ADRF5731BCCZN [ADI]

2 dB LSB, 4-Bit, Silicon Digital Attenuator,;
ADRF5731BCCZN
型号: ADRF5731BCCZN
厂家: ADI    ADI
描述:

2 dB LSB, 4-Bit, Silicon Digital Attenuator,

文件: 总17页 (文件大小:506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 dB LSB, 4-Bit, Silicon Digital Attenuator,  
100 MHz to 40 GHz  
Data Sheet  
ADRF5731  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADRF5731  
Ultrawideband frequency range: 100 MHz to 40 GHz  
Attenuation range: 2 dB steps to 30 dB  
Low insertion loss  
1.7 dB to 18 GHz  
2.2 dB to 26 GHz  
16 15  
14  
13  
3.5 dB to 40 GHz  
Attenuation accuracy  
± ±0.1 + 2.0%) of attenuation state up to 18 GHz  
± ±0.2 + 2.5%) of attenuation state up to 26 GHz  
± ±0.5 + 10.0%) of attenuation state up to 40 GHz  
Typical step error  
1
2
12  
11  
10  
9
VDD  
D4/SERIN  
D5/CLK  
GND  
SERIAL/  
PARALLEL  
INTERFACE  
VSS  
3
4
GND  
4-BIT DIGITAL  
ATTENUATOR  
ATTOUT  
ATTIN  
5
6
7
8
± 0.15 dB to 18 GHz  
PACKAGE  
BASE  
± 0.20 dB to 26 GHz  
± 0.60 dB to 40 GHz  
Figure 1.  
High input linearity  
P0.1dB insertion loss state: 30 dBm  
P0.1dB other attenuation states: 26 dBm  
IP3: 50 dBm typical  
High RF input power handling: 26 dBm average, 30 dBm peak  
Tight distribution in relative phase  
No low frequency spurious signals  
SPI and parallel mode control, CMOS/LVTTL compatible  
RF amplitude settling time ±0.1 dB of final RF output): 230 ns  
2.5 mm × 2.5 mm, 16-terminal LGA package  
Pin compatible with ADRF5721, low frequency cutoff version  
APPLICATIONS  
Industrial scanners  
Test and instrumentation  
Cellular infrastructure: 5G millimeter wave  
Military radios, radars, electronic counter measures ±ECMs)  
Microwave radios and very small aperture terminals ±VSATs)  
GENERAL DESCRIPTION  
The ADRF5731 is a silicon, 4-bit digital attenuator with a 30 dB  
attenuation control range in 2 dB steps.  
The ADRF5731 is pin compatible with the ADRF5721 low  
frequency cutoff version, which operates from 9 kHz to 40 GHz.  
This device operates from 100 MHz to 40 GHz with better than  
3.5 dB of insertion loss. The ATTIN port of the ADRF5720 has  
a radio frequency (RF) input power handling capability of 26 dBm  
average and 30 dBm peak for all states.  
The ADRF5731 RF ports are designed to match a characteristic  
impedance of 50 Ω.  
The ADRF5731 comes in a 16-terminal, 2.5 mm × 2.5 mm,  
RoHS compliant, land grid array (LGA) package and operates  
from −40°C to +105°C.  
The ADRF5731 requires a dual supply voltage of +3.3 V and  
−3.3 V. The device features serial peripheral interface (SPI),  
parallel mode control, and complementary metal-oxide  
semiconductor (CMOS)-/low voltage transistor to transistor  
logic (LVTTL) compatible controls.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF5731  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Power Compression and Third-Order Intercept......... 10  
Theory of Operation ...................................................................... 11  
Power Supply............................................................................... 11  
RF Input and Output ................................................................. 11  
Serial or Parallel Mode Selection ............................................. 11  
Serial Mode Interface................................................................. 12  
Using SEROUT........................................................................... 12  
Parallel Mode Interface.............................................................. 13  
Applications Information.............................................................. 14  
Evaluation Board........................................................................ 14  
Probe Matrix Board ................................................................... 16  
Packaging and Ordering Information ......................................... 17  
Outline Dimensions................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings ....................................................... 6  
Thermal Resistance ...................................................................... 6  
Power Derating Curves................................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Interface Schematics..................................................................... 7  
Typical Performance Characteristics ............................................. 8  
Insertion Loss, Return Loss, State Error, Step Error, and  
Relative Phase................................................................................ 8  
REVISION HISTORY  
9/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 17  
 
Data Sheet  
ADRF5731  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VDD = 3.3 V, VSS = −3.3 V, digital voltages = 0 V or VDD, case temperature (TCASE) = 25°C, and a 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
INSERTION LOSS (IL)  
100  
40,000 MHz  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
1.3  
1.7  
2.2  
2.8  
3.5  
dB  
dB  
dB  
dB  
dB  
RETURN LOSS  
ATTIN and ATTOUT, all attenuation states  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
22  
22  
16  
15  
14  
dB  
dB  
dB  
dB  
dB  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
ATTENUATION  
Range  
Between minimum and maximum attenuation  
states  
Between any successive attenuation states  
Referenced to insertion loss  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
30  
2
dB  
dB  
Step Size  
Accuracy  
(0.05 + 1.0%)  
dB  
dB  
dB  
dB  
dB  
(0.1 + 2.0%)  
(0.2 + 2.5%)  
(0.2 + 6.0%)  
(0.5 + 10.0%)  
Step Error  
Between any successive attenuation states  
100 MHz to 10 GHz  
0.05  
0.15  
0.20  
0.35  
0.60  
dB  
dB  
dB  
dB  
dB  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
RELATIVE PHASE  
Referenced to insertion loss  
100 MHz to 10 GHz  
15  
Degrees  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
25  
40  
55  
80  
Degrees  
Degrees  
Degrees  
Degrees  
SWITCHING CHARACTERISTICS  
Rise and Fall Time (tRISE and tFALL  
All attenuation states at input power (PIN) = 10 dBm  
10% to 90% of RF output  
50% triggered control (CTL) to 90% of RF output  
)
35  
110  
ns  
ns  
On and Off Time (tON and tOFF  
)
RF Amplitude Settling Time  
0.1 dB  
0.05 dB  
Overshoot  
Undershoot  
50% triggered CTL to 0.1 dB of final RF output  
50% triggered CTL to 0.05 dB of final RF output  
230  
250  
0.5  
−1  
ns  
ns  
dB  
dB  
RF Phase Settling Time  
f = 5 GHz  
5°  
1°  
50% triggered CTL to 5° of final RF output  
50% triggered CTL to 1°of final RF output  
100  
125  
ns  
ns  
Rev. 0 | Page 3 of 17  
 
 
 
ADRF5731  
Data Sheet  
Parameter  
INPUT LINEARITY1  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
10 MHz to 30 GHz  
0.1 dB Power Compression (P0.1dB)  
Insertion Loss State  
Other Attenuation States  
Third-Order Intercept (IP3)  
30  
26  
50  
dBm  
dBm  
dBm  
Two-tone input power = 14 dBm per tone,  
Δf = 1 MHz, all attenuation states  
DIGITAL CONTROL INPUTS  
Voltage  
LE, PS, D2, D3/SEROUT,2 D4/SERIN, D5/CLK pins  
Low (VINL  
High (VINH  
Current  
Low (IINL  
High (IINH  
)
0
1.2  
0.8  
3.3  
V
V
)
)
<1  
33  
<1  
μA  
μA  
μA  
)
D2  
LE, PS, D3/SEROUT,2 D4/SERIN, D5/CLK pins  
D3/SEROUT pin2  
DIGITAL CONTROL OUTPUT  
Voltage  
Low (VOUTL  
)
0
0.3  
V
High (VOUTH  
)
VDD 0.3  
V
Low and High Current (IOUTL, IOUTH  
SUPPLY CURRENT  
Positive  
)
0.5  
mA  
VDD and VSS pins  
117  
−117  
μA  
μA  
Negative  
RECOMMENDED OPERATING CONDITIONS  
Supply Voltage  
Positive (VDD  
Negative (VSS)  
Digital Control Voltage  
)
3.15  
−3.45  
0
3.45  
−3.15  
VDD  
V
V
V
RF Input Power3  
ATTIN  
f = 10 MHz to 30 GHz, TCASE = 85°C,4  
all attenuation states  
Steady state average  
Steady state peak  
Hot switching average  
Hot switching peak  
Steady state average  
Steady state peak  
Hot switching average  
Hot switching peak  
26  
30  
24  
27  
18  
21  
15  
18  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
°C  
ATTOUT (Bidirectional Use)  
Case Temperature (TCASE  
)
−40  
+105  
1 Input linearity performance degrades over frequency (see Figure 20 and Figure 21).  
2 The D3/SEROUT pin is an input in parallel control mode and an output in serial control mode. See Table 5 for the pin function descriptions.  
3 For power derating over frequency, see Figure 2 and Figure 3. Applicable for all ATTIN and ATTOUT power specifications.  
4 For 105°C operation, the power handling degrades from the TCASE = 85°C specifications by 3 dB.  
Rev. 0 | Page 4 of 17  
Data Sheet  
ADRF5731  
TIMING SPECIFICATIONS  
See Figure 24, Figure 25, and Figure 26 for the timing diagrams.  
Table 2.  
Parameter  
Description  
Min  
70  
15  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCK  
tCS  
tCH  
tLN  
tLEW  
tLES  
tCKN  
tPH  
Minimum serial period, see Figure 24  
Control setup time, see Figure 24  
Control hold time, see Figure 24  
LE setup time, see Figure 24  
Minimum LE pulse width, see Figure 24 and Figure 26  
Minimum LE pulse spacing, see Figure 24  
Serial clock hold time from LE, see Figure 24  
Hold time, see Figure 26  
20  
15  
10  
630  
0
10  
2
tPS  
tCO  
Setup time, see Figure 26  
Clock to output (SEROUT) time, see Figure 25  
20  
Rev. 0 | Page 5 of 17  
 
 
ADRF5731  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
POWER DERATING CURVES  
Table 3.  
Parameter  
2
Rating  
0
–2  
Positive Supply Voltage (VDD)  
Negative Supply Voltage (VSS)  
Digital Control Input Voltage  
RF Input Power1 (f = 10 MHz to 30 GHz,  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
–4  
T
CASE = 85°C2)  
ATTIN  
Steady State Average  
–6  
–8  
27 dBm  
31 dBm  
25 dBm  
28 dBm  
–10  
–12  
–14  
–16  
Steady State Peak  
Hot Switching Average  
Hot Switching Peak  
ATTOUT  
Steady State Average  
Steady State Peak  
Hot Switching Average  
Hot Switching Peak  
19 dBm  
22 dBm  
16 dBm  
19 dBm  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
Figure 2. Power Derating vs. Frequency, Low Frequency Detail, TCASE = 85°C  
2
Temperature  
Junction (TJ)  
Storage  
Reflow  
0
–2  
135°C  
−65°C to +150°C  
260°C  
–4  
Continuous Power Dissipation (PDISS  
)
0.5 W  
–6  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
ATTIN and ATTOUT Pins  
Digital Pins  
–8  
–10  
–12  
–14  
500 V  
2000 V  
1250 V  
Charged Device Model (CDM)  
1 For power derating over frequency, see Figure 2 and Figure 3. Applicable for  
all ATTIN and ATTOUT power specifications.  
–16  
26 28 30 32 34 36 38 40 42 44 46 48 50  
2 For 105°C operation, the power handling derates from the TCASE = 85°C  
specifications by 3 dB.  
FREQUENCY (GHz)  
Figure 3. Power Derating vs. Frequency, High Frequency Detail, TCASE = 85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θ
JC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 4. Thermal Resistance  
Package Type  
θJC  
Unit  
CC-16-6  
100  
°C/W  
Rev. 0 | Page 6 of 17  
 
 
 
 
 
 
Data Sheet  
ADRF5731  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
16 15  
14  
13  
1
2
3
4
12  
11  
10  
9
VDD  
D4/SERIN  
D5/CLK  
GND  
VSS  
ADRF5731  
TOP VIEW  
(Not to Scale)  
GND  
ATTOUT  
ATTIN  
5
6
8
7
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED  
TO THE RF AND DC GROUND OF THE PCB.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
D4/SERIN  
D5/CLK  
Parallel Control Input for 8 dB Attenuator Bit (D4).  
Serial Data Input (SERIN). See the Theory of Operation section for more information.  
Parallel Control Input for 16 dB Attenuator Bit (D5).  
2
Serial Clock Input (CLK). See the Theory of Operation section for more information.  
Ground. These pins must be connected to the RF and dc ground of the PCB.  
Attenuator Input. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is needed  
when the RF line potential is equal to 0 V dc.  
3, 5 to 8, 10  
4
GND  
ATTIN  
9
ATTOUT  
Attenuator Output. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is needed  
when the RF line potential is equal to 0 V dc.  
11  
12  
13  
14  
15  
16  
VSS  
VDD  
LE  
PS  
D2  
Negative Supply Input.  
Positive Supply Input.  
Latch Enable Input. See the Theory of Operation section for more information.  
Parallel or Serial Control Interface Selection Input. See the Theory of Operation section for more information.  
Parallel Control Input for 2 dB Attenuator Bit. See the Theory of Operation section for more information.  
D3/SEROUT Parallel Control Input for 4 dB Attenuator Bit (D3).  
Serial Data Output (SEROUT). See the Theory of Operation section for more information.  
17  
EPAD  
Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.  
INTERFACE SCHEMATICS  
VDD  
VDD  
VDD  
VDD  
LE, PS, D3/SEROUT,  
D4/SERIN, D5/CLK  
D2  
100kΩ  
Figure 5. Digital Input Interface Schematic for LE, PS, D3/SEROUT, D4/SERIN,  
and D5/CLK  
Figure 7. Digital Input Interface Schematic for D2  
ATTIN,  
ATTOUT  
Figure 6. ATTIN and ATTOUT Interface Schematic  
Rev. 0 | Page 7 of 17  
 
 
 
ADRF5731  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, STATE ERROR, STEP ERROR, AND RELATIVE PHASE  
VDD = 3.3 V, VSS = −3.3 V, digital voltages = 0 V or VDD, TCASE = 25°C, and a 50 Ω system, unless otherwise noted. Measured on probe  
matrix board using ground signal ground (GSG) probes close to the RF pins (ATTIN and ATTOUT). See the Applications Information  
section for details on evaluation and probe matrix boards.  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–40°C  
+25°C  
+85°C  
+105°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Insertion Loss vs. Frequency over Temperature  
Figure 11. Output Return Loss vs. Frequency (Major States Only)  
0
1.5  
–5  
1.0  
0.5  
0
–10  
–15  
–20  
–25  
–30  
–35  
–0.5  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
–1.0  
–1.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Normalized Attenuation vs. Frequency for All States at Room  
Temperature  
Figure 12. Step Error vs. Frequency (Major States Only)  
0
1.5  
1.0  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0.5  
0
–0.5  
–1.0  
–1.5  
5GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
20GHz  
35GHz  
–45  
–50  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
ATTENUATION STATE  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
Figure 13. Step Error vs. Attenuation State over Frequency  
Figure 10. Input Return Loss vs. Frequency (Major States Only)  
Rev. 0 | Page 8 of 17  
 
