
MFDVID  
MDCR  
MDCR2  
INTR_EN  
CFGR  
BLSEN  
BLOFF  
BLDIM  
BLFR  
BLMX1  
BLDM1  
BLMX2  
BLDM2  
BLMX3  
BLDM3  
ISCFR  
ISCC  
ISCT1  
ISCT2  
ISCF  
ISC7  
ISC6  
ISC5  
ISC4  
Description  
Manufacturer and device ID  
Device mode and status  
Device mode and Status Register 2  
Interrupts enable  
Configuration register  
Sink enable backlight or independent  
Backlight off timeout  
Backlight dim timeout  
Backlight fade in and out rates  
Backlight (Brightness Level 1—daylight) maximum current  
Backlight (Brightness Level 1—daylight) dim current  
Backlight (Brightness Level 2—office) maximum current  
Backlight (Brightness Level 2—office) dim current  
Backlight (Brightness Level 3—dark) maximum current  
Backlight (Brightness Level 3—dark) dim current  
Independent sink current fade control register  
Independent sink current control register  
Independent Sink Current Timer Register LED[7:5]  
Independent Sink Current Timer Register LED[4:1]  
Independent sink current fade register  
Independent Sink Current LED7  
Independent Sink Current LED6  
Independent Sink Current LED5  
Independent Sink Current LED4  
Independent Sink Current LED3  
Independent Sink Current LED2  
Independent Sink Current LED1  
Comparator configuration  
Second comparator configuration  
ISC3  
ISC2  
ISC1  
CCFG  
CCFG2  
L2_TRP  
L2_HYS  
L3_TRP  
L2 comparator reference  
L2 hysteresis  
L3 comparator reference  
Rev. 0 | Page 26 of 52  
 
ADP8860  
Address  
0x20  
Register Name  
L3_HYS  
Description  
L3 hysteresis  
0x21  
0x22  
0x23  
0x24  
PH1LEVL  
PH1LEVH  
PH2LEVL  
First phototransistor ambient light level—low byte register  
First phototransistor ambient light level—high byte register  
Second phototransistor ambient light level—low byte register  
Second phototransistor ambient light level—high byte register  
PH2LEVH  
Table 8. Register Map  
Addr  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
Reg. Name  
MFDVID  
MDCR  
MDCR2  
INTR_EN  
CFGR  
Bit 7  
Bit 6  
Bit 5  
Manufacture ID  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Device ID  
Bit 0  
Reserved INT_CFG  
Reserved  
Reserved  
Reserved SEL_AB  
NSTBY  
DIM_EN  
Reserved  
TSD_INT  
TSD_IEN  
SIS_EN  
CMP_AUTOEN BLEN  
SHORT_INT  
SHORT_IEN  
OVP_INT  
OVP_IEN  
CMP2_INT  
CMP2_IEN  
Law  
D2EN  
CMP_INT  
CMP_IEN  
FOVR  
CMP2_SEL  
D6EN  
BLV  
BLSEN  
BLOFF  
BLDIM  
BLFR  
Reserved D7EN  
Reserved  
D5EN  
D4EN  
OFFT  
DIMT  
D3EN  
D1EN  
Reserved  
BL_FO  
BL_FI  
BLMX1  
BLDM1  
BLMX2  
BLDM2  
BLMX3  
BLDM3  
ISCFR  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BL1_MC  
BL1_DC  
BL2_MC  
BL2_DC  
BL3_MC  
BL3_DC  
Reserved  
SC5_EN  
SC7OFF  
SC3OFF  
SC_LAW  
SC1_EN  
SC5OFF  
SC1OFF  
ISCC  
Reserved SC7_EN  
SCON  
SC6_EN  
SC4_EN  
SC3_EN  
SC2_EN  
ISCT1  
SC6OFF  
SC2OFF  
ISCT2  
SC4OFF  
ISCF  
SCFO  
SCFI  
ISC7  
SCR  
SCD7  
SCD6  
SCD5  
SCD4  
SCD3  
SCD2  
SCD1  
L3_OUT  
ISC6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ISC5  
ISC4  
ISC3  
ISC2  
ISC1  
CCFG  
FILT  
FORCE_RD  
FORCE_RD2  
L2_OUT  
L3_EN  
L2_EN  
L2_EN2  
CCFG2  
L2_TRP  
L2_HYS  
L3_TRP  
L3_HYS  
PH1LEVL  
PH1LEVH  
PH2LEVL  
PH2LEVH  
FILT2  
L3_OUT2  
L2_OUT2 L3_EN2  
L2_TRP  
L2_HYS  
L3_TRP  
L3_HYS  
PH1LEV_LOW  
Reserved  
Reserved  
PH1LEV_HIGH  
PH2LEV_HIGH  
PH2LEV_LOW  
Rev. 0 | Page 27 of 52  
ADP8860  
Manufacturer and Device ID (MFDVID)—Register 0x00  
This is a read-only register.  
Table 9. MFDVID Manufacturer and Device ID Bit Map  
Bit 7  
Bit 6  
Bit 5  
Manufacture ID  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Device ID  
Bit 0  
0
0
0
0
0
1
1
1
Mode Control Register (MDCR)—Register 0x01  
Table 10. MDCR Mode Control Bit Map  
Bit 7  
Reserved  
Bit 6  
INT_CFG  
Bit 5  
nSTBY  
Bit 4  
DIM_EN  
Bit 3  
Reserved  
Bit 2  
SIS_EN  
Bit 1  
CMP_AUTOEN  
Bit 0  
BL_EN  
Table 11. Bit Descriptions for the MDCR Register  
Bit Name  
Bit No. Description  
N/A  
7
6
Reserved.  
INT_CFG  
Interrupt configuration.  
1 = processor interrupt deasserts for 50 μs and reasserts with pending events.  
0 = processor interrupt remains asserted if the host tries to clear the interrupt while there is a pending event.  
nSTBY  
5
4
1 = device is in active mode.  
0 = device is in standby mode, only the I2C interface is enabled.  
DIM_EN  
DIM_EN is set by the hardware after a DIM timeout. The user may also force the backlight into DIM mode by  
asserting this bit. DIM mode can only be entered if BL_EN is also enabled.  
1 = backlight is operating at the DIM current level (BL_EN must also be asserted).  
0 = backlight is not in DIM mode.  
N/A  
3
2
Reserved.  
SIS_EN  
Synchronous independent sinks enable.  
1 = enables all LED current sinks designated as independent sinks. All of the ISC enable bits must be cleared; if  
any of the SC_EN bits in Register 0x10 are set, this bit has no effect.  
0 = disables all sinks designated as independent sinks. All of the ISC enable bits must be cleared; if any of the  
SC_EN bits are set in Register 0x10, this bit has no effect.  
CMP_AUTOEN  
BL_EN  
1
0
1 = backlight automatically responds to the comparator outputs (L2_OUT and L3_OUT). L2_EN and/or L3_EN  
must be set for this to function. BLV values in Register 0x04 are overridden.  
0 = backlight does not autorespond to comparator level changes. The user can manually select backlight  
operating levels using Bit BLV in Register 0x04.  
1 = backlight is enabled (nSTBY must also be asserted).  
0 = backlight is disabled.  
Rev. 0 | Page 28 of 52  
 
ADP8860  
Mode Control Register 2 (MDCR2)—Register 0x02  
Table 12. MDCR2 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SHORT_INT  
TSD_INT  
OVP_INT  
CMP2_INT  
CMP_INT  
Table 13. Bit Descriptions for the MDCR2 Register  
Bit Name  
N/A  
Bit No.  
7:5  
4
Description1  
Reserved.  
SHORT_INT  
Short-circuit error.  
1 = a short-circuit or overload condition on VOUT was detected.  
0 = no short-circuit or overload condition has been detected.  
Thermal shutdown.  
1 = the device temperature has exceeded 150°C (typical).  
0 = no overtemperature condition has been detected.  
Overvoltage interrupt.  
TSD_INT  
OVP_INT  
3
2
1 = VOUT has exceeded VOVP  
.
0 = VOUT has not exceeded VOVP  
.
CMP2_INT  
CMP_INT  
1
0
1 = indicates that the second ALS comparator (CMP_IN2) has changed state.  
0 = the second sensor comparator has not triggered.  
1 = indicates that the main ALS comparator (CMP_IN) has changed state.  
0 = the main sensor comparator has not triggered.  
1 Interrupt bits are cleared by writing a 1 to the flag; writing a 0 or reading the flag has no effect.  
Interrupt Enable (INTR_EN)—Register 0x03  
Table 14. INTR_EN Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SHORT_IEN  
TSD_IEN  
OVP_IEN  
CMP2_IEN  
CMP_IEN  
Table 15. Bit Descriptions for the INTR_EN Register  
Bit Name  
Bit No. Description  
N/A  
7:5  
4
Reserved.  
SHORT_IEN  
Short-circuit interrupt is enabled. When the SHORT_INT status bit is set after an error condition, an interrupt is  
raised to the host if the SHORT_IEN flag is enabled.  
1 = the short-circuit interrupt is enabled.  
0 = the short-circuit interrupt is disabled (the SHORT_INT flag continues to assert).  
TSD_IEN  
OVP_IEN  
CMP2_IEN  
3
2
1
Thermal shutdown interrupt is enabled. When the TSD_INT status bit is set after an error condition, an interrupt is  
raised to the host if the TSD_IEN flag is enabled.  
1 = the thermal shutdown interrupt is enabled.  
0 = the thermal shutdown interrupt is disabled (the TSD_INT flag continues to assert).  
Overvoltage interrupt enabled. When the OVP_INT status bit is set after an error condition, an interrupt is raised to  
the host if the OVP_IEN flag is enabled.  
1 = the overvoltage interrupt is enabled.  
0 = the overvoltage interrupt is disabled (the OVP_INT flag continues to assert).  
When the CMP2_INT status bit is set after an enabled comparator trips, an interrupt is raised if the CMP2_IEN flag is  
enabled.  
1 = the second phototransistor comparator interrupt is enabled.  
0 = the second phototransistor comparator interrupt is disabled (the CMP2_INT flag continues to assert).  
Rev. 0 | Page 29 of 52  
 
ADP8860  
Bit Name  
CMP_IEN  
Bit No. Description  
0 When the CMP_INT status bit is set after an enabled comparator trips, an interrupt is raised if the CMP_IEN flag is  
enabled.  
1 = the main comparator interrupt is enabled.  
0 = the main comparator interrupt is disabled (the CMP_INT flag continues to assert).  
BACKLIGHT REGISTER DESCRIPTIONS  
Configuration Register (CFGR)—Register 0x04  
Table 16. CFGR Bit Map  
Bit 7  
Reserved  
Bit 6  
SEL_AB  
Bit 5  
CMP2_SEL  
Bit 4  
Bit 3  
BLV  
Bit 2  
Bit 1  
Law  
Bit 0  
FOVR  
Table 17. Bit Descriptions for the CFGR Register  
Bit Name  
Bit No. Description  
N/A  
7
6
Reserved.  
SEL_AB  
1 = selects the second phototransistor (CMP_IN2) to control the backlight.  
0 = selects the main phototransistor (CMP_IN) to control the backlight.  
CMP2_SEL  
BLV  
5
1 = the second phototransistor is enabled; the current sink on D6 is disabled.  
0 = the second phototransistor is disabled.  
4:3  
Brightness level. This field indicates the brightness level at which the device is operating. The software may force the  
backlight to operate at one of the three brightness levels. Setting CMP_AUTOEN high (Register 0x01) sets these  
values automatically and overwrites any previously written values.  
00 = Level 1 (daylight).  
01 = Level 2 (office).  
10 = Level 3 (dark).  
11 = off (backlight set to 0 mA).  
Backlight transfer law.  
Law  
2:1  
0
00 = linear law DAC, linear time steps.  
01 = square law DAC, linear time steps.  
10 = square law DAC, nonlinear time steps (Cubic 10).  
11 = square law DAC, nonlinear time steps (Cubic 11).  
Backlight fade override.  
FOVR  
1 = the backlight fade override is enabled.  
0 = the backlight fade override is disabled.  
Backlight Sink Enable (BLSEN)—Register 0x05  
Table 18. BLSEN Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
D7EN  
D6EN  
D5EN  
D4EN  
D3EN  
D2EN  
D1EN  
Table 19. Bit Descriptions for the BLSEN Register  
Bit Name  
Bit No.  
Description  
N/A  
7
6
Reserved.  
D7EN  
Diode 7 backlight sink enable.  
1 = selects LED7 as an independent sink.  
0 = connects LED7 sink to backlight enable (BL_EN).  
Diode 6 backlight sink enable.  
D6EN  
5
1 = selects LED6 as an independent sink.  
0 = connects LED6 sink to backlight enable (BL_EN).  
Rev. 0 | Page 30 of 52  
 
ADP8860  
Bit Name  
Bit No.  
Description  
D5EN  
4
Diode 5 backlight sink enable.  
1 = selects LED5 as an independent sink.  
0 = connects LED5 sink to backlight enable (BL_EN).  
Diode 4 backlight sink enable.  
1 = selects LED4 as independent sink.  
0 = connects LED4 sink to backlight enable (BL_EN).  
Diode 3 backlight sink enable.  
1 = selects LED3 as independent sink.  
0 = connects LED3 sink to backlight enable (BL_EN).  
Diode 2 backlight sink enable.  
1 = selects LED2 as independent sink.  
0 = connects LED2 sink to backlight enable (BL_EN).  
Diode 1 backlight sink enable.  
D4EN  
D3EN  
D2EN  
D1EN  
3
2
1
0
1 = selects LED1 as independent sink.  
0 = connects LED1 sink to backlight enable (BL_EN).  
Backlight Off Timeout (BLOFF)—Register 0x06  
Table 20. BLOFF Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
OFFT  
Bit 2  
Bit 1  
Bit 0  
Table 21. Bit Descriptions for the BLOFF Register  
Bit Name Bit No. Description  
N/A  
7
Reserved.  
OFFT  
6:0  
Backlight off timeout. After the off timeout (OFFT) period, the backlight turns off. If the dim timeout (DIMT) is  
enabled, the off timeout starts after the dim timeout.  
0000 = timeout disabled  
0000001 = 1 sec  
0000010 = 2 sec  
0000011 = 3 sec  
1111111 = 127 sec  
Backlight Dim Timeout (BLDIM)—Register 0x07  
Table 22. BLDIM Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
DIMT  
Bit 2  
Bit 1  
Bit 0  
Table 23. Bit Descriptions for the BLDIM Register  
Bit Name Bit No. Description  
N/A  
7
Reserved.  
DIMT  
6:0  
Backlight dim timeout. After the dim timeout (DIMT) period, the backlight is set to the dim current value. The dim  
timeout starts after backlight reaches the maximum current.  
0000 = timeout disabled  
0000001 = 1 sec  
0000010 = 2 sec  
0000011 = 3 sec  
1111111 = 127 sec  
Rev. 0 | Page 31 of 52  
ADP8860  
Backlight Fade (BLFR)—Register 0x08  
Table 24. BLFR Backlight Fade Bit Map  
Bit 7  
Bit 6  
Bit 5  
BL_FO  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BL_FI  
Bit 0  
Table 25. Bit Descriptions for the BLFR Register  
Bit  
Name  
BL_FO  
Bit No. Description  
7:4  
Backlight fade out rate. If the fade out is disabled (BL_FO = 0000), the backlight changes instantly (within 100 ms). If the  
fade out rate is set, the backlight fades from its current value to the dim or the off value. The times listed for BL_FO are  
for a full-scale fade out (30 mA to 0 mA). Fades between closer current values reduce the fade time. See the Automated  
Fade In and Fade Out section for more information.  
0000 = 0.1 sec (fade out disabled)1  
0001 = 0.3 sec  
0010 = 0.6 sec  
0011 = 0.9 sec  
0100 = 1.2 sec  
0101 = 1.5 sec  
0110 = 1.8 sec  
0111 = 2.1 sec  
1000 = 2.4 sec  
1001 = 2.7 sec  
1010 = 3.0 sec  
1011 = 3.5 sec  
1100 = 4.0 sec  
1101 = 4.5 sec  
1110 = 5.0 sec  
1111 = 5.5 sec  
BL_FI  
3:0  
Backlight fade in rate. If the fade in is disabled (BL_FI = 0000), the backlight changes instantly (within 100 ms). If the  
fade in rate is set, the backlight fades from its current value to its maximum when the backlight is turned on. The times  
listed for BL_FI are for a full-scale fade in (0 mA to 30 mA). Fades between closer current values reduce the fade time.  
See the Automated Fade In and Fade Out section for more information.  
0000 = 0.1 sec (fade in disabled)1  
0001 = 0.3 sec  
0010 = 0.6 sec  
0011 = 0.9 sec  
1111 = 5.5 sec  
1 When fade in and fade out are disabled, the backlight does not instantaneously fade, but instead, fades rapidly within about 100 ms.  
Rev. 0 | Page 32 of 52  
 
ADP8860  
Backlight Level 1 (Daylight) Maximum Current Register (BLMX1)—Register 0x09  
Table 26. BLMX1 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL1_MC  
Bit 2  
Bit 1  
Bit 0  
Table 27. Bit Descriptions for the BLMX1 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL1_MC  
6:0  
Backlight maximum Level 1 (daylight) current. The backlight maximum current can be set according to  
the linear or square law function, as follows (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.708  
0.002  
0.007  
0.017  
1111111  
30  
30  
Table 28. Linear and Square Law Currents Per DAC Code  
DAC Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
Linear Law (mA)  
0
Square Law1 (mA)  
0.000  
0.002  
0.007  
0.017  
0.030  
0.047  
0.067  
0.091  
0.119  
0.151  
0.186  
0.225  
0.268  
0.314  
0.365  
0.419  
0.476  
0.538  
0.603  
0.671  
0.744  
0.820  
0.900  
0.984  
1.071  
1.163  
1.257  
1.356  
1.458  
1.564  
1.674  
DAC Code  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
Linear Law (mA)  
7.323  
7.559  
7.795  
8.031  
8.268  
8.504  
8.740  
8.976  
9.213  
9.449  
9.685  
9.921  
10.157  
10.394  
10.630  
10.866  
11.102  
11.339  
11.575  
11.811  
12.047  
12.283  
12.520  
12.756  
12.992  
13.228  
13.465  
13.701  
13.937  
14.173  
14.409  
Square Law1 (mA)  
1.787  
1.905  
2.026  
2.150  
2.279  
2.411  
0.236  
0.472  
0.709  
0.945  
1.181  
1.417  
1.654  
1.890  
2.126  
2.362  
2.598  
2.835  
3.071  
3.307  
3.543  
3.780  
4.016  
4.252  
4.488  
4.724  
4.961  
5.197  
5.433  
5.669  
5.906  
6.142  
6.378  
6.614  
6.850  
7.087  
2.546  
2.686  
2.829  
2.976  
3.127  
3.281  
3.439  
3.601  
3.767  
3.936  
4.109  
4.285  
4.466  
4.650  
4.838  
5.029  
5.225  
5.424  
5.627  
5.833  
6.043  
6.257  
6.475  
6.696  
6.921  
Rev. 0 | Page 33 of 52  
 
ADP8860  
DAC Code  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
Linear Law (mA)  
14.646  
14.882  
15.118  
15.354  
15.591  
15.827  
16.063  
16.299  
16.535  
16.772  
17.008  
17.244  
17.480  
17.717  
17.953  
18.189  
18.425  
18.661  
18.898  
19.134  
19.370  
19.606  
19.842  
20.079  
20.315  
20.551  
20.787  
21.024  
21.260  
21.496  
21.732  
21.968  
22.205  
Square Law1 (mA)  
7.150  
7.382  
7.619  
7.859  
8.102  
8.350  
8.601  
8.855  
9.114  
9.376  
9.642  
DAC Code  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
Linear Law (mA)  
22.441  
22.677  
22.913  
23.150  
23.386  
23.622  
23.858  
24.094  
24.331  
24.567  
24.803  
25.039  
25.276  
25.512  
25.748  
25.984  
26.220  
26.457  
26.693  
26.929  
27.165  
27.402  
27.638  
27.874  
28.110  
28.346  
28.583  
28.819  
29.055  
29.291  
29.528  
29.764  
30.000  
Square Law1 (mA)  
16.787  
17.142  
17.501  
17.863  
18.230  
18.600  
18.974  
19.351  
19.733  
20.118  
20.507  
20.899  
21.295  
21.695  
22.099  
22.506  
22.917  
23.332  
23.750  
24.173  
24.599  
25.028  
25.462  
25.899  
26.340  
26.784  
27.232  
27.684  
28.140  
28.599  
29.063  
29.529  
30.000  
9.912  
10.185  
10.463  
10.743  
11.028  
11.316  
11.608  
11.904  
12.203  
12.507  
12.814  
13.124  
13.439  
13.757  
14.078  
14.404  
14.733  
15.066  
15.403  
15.743  
16.087  
16.435  
1 Cubic 10 and Cubic 11 laws use the square law DAC setting but vary the time  
step per DAC code (see Figure 31).  
Rev. 0 | Page 34 of 52  
 
 
 
 
ADP8860  
Backlight Level 1 (Daylight) Dim Current Register (BLDM1)—Register 0x0A  
Table 29. BLDM1 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL1_DC  
Bit 2  
Bit 1  
Bit 0  
Table 30. Bit Descriptions for the BLDM1 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL1_DC  
6:0  
Backlight Level 1 (daylight) dim current. The backlight is set to the dim current value after a dim timeout or  
if the DIM_EN flag is set by the user (see Table 28 for a complete list of values).  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Backlight Level 2 (Office) Maximum Current Register (BLMX2)—Register 0x0B  
Table 31. BLMX2 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL2_MC  
Bit 2  
Bit 1  
Bit 0  
Table 32. Bit Descriptions for the BLMX2 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL2_MC  
6:0  
Backlight Level 2 (office) maximum current (see Table 28 for a complete list of values).  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Rev. 0 | Page 35 of 52  
ADP8860  
Backlight Level 2 (Office) Dim Current Register (BLDM2)—Register 0x0C  
Table 33. BLDM2 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL2_DC  
Bit 2  
Bit 1  
Bit 0  
Table 34. Bit Descriptions for the BLDM2 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL2_DC  
6:0  
Backlight Level 2 (office) dim current. See Table 28 for a complete list of values. The backlight is set to the  
dim current value after a dim timeout or if the DIM_EN flag is set by the user.  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Backlight Level 3 (Dark) Maximum Current Register (BLMX3)—Register 0x0D  
Table 35. BLMX3 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL3_MC  
Bit 2  
Bit 1  
Bit 0  
Table 36. Bit Descriptions for the BLMX3 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL3_MC  
6:0  
Backlight Level 3 (dark) maximum current. See Table 28 for a complete list of values.  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Rev. 0 | Page 36 of 52  
ADP8860  
Backlight Level 3 (Dark) Dim Current Register (BLDM3)—Register 0x0E  
Table 37. BLDM3 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL3_DC  
Bit 2  
Bit 1  
Bit 0  
Table 38. Bit Descriptions for the BLDM3 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL3_DC  
6:0  
Backlight Level 3 (dark) dim current. See Table 28 for a complete list of values. The backlight is set to the  
dim current value after a dim timeout or if the DIM_EN flag is set by the user.  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
INDEPENDENT SINK REGISTER DESCRIPTIONS  
Independent Sink Current Fade Control Register (ISCFR)—Register 0x0F  
Table 39. ISCFR Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SC_LAW  
Table 40. Bit Descriptions for the ISCFR  
Bit Name  
Bit No.  
Description  
N/A  
7:2  
Reserved.  
SC_LAW  
1:0  
Independent sink current fade transfer law.  
00 = linear law DAC, linear time steps.  
01 = square law DAC, linear time steps.  
10 = square law DAC, nonlinear time steps (Cubic 10).  
11 = square law DAC, nonlinear time steps (Cubic 11).  
Independent Sink Current Control (ISCC)—Register 0x10  
Table 41. ISCC Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SC7_EN  
SC6_EN  
SC5_EN  
SC4_EN  
SC3_EN  
SC2_EN  
SC1_EN  
Table 42. Bit Descriptions for the ISCC Register  
Bit Name  
Bit No.  
Description  
N/A  
7
6
Reserved.  
SC7_EN  
This enable acts upon the LED7.  
1 = SC7 is turned on.  
0 = SC7 is turned off.  
SC6_EN  
SC5_EN  
5
4
This enable acts upon the LED6.  
1 = SC6 is turned on.  
0 = SC6 is turned off.  
This enable acts upon the LED5.  
1 = SC5 is turned on.  
0 = SC5 is turned off.  
Rev. 0 | Page 37 of 52  
 
ADP8860  
Bit Name  
Bit No.  
Description  
SC4_EN  
3
This enable acts upon the LED4.  
1 = SC4 is turned on.  
0 = SC4 is turned off.  
SC3_EN  
SC2_EN  
SC1_EN  
2
1
0
This enable acts upon the LED3.  
1 = SC3 is turned on.  
0 = SC3 is turned off.  
This enable acts upon the LED2.  
1 = SC2 is turned on.  
0 = SC2 is turned off.  
This enable acts upon the LED1.  
1 = SC1 is turned on.  
0 = SC1 is turned off.  
Independent Sink Current Time (ISCT1)—Register 0x11  
Table 43. ISCT1 Bit Map  
Bit 7  
Bit 6  
SCON  
Bit 5  
Bit 4  
SC7OFF  
Bit 3  
Bit 2  
SC6OFF  
Bit 1  
Bit 0  
SC5OFF  
Table 44. Bit Descriptions for the ISCT1 Register  
Bit Name Bit No. Description1, 2  
SCON  
7:6  
SC on time. If the SCxOFF time is not disabled, then when the independent current sink is enabled (Register 0x10) it  
remains on for the on time selected (per the following list) and then turns off.  
00 = 0.2 sec.  
01 = 0.6 sec.  
10 = 0.8 sec.  
11 = 1.2 sec.  
SC7OFF  
5:4  
SC7 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, the ISC turns off for the off time (per the following listed times) and then turns on according to the SCON  
setting.  
00 = off time disabled.  
01 = 0.6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
SC6OFF  
SC5OFF  
3:2  
1:0  
SC6 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, the ISC turns off for the off time (per the following listed times) and then turns on according to the SCON  
setting.  
00 = off time disabled.  
01 = 0.6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
SC5 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, the ISC turns off for the off time (per the following listed times) and then turns on according to the SCON  
setting.  
00 = off time disabled.  
01 = 0.6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
1 An independent sink remains on continuously when SCx_EN = 1 and SCx_OFF is 00 (disabled).  
2 To enable multiple independent sinks, set the appropriate SCx_EN bits. To create equivalent blinking and fading sequences, enable all independent sinks in one write  
cycle to cause a preprogrammed sequence to start simultaneously.  
Rev. 0 | Page 38 of 52  
 
ADP8860  
Independent Sink Current Time (ISCT2)—Register 0x12  
Table 45. ISCT2 Bit Map  
Bit 7  
Bit 6  
SC4OFF  
Bit 5  
Bit 4  
SC3OFF  
Bit 3  
Bit 2  
SC2OFF  
Bit 1  
Bit 0  
SC1OFF  
Table 46. Bit Descriptions for the ISCT2 Register  
Designation Bit  
Description1, 2  
SC4OFF  
SC3OFF  
SC2OFF  
SC1OFF  
7:6  
5:4  
3:2  
1:0  
SC4 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, then the ISC turns off for the off time (per the following listed times) and then turns on according to  
the SCON setting.  
00 = off time disabled.  
01 = 0. 6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
SC3 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, then the ISC turns off for the off time (per the following listed times) and then turns on according to  
the SCON setting.  
00 = off time disabled.  
01 = 0. 6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
SC2 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, then the ISC turns off for the off time (per the following listed times) and then turns on according to  
the SCON setting.  
00 = off time disabled.  
01 = 0. 6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
SC1 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is set to any  
other value, then the ISC turns off for the off time (per the following listed times) and then turns on according to  
the SCON setting.  
00 = off time disabled.  
01 = 0. 6 sec.  
10 = 1.2 sec.  
11 = 1.8 sec.  
1 An independent sink remains on continuously when SCx_EN = 1 and SCx_OFF is 00 (disabled).  
2 To enable multiple independent sinks, set the appropriate SCx_EN bits. To create equivalent blinking and fading sequences, enable all independent sinks in one write  
cycle. This causes a preprogrammed sequence to start simultaneously.  
Rev. 0 | Page 39 of 52  
 
ADP8860  
Independent Sink Current Fade (ISCF)—Register 0x13  
Table 47. ISCF Bit Map  
Bit 7  
Bit 6  
Bit 5  
SCFO  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
SCFI  
Bit 0  
Table 48. Bit Descriptions for the ISCF Register  
Bit Name Bit No. Description  
SCFO  
7:4  
Sink current fade out rate. The following times listed are for a full-scale fade out (30 mA to 0 mA). Fades between  
closer current values reduce the fade time. See the Automated Fade In and Fade Out section for more information.  
0000 = disabled.  
0001 = 0.30 sec.  
0010 = 0.60 sec.  
0011 = 0.90 sec.  
0100 = 1.2 sec.  
0101 = 1.5 sec.  
0110 = 1.8 sec.  
0111 = 2.1 sec.  
1000 = 2.4 sec.  
1001 = 2.7 sec.  
1010 = 3.0 sec.  
1011 = 3.5 sec.  
1100 = 4.0 sec.  
1101 = 4.5 sec.  
1110 = 5.0 sec.  
1111 = 5.5 sec.  
SCFI  
3:0  
Sink current fade in rate. The following times listed are for a full-scale fade in (0 mA to 30 mA). Fades between closer  
current values reduce the fade time. See the Automated Fade In and Fade Out section for more information.  
0000 = disabled.  
0001 = 0.30 sec.  
0010 = 0.60 sec.  
0011 = 0.90 sec.  
0100 = 1.2 sec.  
0101 = 1.5 sec.  
0110 = 1.8 sec.  
0111 = 2.1 sec.  
1000 = 2.4 sec.  
1001 = 2.7 sec.  
1010 = 3.0 sec.  
1011 = 3.5 sec.  
1100 = 4.0 sec.  
1101 = 4.5 sec.  
1110 = 5.0 sec.  
1111 = 5.5 sec.  
Rev. 0 | Page 40 of 52  
ADP8860  
Sink Current Register LED7 (ISC7)—Register 0x14  
Table 49. ISC7 Bit Map  
Bit 7  
SCR  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD7  
Bit 2  
Bit 1  
Bit 0  
Table 50. Bit Descriptions for the ISC7 Register  
Bit Name  
Bit No. Description  
SCR  
7
1 = Sink Current 1.  
0 = Sink Current 0. For the lowest input current consumption and optimal efficiency, set SCR to 0 when D7 is set  
to ISC in Register 0x05 and SC7_EN = 0.  
SCD7  
6:0  
For Sink Current 0, use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
For Sink Current 1, use the following DAC code schedule (see Table 51 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.472  
0.945  
01.417  
0.004  
0.014  
0.034  
1111111  
60  
60  
Table 51. Linear and Square Law Currents for LED7 (SCR = 1)  
DAC Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
Linear Law (mA)  
0.000  
0.472  
0.945  
1.42  
1.89  
2.36  
2.83  
3.31  
3.78  
4.25  
4.72  
5.20  
5.67  
6.14  
6.61  
7.09  
Square Law1 (mA)  
0
DAC Code  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
Linear Law (mA)  
9.45  
9.92  
10.39  
10.87  
11.34  
Square Law1 (mA)  
1.488  
1.64  
0.004  
0.014  
0.034  
0.06  
0.094  
0.134  
0.182  
0.238  
0.302  
0.372  
0.45  
0.536  
0.628  
0.73  
0.838  
0.952  
1.076  
1.206  
1.342  
1.8  
1.968  
2.142  
2.326  
2.514  
2.712  
2.916  
3.128  
3.348  
3.574  
3.81  
11.81  
12.28  
12.76  
13.23  
13.70  
14.17  
14.65  
15.12  
15.59  
16.06  
16.54  
17.01  
17.48  
17.95  
18.43  
4.052  
4.3  
4.558  
4.822  
5.092  
5.372  
5.658  
7.56  
8.03  
0x12  
0x13  
8.50  
8.98  
Rev. 0 | Page 41 of 52  
 
ADP8860  
DAC Code  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
Linear Law (mA)  
18.90  
19.37  
19.84  
20.31  
20.79  
21.26  
21.73  
22.20  
22.68  
23.15  
23.62  
24.09  
24.57  
25.04  
25.51  
25.98  
26.46  
26.93  
27.40  
27.87  
28.35  
28.82  
29.29  
29.76  
30.24  
30.71  
31.18  
31.65  
32.13  
32.60  
33.07  
33.54  
34.02  
34.49  
34.96  
35.43  
35.91  
36.38  
36.85  
37.32  
37.80  
38.27  
38.74  
39.21  
Square Law1 (mA)  
5.952  
6.254  
6.562  
6.878  
7.202  
7.534  
7.872  
8.218  
8.57  
8.932  
9.3  
9.676  
10.058  
10.45  
10.848  
11.254  
11.666  
12.086  
12.514  
12.95  
13.392  
13.842  
14.3  
14.764  
15.238  
15.718  
16.204  
16.7  
DAC Code  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
Linear Law (mA)  
39.69  
40.16  
40.63  
41.10  
41.57  
42.05  
42.52  
42.99  
43.46  
43.94  
44.41  
44.88  
45.35  
45.83  
46.30  
46.77  
47.24  
47.72  
48.19  
48.66  
49.13  
49.61  
50.08  
50.55  
51.02  
51.50  
51.97  
52.44  
52.91  
53.39  
53.86  
54.33  
54.80  
55.28  
55.75  
56.22  
56.69  
57.17  
57.64  
58.11  
58.58  
59.06  
59.53  
60  
Square Law1 (mA)  
26.248  
26.878  
27.514  
28.156  
28.808  
29.466  
30.132  
30.806  
31.486  
32.174  
32.87  
33.574  
34.284  
35.002  
35.726  
36.46  
37.2  
37.948  
38.702  
39.466  
40.236  
41.014  
41.798  
42.59  
43.39  
44.198  
45.012  
45.834  
46.664  
47.5  
48.346  
49.198  
50.056  
50.924  
51.798  
52.68  
53.568  
54.464  
55.368  
56.28  
57.198  
58.126  
59.058  
60  
17.202  
17.71  
18.228  
18.752  
19.284  
19.824  
20.37  
20.926  
21.486  
22.056  
22.632  
23.216  
23.808  
24.406  
25.014  
25.628  
1 Cubic 10 and Cubic 11 laws use the square law DAC setting but vary the time  
step per DAC code (see Figure 31).  
Rev. 0 | Page 42 of 52  
 
 
 
ADP8860  
Sink Current Register LED6 (ISC6)—Register 0x15  
Table 52. ISC6 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD6  
Bit 2  
Bit 1  
Bit 0  
Table 53. Bit Descriptions for the ISC6 Register  
Bit Name  
Bit No. Description  
N/A  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD6  
6:0  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Sink Current Register LED5 (ISC5)—Register 0x16  
Table 54. ISC5 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SCD5  
Table 55. Bit Descriptions for the ISC5 Register  
Bit Name  
Bit No. Description  
N/A  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD5  
6:0  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Sink Current Register LED4 (ISC4)—Register 0x17  
Table 56. ISC4 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SCD4  
Table 57. Bit Descriptions for the ISC4 Register  
Bit Name  
Bit No. Description  
N/A  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD4  
6:0  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Rev. 0 | Page 43 of 52  
ADP8860  
Sink Current Register LED3 (ISC3)—Register 0x18  
Table 58. ISC3 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD3  
Bit 2  
Bit 1  
Bit 0  
Bit 0  
Bit 0  
Table 59. Bit Descriptions for the ISC3 Register  
Bit Name  
N/A  
Bit No. Description  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD3  
6:0  
DAC  
Linear Law (mA)  
0
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Sink Current Register LED2 (ISC2)—Register 0x19  
Table 60. ISC2 Bit Map  
Bit 7  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
SCD2  
Table 61. Bit Descriptions for the ISC2 Register  
Bit Name  
N/A  
Bit No. Description  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD2  
6:0  
DAC  
Linear Law (mA)  
0
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Sink Current Register LED1 (ISC1)—Register 0x1A  
Table 62. ISC1 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reserved  
SCD1  
Table 63. Bit Descriptions for the ISC1 Register  
Bit Name  
Bit No. Description  
N/A  
7
Reserved  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD1  
6:0  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Rev. 0 | Page 44 of 52  
ADP8860  
COMPARATOR REGISTER DESCRIPTIONS  
Comparator Configuration (CCFG)—Register 0x1B  
Table 64. CCFG Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FILT  
FORCE_RD  
L3_OUT  
L2_OUT  
L3_EN  
L2_EN  
Table 65. Bit Descriptions for the CCFG Register  
Bit Name  
Bit No. Description  
FILT  
7:5 Filter setting for the CMP_IN light sensor.  
000 = 80 ms.  
001 = 160 ms.  
010 = 320 ms.  
011 = 640 ms.  
100 = 1280 ms.  
101 = 2560 ms.  
110 = 5120 ms.  
111= 10,240 ms.  
FORCE_RD  
4
Force a read of the CMP_IN light sensor while independent sinks are running, but the backlight is not. Reset by chip  
after the conversion is complete and L2_OUT and L3_OUT are valid. Ignored if the backlight is enabled.  
L3_OUT  
L2_OUT  
L3_EN  
3
2
1
This bit is the output of the L3 comparator.  
This bit is the output of the L2 comparator.  
1 = the L3 comparator is enabled for the CMP_IN comparator.  
0 = the L3 comparator is disabled for the CMP_IN comparator.  
Note that the L3 comparator has priority over L2.  
L2_EN  
0
1 = the L2 comparator is enabled for the CMP_IN comparator.  
0 = the L2 comparator is disabled for the CMP_IN comparator.  
Second Comparator Configuration (CCFG2)—Register 0x1C  
Table 66. CCFG2 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FILT2  
FORCE_RD2  
L3_OUT2  
L2_OUT2  
L3_EN2  
L2_EN2  
Table 67. Bit Descriptions for the CCFG2 Register  
Bit Name  
Bit No. Description  
FILT2  
7:5 Filter setting for the CMP_IN2 light sensor.  
000 = 80 ms.  
001 = 160 ms.  
010 = 320 ms.  
011 = 640 ms.  
100 = 1280 ms.  
101 = 2560 ms.  
110 = 5120 ms.  
111= 10,240 ms.  
FORCE_RD2  
4
Force a read of the CMP_IN2 light sensor while independent sinks are running, but the backlight is not. Reset by  
chip after the conversion is complete and L2_OUT and L3_OUT are valid. Ignored if the backlight is enabled.  
L3_OUT2  
L2_OUT2  
L3_EN2  
3
2
1
This bit is the output of the L3 comparator for the second light sensor.  
This bit is the output of the L2 comparator for the second light sensor.  
1 = the L3 comparator is enabled for the CMP_IN2 comparator.  
0 = the L3 comparator is disabled for the CMP_IN2 comparator.  
Rev. 0 | Page 45 of 52  
 
ADP8860  
Bit Name  
L2_EN2  
Bit No. Description  
0 Note that the L3 comparator has priority over L2.  
1 = the L2 comparator is enabled for the CMP_IN2 comparator.  
0 = the L2 comparator is disabled for the CMP_IN2 comparator.  
Comparator Level 2 Threshold (L2_TRP)—Register 0x1D  
Table 68. L2_TRP Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
L2_TRP  
Bit 2  
Bit 1  
Bit 0  
Table 69. Bit Descriptions for the L2_TRP Register  
Bit Name  
Bit No.  
Description  
L2_TRP  
7:0  
Comparator Level 2 threshold. If the comparator input is below L2_TRP, then the comparator trips and  
the backlight enters Level 2 (office) mode. The following lists the code settings for photosensor current:  
00000000 = 0 μA.  
00000001 = 4.3 μA.  
00000010 = 8.6 μA.  
00000011 = 12.9 μA.  
11111010 = 1080 μA.  
11111111 = 1106 μA.  
Although codes above 1111010 (250) are possible, they should not be used. Furthermore, the maximum  
value of L2_TRP + L2_HYS must not exceed 1111010 (250).  
Comparator Level 2 Hysteresis (L2_HYS)—Register 0x1E  
Table 70. L2_HYS Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
L2_HYS  
Bit 2  
Bit 1  
Bit 0  
Table 71. Bit Descriptions for the L2_HYS Register  
Bit Name  
Bit No.  
Description  
L2_HYS  
7:0  
Comparator Level 2 hysteresis. If the comparator input is above L2_TRP + L2_HYS, the comparator trips  
and the backlight enters Level 1 (daylight) mode. The following lists the code settings for photosensor  
current hysteresis:  
0000000 = 0 μA.  
00000001 = 4.3 μA.  
00000010 = 8.6 μA.  
00000011 = 12.9 μA.  
11111010 = 1080 μA.  
11111111 = 1106 μA.  
Although codes above 1111010 (250) are possible, they should not be used. Furthermore, the maximum  
value of L2_TRP + L2_HYS must not exceed 1111010 (250).  
Rev. 0 | Page 46 of 52  
ADP8860  
Comparator Level 3 Threshold (L3_TRP)—Register 0x1F  
Table 72. L3_TRP Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
L3_TRP  
Bit 2  
Bit 1  
Bit 0  
Table 73. Bit Descriptions for the L3_TRP Register  
Bit Name  
Bit No.  
Description  
L3_TRP  
7:0  
Comparator Level 3 threshold. If the comparator input is below L3_TRP, the comparator trips and the  
backlight enters Level 3 (dark) mode. The following lists the code settings for photosensor current:  
0000000 = 0 μA.  
0000001 = 0.54 μA.  
0000010 = 1.08 μA.  
0000011 = 1.62 μA.  
1111111 = 137.7 μA.  
Comparator Level 3 Hysteresis (L3_HYS)—Register 0x20  
Table 74. L3_HYS Comparator Level 3 Hysteresis Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
L3_HYS  
Bit 2  
Bit 1  
Bit 0  
Table 75. Bit Descriptions for the L3_HYS Register  
Bit Name  
Bit No.  
Description  
L3_HYS  
7:0  
Comparator Level 3 hysteresis. If the comparator input is above L3_TRP + L3_HYS, the comparator trips  
and the backlight enters Level 2 (office) mode. The following lists the code settings for photosensor  
current hysteresis:  
0000000 = 0 μA.  
0000001 = 0.54 μA.  
0000010 = 1.08 μA.  
0000011 = 1.62 μA.  
1111111 = 137.7 μA.  
First Phototransistor Register: Low Byte (PH1LEVL)—Register 0x21  
Table 76. PH1LEVL Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PH1LEV_LOW  
Table 77. Bit Descriptions for the PH1LEVL Register  
Bit Name  
Bit No.  
Description  
PH1LEV_LOW  
7:0  
13-bit conversion value for the first light sensor—low byte (Bit 7 to Bit 0). The value is updated every  
80 ms (when the light sensor is enabled). This is a read-only register.  
Rev. 0 | Page 47 of 52  
ADP8860  
First Phototransistor Register: High Byte (PH1LEVH)—Register 0x22  
Table 78. PH1LEVH Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
PH1LEV_HIGH  
Table 79. Bit Descriptions for the PH1LEVH Register  
Bit Name  
Bit No. Description  
N/A  
7:5  
4:0  
Reserved.  
PH1LEV_HIGH  
13-bit conversion value for the first light sensor—high byte (Bit 12 to Bit 8). The value is updated every  
80 ms (when the light sensor is enabled). This is a read-only register.  
Second Phototransistor Register: Low Byte (PH2LEVL)—Register 0x23  
Table 80. PH2LEVL Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PH2LEV_LOW  
Table 81. Bit Descriptions for the PH2LEVL Register  
Bit Name  
Bit No. Description  
PH2LEV_LOW  
7:0  
13-bit conversion value for the second light sensor—low byte (Bit 7 to Bit 0) The value is updated every 80 ms  
(when the light sensor is enabled). This is a read-only register.  
Second Phototransistor Register: High Byte (PH2LEVH)—Register 0x24  
Table 82. PH2LEVH Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
PH2LEV_HIGH  
Table 83. Bit Descriptions for the PH2LEVH Register  
Bit Name  
Bit No. Description  
N/A  
7:5  
Reserved.  
PH2LEV_HIGH  
4:0  
13-bit conversion value for the second light sensor—high byte (Bit 12 to Bit 8). The value is updated every  
80 ms (when the light sensor is enabled). This is a read-only register.  
Rev. 0 | Page 48 of 52  
ADP8860  
OUTLINE DIMENSIONS  
0.645  
0.600  
0.555  
1.995  
1.955  
1.915  
4
3
2
1
SEATING  
PLANE  
A
B
C
D
E
BALL A1  
IDENTIFIER  
2.395  
2.355  
2.315  
1.60  
REF  
0.287  
0.267  
0.247  
0.40  
REF  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.05 MAX  
0.415  
0.400  
0.385  
COPLANARITY  
0.230  
0.200  
0.170  
Figure 47. 20-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-20-6)  
Dimensions shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.50  
BSC  
2.65  
2.50 SQ  
2.35  
PIN 1  
INDICATOR  
3.75  
BSC SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
6
11  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 48. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-4)  
Dimensions shown in millimeters  
Rev. 0 | Page 49 of 52  
 
ADP8860  
ORDERING GUIDE  
Model  
ADP8860ACBZ-R71  
ADP8860ACPZ-R71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
20-Ball WLCSP, Tape and Reel  
20-Lead LFCSP_VQ, Tape and Reel  
Package Option  
CB-20-6  
CP-20-4  
1 Z = RoHS Compliant Part.  
Figure 49. Tape and Reel Orientation for WLCSP Units  
Figure 50. Tape and Reel Orientation for LFCSP Units  
Rev. 0 | Page 50 of 52  
 
 
ADP8860  
NOTES  
Rev. 0 | Page 51 of 52  
ADP8860  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07967-0-5/09(0)  
Rev. 0 | Page 52 of 52  

相关型号:

ADP8860ACPZ-R7

Charge Pump, 7-Channel Smart LED Driver with I<sup>2</sup>C Interface
ADI

ADP8860ACPZ-R7

LED DISPLAY DRIVER, QCC20, 4 X 4 MM, ROHS COMPLIANT, MO-220-VGGD, WLCSP-20
ROCHESTER

ADP8861

Charge Pump, 7-Channel Smart LED Driver with I2C Interface
ADI

ADP8861ACPZ-R7

Charge Pump, 7-Channel Smart LED Driver with I<sup>2</sup>C Interface
ADI

ADP8861ACPZ-RL

Charge Pump, 7-Channel Smart LED Driver with I2C Interface
ADI

ADP8861DBCB-EVALZ

Charge Pump, 7-Channel Smart LED Driver with I2C Interface
ADI

ADP8863

Charge Pump,7-Channel Fun Lighting LED Driver
ADI

ADP8863ACPZ-R7

Charge Pump,7-Channel Fun Lighting LED Driver
ADI

ADP8863DBCP-EVALZ

Charge Pump,7-Channel Fun Lighting LED Driver
ADI

ADP8866

Charge Pump Driven 9-Channel LED Driver with Automated LED Lighting Effects
ADI

ADP8866ACPZ-R7

Charge Pump Driven 9-Channel LED Driver with Automated LED Lighting Effects
ADI

ADP886XMB1-EVALZ

Charge Pump,7-Channel Fun Lighting LED Driver
ADI