ADRF6521-EVALZ [ADI]

Low Frequency to 3 GHz, Dual VGA with Output Common-Mode and DC Offset Control;
ADRF6521-EVALZ
型号: ADRF6521-EVALZ
厂家: ADI    ADI
描述:

Low Frequency to 3 GHz, Dual VGA with Output Common-Mode and DC Offset Control

文件: 总33页 (文件大小:1020K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Frequency to 3 GHz, Dual VGA with  
Output Common-Mode and DC Offset Control  
ADRF6521  
Data Sheet  
FEATURES  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
VPOS VGN  
VNEG FLT1  
OFS1  
Dual, matched VGAs  
Maximum voltage gain: 18 dB  
+ –  
INM1  
INP1  
OPM1  
OPP1  
Gain control attenuation range: 21 dB typical for TA = 25°C  
1 dB gain flatness bandwidth: 2.5 GHz typical  
IMD2 and IMD3 (1.5 V p-p output level)  
−56.8 dBc typical and −75 dBc typical, respectively, at VGN =  
1.5 V, 980 MHz and 1000 MHz tones  
18dB  
– +  
COMM  
VOCM  
ADRF6521  
HD2 and HD3 (1.5 V p-p output level)  
−75 dBc typical and −73.7 dBc typical, respectively, atVGN =  
1.5 V, fundamental at 500 MHz  
−55.9 dBc typical and −57.5 dBc typical, respectively, at  
VGN = 1.5 V, fundamental at 1 GHz  
+ –  
– +  
INP2  
INM2  
OPP2  
OPM2  
18dB  
Noise figure  
10.5 dB typical at maximum gain and at 500 MHz  
14.8 dB at maximum gain and at 2 GHz  
Noise figure decreases dB for dB with gain backoff  
100 Ω differential input impedance  
VPOS PWD  
VNEG FLT2  
OFS2  
Figure 1.  
≤16 Ω differential output impedance  
Programmable  
Output DC offset nominal range: 400 mV  
Output common-mode control: > 200 mV for VOCM = 0.2 V  
Single- or dual-supply operation with power-down feature  
Single supply: VPOS = 5 V, VNEG = 0 V (nominal)  
Dual supply: VPOS = 3 V, VNEG =−2 V (nominal)  
APPLICATIONS  
Point-to-point and point-to-multipoint radios  
Baseband IQ receivers  
Diversity receivers  
ADC drivers  
Instrumentation  
Medical  
GENERAL DESCRIPTION  
The ADRF6521 is a dual, fully differential, low noise and low  
distortion variable gain amplifier (VGA). The high spurious-  
free dynamic range over the gain range makes the ADRF6521  
ideal for communication systems with dense constellations,  
multiple carriers, and nearby interferers.  
for second and third harmonic distortion (HD2 and HD3) from  
low frequency to 1 GHz. Variable output dc offset control is  
accomplished with the OFS1 and OFS2 pins, and the output  
common-mode can be controlled with the VOCM pin.  
The ADRF6521 flexibly operates from a single +5 V supply or  
from a range of dual supplies and consumes a total supply  
current of 200 mA. When fully disabled, it consumes 25 mA  
typical. The ADRF6521 is fabricated in an advanced silicon-  
germanium BiCMOS process and is available in a 20-lead,  
exposed pad, 3 mm × 3 mm LFCSP. Performance is specified  
over the −40°C to +85°C temperature range.  
The VGA has a 21 dB attenuation range with a typical voltage  
gain of 18 dB. The differential input impedance is 100 Ω, while the  
differential output impedance is 16 Ω. The 1 dB gain flatness  
bandwidth is 2.5 GHz. The output buffers are capable of swinging  
1.5 V p-p into 100 ꢀ loads at >55 dBc for second-order and  
third-order intermodulation distortion (IMD2 and IMD3), and  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF6521  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output DC Offset Circuit ......................................................... 29  
Gain Control Interface............................................................... 30  
Power-Down Function .............................................................. 30  
Applications Information.............................................................. 31  
Basic Connections...................................................................... 31  
Supply Decoupling ..................................................................... 31  
Input Signal Path ........................................................................ 31  
Output Signal Path ..................................................................... 31  
Enable and Disable Function.................................................... 32  
Gain Pin (VGN) Decoupling.................................................... 32  
Output Impedance Matching ................................................... 32  
Single-Supply Operation ........................................................... 32  
Dual-Supply Operation ............................................................. 32  
Avoiding Latch-Up..................................................................... 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 33  
Applications....................................................................................... 1  
Simplified Functional Block Diagram ........................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Electrostatic Discharge (ESD) Ratings ...................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Single-Supply Operation ............................................................. 9  
Dual-Supply Operation ............................................................. 19  
Theory of Operation ...................................................................... 29  
Input VVAs .................................................................................. 29  
Amplifiers.................................................................................... 29  
Output Common-Mode Voltage .............................................. 29  
REVISION HISTORY  
11/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 33  
 
Data Sheet  
ADRF6521  
SPECIFICATIONS  
For single-supply operation, VPOS = 5 V, VNEG = 0 V nominal, and VOCM = 2.5 V, and for dual-supply operation, VPOS = 3 V, VNEG =  
−2 V nominal, and VOCM = 0 V, unless otherwise noted. TA = 25°C and load impedance (ZLOAD) = 186 Ω, unless otherwise noted. Voltages  
on VOCM, OFS1, and OFS2 are with respect to COMM (analog ground).  
Table 1.  
Parameter  
Test Conditions/Comments  
Single-supply operation  
Channel 1 or 2, maximum gain  
Maximum gain  
Defined as difference between value at 100 kHz and  
1 GHz  
Min Typ  
Max Unit  
FREQUENCY RESPONSE  
1 dB Gain Flatness Bandwidth  
−3 dB Bandwidth  
2.5  
3.25  
0.5  
GHz  
GHz  
dB  
Pass-Band Flatness  
Gain Matching  
Channel A and Channel B at same gain  
Less than 1 GHz  
0.2  
0.4  
dB  
dB  
Less than 3 GHz  
Group Delay  
Variation  
Matching  
From 500 MHz to 1 GHz  
Frequency = 1 GHz  
Frequency = 3 GHz  
0.1  
25  
40  
ns  
ps  
ps  
INPUT STAGE  
INP1, INM1, INP2, INM2  
At minimum gain, VGN = 0 V  
Maximum Input Swing  
Differential Input Impedance  
Input Common-Mode  
8
100  
V p-p  
(VPOS + VNEG)/2, ac coupling recommended  
VOCM undriven, single-supply operation  
VOCM undriven, dual-supply operation  
VGN (ground referenced)  
Minimum  
2.5  
0.5  
V
V
GAIN CONTROL  
Voltage Range1, 2  
0
V
Maximum  
1.5  
18  
−3  
21  
>20  
45  
0.2  
V
Voltage Gain  
VGN = 1.5 V, maximum gain  
VGN = 0 V, minimum gain  
TA = 25°C  
dB  
dB  
dB  
dB  
mV/dB  
dB  
Attenuation Range  
−40°C ≤ TA ≤ +85°C  
Gain Slope  
Gain Error  
VGA Step Response Time  
Rise Time  
Fall Time  
COMMON-MODE CONTROL3  
Default Value  
Voltage Range1  
VGN voltage (VVGN) range = 500 mV to 1000 mV  
Through full attenuator range  
From 10% to 90% of output  
From 90% to 10% of output  
VOCM (VPOS and VNEG supply referenced)  
VOCM floating (nominal)  
240  
250  
ns  
ns  
(VVPOS + VVNEG)/2  
(VVPOS + VVNEG)/2  
– 1  
V
V
Minimum  
Maximum  
(VVPOS + VVNEG)/2  
+ 1  
V
Output Common Mode4  
(VOPP1 + VOPM1)/2 or (VOPP2 + VOPM2)/2  
VOCM = 0 V  
0
V
VOCM = 0.2 V  
VOCM = −0.2 V  
VOCM = 0.3 V, functional maximum  
OFS1 and OFS2 (ground referenced)  
Minimum  
200  
−200  
300  
mV  
mV  
mV  
DC OFFSET CONTROL  
Voltage Range1, 2  
0
1.5  
V
V
Maximum  
Rev. 0 | Page 3 of 33  
 
 
ADRF6521  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
Output DC Offset  
(VOPP1 − VOPM1) or (VOPP2 − VOPM2)  
OFS1 and OFS2 = 0.75 V (nominal)  
OFS1 and OFS2 = 1.2 V  
OFS1 and OFS2 = 0.3 V  
OFS1 and OFS2 = 0 V  
OFS1 and OFS2 = 1.5 V  
OFS1 and OFS2 = 0.75 V  
<20  
400  
−400  
−600  
600  
mV  
mV  
mV  
mV  
mV  
mV  
DC Offset Channel to Channel  
Mismatch  
6.2  
OUTPUT STAGE  
OPP1, OPM1, OPP2, and OPM2  
Maximum Output Swing  
At maximum gain, load resistance (RLOAD) = 186 Ω  
IMD2, IMD3, HD2, and HD3 are > 55 dBc at a 100 Ω  
interface5  
5.64  
1.5  
V p-p  
V p-p  
Output 1 dB Compression Point  
(OP1dB)  
Frequency = 1 GHz, gain = 18 dB, RLOAD = 186 Ω  
>6  
dBV6  
At 100 Ω interface5  
> 0.6  
≤16  
dBV6  
Ω
Differential Output Impedance  
NOISE AND DISTORTION  
Single-Supply Operation  
Output Noise Density  
Input impedance (ZIN) = 100 Ω at 100 Ω interface5  
VGN = 1.5 V at 500 MHz  
VGN = 0.75 V at 500 MHz  
VGN = 0 V at 500 MHz  
VGN = 1.5 V at 2 GHz  
VGN = 0.75 V at 2 GHz  
−159.9  
−161  
−161.5  
−155  
−157  
−157.4  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
VGN = 0 V at 2 GHz  
Noise Figure  
VGN = 1.5 V at 500 MHz  
VGN = 0.75 V at 500 MHz  
VGN = 0 V at 500 MHz  
VGN = 1.5 V at 2 GHz  
VGN = 0.75 V at 2 GHz  
VGN = 0 V at 2 GHz  
12.3  
21.5  
31.5  
16.3  
24.5  
34.3  
dB  
dB  
dB  
dB  
dB  
dB  
Second Harmonic Distortion, HD2  
Third Harmonic Distortion, HD3  
IMD2  
1.5 V p-p output level  
VGN = 1.5 V, fundamental at 500 MHz  
VGN = 0.75 V, fundamental at 500 MHz  
VGN = 0 V, fundamental at 500 MHz  
VGN = 1.5 V, fundamental at 1 GHz  
VGN = 0.75 V, fundamental at 1 GHz  
VGN = 0 V, fundamental at 1 GHz  
1.5 V p-p output level  
VGN = 1.5 V, fundamental at 500 MHz  
VGN = 0.75 V, fundamental at 500 MHz  
VGN = 0 V, fundamental at 500 MHz  
VGN = 1.5 V, fundamental at 1 GHz  
VGN = 0.75 V, fundamental at 1 GHz  
VGN = 0 V, fundamental at 1 GHz  
1.5 V p-p output level  
−75  
−76  
−77  
−55.9  
−54  
−41  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−73.7  
−72  
−72.6  
−57.5  
−68  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−62  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
−74  
−62  
−53  
−56.8  
−54  
−45  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Rev. 0 | Page 4 of 33  
Data Sheet  
ADRF6521  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
IMD3  
1.5 V p-p output level  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
−74  
−77  
−73  
−75  
−82  
−76  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Input Second-Order Intercept  
Point (IIP2)  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
44.9  
44.5  
45  
27.5  
36.3  
36.7  
dBV  
dBV  
dBV  
dBV  
dBV  
dBV  
Input Third-Order Intercept Point  
(IIP3)  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
7.9  
dBV  
dBV  
dBV  
dBV  
dBV  
dBV  
20.1  
28.5  
8.2  
23.3  
29.7  
Dual-Supply Operation  
Output Noise Density  
ZIN = 100 Ω at 100 Ω interface5  
VGN = 1.5 V at 500 MHz  
VGN = 0.75 V at 500 MHz  
VGN = 0 V at 500 MHz  
VGN = 1.5 V at 2 GHz  
−161.7  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
dBV/Hz  
−162.2  
−162.1  
−158.2  
−158.4  
−158.7  
VGN = 0.75 V at 2 GHz  
VGN = 0 V at 2 GHz  
Noise Figure  
VGN = 1.5 V at 500 MHz  
VGN = 0.75 V at 500 MHz  
VGN = 0 V at 500 MHz  
VGN = 1.5 V at 2 GHz  
VGN = 0.75 V at 2 GHz  
VGN = 0 V at 2 GHz  
10.5  
20  
31.3  
14.8  
24.5  
34.4  
dB  
dB  
dB  
dB  
dB  
dB  
HD2  
1.5 V p-p output level  
VGN = 1.5 V, fundamental at 500 MHz  
VGN = 0.75 V, fundamental at 500 MHz  
VGN = 0 V, fundamental at 500 MHz  
VGN = 1.5 V, fundamental at 1 GHz  
VGN = 0.75 V, fundamental at 1 GHz  
VGN = 0 V, fundamental at 1 GHz  
1.5V p-p output level  
−79  
−93  
−79  
−59  
−53  
−40.5  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3  
VGN = 1.5 V, fundamental at 500 MHz  
VGN = 0.75 V, fundamental at 500 MHz  
VGN = 0 V, fundamental at 500 MHz  
VGN = 1.5 V, fundamental at 1 GHz  
VGN = 0.75 V, fundamental at 1 GHz  
VGN = 0 V, fundamental at 1 GHz  
−72  
−75  
−72  
−57  
−70  
−62.5  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Rev. 0 | Page 5 of 33  
ADRF6521  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
IMD2  
1.5 V p-p output level  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
1.5 V p-p output level  
−74  
−60.9  
−53  
−58  
−55  
−46  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
IMD3  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
−80  
−86  
−73.5  
−71.6  
−87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−76  
IIP2  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
44.9  
43.4  
45  
28.7  
37.3  
37.7  
dBV  
dBV  
dBV  
dBV  
dBV  
dBV  
IIP3  
VGN = 1.5 V, 480 MHz and 500 MHz tones  
VGN = 0.75 V, 480 MHz and 500 MHz tones  
VGN = 0 V, 480 MHz and 500 MHz tones  
VGN = 1.5 V, 980 MHz and 1000 MHz tones  
VGN = 0.75 V, 980 MHz and 1000 MHz tones  
VGN = 0 V, 980 MHz and 1000 MHz tones  
VPOS, VNEG, COMM, and PWD  
VPOS > COMM ≥ VNEG  
Minimum  
10.9  
25.5  
28.7  
6.5  
25.8  
29.7  
dBV  
dBV  
dBV  
dBV  
dBV  
dBV  
POWER AND ENABLE  
Supply Voltage Range  
VPOS − VNEG  
4
V
Maximum  
5
V
VPOS  
VNEG  
Minimum  
Maximum  
Minimum  
2.5  
5
−2.5  
V
V
V
Maximum  
0
V
Total Supply Current  
Disable Current  
PWD high voltage  
200  
mA  
mA  
V
PWD = VNEG  
25  
PWD Voltage Range  
Minimum  
VNEG  
VNEG + 3.3  
VNEG + 2.7  
VNEG + 0.3  
<20  
Maximum  
V
V
V
ns  
ns  
Enable Threshold  
Disable Threshold  
Enable Response Time  
Disable Response Time  
Delay following PWD low to high transition  
Delay following PWD high to low transition  
<8  
1 Voltages beyond this range, but below the absolute maximum ratings, may cause latch-up problems.  
2 The voltage range is the functional range of the pin.  
3 VVPOS is the VPOS voltage, and VVNEG is the VNEG voltage.  
4 VOPP1 is the OPP1 voltage, VOPM1 is the OPM1 voltage, VOPP2 is the OPP2 voltage, and VOPM2 is the OPM2 voltage.  
5 Voltage levels at the interface are between the 43 Ω back termination resistors and 100 Ω differential load. This interface is −5.4 dB lower in voltage level than the  
output of the ADRF6521.  
6 X dBV = 20 × log10(x V rms/1 V rms). 0 dBV is equivalent to 1 V rms.  
Rev. 0 | Page 6 of 33  
Data Sheet  
ADRF6521  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
Parameter  
Rating  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Supply Voltages: VPOS − VNEG  
PWD  
5.25 V  
VNEG + 3.3 V  
VPOS + 0.5 V  
VPOS + 0.5 V  
VPOS + 0.5 V  
VPOS + 0.5 V  
VPOS + 0.5 V  
1.53 W  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
INP1, INM1, INP2, and INM2  
OPP1, OPM1, OPP2, and OPM2  
OFS1, OFS2  
VOCM  
VGN  
Internal Power Dissipation  
Temperature  
Maximum Junction  
Operating Range  
Storage Range  
Field induced charged device model (FICDM) per  
ANSI/ESDA/JEDEC JS-002.  
ESD Ratings for ADRF6521  
Table 4. ADRF6521, 20-Lead LFCSP  
ESD Model Withstand Threshold (V)  
Class  
1B  
4
HBM  
1000  
1250  
125°C  
FICDM  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Lead (Soldering 60 sec)  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 3. Thermal Resistance  
1
2
Package Type  
θJA  
θJC  
52.8  
Unit  
CP-20-19  
62.25  
°C/W  
1 Based on simulation with JEDEC Standard JESD-51, using a 2S2P board.  
2 Based on simulation with JEDEC Standard JESD-51, using a 1S0P board.  
Rev. 0 | Page 7 of 33  
 