 
Data Sheet  
ADRF5731  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
8
7
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
6
5
4
3
2
1
0
–1  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. State Error vs. Frequency (Major States Only)  
Figure 16. Relative Phase vs. Frequency (Major States Only)  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
8
7
6
5
4
3
2
1
0
–1  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
ATTENUATION STATE  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
ATTENUATION STATE  
Figure 15. State Error vs. Attenuation State over Frequency  
Figure 17. Relative Phase vs. Attenuation State over Frequency  
Rev. 0 | Page 9 of 17  
ADRF5731  
Data Sheet  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
5
0
0
10k  
100k  
1M  
10M  
100M  
1G  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 18. Input P0.1dB vs. Frequency (Major States Only)  
Figure 20. Input P0.1dB vs. Frequency (Major States Only), Low Frequency Detail  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
STATE 0dB  
STATE 4dB  
STATE 16dB  
STATE 2dB  
STATE 8dB  
STATE 30dB  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 21. Input IP3 vs. Frequency (Major States Only), Low Frequency Detail  
Figure 19. Input IP3 vs. Frequency (Major States Only)  
Rev. 0 | Page 10 of 17  
 
 
 
Data Sheet  
ADRF5731  
THEORY OF OPERATION  
The ADRF5731 incorporates a 4-bit fixed attenuator array that  
offers an attenuation range of 30 dB in 2 dB steps. An integrated  
driver provides both serial and parallel mode control of the  
attenuator array (see Figure 22).  
RF INPUT AND OUTPUT  
Both RF ports (ATTIN and ATTOUT) are dc-coupled to 0 V.  
DC blocking is not required at the RF ports when the RF line  
potential is equal to 0 V.  
Note that when referring to a single function of a multifunction  
pin in this section, only the portion of the pin name that is  
relevant is mentioned. For full pin names of the multifunction  
pins, refer to the Pin Configuration and Function Descriptions  
section.  
The RF ports are internally matched to 50 Ω. Therefore,  
external matching components are not required.  
The ADRF5731 supports bidirectional operation at a lower  
power level. The power handling of the ATTIN and ATTOUT  
ports are different. Therefore, the bidirectional power handling  
is defined by the ATTOUT port. Refer to the RF input power  
specifications in Table 1.  
POWER SUPPLY  
The ADRF5731 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
filter high frequency noise.  
SERIAL OR PARALLEL MODE SELECTION  
The ADRF5731 can be controlled in either serial or parallel  
mode by setting the PS pin to high or low, respectively (see  
Table 6).  
The power-up sequence is as follows:  
1. Power up GND.  
2. Power up VDD.  
3. Power up VSS.  
4. Apply the digital control inputs. The relative order of the  
digital control inputs is not important. However, powering  
the digital control inputs before the VDD supply can  
inadvertently forward bias and damage the internal ESD  
protection structures.  
Table 6. Mode Selection  
PS  
Control Mode  
Low  
High  
Parallel  
Serial  
5. Apply an RF input signal to ATTIN or ATTOUT.  
The power-down sequence is the reverse order of the power up  
sequence.  
Table 7. Truth Table  
Digital Control Input1  
D5  
D4  
D3  
D2  
D1  
D0  
Attenuation State (dB)  
Low  
Low  
Low  
Low  
High  
High  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
High  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
High  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
Don’t care  
0 (reference)  
2
4
8
16  
30  
1 Any combination of the control voltage input states shown in Table 7 provides an attenuation equal to the sum of the bits selected.  
D2  
D3  
D4  
D5  
SERIN  
CLK  
PS  
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D Q  
SEROUT  
PARALLEL OR SERIAL SELECT  
6-BIT OR 8-BIT LATCH  
LE  
RF  
INPUT  
RF  
OUTPUT  
2dB  
4dB  
8dB  
16dB  
Figure 22. Simplified Circuit Diagram  
Rev. 0 | Page 11 of 17  
 
 
 
 
 
 
 
ADRF5731  
Data Sheet  
When using the attenuator in a daisy-chain operation, 8-bit  
SERIN data must be used due to the 8-clock cycle delay  
between SERIN and SEROUT.  
SERIAL MODE INTERFACE  
The ADRF5731 supports a 3-wire SPI: serial data input (SERIN),  
clock (CLK), and latch enable (LE). The serial control interface  
is activated when PS is set to high.  
It is optional to use a 1 kΩ resistor between SEROUT on the  
first attenuator and SERIN of the next attenuator to filter the  
signal (see Figure 23).  
The ADRF5731 attenuation state is controlled by Bits[D5:D2].  
Bit D0 and Bit D1 are don't care bits but must be input.  
Therefore, at least a 6-bit SERIN must be used to control the  
attenuation states. If using an 8-bit word to control the state of the  
attenuator, [D7:D6] and [D1:D0] are don’t care bits. It does not  
matter if these bits are held low or high. Refer to Table 7 and  
Figure 24 for additional information.  
4
3
2
In serial mode, the SERIN data is clocked most significant bit  
(MSB) first on the rising CLK edges into the shift register. Then,  
LE must be toggled high to latch the new attenuation state into  
the device. LE must be set to low to clock new SERIN data into  
the shift register as CLK is masked to prevent the attenuator  
value from changing if LE is kept high. See Figure 24 in  
conjunction with Table 2 and Table 7.  
1
WITHOUT 1kΩ  
WITH 1kΩ  
0
0
50  
100 150 200 250 300 350 400 450 500  
TIME (ns)  
USING SEROUT  
Figure 23. Using a Resistor on SEROUT  
The ADRF5731 also features a serial data output, SEROUT.  
SEROUT outputs the serial input data at the eighth clock cycle  
and can control a cascaded attenuator using a single SPI bus.  
Figure 25 shows the serial output timing diagram.  
[FIRST IN]  
[LAST IN]  
DON’T CARE  
DON’T  
CARE  
PS  
X
OPTIONAL OPTIONAL  
MSB  
D5  
LSB  
D2  
tCS tCH  
D[7:0]  
NEXT WORD  
SERIN  
X
D7  
D6  
D4  
D3  
D1  
D0  
X
X
tLN  
tLEW  
tCKN  
CLK  
LE  
tSCK  
tLES  
Figure 24. Serial Control Timing Diagram  
PS  
X
SERIN  
X
D5  
D4  
D3  
D2  
D1  
D0  
6
X
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
CLK  
LE  
X
D5  
D4  
D3  
D2  
D1  
D0  
X
SEROUT  
tCO  
Figure 25. Serial Output Timing Diagram  
Rev. 0 | Page 12 of 17  
 
 
 
 
 
Data Sheet  
ADRF5731  
Latched Parallel Mode  
PARALLEL MODE INTERFACE  
To enable latched parallel mode, keep the LE pin low when  
changing the control voltage inputs (D2 to D5) to set the  
attenuation state. When the desired state is set, toggle LE high  
to transfer the 4-bit data to the bypass switches of the attenuator  
array and then toggle LE low to latch the change into the device  
until the next desired attenuation change (see Figure 26 in  
conjunction with Table 2).  
The ADRF5731 has four digital control inputs, D2 (LSB) to D5  
(MSB), to select the desired attenuation state in parallel mode,  
as shown in Table 7. The parallel control interface is activated  
when PS is set to low.  
There are two modes of parallel operation: direct parallel and  
latched parallel.  
Direct Parallel Mode  
PS  
X
To enable direct parallel mode, keep the LE pin high. To change  
the attenuation state, use the control voltage inputs (D2 to D5)  
directly. This mode is ideal for manual control of the attenuator.  
tPS  
tPH  
D5 TO D2  
LE  
X
X
tLEW  
Figure 26. Latched Parallel Mode Timing Diagram  
Rev. 0 | Page 13 of 17  
 
 
ADRF5731  
Data Sheet  
APPLICATIONS INFORMATION  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
EVALUATION BOARD  
The ADRF5731-EVALZ is a 4-layer evaluation board. The top  
and bottom copper layer are 0.5 oz (0.7 mil) plated to 1.5 oz  
(2.2 mil) and are separated by dielectric materials. The stackup  
for this evaluation board is shown in Figure 27.  
G = 6mil  
W = 16mil  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
RO4003  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 12mil  
THRU LOSS  
DE-EMBEDDED INSERTION LOSS  
EMBEDDED INSERTION LOSS  
0.5oz Cu (0.7mil)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
Figure 28. Insertion Loss vs. Frequency  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
Figure 29 shows the actual ADRF5731-EVALZ evaluation board  
with component placement.  
Figure 27. Evaluation Board Stackup, Cross Sectional View  
All RF and dc traces are routed on the top copper layer, whereas  
the inner and bottom layers are grounded planes that provide a  
solid ground for the RF transmission lines. The top dielectric  
material is 12 mil Rogers RO4003, offering optimal high  
frequency performance. The middle and bottom dielectric  
materials provide mechanical strength. The overall board  
thickness is 62 mil, which allows 2.4 mm RF launchers to be  
connected at the board edges.  
Figure 29. Evaluation Board Layout, Top View  
Two power supply ports are connected to the VDD and VSS test  
points, TP1 and TP2, and the ground reference is connected to  
the GND test point, TP4. On the supply traces, VDD and VSS,  
use a 100 pF bypass capacitor to filter high frequency noise.  
Additionally, unpopulated components positions are available  
for applying extra bypass capacitors.  
The RF transmission lines are designed using a coplanar  
waveguide (CPWG) model, with a trace width of 16 mil and  
ground clearance of 6 mil to have a characteristic impedance of  
50 Ω. For optimal RF and thermal grounding, as many through  
vias as possible are arranged around transmission lines and  
under the exposed pad of the package.  
All the digital control pins are connected through digital signal  
traces to the 2 × 9-pin header, P1. There are provisions for a  
resistor capacitor (RC) filter that helps eliminate dc-coupled  
noise. The ADRF5731 was evaluated without an external RC  
filter, the series resistors are 0 Ω, and shunt capacitors are  
unpopulated on the evaluation board.  
Thru calibration can be used to calibrate out the board loss effects  
from the ADRF5731-EVALZ evaluation board measurements to  
determine the device performance at the pins of the IC. Figure 28  
shows the typical board loss (THRU) for the ADRF5731-EVALZ  
evaluation board at room temperature, the embedded insertion  
loss, and the de-embedded insertion loss for the ADRF5731.  
The RF input and output ports (ATTIN and ATTOUT) are  
connected through 50 Ω transmission lines to the 2.4 mm RF  
launchers, J1 and J2, respectively. These high frequency RF  
launchers are connected by contact and are not soldered onto  
the board.  
A thru calibration line connects the unpopulated J3 and J4  
launchers. This transmission line is used to estimate the loss of  
the PCB over the environmental conditions being evaluated.  
The schematic of the ADRF5731-EVALZ evaluation board is  
shown in Figure 30.  
Rev. 0 | Page 14 of 17  
 
 
 
 
 
Data Sheet  
ADRF5731  
P1  
R6  
0Ω  
R5  
0Ω  
D5_CLK  
D4_SERIN  
D3_SEROUT  
1
3
5
7
9
11  
13  
15  
17  
2
6
4
8
10  
12  
14  
16  
18  
R1  
D2  
PS  
LE  
0Ω  
R2  
D2  
PS  
LE  
D3_SEROUT  
0Ω  
VDD  
TP1  
VSS  
TP2  
17  
1
C1  
100pF  
EPAD  
R4  
D4_SERIN  
D5_CLK  
C2  
12  
11  
10  
9
0Ω  
100pF  
D4/SERIN  
D5/CLK  
GND  
VDD  
VSS  
R3  
2
3
4
0Ω  
GND  
TP4  
ADRF5731  
GND  
J2  
J1  
ATTOUT  
ATTIN  
ATTOUT  
ATTIN  
J3  
DNI  
J4  
DNI  
THRU CAL  
Figure 30. Evaluation Board Schematic  
Table 8. Evaluation Board Components  
Component  
Default Value  
Description  
C1, C2  
100 pF  
Capacitors, C0402 package  
J1, J2  
P1  
R1 to R6  
TP1, TP2, TP4  
U1  
Not applicable  
Not applicable  
0 Ω  
Not applicable  
ADRF5731  
2.4 mm end launch connectors (Southwest Microwave: 1492-04A-6)  
2 × 9-pin header  
Resistors, 0402 package  
Through hole mount test points  
ADRF5731 digital attenuator, Analog Devices, Inc.  
Rev. 0 | Page 15 of 17  
 
ADRF5731  
Data Sheet  
PROBE MATRIX BOARD  
The probe matrix board is a 4-layer board. Similar to the  
evaluation board, the probe matrix board also uses a 12 mil  
Rogers RO4003 dielectric. The top and bottom copper  
layers are 0.5 oz (0.7 mil) plated to 1.5 oz (2.2 mil). The RF  
transmission lines are designed using a CPWG model with  
a width of 16 mil and ground spacing of 6 mil to have a  
characteristic impedance of 50 Ω.  
Figure 31 and Figure 32 show the cross sectional view and the  
top view of the board, respectively. Measurements are made  
using GSG probes at close proximity to the RF pins (ATTIN  
and ATTOUT). Unlike the evaluation board, probing reduces  
reflections caused by mismatch arising from connectors, cables,  
and board layout, resulting in a more accurate measurement of  
the device performance.  
G = 6mil  
W = 16mil  
Figure 32. Probe Matrix Board Layout (Top View)  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
RO4003  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 12mil  
The probe matrix board includes a thru reflect line (TRL)  
calibration kit, allowing board loss de-embedding. The actual  
board duplicates the same layout in matrix form to assemble  
multiple devices at one time. Figure 33 is a detailed image of  
the trace to pin transition with corresponding dimensions. All  
S parameters were measured on this board.  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
Figure 31. Probe Matrix Board (Cross Sectional View)  
16mil  
8mil  
Figure 33. Probe Board Layout Dimensions (Top View)  
Rev. 0 | Page 16 of 17  
 
 
 
 
Data Sheet  
ADRF5731  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
2.60  
2.50 SQ  
2.40  
0.250  
0.200  
0.150  
0.325  
0.275  
0.225  
PIN 1  
CHAMFERED  
CORNER AREA  
PIN 1 (0.1 × 45°)  
13  
16  
12  
1
1.10  
1.00 SQ  
0.90  
1.20 REF  
EXPOSED  
PAD  
9
4
0.40  
BSC  
5
8
TOP VIEW  
BOTTOM VIEW  
0.125  
REF  
0.850  
0.750  
0.650  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.530 REF  
SIDE VIEW  
SECTION OF THIS DATA SHEET.  
0.260  
0.220  
0.180  
Figure 34. 16-Terminal Land Grid Array [LGA]  
2.5 mm × 2.5 mm Body and 0.75 mm Package Height  
(CC-16-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CC-16-6  
CC-16-6  
Marking Code  
ADRF5731BCCZN  
ADRF5731BCCZN-R7  
ADRF5731-EVALZ  
16-Terminal Land Grid Array [LGA]  
16-Terminal Land Grid Array [LGA]  
Evaluation Board  
31  
31  
1 Z = RoHS Compliant Part.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17000-0-9/18(0)  
www.analog.com/ADRF5731  
Rev. 0 | Page 17 of 17  
 
 
 

相关型号:

ADRF5731BCCZN-R7

2 dB LSB, 4-Bit, Silicon Digital Attenuator,
ADI

ADRF6510

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510-ACPZ-R71

IC SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32, Consumer IC:Other
ADI

ADRF6510-ACPZ-WP

SPECIALTY CONSUMER CIRCUIT, QCC32
ADI

ADRF6510-ACPZ-WP1

IC SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32, Consumer IC:Other
ADI

ADRF6510-EVALZ

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510ACPZ-R7

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510ACPZ-WP

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6516

31 MHz, Dual Programmable Filters
ADI

ADRF6516-EVALZ

31 MHz, Dual Programmable Filters
ADI

ADRF6516ACPZ-R7

31 MHz, Dual Programmable Filters
ADI

ADRF6518

63 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI