ADR391BUJZ-R21 [ADI]

Micropower, Low Noise Precision Voltage References with Shutdown; 微功耗,低噪声精密电压基准,带有关断
ADR391BUJZ-R21
型号: ADR391BUJZ-R21
厂家: ADI    ADI
描述:

Micropower, Low Noise Precision Voltage References with Shutdown
微功耗,低噪声精密电压基准,带有关断

文件: 总20页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, Low Noise Precision Voltage  
References with Shutdown  
ADR391/ADR392/ADR395  
FEATURES  
PIN CONFIGURATION  
Compact 5-lead TSOT package  
Low temperature coefficient  
B grade: 9 ppm/°C  
1
2
3
5
GND  
SHDN  
ADR391/  
ADR392/  
ADR395  
V
IN  
(Not to Scale)  
V
V
4
OUT (SENSE)  
OUT (FORCE)  
A grade: 25 ppm/°C  
Initial accuracy  
Figure 1. 5-Lead TSOT (UJ Suffix)  
B grade: 4 mV maximum (ADR391)  
A grade: 6 mV maximum  
Ultralow output noise: 5 μV p-p (0.1 Hz to 10 Hz)  
Low dropout: 300 mV  
Table 1.  
Output  
Temperature  
Accuracy  
(mV)  
Low supply current  
Model  
Voltage (VO) Coefficient (ppm/°C)  
3 μA maximum in shutdown  
140 μA maximum in operation  
No external capacitor required  
Output current: 5 mA  
Automotive grade available  
Wide temperature range: −40°C to +125°C  
ADR391B 2.5  
ADR391A 2.5  
ADR392B ±.09ꢀ  
ADR392A ±.09ꢀ  
ADR395B 5.0  
ADR395A 5.0  
9
25  
9
25  
9
25  
±±  
±ꢀ  
±5  
±ꢀ  
±5  
±ꢀ  
APPLICATIONS  
Battery-powered instrumentation  
Portable medical instrumentation  
Data acquisition systems  
Industrial process controls  
Automotive  
GENERAL DESCRIPTION  
The ADR391/ADR392/ADR395 are precision 2.048 V, 2.5 V,  
4.096 V, and 5 V band gap voltage references, respectively,  
featuring low power and high precision in a tiny footprint. Using  
patented temperature drift curvature correction techniques  
from Analog Devices, Inc., the ADR39x references achieve a  
low 9 ppm/°C of temperature drift in the TSOT package.  
The ADR39x family of micropower, low dropout voltage references  
provides a stable output voltage from a minimum supply of  
300 mV above the output. Their advanced design eliminates the  
need for external capacitors, which further reduces board space  
and system cost. The combination of low power operation,  
small size, and ease of use makes the ADR39x precision voltage  
references ideally suited for battery-operated applications.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
ADR391/ADR392/ADR395  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Terminology.................................................................................... 13  
Theory of Operation ...................................................................... 14  
Device Power Dissipation Considerations.............................. 14  
Shutdown Mode Operation ...................................................... 14  
Applications Information.............................................................. 15  
Basic Voltage Reference Connection....................................... 15  
Capacitors.................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR391 Electrical Characteristics............................................. 3  
ADR392 Electrical Characteristics............................................. 4  
ADR395 Electrical Characteristics............................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
REVISION HISTORY  
10/09—Rev. G to Rev. H  
Deleted ADR390.................................................................Universal  
Changes to Ordering Guide Section............................................ 18  
Changes to ADR392—Specifications .............................................5  
Changes to ADR395—Specifications .............................................6  
Changes to Absolute Maximum Ratings........................................7  
Changes to Thermal Resistance.......................................................7  
Moved ESD Caution..........................................................................7  
Changes to Figure 3, Figure 4, Figure 7, and Figure 8..................9  
Changes to Figure 11, Figure 12, Figure 13, and Figure 14....... 10  
Changes to Figure 15, Figure 16, Figure 19, and Figure 20....... 11  
Changes to Figure 23 and Figure 24............................................. 12  
Changes to Figure 27...................................................................... 13  
Changes to Ordering Guide.......................................................... 19  
Updated Outline Dimensions....................................................... 19  
2/08—Rev. F to Rev. G  
Changes to Ripple Rejection Ration Parameter (Table 2)........... 3  
Changes to Ripple Rejection Ration Parameter (Table 3)........... 4  
Changes to Ripple Rejection Ration Parameter (Table 4)........... 5  
Changes to Ripple Rejection Ration Parameter (Table 5)........... 6  
Changes to Figure 7.......................................................................... 9  
Changes to Outline Dimensions................................................... 19  
Changes to Ordering Guide .......................................................... 19  
5/05—Rev. E to Rev. F  
10/02—Rev. B to Rev. C  
Changes to Table 5............................................................................ 7  
Changes to Figure 2.......................................................................... 9  
Add parts ADR392 and ADR395.....................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Additions to Table I...........................................................................1  
Changes to Specifications.................................................................2  
Changes to Ordering Guide.............................................................4  
Changes to Absolute Maximum Ratings........................................4  
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 ..............................6  
New Figures 4 and 5....................................................................... 13  
Deleted A Negative Precision Reference  
4/04—Rev. D to Rev. E  
Changes to ADR390—Specifications............................................. 3  
Changes to ADR391—Specifications............................................. 4  
Changes to ADR392—Specifications............................................. 5  
Changes to ADR395—Specifications............................................. 6  
4/04—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Title ................................................................................ 1  
Changes to Features.......................................................................... 1  
Changes to Applications .................................................................. 1  
Changes to General Description .................................................... 1  
Changes to Table 1............................................................................ 1  
Changes to ADR390—Specifications............................................. 3  
Changes to ADR391—Specifications............................................. 4  
without Precision Resistors Section............................................. 13  
Edits to General-Purpose Current Source Section.................... 13  
Updated Outline Dimensions....................................................... 15  
5/02—Rev. A to Rev. B  
Edits to Layout ....................................................................Universal  
Changes to Figure 6........................................................................ 13  
Rev. H | Page 2 of 20  
 
ADR391/ADR392/ADR395  
SPECIFICATIONS  
ADR391 ELECTRICAL CHARACTERISTICS  
VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
V
V
OUTPUT VOLTAGE  
VO  
A grade  
B grade  
2.±9± 2.5  
2.±9ꢀ 2.5  
2.50ꢀ  
2.50±  
INITIAL ACCURACY  
VOERR  
A grade  
mV  
A grade  
B grade  
0.2±  
±
%
mV  
B grade  
0.1ꢀ  
25  
9
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, −±0°C < TA < +125°C  
B grade, −±0°C < TA < +125°C  
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
10  
ΔVO/ΔVIN  
VIN = 2.8 V to 15 V, −±0°C < TA < +125°C  
25  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LOAD REGULATION  
ΔVO/ΔILOAD ILOAD = 0 mA to 5 mA, −±0°C < TA < +85°C, VIN = 3 V  
ILOAD = 0 mA to 5 mA, −±0°C < TA < +125°C, VIN = 3 V  
ꢀ0  
1±0  
120  
1±0  
QUIESCENT CURRENT  
IIN  
No load  
−±0°C < TA < +125°C  
0.1 Hz to 10 Hz  
μA  
VOLTAGE NOISE  
en p-p  
tR  
5
μV p-p  
μs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
−80  
25  
30  
ΔVO  
ΔVO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ꢀ0 Hz  
VIN = 5 V  
VIN = 15 V  
mA  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
μA  
nA  
V
VINH  
2.±  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. H | Page 3 of 20  
 
ADR391/ADR392/ADR395  
ADR392 ELECTRICAL CHARACTERISTICS  
VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A grade  
±.090 ±.09ꢀ ±.102  
B grade  
±.091 ±.09ꢀ ±.101  
V
INITIAL ACCURACY  
VOERR  
A grade  
mV  
A grade  
0.15  
%
B grade  
5
mV  
B grade  
0.12  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, −±0°C < TA < +125°C  
B grade, −±0°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
ΔVO/ΔVIN  
VIN = ±.3 V to 15 V, −±0°C < TA < +125°C  
10  
25  
ppm/V  
ppm/mA  
μA  
LOAD REGULATION  
ΔVO/ΔILOAD ILOAD = 0 mA to 5 mA, −±0°C < TA < +125°C, VIN = 5 V  
1±0  
120  
1±0  
QUIESCENT CURRENT  
IIN  
No load  
−±0°C < TA < +125°C  
0.1 Hz to 10 Hz  
μA  
VOLTAGE NOISE  
en p-p  
tR  
7
μV p-p  
μs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
−80  
25  
30  
ΔVO  
ΔVO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ꢀ0 Hz  
VIN = 5 V  
VIN = 15 V  
mA  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
μA  
nA  
V
VINH  
2.±  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. H | Page ± of 20  
 
ADR391/ADR392/ADR395  
ADR395 ELECTRICAL CHARACTERISTICS  
VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A grade  
±.99± 5.000 5.00ꢀ  
B grade  
±.995 5.000 5.005  
V
INITIAL ACCURACY  
VOERR  
A grade  
mV  
A grade  
0.12  
%
B grade  
5
mV  
B grade  
0.10  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, −±0°C < TA < +125°C  
B grade, −±0°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
ΔVO/ΔVIN  
VIN = ±.3 V to 15 V, −±0°C < TA < +125°C  
10  
25  
ppm/V  
ppm/mA  
μA  
LOAD REGULATION  
ΔVO/ΔILOAD ILOAD = 0 mA to 5 mA, −±0°C < TA < +125°C, VIN = ꢀ V  
1±0  
120  
1±0  
QUIESCENT CURRENT  
IIN  
No load  
−±0°C < TA < +125°C  
0.1 Hz to 10 Hz  
μA  
VOLTAGE NOISE  
en p-p  
tR  
8
μV p-p  
μs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
−80  
25  
30  
ΔVO  
ΔVO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ꢀ0 Hz  
VIN = 5 V  
VIN = 15 V  
mA  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
μA  
nA  
V
VINH  
2.±  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. H | Page 5 of 20  
 
ADR391/ADR392/ADR395  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
At 25°C, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, for a device  
soldered in a circuit board for surface-mount packages.  
Table 5.  
Parameter  
Rating  
Table 6.  
Supply Voltage  
18 V  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, ꢀ0 sec)  
See derating curves  
−ꢀ5°C to +125°C  
−±0°C to +125°C  
−ꢀ5°C to +125°C  
300°C  
Package Type  
θJA  
θJC  
Unit  
TSOT (UJ-5)  
230  
1±ꢀ  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. H | Page ꢀ of 20  
 
ADR391/ADR392/ADR395  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.506  
140  
120  
100  
SAMPLE 2  
2.504  
SAMPLE 1  
+125°C  
+85°C  
+25°C  
–40°C  
2.502  
SAMPLE 3  
2.500  
2.498  
2.496  
2.494  
80  
60  
40  
–40  
–5  
30  
65  
100  
125  
125  
125  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 2. ADR391 Output Voltage (VOUT) vs. Temperature  
Figure 5. ADR391 Supply Current vs. Input Voltage  
4.100  
140  
4.098  
4.096  
4.094  
4.092  
4.090  
4.088  
+125°C  
120  
100  
80  
SAMPLE 3  
SAMPLE 1  
SAMPLE 2  
+25°C  
–40°C  
60  
40  
–40  
0
40  
TEMPERATURE (°C)  
80  
5
7
9
11  
13  
15  
INPUT VOLTAGE (V)  
Figure 3. ADR392 Output Voltage (VOUT) vs. Temperature  
Figure 6. ADR392 Supply Current vs. Input Voltage  
5.006  
140  
120  
100  
80  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
+125°C  
SAMPLE 3  
SAMPLE 2  
+25  
–40  
°C  
°
C
SAMPLE 1  
60  
40  
5.5  
–40  
–5  
30  
65  
100  
7.0  
8.5  
10.0  
11.5  
13.0  
14.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 4. ADR395 Output Voltage (VOUT) vs. Temperature  
Figure 7. ADR395 Supply Current vs. Input Voltage  
Rev. H | Page 7 of 20  
 
ADR391/ADR392/ADR395  
180  
25  
20  
15  
10  
I
= 0mA TO 5mA  
L
160  
140  
120  
100  
80  
V
= 5V  
IN  
V
= 3V  
IN  
5
0
–40  
–10  
20  
50  
80  
110 125  
–40  
–10  
20  
TEMPERATURE (°C)  
80  
110 125  
50  
TEMPERATURE (°C)  
Figure 11. ADR391 Line Regulation vs. Temperature  
Figure 8. ADR391 Load Regulation vs. Temperature  
14  
90  
I
= 0mA TO 5mA  
L
12  
10  
8
80  
70  
60  
50  
40  
V
= 4.4V TO 15V  
IN  
V
= 7.5V  
IN  
6
V
= 5V  
IN  
4
2
0
–40  
–5  
30  
65  
100  
125  
–40  
–5  
30  
65  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. ADR392 Line Regulation vs. Temperature  
Figure 9. ADR392 Load Regulation vs. Temperature  
14  
80  
I
= 0mA TO 5mA  
L
12  
10  
70  
60  
50  
40  
30  
V
= 7.5V  
IN  
V
= 5V  
IN  
V
= 5.3V TO 15V  
IN  
8
6
4
2
0
–40  
–5  
30  
65  
100  
125  
–40  
–5  
30  
65  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. ADR395 Line Regulation vs. Temperature  
Figure 10. ADR395 Load Regulation vs. Temperature  
Rev. H | Page 8 of 20  
ADR391/ADR392/ADR395  
70  
60  
50  
40  
30  
20  
10  
0
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
–40°C  
TEMPERATURE: +25°  
C
+125°C  
+25°C  
+125°C  
+85°C  
+25°C  
–40°C  
–0.56  
–0.41  
–0.26  
–0.11  
0.04  
0.19  
0.34  
0
1
2
3
4
5
V
DEVIATION (mV)  
LOAD CURRENT (mA)  
OUT  
Figure 14. ADR391 Minimum Input Voltage (VIN) vs. Load Current  
Figure 17. ADR391 VOUT Hysteresis Distribution  
4.8  
1k  
900  
800  
700  
V
= 5V  
IN  
+125°C  
4.6  
600  
500  
+25°C  
4.4  
400  
300  
ADR391  
–40°C  
4.2  
200  
4.0  
3.8  
100  
0
1
2
3
4
5
10  
100  
FREQUENCY (Hz)  
1k  
10k  
LOAD CURRENT (mA)  
Figure 15. ADR392 Minimum Input Voltage (VIN) vs. Load Current  
Figure 18. Voltage Noise Density vs. Frequency  
0
0
0
0
0
0
0
0
0
6.0  
5.8  
+125°C  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
+25  
–40  
°C  
°
C
0
1
2
3
4
5
TIME (1s/DIV)  
LOAD CURRENT (mA)  
Figure 16. ADR395 Minimum Input Voltage (VIN) vs. Load Current  
Figure 19. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz  
Rev. H | Page 9 of 20  
ADR391/ADR392/ADR395  
C
= 0nF  
L
V
OUT  
V
ON  
LOAD OFF  
LOAD  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 20. ADR391 Voltage Noise 10 Hz to 10 kHz  
Figure 23. ADR391 Load Transient Response  
C
= 0µF  
C
L
= 1nF  
BYPASS  
V
OUT  
LINE  
0.5V/DIV  
INTERRUPTION  
LOAD OFF  
V
ON  
LOAD  
V
OUT  
1V/DIV  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 21. ADR391 Line Transient Response  
Figure 24. ADR391 Load Transient Response  
C
= 0.1µF  
C
= 100nF  
BYPASS  
L
V
OUT  
0.5V/DIV  
LINE  
INTERRUPTION  
LOAD OFF  
V
LOAD  
ON  
V
OUT  
1V/DIV  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 25. ADR391 Load Transient Response  
Figure 22. ADR391 Line Transient Response  
Rev. H | Page 10 of 20  
ADR391/ADR392/ADR395  
V
= 15V  
R
= 500  
IN  
L
5V/DIV  
2V/DIV  
V
OUT  
V
IN  
2V/DIV  
V
5V/DIV  
OUT  
V
IN  
TIME (20µs/DIV)  
TIME (200µs/DIV)  
Figure 26. ADR391 Turn-On Response Time at 15 V  
Figure 29. ADR391 Turn-On/Turn-Off Response at 5 V with Resistor Load  
R
C
= 500  
= 100nF  
L
L
V
= 15V  
IN  
V
5V/DIV  
IN  
2V/DIV  
5V/DIV  
V
OUT  
V
2V/DIV  
OUT  
V
IN  
TIME (200µs/DIV)  
TIME (40µs/DIV)  
Figure 27. ADR391 Turn-Off Response at 15 V  
Figure 30. ADR391 Turn-On/Turn-Off Response at 5 V  
C
= 0.1µF  
BYPASS  
2V/DIV  
5V/DIV  
V
OUT  
V
IN  
TIME (200µs/DIV)  
Figure 28. ADR391 Turn-On/Turn-Off Response at 5 V with Capacitance  
Rev. H | Page 11 of 20  
ADR391/ADR392/ADR395  
100  
90  
80  
60  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
0
C
= 0µF  
L
–20  
–40  
–60  
–80  
C
= 0.1µF  
L
C
= 1µF  
10k  
L
–100  
–120  
10  
100  
1k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. Output Impedance vs. Frequency  
Figure 31. Ripple Rejection vs. Frequency  
Rev. H | Page 12 of 20  
ADR391/ADR392/ADR395  
TERMINOLOGY  
Temperature Coefficient  
Long-Term Stability  
The change of output voltage with respect to operating temperature  
changes normalized by the output voltage at 25°C. This parameter  
is expressed in ppm/°C and can be determined by  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1000 hours at 25°C.  
ΔVO = VO(t0) − VO(t1)  
VO  
(
T2  
)
VO  
(
T1  
)
×106  
(1)  
VO(t0 ) VO(t1)  
VO (t0 )  
TCVO  
[ppm/°C  
]
=
ΔVO[ppm] =  
×106  
(2)  
VO  
(
25°C  
)
×
(
T2 T1  
)
where:  
VO (25°C) is VO at 25°C.  
VO (T1) is VO at Temperature 1.  
where:  
VO (t0) is VO at 25°C at Time 0.  
VO (t1) is VO at 25°C after 1000 hours operation at 25°C.  
VO (T2) is VO at Temperature 2.  
Thermally Induced Output Voltage Hysteresis  
The change of output voltage after the device cycles through  
the temperatures from +25°C to –40°C to +125°C and back to  
+25°C. This is a typical value from a sample of parts put through  
such a cycle.  
Line Regulation  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts-per-  
million per volt, or microvolts per volt change in input voltage.  
V
O_HYS = VO(25°C) − VO_TC  
(3)  
Load Regulation  
VO (25o C) VO _TC  
VO (25o C)  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliampere,  
parts-per-million per milliampere, or ohms of dc output resistance.  
VO _ HYS[ppm]=  
×106  
(4)  
where:  
VO (25°C) is VO at 25°C.  
O_TC is VO at 25°C after a temperature cycle from +25°C to  
−40°C to +125°C and back to +25°C.  
V
Rev. H | Page 13 of 20  
 
ADR391/ADR392/ADR395  
THEORY OF OPERATION  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications,  
and the ADR391/ADR392/ADR395 are no exception. The  
uniqueness of these devices lies in the architecture. As shown in  
Figure 33, the ideal zero TC band gap voltage is referenced to  
the output, not to ground. Therefore, if noise exists on the  
ground line, it is greatly attenuated on VOUT. The band gap cell  
consists of the PNP pair, Q51 and Q52, running at unequal  
current densities. The difference in VBE results in a voltage with  
a positive TC, which is amplified by a ratio of  
DEVICE POWER DISSIPATION CONSIDERATIONS  
The ADR391/ADR392/ADR395 are capable of delivering load  
currents to 5 mA, with an input voltage that ranges from 2.8 V  
(ADR391 only) to 15 V. When these devices are used in  
applications with large input voltages, care should be taken to  
avoid exceeding the specified maximum power dissipation or  
junction temperature because it could result in premature  
device failure. The following formula should be used to  
calculate the maximum junction temperature or dissipation of  
the device:  
R58  
R54  
TJ TA  
2 ×  
PD =  
(5)  
θJA  
This PTAT voltage, combined with VBEs of Q51 and Q52,  
produces a stable band gap voltage.  
where:  
TJ and TA are, respectively, the junction and ambient temperatures.  
PD is the device power dissipation.  
JA is the device package thermal resistance.  
Reduction in the band gap curvature is performed by the ratio  
of Resistors R44 and R59, one of which is linearly temperature  
dependent. Precision laser trimming and other patented circuit  
techniques are used to further enhance the drift performance.  
θ
SHUTDOWN MODE OPERATION  
V
The ADR391/ADR392/ADR395 include a shutdown feature  
that is TTL/CMOS level compatible. A logic low or a zero volt  
IN  
Q1  
V
V
OUT (FORCE)  
SHDN  
condition on the  
pin is required to turn the devices off.  
OUT (SENSE)  
During shutdown, the output of the reference becomes a high  
impedance state, where its potential would then be determined  
by external circuitry. If the shutdown feature is not used, the  
R59  
R44  
R58  
SHDN  
pin should be connected to VIN (Pin 2).  
R49  
R54  
Q51  
SHDN  
R53  
Q52  
R48  
R61  
R60  
GND  
Figure 33. Simplified Schematic  
Rev. H | Page 1± of 20  
 
 
ADR391/ADR392/ADR395  
APPLICATIONS INFORMATION  
Two reference ICs are used, fed from an unregulated input, VIN.  
The outputs of the individual ICs are connected in series, which  
provide two output voltages, VOUT1 and VOUT2. VOUT1 is the  
terminal voltage of U1, while VOUT2 is the sum of this voltage  
and the terminal voltage of U2. U1 and U2 are chosen for the  
two voltages that supply the required outputs (see the Output  
Table in Figure 35). For example, if both U1 and U2 are ADR391s,  
VOUT1 is 2.5 V and VOUT2 is 5.0 V.  
BASIC VOLTAGE REFERENCE CONNECTION  
The circuit shown in Figure 34 illustrates the basic configuration  
for the ADR39x family. Decoupling capacitors are not required  
for circuit stability. The ADR39x family is capable of driving  
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic  
output capacitor is recommended to absorb and deliver the  
charge, as required by a dynamic load.  
SHUTDOWN  
GND  
SHDN  
While this concept is simple, a precaution is required. Because  
the lower reference circuit must sink a small bias current from  
U2 plus the base current from the series PNP output transistor  
in U2, either the external load of U1 or an external resistor must  
provide a path for this current. If the U1 minimum load is not  
well defined, the external resistor should be used and set to a  
value that conservatively passes 600 μA of current with the  
applicable VOUT1 across it. Note that the two U1 and U2  
reference circuits are treated locally as macrocells; each has its  
own bypasses at input and output for best stability. Both U1 and  
U2 in this circuit can source dc currents up to their full rating.  
The minimum input voltage, VIN, is determined by the sum of  
the outputs, VOUT2, plus the dropout voltage of U2.  
ADR39x  
INPUT  
V
V
IN  
*
C
V
OUT (FORCE)  
0.1µF  
B
OUT (SENSE)  
OUTPUT  
0.1µF  
*
C
B
*NOT REQUIRED  
Figure 34. Basic Configuration for the ADR39x Family  
Stacking Reference ICs for Arbitrary Outputs  
Some applications may require two reference voltage sources,  
which are a combined sum of standard outputs. Figure 35 shows  
how this stacked output reference can be implemented.  
OUTPUTTABLE  
A Negative Precision Reference without Precision Resistors  
V
(V)  
V
(V)  
OUT2  
OUT1  
U1/U2  
A negative reference can be easily generated by adding an A1  
op amp and is configured as shown in Figure 36. VOUT (FORCE)  
and VOUT (SENSE) are at virtual ground and, therefore, the negative  
reference can be taken directly from the output of the op amp.  
The op amp must be dual-supply, low offset, and rail-to-rail if  
the negative supply voltage is close to the reference output.  
ADR391/ADR391 2.5  
ADR392/ADR392 4.096  
5.0  
8.192  
10  
ADR395/ADR395  
5
V
IN  
U2  
V
IN  
SHDN  
V
+V  
DD  
V
OUT (FORCE)  
C2  
OUT2  
0.1µF  
V
OUT (SENSE)  
GND  
V
IN  
V
V
OUT (FORCE)  
SHDN  
U1  
OUT (SENSE)  
V
IN  
GND  
SHDN  
V
V
C2  
OUT (FORCE)  
OUT1  
0.1µF  
V
OUT (SENSE)  
GND  
A1  
–V  
REF  
–V  
DD  
Figure 36. Negative Reference  
Figure 35. Stacking Voltage References with the ADR391/ADR392/ADR395  
Rev. H | Page 15 of 20  
 
 
 
 
ADR391/ADR392/ADR395  
General-Purpose Current Source  
High Power Performance with Current Limit  
Many times in low power applications, the need arises for a  
precision current source that can operate on low supply voltages.  
The ADR391/ADR392/ADR395 can be configured as a precision  
current source. As shown in Figure 37, the circuit configuration  
is a floating current source with a grounded load. The reference  
output voltage is bootstrapped across RSET, which sets the output  
current into the load. With this configuration, circuit precision  
is maintained for load currents in the range from the reference  
supply current, typically 90 μA to approximately 5 mA.  
In some cases, the user may want higher output current delivered  
to a load and still achieve better than 0.5% accuracy out of the  
ADR39x. The accuracy for a reference is normally specified on  
the data sheet with no load. However, the output voltage changes  
with load current.  
The circuit shown in Figure 38 provides high current without  
compromising the accuracy of the ADR39x. The series pass  
transistor, Q1, provides up to 1 A load current. The ADR39x  
delivers only the base drive to Q1 through the force pin. The  
sense pin of the ADR39x is a regulated output and is connected  
to the load.  
V
IN  
The Transistor Q2 protects Q1 during short-circuit limit faults  
by robbing its base drive. The maximum current is  
SHDN  
V
OUT (SENSE)  
ADR39x  
ILMAX ≈ 0.6 V/RS  
(6)  
V
IN  
I
SET  
V
OUT (FORCE)  
GND  
R1  
0.1µF  
4.7k  
U1  
R1  
P1  
R1  
VIN  
R
I
GND  
SET  
SY  
SHDN  
VIN  
ADJUST  
I
(I )  
SY SET  
Q1  
Q2N4921  
VOUT (FORCE)  
VOUT (SENSE)  
I
= I  
SET  
+ I (I )  
SY SET  
OUT  
Q2  
Q2N2222  
R
L
RS  
RL  
ADR39x  
Figure 37. A General-Purpose Current Source  
IL  
Figure 38. ADR39x for High Power Performance with Current Limit  
A similar circuit function can also be achieved with the  
Darlington transistor configuration, as shown in Figure 39.  
R1  
4.7k  
U1  
VIN  
GND  
SHDN  
VIN  
Q1  
Q2N2222  
VOUT (FORCE)  
VOUT (SENSE)  
Q2  
Q2N4921  
RS  
ADR39x  
RL  
Figure 39. ADR39x for High Output Current  
with Darlington Drive Configuration  
Rev. H | Page 1ꢀ of 20  
 
 
 
ADR391/ADR392/ADR395  
150  
100  
50  
CAPACITORS  
Input Capacitor  
Input capacitors are not required on the ADR39x. There is no  
limit for the value of the capacitor used on the input, but a 1 μF  
to 10 μF capacitor on the input improves transient response in  
applications where the supply suddenly changes. An additional  
0.1 μF in parallel also helps reduce noise from the supply.  
0
Output Capacitor  
–50  
The ADR39x does not require output capacitors for stability under  
any load condition. An output capacitor, typically 0.1 μF, filters  
out any low level noise voltage and does not affect the operation  
of the part. On the other hand, the load transient response can  
improve with the addition of a 1 μF to 10 μF output capacitor in  
parallel. A capacitor here acts as a source of stored energy for a  
sudden increase in load current. The only parameter that degrades  
by adding an output capacitor is the turn-on time, and it depends  
on the size of the capacitor chosen.  
–100  
–150  
0
100 200 300 400 500  
600 700 800 900 1000  
TIME (Hours)  
Figure 40. ADR391 Typical Long-Term Drift over 1000 Hours  
Rev. H | Page 17 of 20  
 
ADR391/ADR392/ADR395  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 41. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Initial  
Accuracy  
Output  
Voltage  
(VO)  
Temperature  
Coefficient  
(ppm/°C)  
Package  
Package  
Ordering Temperature  
Branding Quantity Range  
Model  
(mV) (%)  
Description Option  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
5-Lead TSOT UJ-5  
ADR391AUJZ-REEL71 2.5  
±ꢀ  
±ꢀ  
±±  
±±  
±ꢀ  
±ꢀ  
±5  
±5  
±5  
±ꢀ  
±ꢀ  
±5  
±5  
0.2± 25  
0.2± 25  
0.1ꢀ  
0.1ꢀ  
R1A  
R1A  
R1B  
R1B  
RCA  
RCA  
RCB  
RCB  
RCB  
RDA  
RDA  
RDB  
RDB  
3,000  
250  
3,000  
250  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
−±0°C to +125°C  
ADR391AUJZ-R21  
ADR391BUJZ-REEL71  
ADR391BUJZ-R21  
2.5  
2.5  
2.5  
9
9
ADR392AUJZ-REEL71 ±.09ꢀ  
0.15 25  
0.15 25  
0.12  
0.12  
0.12  
3,000  
250  
3,000  
250  
3,000  
3,000  
250  
3,000  
250  
ADR392AUJZ-R21  
ADR392BUJZ-REEL71  
ADR392BUJZ-R21  
±.09ꢀ  
±.09ꢀ  
±.09ꢀ  
9
9
9
ADR392WBUJZ-R71, 2 ±.09ꢀ  
ADR395AUJZ-REEL71 5.0  
ADR395AUJZ-R21  
ADR395BUJZ-REEL71  
ADR395BUJZ-R21  
0.12 25  
0.12 25  
0.10  
0.10  
5.0  
5.0  
5.0  
9
9
1 Z = RoHS Compliant Part.  
2 Automotive grade.  
Rev. H | Page 18 of 20  
 
 
ADR391/ADR392/ADR395  
NOTES  
Rev. H | Page 19 of 20  
ADR391/ADR392/ADR395  
NOTES  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00419-0-10/09(H)  
Rev. H | Page 20 of 20  

相关型号:

ADR391BUJZ-REEL7

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR391BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO5, LEAD FREE, MO-193AB, TSOT-23, 5 PIN
ROCHESTER

ADR391BUJZ-REEL71

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392A

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392ART-R2

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, MO-178AA, SOT-23, 5 PIN, Voltage Reference
ADI

ADR392ART-REEL

Micropower, Low Noise Precision Voltage References with Shutdown
ADI

ADR392ART-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, MO-178AA, SOT-23, 5 PIN
ROCHESTER

ADR392ART-RL

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392ART-RL7

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392AUJZ-R2

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
ADI

ADR392AUJZ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, LEAD FREE, MO-193AB, TSOT-23, 5 PIN
ROCHESTER