 
 
 
ADRF6521  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
20 19 18 17 16  
INM1  
INP1  
1
2
3
4
5
15 OPM1  
14  
13  
12  
11  
OPP1  
VOCM  
OPP2  
OPM2  
ADRF6521  
COMM  
INP2  
TOP VIEW  
(Not to Scale)  
INM2  
6
7 8 9 10  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD IS INTERNALLY  
CONNECTED TO VNEG AND MUST BE SOLDERED  
TO THE NEGATIVE SUPPLY RAIL.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 2  
3
INM1, INP1  
COMM  
Channel 1 Differential Inputs, 100 Ω Differential Input Impedance. (VPOS + VNEG)/2 nominal common mode.  
Analog Ground.  
4, 5  
6
INP2, INM2  
OFS2  
Channel 2 Differential Inputs, 100 Ω Differential Input Impedance. (VPOS + VNEG)/2 nominal common mode.  
Channel 2 Output DC Offset Control. Nominal control range from 0.3 V to 1.2 V relative to analog ground. A 0.75 V  
on OFSx produces a 0 V output offset voltage. OFS2 is not self biased. OFS2 must be driven. Left unconnected,  
OFS2 is pulled to ground via an on-chip 5 kΩ resistor, which forces the output dc offset to be −700 mV. Voltages  
greater than 1.5 V but less than the absolute maximum ratings may cause latch-up.  
7
FLT2  
Channel 2 Filter Pin. Connect FLT2 to the negative supply via a 1 µF capacitor.  
8, 18  
VNEG  
Analog Negative Supply Voltage. For single-supply operation, set VNEG to 0 V nominal, and for dual-supply  
operation, set VNEG to −2 V nominal. Keep (VPOS − VNEG) ≤ 5 V, VNEG ≤ COMM ≤ VPOS, and −2.5 V ≤ VNEG ≤ 0 V  
to keep the voltage at the allowable pin voltage related to the voltage on the VPOS pin. Pins are electrically connected  
on chip and to the exposed pad. Connect both VNEG pins and the exposed pad to the negative supply voltage.  
9
PWD  
Chip Power Down. Pull to VNEG supply to disable both channels. Leave unconnected to enable. Keep VPWD  
(VNEG + 3.3 V).  
10, 16  
VPOS  
Analog Positive Supply Voltage. For single-supply operation, set VPOS to 5 V nominal, and for dual-supply  
operation, set VPOS to 3 V nominal. Keep (VPOS − VNEG) ≤ 5 V, VNEG ≤ COMM ≤ VPOS, and VPOS ≥ 2.3 V to keep  
the voltage at the allowable pin voltage related to the voltage on the VNEG pin. Pins are electrically connected  
on chip. Connect both VPOS pins to the positive supply voltage.  
11, 12  
13  
OPM2, OPP2  
VOCM  
Channel 2 Differential Outputs. These outputs have a 16 Ω differential output impedance.  
Output Common-Mode Voltage Control. The nominal control range is (VPOS + VNEG)/2 − 200 mV to (VPOS +  
VNEG)/2 + 200 mV. A 0 V on VOCM is a 0 V output common-mode voltage. Self biased to (VPOS + VNEG)/2.  
Voltages greater than (VVPOS + VVNEG)/2 1 V but less than the absolute maximum ratings may cause latch-up.  
14, 15  
17  
OPP1, OPM1  
VGN  
Channel 2 Differential Outputs. These outputs have a 16 Ω differential output impedance.  
VGA Analog Gain Control. The VGN pins operate from 0 V to 1.5 V with 45 mV/dB gain scaling. Voltages greater  
than 1.5 V but less than the absolute maximum ratings may cause latch-up.  
19  
20  
FLT1  
OFS1  
Channel 1 Filter Pin. Connect FLT1 to a negative supply via a 1 µF capacitor.  
Channel 1 Output DC Offset Control. Nominal control range from 0.3 V to 1.2 V relative to analog ground. A 0.75 V  
on OFSx produces a 0 V output offset voltage. OFS1 is not self biased. OFS1 must be driven. Left unconnected,  
OFS1 is pulled to ground via an on-chip 5 kΩ resistor, which forces the output dc offset to be −700 mV.  
EP  
Exposed Pad. The exposed pad is internally connected to VNEG and must be soldered to the negative supply rail.  
Rev. 0 | Page 8 of 33  
 
Data Sheet  
ADRF6521  
TYPICAL PERFORMANCE CHARACTERISTICS  
SINGLE-SUPPLY OPERATION  
VPOS = 5 V, VNEG = 0 V, TA = 25°C, ZLOAD = 186 Ω, VGN = 1.5 V, VOCM = 2.5 V, OFS1 = OFS2 = 0.75 V, output level = 1.5 V p-p, and  
43 Ω back termination resistors de-embedded, unless otherwise noted. Noise figure measured with 100 Ω differential input termination.  
Worst case IMD2 and IMD3 tone reported. VOFSx sweeps = 0 V, 0.4 V, 0.75 V, or 1.2 V. VOCM sweeps = 2.4 V, 2.5 V, or 2.6 V.  
5
20  
18  
16  
14  
12  
10  
8
5
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
4
4
3
3
2
2
1
1
0
0
6
6
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
4
4
2
2
0
0
–2  
–4  
–2  
–4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 3. Voltage Gain and Error vs. VGN Voltage over Temperature at 500 MHz  
Figure 6. Voltage Gain and Error vs. VGN Voltage over Temperature at 1 GHz  
20  
18  
16  
14  
12  
10  
8
5
5
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
4
4
3
3
2
2
1
1
0
0
6
6
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
4
4
2
2
0
0
–2  
–4  
–2  
–4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 4. Voltage Gain and Error vs. VGN Voltage over Temperature at 2 GHz  
Figure 7. Voltage Gain and Error vs. VGN Voltage over Temperature at 3 GHz  
20  
15  
10  
5
15  
10  
5
0
0
–5  
–10  
–5  
–10  
VGN = 1.5V, –40°C  
VGN = 0.75V, –40°C  
VGN = 0V, –40°C  
–15  
–20  
–25  
VGN = 1.5V, +25°C  
VGN = 0.75V, +25°C  
VGN = 0V, +25°C  
VGN = 1.5V, +85°C  
VGN = 0.75V, +85°C  
VGN = 0V, +85°C  
VGN = 1.5V  
VGN = 1.4V  
VGN = 1.2V  
VGN = 1.0V  
VGN = 0.8V  
VGN = 0.6V  
VGN = 0.4V  
VGN = 0.2V  
VGN = 0V  
–15  
1M  
10M  
100M  
1G  
0.1  
1
10  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 5. Voltage Gain vs. Frequency over Temperature and VGN, 43 Ω Back  
Terminations not De-Embedded  
Figure 8. Voltage Gain vs. Frequency over 200 mV VGN Steps, 43 Ω Back  
Terminations not De-Embedded  
Rev. 0 | Page 9 of 33  
 
 
ADRF6521  
Data Sheet  
0
0
–5  
VGN = 1.5V, –40°C  
VGN = 0.75V, 40°C  
VGN = 0V, –40°C  
VGN = 1.5V, +85°C  
VGN = 0.75V, +85°C  
VGN = 0V, +85°C  
VGN = 1.5V, –40°C  
VGN = 0.75V, –40°C  
VGN = 0V, –40°C  
VGN = 1.5V, +85°C  
VGN = 0.75V, +85°C  
VGN = 0V, +85°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
VGN = 1.5V, +25°C  
VGN = 0.75V, +25°C  
VGN = 0V, +25°C  
VGN = 1.5V, +25°C  
VGN = 0.75V, +25°C  
VGN = 0V, +25°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0.1  
1
0.1  
1
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Differential Input Return Loss (S11) vs. Frequency over Temperature  
and VGN  
Figure 12. Differential Output Return Loss (S22) vs. Frequency over  
Temperature and VGN  
40  
35  
30  
25  
20  
–150  
VGN = 1.5V, = –40°C  
VGN = 0.75V, –40°C  
VGN = 0V, –40°C  
VGN = 1.5V, +85°C  
VGN = 0.75V, +85°C  
VGN = 0V, +85°C  
–151  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
VGN = 1.5V, +25°C  
VGN = 0.75V, +25°C  
VGN = 0V, +25°C  
15  
VGN = 1.5V, +25°C  
10  
VGN = 0.75V, +25°C  
VGN = 0V, +25°C  
VGN = 1.5V, +85°C  
VGN = 0.75V, +85°C  
VGN = 0V, +85°C  
VGN = 1.5V, –40°C  
VGN = 0.75V, –40°C  
VGN = 0V, –40°C  
5
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
Figure 10. Noise Figure vs. Frequency over Temperature and VGN  
Figure 13. Output Noise Density vs. Frequency over Temperature and VGN  
40  
–150  
–40°C  
–40°C  
–151  
+25°C  
+25°C  
35  
30  
+85°C  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
+85°C  
25  
20  
15  
10  
5
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 11. Noise Figure vs. VGN Voltage over Temperature at 500 MHz  
Figure 14. Output Noise Density vs. VGN over Temperature at 500 MHz  
Rev. 0 | Page 10 of 33  
Data Sheet  
ADRF6521  
40  
35  
30  
25  
20  
15  
10  
5
–150  
–151  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN (V)  
Figure 15. Noise Figure vs. VGN Voltage over Temperature, at 1 GHz  
Figure 18. Output Noise Density vs. VGN over Temperature at 1 GHz  
40  
–150  
–40°C  
–40°C  
+25°C  
–151  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
+25°C  
+85°C  
35  
30  
25  
20  
15  
10  
5
+85°C  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 16. Noise Figure vs. VGN Voltage over Temperature, at 2 GHz  
Figure 19. Output Noise Density vs. VGN over Temperature at 2 GHz  
40  
–150  
–40°C  
–40°C  
–151  
+25°C  
+25°C  
35  
30  
+85°C  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
+85°C  
25  
20  
15  
10  
5
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 17. Noise Figure vs. VGN Voltage over Temperature at 3 GHz  
Figure 20. Output Noise Density vs. VGN over Temperature at 3 GHz  
Rev. 0 | Page 11 of 33  
ADRF6521  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. IMD3 vs. Frequency over VGN and OFSx  
Figure 21. IMD2 vs. Frequency over VGN and OFSx  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. IIP3 vs. Frequency over VGN  
Figure 22. IIP2 vs. Frequency over VGN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 23. IMD2 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Figure 26. IMD3 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Rev. 0 | Page 12 of 33  
Data Sheet  
ADRF6521  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 27. IMD2 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
Figure 30. IMD3 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
0
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 28. IMD2 vs. VGN Voltage, over Temperature and OFSx at 2 GHz  
Figure 31. IMD3 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
0
0
–40°C  
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 29. IMD2 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Figure 32. IMD3 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Rev. 0 | Page 13 of 33  
ADRF6521  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 33. HD2 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Figure 36. HD3 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
0
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 34. HD2 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
Figure 37. HD3 vs. VGN Voltage over Temperature and VOCM at 1 GHz  
0
0
–40°C  
–40°C  
+25°C  
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+25°C  
+85°C  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 35. HD2 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
Figure 38. HD3 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
Rev. 0 | Page 14 of 33  
Data Sheet  
ADRF6521  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 39. HD2 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Figure 42. HD3 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
0
0
–40°C  
–40°C  
+25°C  
+25°C  
+85°C  
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 40. HD2 vs. VGN Voltage over Temperature and VOCM at 500 MHz  
Figure 43. HD3 vs. VGN Voltage over Temperature and VOCM at 500 MHz  
0
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 41. HD2 vs. VGN Voltage over Temperature and VOCM at 1 GHz  
Figure 44. HD3 vs. VGN Voltage over Temperature and VOCM at 1 GHz  
Rev. 0 | Page 15 of 33  
ADRF6521  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 48. HD3 vs. VGN Voltage over Temperature and VOCM at 2 GHz  
Figure 45. HD2 vs. VGN Voltage over Temperature and VOCM at 2 GHz  
0
0
–40°C  
–40°C  
+25°C  
+25°C  
–10  
–20  
–10  
–20  
+85°C  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 49. HD3 vs. VGN Voltage over Temperature and VOCM at 3 GHz  
Figure 46. HD2 vs. VGN Voltage over Temperature and VOCM at 3 GHz  
20  
20  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
18  
16  
14  
12  
10  
8
18  
16  
+85°C  
14  
12  
10  
8
6
6
4
4
2
2
0
0
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. OP1dB vs. Frequency over Temperature and OFSx  
Figure 50. OP1dB vs. Frequency over Temperature and VOCM  
Rev. 0 | Page 16 of 33  
Data Sheet  
ADRF6521  
600  
8
7
6
5
4
3
2
1
0
VOCM VARIED FROM –0.3V TO +0.3V IN 0.1V STEPS  
VOCM = –0.3V  
VOCM = –0.2V  
VOCM = –0.1V  
VOCM = 0V  
VOCM = 0.1V  
VOCM = 0.2V  
VOCM = 0.3V  
400  
200  
0
–200  
–400  
–600  
+85°C  
+25°C  
–40°C  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
V
VOLTAGE (V)  
V
OFSx  
VOLTAGE (V)  
OFSx  
Figure 51. Differential DC Offset Voltage vs. VOFSx Voltage over Temperature  
and VOCM  
Figure 54. Differential Offset Voltage Mismatch (Channel to Channel) vs.  
V
OFSx Voltage over VOCM  
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VGN = 1.50V  
VGN = 0.75V  
4
VGN = 0V  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
VGN = 1.5V  
VGN = 0.7V  
VGN = 0V  
0.1  
1.0  
FREQUENCY (GHz)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
Figure 52. Channel to Channel Phase Mismatch vs. Frequency over VGN  
Figure 55. Group Delay vs. Frequency over VGN  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.8  
CHANNEL 1  
VGN  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–0.2  
600  
–200 –100  
0
100  
200  
300  
400  
500  
TIME (ns)  
Figure 53. Supply Current vs. Temperature for Multiple Devices  
Figure 56. VGA Step Response Rise Time, Minimum to Maximum Gain  
Rev. 0 | Page 17 of 33  
ADRF6521  
Data Sheet  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
6
CHANNEL 1  
VGN  
CHANNEL 1  
PWD  
5
0.15  
0.10  
0.05  
0
4
3
2
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
1
0
–1  
–2  
–0.25  
–200  
–100  
0
100  
200  
300  
400  
500  
600  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
30  
TIME (ns)  
TIME (ns)  
Figure 57. VGA Step Response Fall Time, Maximum to Minimum Gain  
Figure 59. Enable Response Time  
0.25  
0.20  
0.15  
0.10  
0.05  
0
6
CHANNEL 1  
PWD  
5
4
3
2
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
1
0
–1  
–10  
–5  
0
5
10  
15  
20  
25  
30  
TIME (ns)  
Figure 58. Disable Response Time  
Rev. 0 | Page 18 of 33  
Data Sheet  
ADRF6521  
DUAL-SUPPLY OPERATION  
VPOS = 3 V and VNEG = −2 V, T A = 25°C, ZLOAD = 186 Ω, VGN = 1.5 V, VOCM = 0 V, OFS1 = OFS2 = 0.75 V, output level = 1.5 V p-p,  
and 43 Ω back termination de-embedded, unless otherwise noted. Noise figure measured with 100 Ω differential input termination.  
Worst case IMD2 and IMD3 tone reported. VOFSx sweeps = 0 V, 0.4 V, 0.75 V, or 1.2 V. VOCM sweeps = −0.1 V, 0 V, or +0.1 V.  
20  
18  
16  
14  
12  
10  
8
5
20  
18  
16  
14  
12  
10  
8
5
4
4
3
3
2
2
1
1
0
0
6
6
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
4
4
2
2
+85°C  
+25°C  
–40°C  
0
+85°C  
+25°C  
–40°C  
0
–2  
–4  
–2  
–4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
VGN VOLTAGE (V)  
Figure 60. Voltage Gain and Error vs. VGN Voltage over Temperature at 500 MHz  
Figure 63. Voltage Gain and Error vs. VGN Voltage over Temperature at 1 GHz  
20  
18  
16  
14  
12  
10  
8
5
20  
18  
16  
14  
12  
10  
8
5
4
4
3
3
2
2
1
1
0
0
6
6
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
4
4
2
2
+85°C  
+25°C  
–40°C  
0
+85°C  
+25°C  
–40°C  
0
–2  
–4  
–2  
–4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
VGN VOLTAGE (V)  
Figure 61. Voltage Gain and Error vs. VGN Voltage over Temperature at 2 GHz  
Figure 64. Voltage Gain and Error vs. VGN Voltage over Temperature at 3 GHz  
15  
10  
5
0
–5  
–10  
–40°C, VGN = 1.5V  
–40°C, VGN = 0.75V  
–40°C, VGN = 0V  
+85°C, VGN = 1.5V  
+85°C, VGN = 0.75V  
+85°C, VGN = 0V  
+25°C, VGN = 1.5V  
+25°C, VGN = 0.75V  
+25°C, VGN = 0V  
VGN = 1.5V  
VGN = 1.4V  
VGN = 1.2V  
VGN = 1.0V  
VGN = 0.8V  
VGN = 0.6V  
VGN = 0.4V  
VGN = 0.2V  
VGN = 0V  
–15  
0.1  
1
1
10  
100  
1000  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 62. Voltage Gain vs. Frequency, over Temperature and VGN, 43 Ω Back  
Terminations not De-Embedded  
Figure 65. Voltage Gain vs. Frequency over 200 mV VGN Steps, 43 Ω Back  
Terminations not De-Embedded  
Rev. 0 | Page 19 of 33  
 
ADRF6521  
Data Sheet  
0
0
–5  
–40°C, VGN = 1.5V  
–40°C, VGN = 0.75V  
–40°C, VGN = 0V  
+25°C, VGN = 1.5V  
+25°C, VGN = 0.75V  
+25°C, VGN = 0V  
+85°C, VGN = 1.5V  
+85°C, VGN = 0.75V  
+85°C, VGN = 0V  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
+85°C, VGN = 1.50V  
+25°C, VGN = 1.50V  
–40°C, VGN = 1.50V  
+85°C, VGN = 0.75V  
+25°C, VGN = 0.75V  
–40°C, VGN = 0.75V  
+85°C, VGN = 0V  
+25°C, VGN = 0V  
–40°C, VGN = 0V  
–50  
0.1  
0.1  
1
1
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 66. Differential S11 vs. Frequency over Temperature and VGN  
Figure 69. Differential S22 vs. Frequency over Temperature and VGN with 43 Ω  
Back Terminations  
40  
–150  
+85°C, VGN = 1.50V  
+25°C, VGN = 1.50V  
+85°C, VGN = 1.50V  
–151  
+25°C, VGN = 1.50V  
35  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
–40°C, VGN = 1.50V  
–40°C, VGN = 1.50V  
+85°C, VGN = 0.70V  
+25°C, VGN = 0.70V  
–40°C, VGN = 0.70V  
30  
25  
+85°C, VGN = 0V  
+25°C, VGN = 0V  
–40°C, VGN = 0V  
20  
+85°C, VGN = 0.70V  
+25°C, VGN = 0.70V  
–40°C, VGN = 0.70V  
15  
10  
5
+85°C, VGN = 0V  
+25°C, VGN = 0V  
–40°C, VGN = 0V  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
Figure 67. Noise Figure vs. Frequency over Temperature and VGN  
Figure 70. Output Noise Density vs. Frequency over Temperature and VGN  
40  
–150  
–151  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 68. Noise Figure vs. VGN Voltage over Temperature at 500 MHz  
Figure 71. Output Noise Density vs. VGN Voltage over Temperature at 500 MHz  
Rev. 0 | Page 20 of 33  
Data Sheet  
ADRF6521  
40  
35  
30  
25  
20  
15  
10  
5
–150  
–151  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 72. Noise Figure vs. VGN Voltage over Temperature at 1 GHz  
Figure 75. Output Noise Density vs. VGN Voltage over Temperature at 1 GHz  
40  
–150  
–151  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 73. Noise Figure vs. VGN Voltage over Temperature at 2 GHz  
Figure 76. Output Noise Density vs. VGN Voltage over Temperature at 2 GHz  
40  
–150  
+85°C  
+25°C  
–40°C  
–151  
–152  
–153  
–154  
–155  
–156  
–157  
–158  
–159  
–160  
–161  
–162  
–163  
–164  
–165  
+85°C  
35  
30  
25  
20  
15  
10  
5
+25°C  
–40°C  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 74. Noise Figure vs. VGN Voltage over Temperature at 3 GHz  
Figure 77. Output Noise Density vs. VGN Voltage over Temperature at 3 GHz  
Rev. 0 | Page 21 of 33  
ADRF6521  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 78. IMD2 vs. Frequency over Temperature and VGN  
Figure 81. IMD3 vs. Frequency over Temperature and VGN  
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
–10  
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 79. IIP2 vs. Frequency over VGN in 200 mV Steps  
Figure 82. IIP3 vs. Frequency over VGN in 200 mV Steps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 80. IMD2 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Figure 83. IMD3 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Rev. 0 | Page 22 of 33  
Data Sheet  
ADRF6521  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 84. IMD2 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
Figure 87. IMD3 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 85. IMD2 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
Figure 88. IMD3 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 86. IMD2 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Figure 89. IMD3 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Rev. 0 | Page 23 of 33  
ADRF6521  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 90. HD2 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
Figure 93. HD3 vs. VGN Voltage over Temperature and OFSx at 500 MHz  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 91. HD2 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
Figure 94. HD3 vs. VGN Voltage over Temperature and OFSx at 1 GHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
+85°C  
–10  
–20  
+25°C  
–40°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 92. HD2 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
Figure 95. HD3 vs. VGN Voltage over Temperature and OFSx at 2 GHz  
Rev. 0 | Page 24 of 33  
Data Sheet  
ADRF6521  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
+85°C  
+25°C  
–40°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 96. HD2 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
Figure 99. HD3 vs. VGN Voltage over Temperature and OFSx at 3 GHz  
0
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
+85°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 97. HD2 vs. VGN Voltage over Temperature and VOCM at 500 MHz  
Figure 100. HD3 vs. VGN Voltage over Temperature and VOCM at 500 MHz  
0
0
–40°C  
–40°C  
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 98. HD2 vs. VGN Voltage over Temperature and VOCM at 1 GHz  
Figure 101. HD3 vs. VGN Voltage over Temperature and VOCM at 1 GHz  
Rev. 0 | Page 25 of 33  
ADRF6521  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
Figure 102. HD2 vs. VGN Voltage over Temperature and VOCM at 2 GHz  
Figure 105. HD3 vs. VGN Voltage over Temperature and VOCM at 2 GHz  
0
0
–40°C  
–40°C  
+25°C  
–10  
–10  
–20  
+25°C  
+85°C  
+85°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
VGN VOLTAGE (V)  
`Figure 103. HD2 vs. VGN Voltage over Temperature and VOCM at 3 GHz  
Figure 106. HD3 vs. VGN Voltage over Temperature and VOCM at 3 GHz  
20  
20  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
18  
18  
16  
14  
12  
10  
8
+85°C  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
500M  
1G  
3G  
500M  
1G  
3G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 104. OP1dB vs. Frequency over Temperature and OFSx at Maximum  
Gain  
Figure 107. OP1dB vs. Frequency over Temperature and VOCM at Maximum  
Gain  
Rev. 0 | Page 26 of 33  
Data Sheet  
ADRF6521  
14  
12  
10  
8
500  
VOCM VARIED FROM –0.3V TO +0.3V IN 0.1V STEPS  
400  
300  
200  
100  
0
6
–100  
–200  
–300  
–400  
–500  
VOCM = –0.3V  
VOCM = –0.2V  
VOCM = –0.1V  
VOCM = 0V  
VOCM = 0.1V  
VOCM = 0.2V  
VOCM = 0.3V  
4
–40°C  
+25°C  
+85°C  
2
0
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
V
VOLTAGE (V)  
V
VOLTAGE (V)  
OFSx  
OFSx  
Figure 108. Output Differential DC Offset Voltage vs. VOFSx Voltage over  
Temperature and VOCM  
Figure 111. Output Differential DC Offset Channel to Channel Mismatch vs.  
OFSx Voltage over VOCM  
V
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
0.5  
VGN = 0V  
VGN = 0V  
VGN = 0.7V  
0.4  
VGN = 1.5V  
0.3  
VGN = 0.7V  
VGN = 1.5V  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 112. Group Delay vs. Frequency over VGN  
Figure 109. Channel to Channel Amplitude Mismatch vs. Frequency over VGN  
40  
30  
20  
10  
0
5
VGN = 0V  
VGN = 0V  
VGN = 0.7V  
VGN = 1.5V  
VGN = 0.7V  
4
VGN = 1.5V  
3
2
1
0
–10  
–1  
–2  
–3  
–4  
–5  
–20  
–30  
–40  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
0.1  
1
FREQUENCY (GHz)  
Figure 110. Channel to Channel Phase Mismatch vs. Frequency over VGN  
Figure 113. Group Delay Mismatch (Channel to Channel) vs. Frequency over  
VGN  
Rev. 0 | Page 27 of 33  
ADRF6521  
Data Sheet  
90  
80  
70  
60  
50  
40  
30  
20  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
188  
VGN = 0V  
10  
0
VGN = 0.7V  
VGN = 1.5V  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (GHz)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 117. Supply Current vs. Temperature over Multiple Devices  
Figure 114. Channel to Channel Isolation vs. Frequency over VGN  
1.8  
1.8  
0.25  
0.25  
CHANNEL 1  
VGN  
1.6  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.20  
0.15  
0.10  
05  
0.20  
1.4  
0.15  
1.2  
0.10  
1.0  
0.05  
0.8  
0
0
0.6  
–05  
–0.05  
0.4  
–0.10  
–0.15  
–0.20  
–0.25  
–0.10  
0.2  
–0.15  
0
–0.20  
CHANNEL 1  
VGN  
–0.2  
600  
–0.2  
600  
–0.25  
–200  
–100  
0
100  
200  
300  
400  
500  
–200  
–100  
0
100  
200  
300  
400  
500  
TIME (ns)  
TIME (ns)  
Figure 115. VGA Step Response Time, Minimum to Maximum Gain  
Figure 118. VGA Step Response Time, Maximum to Minimum Gain  
0.5  
0.15  
0.10  
05  
0.5  
0.15  
0.10  
05  
CHANNEL 1  
PWD  
CHANNEL 1  
PWD  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
0
–05  
–05  
–0.10  
–0.10  
–0.15  
–0.15  
–10  
–5  
0
5
10  
15  
20  
25  
30  
–10  
–5  
0
5
10  
15  
20  
25  
30  
TIME (ns)  
TIME (ns)  
Figure 116. Enable Response Time  
Figure 119. Disable Response Time  
Rev. 0 | Page 28 of 33  
Data Sheet  
ADRF6521  
THEORY OF OPERATION  
The ADRF6521 is a highly linear, dual channel VGA with a  
−3 dB frequency response of 3.25 GHz. The ADRF6521 consists  
of a matched pair of VGAs, each consisting of a voltage variable  
attenuator (VVA) designed to have 21 dB of attenuation range  
at room temperature (TA = 25°C), followed by an 18 dB  
amplifier, producing a gain range from +18 dB to −3 dB.  
OUTPUT COMMON-MODE VOLTAGE  
The output common-mode voltage is set internally to (VPOS +  
VNEG)/2, with an on-chip resister divider (see Figure 122). This  
voltage can be adjusted 200 mV via the VOCM pin and the  
ADRF6521 still maintains IMD2, IMD3, HD2, and HD3 of  
−55 dBc or better. There is a 1 to 1 mapping between the control  
voltage applied to VOCM and the output common-mode voltage.  
VPOS  
The output stage has the ability to change its common-mode  
voltage and have a purposeful dc offset voltage. The output  
common-mode voltage range and output dc offset voltage range  
are adjustable up to 200 mV and 400 mV, respectively, while  
still maintaining the high linearity outlined in Table 1. Larger  
ranges are possible, but linearity degrades. Figure 120 shows the  
simplified block diagram of a single channel.  
2.5kΩ  
OUTPUT  
VOCM  
COMMON-MODE  
CONTROL CIRCUITRY  
2.5kΩ  
20dB  
VVA  
– +  
VNEG  
Figure 122. VOCM Simplified Circuit  
18dB  
OUTPUTS  
INPUTS  
VGN  
– +  
OUTPUT DC OFFSET CIRCUIT  
The output dc offset on each channel of the ADRF6521 can be  
independently nulled out to account for the small inherent dc  
offsets of the VVA and amplifier. For applications such as  
predistortion, the output dc offset voltage of each channel can  
intentionally be increased up to 400 mV in addition to the  
200 mV output common-mode range, while still maintaining  
high linearity. Adjusting the output common-mode and the  
output dc offset voltage more than a combined 400 mV from  
the nominal voltage on any output pin causes the linearity to  
degrade, possibly to IMDx and/or HDx levels worse than −55 dBc.  
ANALOG  
VOCM OFSx  
GAIN CONTROL  
45mV/dB  
Figure 120. Simplified Functional Block Diagram for a Single Channel  
The entire differential signal chain is dc-coupled. However it is  
recommended to ac-couple the input signal paths. The gain setting  
control for the two channels is a shared pin (VGN), ensuring close  
matching of their magnitude and phase responses. The ADRF6521  
PWD  
is fully disabled by pulling  
to the VNEG supply.  
INPUT VVAs  
The input VVAs are designed to have high linearity and excellent  
log conformance. The VVAs have a differential input impedance  
of 100 Ω and an attenuation range of 21 dB, which decreases  
slightly over temperature. If the input must be dc-coupled, the  
output common mode of the previous stage must match the  
voltage on the VOCM pin. The topology of an input VGA, for  
example, the VVA located at the input of the device, is such that  
the noise figure degrades dB for dB as attenuation increases. The  
VVA maintains its high linearity across its full range of attenuation.  
The output dc offset voltage is defined as follows:  
V
OFS_DC = VOPPx VOPMx  
where VOPPx and VOPMx are the dc voltages on the OPP1 and  
OPM1 or the OPP2 and OPM2 output pins.  
The output dc offset voltage is controlled via the OFS1 pin and  
OFS2 pin, shown in Figure 120 and Figure 124 as a generic  
OFSx pin. The output dc offset voltage is fundamentally caused  
by injecting a differential current into the input of the amplifier.  
The differential current consists of the following:  
AMPLIFIERS  
A reference current (IREF), which is added to both the  
positive and negative legs of the differential path  
The ADRF6521 amplifiers use the same core as the ADL5569.  
The amplifiers have a low output impedance (<20 Ω), and the  
RF to RG on-chip resistor ratio is approximately 8×, which creates  
the 18 dB of differential voltage gain. The amplifiers are designed to  
drive subsequent amplifier stages and are capable of high linearity  
with 1.5 V p-p two-tone signals into 100 Ω differential loads.  
A bipolar offset current (IOFS), which is added on one leg of  
the differential path and subtracted from the other leg  
The reference current is a static current, but the bipolar offset  
current is controlled via the respective OFSx pins. Both currents  
are injected between the 18 dB amplifier and VVA. Because the  
offset current is bipolar, the output dc offset voltage goes up to  
+400 mV or down to −400 m V. The nominal closed form  
equation between the control voltage on the FLTx pins and the  
output dc offset voltage is  
R
F
A
=
= 8  
R
V
F
R
G
R
G
ADL5569  
CORE  
FROM  
VVA  
OUTPUTS  
R
G
V
DC_OFFSET_DIFF = 0.89 × VOFSx − 0.668 V  
R
F
Figure 121. 18 dB Amplifier for a Single Channel  
Rev. 0 | Page 29 of 33  
 
 
 
 
 
 
 
ADRF6521  
Data Sheet  
DC Offset Loop High-Pass Corner  
The output dc offset circuits are filtered on each channel via the  
FLT1 and FLT2 pins, for Channel 1 and Channel 2, respectively.  
Connect both pins to the negative supply via a 1 µF capacitor.  
There is an on-chip capacitance of 35 pF on each FLTx node.  
The ADRF6521 has dc offset loops that null any signal below  
their low-pass frequency corner, which is set by a combination  
of the internal 35 pF capacitor plus any external capacitor  
decoupled to VNEG from OFSx.  
GAIN CONTROL INTERFACE  
Although the dc offset loops have a low-pass response, the signal  
paths show a high-pass response because the loops null any low  
frequency signal below their low-pass corner. The following  
equation shows the relationship between the high-pass corner  
observed on the signal paths and the value of the external  
The ADRF6521 has a linear-in-dB gain control interface. The  
gain control slope is maintained at 22.2 dB/V over temperature,  
supply, and process as gain varies from 250 mV to 1200 mV.  
The gain function is given by  
Gain (dB) = 22.2 × VVGN – 8.5  
capacitor decoupled to VNEG, which is called COFS  
HP (Hz) = 60/(COFS (µF) + 35 × 10−6)  
With COFS = 1 µF, the high-pass corner in Hz is calculated as:  
HP (Hz) = 60/(1 + 35 × 10−6) = 60 Hz  
:
where VVGN is the voltage on the VGN gain pin in volts.  
f
The gain control voltage range is from 0 V to 1.5 V, with respect  
to analog ground.  
f
POWER-DOWN FUNCTION  
The feedback loop shown in Figure 124 creates the output dc  
offset voltage. The differential to single-ended amplifier samples  
the differential output, converts the signal into single-ended mode,  
and averages the signal with a capacitor connected to VNEG.  
This averaged version of the output is compared to the dc voltage  
applied to the OFSx pin(s) with the transconductance amplifier  
(gm). The output differential current of the gm stage is injected  
between the RF and RG resistors of the 18 dB amplifier. The  
feedback loop forces the differential current of the gm amplifier to  
increase or decrease until the averaged voltage from the differential  
to single-ended amplifier is equal to the applied OFSx voltage.  
This differential current injected at the input of the amplifier  
creates an intentional dc offset voltage at the input, which is  
then amplified and seen on the output pins, OPPx and OPMx.  
PWD  
The power-down function is accomplished via the  
default, the device is enabled via the resistive divider shown in  
PWD  
pin. By  
Figure 123. Assert the  
pin to the same potential as VNEG  
to reduce the current consumption to roughly 25 mA. Do not  
PWD  
apply a voltage more than VNEG + 3.3 V on the  
Higher voltages may cause damage to the device.  
VPOS  
pin.  
20kΩ  
POWER-DOWN  
PWD  
CONTROL CIRCUITRY  
30kΩ  
VNEG  
Figure 123. Simplified Power Down Interface  
FLTx VNEG  
DIFFERENTIAL TO  
SINGLE-ENDED  
AMPLIFIER  
35pF  
OFSx  
5kΩ  
gm  
I
± I  
I
± (–I  
)
R
REF  
OFS  
REF  
OFS  
F
R
R
G
FROM  
VVA  
ADL5569  
CORE  
OUTPUTS  
G
R
F
Figure 124. Output DC Offset Circuit for a Single Channel  
Rev. 0 | Page 30 of 33  
 
 
 
 
Data Sheet  
ADRF6521  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
OUTPUT SIGNAL PATH  
Figure 125 shows the basic connections for a typical ADRF6521  
application.  
The low impedance (20 Ω) output buffers are designed to drive  
a 100 Ω impedance load. However, the buffers can drive larger  
resistive loads. The output pins (OPP1, OPM1, OPP2, and OPM2)  
sit at a nominal output common-mode voltage of (VPOS +  
VNEG)/2 V. The outputs can be dc-coupled or ac-coupled.  
However, dc coupling is required to take advantage of the output  
dc offset voltage functionality. To change the output common-  
mode voltage, the user must apply a dc voltage to the VOCM  
pin different than (VPOS + VNEG)/2 V. Left open, VOCM  
defaults to (VPOS + VNEG)/2 V. To change the output dc offset  
voltage, the user must apply a voltage to the OFS1 and OFS2  
pins different than 0.75 V. Left open, these pins are pulled to  
ground via an on-chip 5 kΩ resistor, which creates an  
SUPPLY DECOUPLING  
Decouple each supply pin, VPOS and VNEG, to ground with at  
least one low inductance, surface-mount ceramic capacitor of  
0.1 µF placed as close as possible to the ADRF6521 device.  
INPUT SIGNAL PATH  
Each signal path has an input VGA, accessed through the INP1,  
INM1, INP2, and INM2 pins, which sets a differential input  
impedance of 100 Ω.  
The inputs can be dc-coupled or ac-coupled, but ac coupling is  
strongly recommended. There is no mechanism to change the  
common-mode voltage. Therefore, if the user wants to use dc  
coupling, the common-mode voltage of the previous stage must  
match the ADRF6521 input common-mode voltage of (VPOS +  
VNEG)/2 V.  
approximately −670 mV dc output offset.  
100pF  
VNEG  
0.1µF  
GAIN  
0.1µF  
0.1µF  
100pF  
100pF  
0.1µF  
VPOS  
OFS1  
100pF  
0.1µF  
20  
19  
18  
17  
16  
INPUT1 (–)  
INPUT1 (+)  
OUTPUT1 (–)  
OUTPUT1 (+)  
1
2
3
4
5
OPM1 15  
INM1  
INP1  
14  
13  
OPP1  
VOCM  
VOCM  
COMM  
INP2  
ADRF6521  
0.1µF  
100pF  
INPUT2 (+)  
INPUT2 (–)  
OPP2 12  
11  
OUTPUT2 (+)  
OUTPUT2 (–)  
OPM2  
INM2  
6
7
8
9
10  
VPOS  
PWD  
OFS2  
0.1µF  
100pF  
100pF  
100pF  
0.1µF  
0.1µF  
0.1µF  
VNEG  
100pF  
0.1µF  
Figure 125. Basic Connections  
Rev. 0 | Page 31 of 33  
 
 
 
 
 
 
ADRF6521  
Data Sheet  
ENABLE AND DISABLE FUNCTION  
SINGLE-SUPPLY OPERATION  
PWD  
The ADRF6521 can operate on a 5 V single supply. Connect  
VNEG to analog ground. The output common-mode voltage  
defaults to 2.5 V in this configuration. The nominal range of  
200 mV still applies. A larger range is possible, however,  
linearity performance degrades.  
To enable the ADRF6521, leave the  
PWD  
pin open or pull this  
pin to VNEG + 3.0 V. Driving the  
pin to VNEG disables  
the device, reducing the current consumption to approximately  
25 mA at room temperature.  
GAIN PIN (VGN) DECOUPLING  
DUAL-SUPPLY OPERATION  
The ADRF6521 has one analog gain control pin, VGN. The gain  
changes when an applied VGN voltage is between 0 V and 1.5 V.  
Maximum voltage on the VGN pin is equal to the voltage applied  
to VPOS. Use at least one low inductance, surface-mount  
ceramic capacitor with a value of 0.1 µF and one 1000 pF in  
parallel to ground on the gain pin (VGN) to decouple to ground.  
Apply a nominal supply voltage of +2.5 V to the VPOS supply  
pin, and −2.5 V to the VNEG supply pin. This setup yields a  
nominal output common-mode voltage of 0 V, and the output  
dc offset voltage moves above and below ground according to  
what voltage is applied to the OFSx pins.  
When using a dual supply, ensure the following supply  
constraints:  
OUTPUT IMPEDANCE MATCHING  
The ADRF6521 natively has a low differential output impedance  
of ≤16 Ω. Depending on the PCB design of the user and the S22  
requirements, matching the output impedance to 100 Ω differential  
may be desirable. To achieve a match looking towards the output  
pins, place a pair of 43 Ω series resistors as close as possible to  
the output pins (OPP1, OPM1, OPP2, and OPM2).  
4 V ≤ (VPOS − VNEG) ≤ 5 V.  
VNEG ≤ COMM ≤ VPOS  
VPOS ≥ 2.5 V  
AVOIDING LATCH-UP  
To avoid latch-up when the device is operational or when the  
device is powering up, do not apply a voltage greater than the  
following:  
The installation of these 43 Ω resistors decreases the voltage level  
of the signal by roughly 6 dB, and thus decreases the maximum  
gain of the VGA to 12 dB. This loss of signal level is usually  
acceptable because of the high linearity of the ADRF6521. That  
is, the ADRF6521 can operate at twice the output signal level  
(with respect to no matching resistors), and still maintain  
−55 dBc IMD2 and IMD3 and HD2 and HD3 levels or better.  
1.5 V (relative to ground) to the control pins (VGN, OFS1,  
and OFS2).  
(VVPOS + VVNEG)/2 1 V to the control pin VOCM  
If the RF input must be dc coupled, the common-mode voltage  
must be the same as the VOCM pin voltage, which must be  
limited to (VPOS + VNEG)/2 0.2 V. If while powered down  
and dc coupled a dc voltage with a magnitude greater than  
(VPOS + VNEG)/2 0.2 V is applied, this dc voltage must  
return within the common-mode limit before powering up the  
ADRF6521.  
Note that when using series matching resistors, the output dc  
offset voltage is also reduced by the same amount as the RF  
signal level.  
If a full 100 Ω match is not required and a greater than 12 dB  
gain value is more important, the user can decrease the series  
resistor value until an optimum trade-off between the gain and  
the output match is found.  
Rev. 0 | Page 32 of 33  
 
 
 
 
 
 
Data Sheet  
ADRF6521  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
0.25  
0.20  
0.15  
3.10  
3.00 SQ  
2.90  
0.876  
0.776  
0.676  
20  
PIN 1  
IN DICATOR AR EA  
(SEE DETAIL A)  
PIN 1  
INDICATOR  
AREA  
OP TIO NS  
16  
1
15  
0.40  
BSC  
1.175  
1.075  
0.975  
EXPOSED  
PAD  
11  
5
10  
6
0.40  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.35  
0.30  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.050 MAX  
0.035 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.152 REF  
SEATING  
PLANE  
Figure 126. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 Package Height  
(CP-20-19)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF6521ACPZ  
ADRF6521ACPZ-R7  
ADRF6521-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-20-19  
CP-20-19  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP], 7”Tape and Reel  
Evaluation Board  
1 Z = RoHS Compliant Parts.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D24784-11/20(0)  
Rev. 0 | Page 33 of 33  
 
 

相关型号:

ADRF6521ACPZ

Low Frequency to 3 GHz, Dual VGA with Output Common-Mode and DC Offset Control
ADI

ADRF6521ACPZ-R7

Low Frequency to 3 GHz, Dual VGA with Output Common-Mode and DC Offset Control
ADI

ADRF6601

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6601-EVALZ

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6601ACPZ-R7

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602-EVALZ

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602ACPZ-R7

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603-EVALZ

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603ACPZ

IC,RF MIXER,BICMOS,LLCC,40PIN,PLASTIC
ADI

ADRF6603ACPZ-R7

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI