ADRF6601-EVALZ [ADI]

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO; 750 MHz至1160 MHz的接收混频器,集成小数N分频PLL和VCO
ADRF6601-EVALZ
型号: ADRF6601-EVALZ
厂家: ADI    ADI
描述:

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
750 MHz至1160 MHz的接收混频器,集成小数N分频PLL和VCO

文件: 总24页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
750 MHz to 1160 MHz Rx Mixer with  
Integrated Fractional-N PLL and VCO  
ADRF6601  
The PLL reference input can support input frequencies from  
12 MHz to 160 MHz. The PFD output controls a charge pump  
whose output drives an off-chip loop filter.  
FEATURES  
Rx mixer with integrated fractional-N PLL  
RF input frequency range: 300 MHz to 2500 MHz  
Internal LO frequency range: 750 MHz to 1160 MHz  
Input P1dB: 14.2 dBm  
Input IP3: 30.0 dBm  
IIP3 optimization via external pin  
SSB noise figure  
The loop filter output is then applied to an integrated VCO. The  
VCO output at 2 × fLO is applied to an LO divider, as well as to a  
programmable PLL divider. The programmable PLL divider is  
controlled by a Σ-Δ modulator (SDM). The modulus of the SDM  
can be programmed from 1 to 2047.  
IP3SET pin open: 13.0 dB  
IP3SET pin at 3.3 V: 13.8 dB  
The active mixer converts the single-ended 50 Ω RF input to  
a 200 ꢀ differential IF output. The IF output can operate up  
to 500 MHz.  
Voltage conversion gain: 6.7 dB  
Matched 200 Ω IF output impedance  
IF 3 dB bandwidth: 500 MHz  
Programmable via 3-wire SPI interface  
40-lead, 6 mm × 6 mm LFCSP  
The ADRF6601 is fabricated using an advanced silicon-germanium  
BiCMOS process. It is available in a 40-lead, RoHS-compliant,  
6 mm × 6 mm LFCSP with an exposed paddle. Performance is  
specified over the −40°C to +85°C temperature range.  
APPLICATIONS  
Table 1.  
Cellular base stations  
Internal  
LO Range  
3 dB RF Input  
Balun Range  
1 dB RF Input  
Balun Range  
GENERAL DESCRIPTION  
Part No.  
ADRF6601  
750 MHz to  
1160 MHz  
1550 MHz to 1000 MHz to  
2150 MHz 3100 MHz  
2100 MHz to 1100 MHz to  
300 MHz to  
2500 MHz  
450 MHz to  
1600 MHz  
1350 MHz to  
2750 MHz  
1450 MHz to  
2850 MHz  
The ADRF6601 is a high dynamic range active mixer with an  
integrated fractional-N phase-locked loop (PLL) and a voltage-  
controlled oscillator (VCO) for internal mixer LO generation.  
ADRF6602  
ADRF6603  
Along with the ADRF6602 and the ADRF6603, the ADRF6601  
forms a family of integrated PLL/mixers. The ADRF6601 covers  
the frequency range of 750 MHz to 1160 MHz.  
2600 MHz  
3200 MHz  
FUNCTIONAL BLOCK DIAGRAM  
VCC1  
1
VCC2 VCC_LO VCC_MIX VCC_V2I VCC_LO  
NC NC  
10  
17  
22  
27  
34  
32  
33  
36  
LODRV_EN  
LON 37  
38  
ADRF6601  
3.3V  
LDO  
2
9
DECL3P3  
INTERNAL LO RANGE  
750MHz TO 1160MHz  
BUFFER  
BUFFER  
2.5V  
LDO  
DECL2P5  
DECLVCO  
LOP  
VCO  
LDO  
PLL_EN 16  
DIV  
2:1  
40  
BY  
4, 2, 1  
INTEGER  
REG  
FRACTION  
REG  
MUX  
12  
DATA  
MODULUS  
SPI  
13  
14  
CLK  
LE  
INTERFACE  
26  
29  
RF  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
IN  
VCO  
CORE  
IP3SET  
×2  
N COUNTER  
21 TO 123  
PRESCALER  
÷2  
6
8
REF_IN  
MUX  
÷2  
CHARGE PUMP  
250µA,  
500µA (DEFAULT),  
+
PHASE  
FREQUENCY  
DETECTOR  
TEMP  
SENSOR  
÷4  
750µA,  
1000µA  
5
MUXOUT  
4
7
11 15 20 21 23 24 25 28 30 31 35  
39  
18 19  
3
R
CP VTUNE IFP IFN  
SET  
GND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADRF6601  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 4—PLL Charge Pump, PFD, and Reference Path  
Control (Default: 0x0AA7E4)................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
RF Specifications .......................................................................... 3  
Synthesizer/PLL Specifications................................................... 4  
Logic Input and Power Specifications ....................................... 5  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Register Structure ........................................................................... 11  
Register 0—Integer Divide Control (Default: 0x0001C0)..... 11  
Register 1—Modulus Divide Control (Default: 0x003001).. 11  
Register 2—Fractional Divide Control (Default: 0x001802) 12  
Register 5—PLL Enable and LO Path Control (Default:  
0x0000E5).................................................................................... 14  
Register 6—VCO Control and VCO Enable (Default:  
0x1E2106).................................................................................... 14  
Register 7—Mixer Bias Enable and External VCO Enable  
(Default: 0x000007).................................................................... 14  
Theory of Operation ...................................................................... 15  
Programming the ADRF6601................................................... 15  
Initialization Sequence .............................................................. 15  
LO Selection Logic ..................................................................... 16  
Applications Information.............................................................. 17  
Basic Connections for Operation............................................. 17  
Evaluation Board ............................................................................ 18  
Evaluation Board Control Software......................................... 18  
Schematics and Artwork ........................................................... 20  
Evaluation Board Configuration Options............................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Register 3—Σ-Δ Modulator Dither Control (Default:  
0x10000B).................................................................................... 12  
REVISION HISTORY  
4/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADRF6601  
SPECIFICATIONS  
RF SPECIFICATIONS  
VCCx = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized  
using CDAC = 0x1 and IP3SET = 3.3 V, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
750  
300  
Typ  
Max  
1160  
2500  
Unit  
MHz  
MHz  
INTERNAL LO FREQUENCY RANGE  
RF INPUT FREQUENCY RANGE  
RF INPUT AT 610 MHz  
Iinpt Retpꢂi Loss  
3 ꢀd RF ꢁinpt ꢂaige  
Relatꢁve to 50 Ω (cai be ꢁmnꢂoveꢀ wꢁth exteꢂial match)  
−14  
14.3  
62  
32.5  
13.0  
12.2  
−51  
ꢀd  
Iinpt P1ꢀd  
ꢀdm  
ꢀdm  
ꢀdm  
ꢀd  
ꢀd  
ꢀdm  
Secoiꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP2)  
Thꢁꢂꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP3)  
Sꢁigle-Sꢁꢀe daiꢀ Noꢁse Fꢁgpꢂe  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
IP3SET = 3.3 V  
IP3SET = onei  
At 1× LO fꢂeqpeicy, 50 Ω teꢂmꢁiatꢁoi at the RF noꢂt  
LO-to-IF Leakage  
RF INPUT AT 910 MHz  
Iinpt Retpꢂi Loss  
Iinpt P1ꢀd  
Secoiꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP2)  
Thꢁꢂꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP3)  
Sꢁigle-Sꢁꢀe daiꢀ Noꢁse Fꢁgpꢂe  
Relatꢁve to 50 Ω (cai be ꢁmnꢂoveꢀ wꢁth exteꢂial match)  
−18  
14.3  
59  
31.0  
14.0  
13.1  
−51  
ꢀd  
ꢀdm  
ꢀdm  
ꢀdm  
ꢀd  
ꢀd  
ꢀdm  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
IP3SET = 3.3 V  
IP3SET = onei  
At 1× LO fꢂeqpeicy, 50 Ω teꢂmꢁiatꢁoi at the RF noꢂt  
Low-sꢁꢀe ꢁijectꢁoi  
LO-to-IF Leakage  
RF INPUT AT 1020 MHz  
Iinpt Retpꢂi Loss  
Iinpt P1ꢀd  
Secoiꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP2)  
Thꢁꢂꢀ-Oꢂꢀeꢂ Iiteꢂcent (IIP3)  
Sꢁigle-Sꢁꢀe daiꢀ Noꢁse Fꢁgpꢂe  
Relatꢁve to 50 Ω (cai be ꢁmnꢂoveꢀ wꢁth exteꢂial match)  
−16  
14.3  
64  
31.5  
14.5  
13.5  
−45  
ꢀd  
ꢀdm  
ꢀdm  
ꢀdm  
ꢀd  
ꢀd  
ꢀdm  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
−5 ꢀdm each toie (10 MHz snacꢁig betweei toies)  
IP3SET = 3.3 V  
IP3SET = onei  
At 1× LO fꢂeqpeicy, 50 Ω teꢂmꢁiatꢁoi at the RF noꢂt  
LO-to-IF Leakage  
IF OUTPUT  
Voltage Coiveꢂsꢁoi Gaꢁi  
IF daiꢀwꢁꢀth  
Optnpt Commoi-Moꢀe Voltage  
Gaꢁi Flatiess  
Gaꢁi Vaꢂꢁatꢁoi  
Optnpt Swꢁig  
Optnpt Retpꢂi Loss  
LO INPUT/OUTPUT (LOP, LON)  
Fꢂeqpeicy Raige  
Optnpt Level (LO as Optnpt)  
Iinpt Level (LO as Iinpt)  
Iinpt Imneꢀaice  
Dꢁffeꢂeitꢁal 200 Ω loaꢀ  
Small-sꢁgial 3 ꢀd baiꢀwꢁꢀth  
Exteꢂial npll-pn balpi oꢂ ꢁiꢀpctoꢂs ꢂeqpꢁꢂeꢀ  
Oveꢂ fꢂeqpeicy ꢂaige, aiy 5 MHz/50 MHz  
Oveꢂ fpll temneꢂatpꢂe ꢂaige  
6.7  
500  
5
0.2/1.0  
1.0  
2
ꢀd  
MHz  
V
ꢀd  
ꢀd  
Dꢁffeꢂeitꢁal 200 Ω loaꢀ  
Relatꢁve to 200 Ω  
V n-n  
ꢀd  
−15  
Exteꢂially annlꢁeꢀ 1× LO ꢁinpt, ꢁiteꢂial PLL ꢀꢁsableꢀ  
250  
6000  
MHz  
ꢀdm  
ꢀdm  
Ω
1× LO ꢁito a 50 Ω loaꢀ, LO optnpt bpffeꢂ eiableꢀ  
−5.5  
6
50  
Rev. 0 | Page 3 of 24  
 
ADRF6601  
SYNTHESIZER/PLL SPECIFICATIONS  
VCCx = 5 V; ambient temperature (TA) = 25°C; fREF = 153.6 MHz; fREF power = 4 dBm; fPFD = 38.4 MHz; high-side LO injection;  
fIF = 140 MHz; IIP3 optimized using CDAC = 0x1 and IP3SET = 3.3 V, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SYNTHESIZER SPECIFICATIONS  
Fꢂeqpeicy Raige  
Fꢁgpꢂe of Meꢂꢁt1  
Syithesꢁzeꢂ snecꢁfꢁcatꢁois ꢂefeꢂeiceꢀ to 1× LO  
Iiteꢂially geieꢂateꢀ LO  
fREF noweꢂ = 0 ꢀdm  
750  
1160  
MHz  
ꢀdc/Hz  
−221.4  
Refeꢂeice Snpꢂs  
fREF = 153.6 MHz  
fREF/4  
fREF/2  
fREF  
> fREF  
−107  
−107  
−84  
ꢀdc  
ꢀdc  
ꢀdc  
ꢀdc  
−88  
PHASE NOISE  
fLO = 750 MHz to 1160 MHz, fPFD = 38.4 MHz  
1 kHz to 10 kHz offset  
100 kHz offset  
−102  
−108.6  
−127  
−135  
−147  
−151  
−153  
0.13  
ꢀdc/Hz  
ꢀdc/Hz  
ꢀdc/Hz  
ꢀdc/Hz  
ꢀdc/Hz  
ꢀdc/Hz  
ꢀdc/Hz  
°ꢂms  
500 kHz offset  
1 MHz offset  
5 MHz offset  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz ꢁitegꢂatꢁoi baiꢀwꢁꢀth  
Iitegꢂateꢀ Phase Noꢁse  
PFD Fꢂeqpeicy  
20  
12  
40  
MHz  
REFERENCE CHARACTERISTICS  
REF_IN Iinpt Fꢂeqpeicy  
REF_IN Iinpt Canacꢁtaice  
MUXOUT Optnpt Level  
REF_IN, MUXOUT nꢁis  
160  
0.25  
MHz  
nF  
V
4
VOL (lock ꢀetect optnpt selecteꢀ)  
VOH (lock ꢀetect optnpt selecteꢀ)  
2.7  
V
MUXOUT Dpty Cycle  
CHARGE PUMP  
50  
%
Ppmn Cpꢂꢂeit  
Optnpt Comnlꢁaice Raige  
Pꢂogꢂammable to 250 μA, 500 μA, 750 μA, 1 mA  
500  
ꢃA  
V
1
2.8  
1 The fꢁgpꢂe of meꢂꢁt (FOM) ꢁs comnpteꢀ as nhase ioꢁse (ꢀdc/Hz) – 10log10(fPFD) – 20log10(fLO/fPFD). The FOM was measpꢂeꢀ acꢂoss the fpll LO ꢂaige, wꢁth fREF = 80 MHz,  
REF noweꢂ = 10 ꢀdm (500 V/ꢃs slew ꢂate) wꢁth a 40 MHz fPFD. The FOM was comnpteꢀ at 50 kHz offset.  
f
Rev. 0 | Page 4 of 24  
 
 
ADRF6601  
LOGIC INPUT AND POWER SPECIFICATIONS  
VCCx = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized  
using CDAC = 0x1 and IP3SET = 3.3 V, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
CLK, DATA, LE  
Iinpt Hꢁgh Voltage, VINH  
Iinpt Low Voltage, VINL  
Iinpt Cpꢂꢂeit, IINH/IINL  
Iinpt Canacꢁtaice, CIN  
POWER SUPPLIES  
Voltage Raige  
1.4  
0
3.3  
0.7  
V
V
ꢃA  
nF  
0.1  
5
VCC1, VCC2, VCC_LO, VCC_MIX, aiꢀ VCC_V2I nꢁis  
PLL oily  
Exteꢂial LO moꢀe (ꢁiteꢂial PLL ꢀꢁsableꢀ,  
IP3SET nꢁi = 3.3 V)  
4.75  
5
101  
179  
5.25  
V
mA  
mA  
Spnnly Cpꢂꢂeit  
Iiteꢂial LO moꢀe (ꢁiteꢂial PLL eiableꢀ,  
IP3SET nꢁi = 3.3 V)  
Poweꢂ-ꢀowi moꢀe  
280  
30  
mA  
mA  
TIMING CHARACTERISTICS  
VCC2 = 5 V 5ꢁ.  
Table 5.  
Parameter  
Limit  
20  
10  
10  
25  
25  
10  
20  
Unit  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
is mꢁi  
is mꢁi  
is mꢁi  
is mꢁi  
is mꢁi  
is mꢁi  
is mꢁi  
LE setpn tꢁme  
DATA to CLK setpn tꢁme  
DATA to CLK holꢀ tꢁme  
CLK hꢁgh ꢀpꢂatꢁoi  
CLK low ꢀpꢂatꢁoi  
CLK to LE setpn tꢁme  
LE nplse wꢁꢀth  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
t1  
DB22  
DATA  
LE  
(CONTROL BIT C2)  
t7  
t6  
Figure 2. Timing Diagram  
Rev. 0 | Page 5 of 24  
 
 
ADRF6601  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Spnnly Voltage, VCC1, VCC2, VCC_LO, −0.5 V to +5.5 V  
VCC_MIX, VCC_V2I  
Dꢁgꢁtal I/O, CLK, DATA, LE  
IFP, IFN  
RFIN  
−0.3 V to +3.6 V  
−0.3 V to VCC_V2I + 0.3 V  
18 ꢀdm  
θJA (Exnoseꢀ Paꢀꢀle Solꢀeꢂeꢀ Dowi) 35°C/W  
ESD CAUTION  
Maxꢁmpm Jpictꢁoi Temneꢂatpꢂe  
Oneꢂatꢁig Temneꢂatpꢂe Raige  
Stoꢂage Temneꢂatpꢂe Raige  
150°C  
−40°C to +85°C  
−65°C to +150°C  
Rev. 0 | Page 6 of 24  
 
ADRF6601  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
VCC1  
DECL3P3  
CP  
1
2
30 GND  
INDICATOR  
29 IP3SET  
28 GND  
3
GND  
27 VCC_V2I  
4
ADRF6601  
R
RF  
5
26  
25  
SET  
IN  
REF_IN  
6
GND  
TOP VIEW  
7
24 GND  
GND  
MUXOUT  
DECL2P5  
VCC2  
(Not to Scale)  
8
23 GND  
9
22 VCC_MIX  
21  
10  
GND  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A  
LOW IMPEDANCE GROUND PLANE.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VCC1  
Poweꢂ Spnnly foꢂ the 3.3 V LDO. Poweꢂ spnnly voltage ꢂaige ꢁs 4.75 V to 5.25 V. Each noweꢂ spnnly nꢁi  
shoplꢀ be ꢀecopnleꢀ wꢁth a 100 nF canacꢁtoꢂ aiꢀ a 0.1 ꢃF canacꢁtoꢂ locateꢀ close to the nꢁi.  
2
3
DECL3P3  
CP  
Decopnlꢁig Noꢀe foꢂ the 3.3 V LDO. Coiiect a 0.1 ꢃF canacꢁtoꢂ betweei thꢁs nꢁi aiꢀ gꢂopiꢀ.  
Chaꢂge Ppmn Optnpt Pꢁi. Coiiect to VTUNE thꢂopgh the loon fꢁlteꢂ.  
Gꢂopiꢀ. Coiiect these nꢁis to a low ꢁmneꢀaice gꢂopiꢀ nlaie.  
4, 7, 11, 15, 20, GND  
21, 23, 24, 25,  
28, 30, 31, 35  
5
RSET  
Chaꢂge Ppmn Cpꢂꢂeit. The iomꢁial chaꢂge npmn cpꢂꢂeit cai be set to 250 ꢃA, 500 ꢃA, 750 ꢃA, oꢂ 1 mA  
psꢁig dꢁts[Dd11:Dd10] ꢁi Regꢁsteꢂ 4 aiꢀ by settꢁig dꢁt Dd18 to 0 (ꢁiteꢂial ꢂefeꢂeice cpꢂꢂeit). Ii thꢁs moꢀe,  
io exteꢂial RSET ꢁs ꢂeqpꢁꢂeꢀ. If dꢁt Dd18 ꢁs set to 1, the fopꢂ iomꢁial chaꢂge npmn cpꢂꢂeits (INOMINAL) cai be  
exteꢂially aꢀjpsteꢀ accoꢂꢀꢁig to the followꢁig eqpatꢁoi:  
217.4 × I  
CP  
RSET  
=
37.8Ω  
INOMINAL  
6
8
REF_IN  
MUXOUT  
Refeꢂeice Iinpt. Nomꢁial ꢁinpt level ꢁs 1 V n-n. Iinpt ꢂaige ꢁs 12 MHz to 160 MHz.  
Mpltꢁnlexeꢂ Optnpt. Thꢁs optnpt cai be nꢂogꢂammeꢀ to nꢂovꢁꢀe the ꢂefeꢂeice optnpt sꢁgial oꢂ the lock ꢀetect  
sꢁgial. The optnpt ꢁs selecteꢀ by nꢂogꢂammꢁig dꢁts[Dd23:Dd21] ꢁi Regꢁsteꢂ 4.  
9
10  
DECL2P5  
VCC2  
Decopnlꢁig Noꢀe foꢂ the 2.5 V LDO. Coiiect a 0.1 ꢃF canacꢁtoꢂ betweei thꢁs nꢁi aiꢀ gꢂopiꢀ.  
Poweꢂ Spnnly foꢂ the 2.5 V LDO. Poweꢂ spnnly voltage ꢂaige ꢁs 4.75 V to 5.25 V. Each noweꢂ spnnly nꢁi  
shoplꢀ be ꢀecopnleꢀ wꢁth a 100 nF canacꢁtoꢂ aiꢀ a 0.1 ꢃF canacꢁtoꢂ locateꢀ close to the nꢁi.  
12  
13  
DATA  
CLK  
Seꢂꢁal Data Iinpt. The seꢂꢁal ꢀata ꢁinpt ꢁs loaꢀeꢀ MSd fꢁꢂst; the thꢂee LSds aꢂe the coitꢂol bꢁts.  
Seꢂꢁal Clock Iinpt. The seꢂꢁal clock ꢁinpt ꢁs pseꢀ to clock ꢁi the seꢂꢁal ꢀata to the ꢂegꢁsteꢂs. The ꢀata ꢁs latcheꢀ  
ꢁito the 24-bꢁt shꢁft ꢂegꢁsteꢂ oi the CLK ꢂꢁsꢁig eꢀge. Maxꢁmpm clock fꢂeqpeicy ꢁs 20 MHz.  
14  
16  
LE  
Loaꢀ Eiable. Whei the LE ꢁinpt nꢁi goes hꢁgh, the ꢀata stoꢂeꢀ ꢁi the shꢁft ꢂegꢁsteꢂs ꢁs loaꢀeꢀ ꢁito oie of the  
eꢁght ꢂegꢁsteꢂs. The ꢂelevait latch ꢁs selecteꢀ by the thꢂee coitꢂol bꢁts of the 24-bꢁt woꢂꢀ.  
PLL Eiable. Swꢁtch betweei ꢁiteꢂial PLL aiꢀ exteꢂial LO ꢁinpt. Whei thꢁs nꢁi ꢁs logꢁc hꢁgh, the mꢁxeꢂ LO ꢁs  
aptomatꢁcally swꢁtcheꢀ to the ꢁiteꢂial PLL aiꢀ the ꢁiteꢂial PLL ꢁs noweꢂeꢀ pn. Whei thꢁs nꢁi ꢁs logꢁc low, the  
ꢁiteꢂial PLL ꢁs noweꢂeꢀ ꢀowi aiꢀ the exteꢂial LO ꢁinpt ꢁs ꢂopteꢀ to the mꢁxeꢂ LO ꢁinpts. The SPI cai also be  
pseꢀ to swꢁtch moꢀes.  
PLL_EN  
17, 34  
VCC_LO  
Poweꢂ Spnnly. Poweꢂ spnnly voltage ꢂaige ꢁs 4.75 V to 5.25 V. Each noweꢂ spnnly nꢁi shoplꢀ be ꢀecopnleꢀ  
wꢁth a 100 nF canacꢁtoꢂ aiꢀ a 0.1 ꢃF canacꢁtoꢂ locateꢀ close to the nꢁi.  
18, 19  
22  
IFP, IFN  
VCC_MIX  
Mꢁxeꢂ IF Optnpts. These optnpts shoplꢀ be nplleꢀ to VCC wꢁth RF chokes.  
Poweꢂ Spnnly. Poweꢂ spnnly voltage ꢂaige ꢁs 4.75 V to 5.25 V. Each noweꢂ spnnly nꢁi shoplꢀ be ꢀecopnleꢀ  
wꢁth a 100 nF canacꢁtoꢂ aiꢀ a 0.1 ꢃF canacꢁtoꢂ locateꢀ close to the nꢁi.  
26  
RFIN  
RF Iinpt (Sꢁigle-Eiꢀeꢀ, 50 Ω).  
Rev. 0 | Page 7 of 24  
 
ADRF6601  
Pin No.  
Mnemonic Description  
27  
VCC_V2I  
Poweꢂ Spnnly. Poweꢂ spnnly voltage ꢂaige ꢁs 4.75 V to 5.25 V. Each noweꢂ spnnly nꢁi shoplꢀ be ꢀecopnleꢀ  
wꢁth a 100 nF canacꢁtoꢂ aiꢀ a 0.1 ꢃF canacꢁtoꢂ locateꢀ close to the nꢁi.  
Coiiect a ꢂesꢁstoꢂ fꢂom thꢁs nꢁi to a +5 V spnnly to aꢀjpst IIP3. Noꢂmally leave onei.  
No Coiiectꢁoi.  
29  
32, 33  
36  
IP3SET  
NC  
LODRV_EN LO Dꢂꢁveꢂ Eiable. Togetheꢂ wꢁth Pꢁi 16 (PLL_EN), thꢁs ꢀꢁgꢁtal ꢁinpt nꢁi ꢀeteꢂmꢁies whetheꢂ the LOP aiꢀ LON  
nꢁis oneꢂate as ꢁinpts oꢂ optnpts. LOP aiꢀ LON become ꢁinpts ꢁf the PLL_EN nꢁi ꢁs low oꢂ ꢁf the PLL_EN nꢁi ꢁs  
set hꢁgh wꢁth the PLEN bꢁt (Dd6 ꢁi Regꢁsteꢂ 5) set to 0. LOP aiꢀ LON become optnpts ꢁf eꢁtheꢂ the LODRV_EN nꢁi  
oꢂ the LDRV bꢁt (Dd3 ꢁi Regꢁsteꢂ 5) ꢁs set to 1 whꢁle the PLL_EN nꢁi ꢁs set hꢁgh. The exteꢂial LO ꢀꢂꢁve fꢂeqpeicy  
mpst be 1× LO. Thꢁs nꢁi shoplꢀ iot be left floatꢁig.  
37, 38  
39  
LON, LOP  
Local Oscꢁllatoꢂ Iinpt/Optnpt. The ꢁiteꢂially geieꢂateꢀ 1× LO ꢁs avaꢁlable oi these nꢁis. Whei ꢁiteꢂial LO  
geieꢂatꢁoi ꢁs ꢀꢁsableꢀ, ai exteꢂial 1× LO cai be annlꢁeꢀ to these nꢁis.  
VCO Coitꢂol Voltage Iinpt. Thꢁs nꢁi ꢁs ꢀꢂꢁvei by the optnpt of the loon fꢁlteꢂ. The iomꢁial ꢁinpt voltage ꢂaige  
oi thꢁs nꢁi ꢁs 1.5 V to 2.5 V.  
VTUNE  
40  
DECLVCO  
EPAD  
Decopnlꢁig Noꢀe foꢂ the VCO LDO. Coiiect a 100 nF canacꢁtoꢂ aiꢀ a 10 ꢃF canacꢁtoꢂ betweei thꢁs nꢁi aiꢀ  
gꢂopiꢀ.  
Exnoseꢀ Paꢀꢀle. The exnoseꢀ naꢀꢀle shoplꢀ be solꢀeꢂeꢀ to a low ꢁmneꢀaice gꢂopiꢀ nlaie.  
EP  
Rev. 0 | Page 8 of 24  
ADRF6601  
TYPICAL PERFORMANCE CHARACTERISTICS  
CDAC = 0x1, IP3SET = 3.3 V, internally generated LO, RFIN = −10 dBm, fIF = 140 MHz, unless otherwise noted.  
45  
40  
35  
30  
25  
20  
15  
10  
5
5
4
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 4. Gain vs. LO Frequency  
Figure 7. IIP3 vs. LO Frequency, RFIN = −5 dBm  
90  
80  
70  
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
60  
50  
40  
30  
6
4
2
0
750  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
800  
850  
900  
950  
1000 1050 1100 1150  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 8. IP1dB vs. LO Frequency  
Figure 5. IIP2 vs. LO Frequency, RFIN = −5 dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 6. Noise Figure vs. LO Frequency  
Figure 9. LO-to-IF Leakage vs. LO Frequency, LO Output Turned Off,  
50 Ω Termination at RF Port  
Rev. 0 | Page 9 of 24  
 
ADRF6601  
Phase noise measurements made at IF output, unless otherwise noted.  
–80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–80  
–90  
LO = 752MHz  
LO = 848MHz  
LO = 953.6MHz  
LO = 1049.6MHz  
LO = 1155.2MHz  
1kHz OFFSET  
–90  
100kHz OFFSET  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
10kHz OFFSET  
1MHz OFFSET  
10MHz OFFSET  
INTERGRATED PHASE NOISE  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
1k  
10k  
100k  
1M  
10M  
100M  
LO FREQUENCY (MHz)  
OFFSET FREQUENCY (Hz)  
Figure 10. PLL Spot Phase Noise at Various Offsets  
and Integrated Phase Noise vs. LO Frequency  
Figure 12. Phase Noise vs. Offset Frequency and LO Frequency  
(LO Frequency Varies from 750 MHz to 1160 MHz)  
–80  
–85  
–90  
–95  
1× PFD OFFSET  
2× PFD  
OFFSET  
–100  
–105  
–110  
4× PFD OFFSET  
0.25× AND  
0.5× PFD  
OFFSET  
750  
800  
850  
900  
950  
1000 1050 1100 1150  
LO FREQUENCY (MHz)  
Figure 11. PLL Reference Spurs vs. LO Frequency  
Rev. 0 | Page 10 of 24  
ADRF6601  
REGISTER STRUCTURE  
This section provides the register maps for the ADRF6601. The three LSBs determine the register that is programmed.  
REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)  
DIVIDE  
MODE  
RESERVED  
INTEGER DIVIDE RATIO  
CONTROL BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID6 ID5 ID4 ID3 ID2 ID1 ID0 C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
DM  
DM  
0
DIVIDE MODE  
FRACTIONAL (DEFAULT)  
INTEGER  
1
INTEGER DIVIDE RATIO  
ID6  
0
ID5  
0
ID4  
1
ID3  
0
ID2  
1
ID1  
0
ID0  
21 (INTEGER MODE ONLY)  
1
0
22 (INTEGER MODE ONLY)  
0
0
1
0
1
1
23 (INTEGER MODE ONLY)  
0
0
1
0
1
1
1
24  
0
0
1
1
0
0
0
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
56 (DEFAULT)  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
119  
120 (INTEGER MODE ONLY)  
121 (INTEGER MODE ONLY)  
122 (INTEGER MODE ONLY)  
123 (INTEGER MODE ONLY)  
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
0
1
0
1
1
1
1
0
1
1
Figure 13. Register 0—Integer Divide Control Register Map  
REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1)  
MODULUS VALUE  
CONTROL BITS  
0
0
0
0
0
0
0
0
0
0
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0  
MODULUS VALUE  
1
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
1
0
...  
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
1536 (DEFAULT)  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
2047  
Figure 14. Register 1—Modulus Divide Control Register Map  
Rev. 0 | Page 11 of 24  
 
ADRF6601  
REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)  
CONTROL BITS  
RESERVED  
FRACTIONAL VALUE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 C3(0) C2(1) C1(0)  
FRACTIONAL VALUE  
FD10  
0
FD9  
0
FD8  
0
FD7  
0
FD6  
0
FD5  
0
FD4  
0
FD3  
0
FD2  
0
FD1  
0
FD0  
0
0
1
0
0
0
0
0
0
0
0
0
0
1
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
768 (DEFAULT)  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
FRACTIONAL VALUE MUST BE LESS THAN MODULUS  
<MDR  
Figure 15. Register 2—Fractional Divide Control Register Map  
REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)  
DITHER  
MAGNITUDE  
DITHER  
ENABLE  
DITHER RESTART VALUE  
CONTROL BITS  
RES  
DB23 DB22  
DITH1  
DB21  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
DITH0  
DEN  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)  
DITH1  
DITH0 DITHER MAGNITUDE  
0
0
0
1
15 (DEFAULT)  
7
1
1
0
1
3
1 (RECOMMENDED)  
DEN DITHER ENABLE  
0
1
DISABLE  
ENABLE (DEFAULT, RECOMMENDED)  
DITHER RESTART  
VALUE  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0  
0x00001 (DEFAULT)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0x1FFFF  
Figure 16. Register 3—Σ-Δ Modulator Dither Control Register Map  
Rev. 0 | Page 12 of 24  
 
 
ADRF6601  
REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)  
CP  
PFD ANTI-  
REF OUTPUT  
MUX SELECT  
INPUT REF  
PATH  
PFD  
POL  
PFD PHASE OFFSET  
MULTIPLIER  
CP  
CP  
CP  
CURRENT  
REF  
PFD EDGE BACKLASH  
CONTROL BITS  
CURRENT SRC CONTROL  
DELAY  
SOURCE  
DB23 DB22 DB21 DB20 DB19  
RMS2 RMS1 RMS0 RS1 RS0  
DB18  
CPM  
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1 PE0 PAB1 PAB0 C3(1) C2(0) C1(0)  
PFD ANTIBACKLASH  
PAB0 PAB1  
DELAY  
0
0
1
1
0
1
0
1
0ns (DEFAULT)  
0.5ns  
0.75ns  
0.9ns  
REFERENCE PATH EDGE  
SENSITIVITY  
PE0  
0
1
FALLING EDGE  
RISING EDGE (DEFAULT)  
DIVIDER PATH EDGE  
SENSITIVITY  
PE1  
0
1
FALLING EDGE  
RISING EDGE (DEFAULT)  
CHARGE PUMP CONTROL  
CPC1 CPC0  
BOTH ON  
PUMP DOWN  
PUMP UP  
0
0
1
1
0
1
0
1
TRISTATE (DEFAULT)  
CPS CHARGE PUMP CONTROL SOURCE  
0
1
CONTROL BASED ON STATE OF DB7/DB8 (CP CONTROL)  
CONTROL FROM PFD (DEFAULT)  
CPP1 CPP0 CHARGE PUMP CURRENT  
250µA  
500µA (DEFAULT)  
750µA  
0
0
1
1
0
1
0
1
1000µA  
PFD PHASE OFFSET MULTIPLIER  
CPB4 CPB3 CPB2 CPB1 CPB0  
0 × 22.5°/I  
CPMULT  
0
0
0
0
1
1
0
0
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
1
1 × 22.5°/I  
CPMULT  
6 × 22.5°/I  
CPMULT  
(RECOMMENDED)  
(DEFAULT)  
10 × 22.5°/I  
16 × 22.5°/I  
31 × 22.5°/I  
CPMULT  
CPMULT  
CPMULT  
CPBD PFD PHASE OFFSET POLARITY  
0
1
NEGATIVE  
POSITIVE (DEFAULT)  
CHARGE PUMP CURRENT  
REFERENCE SOURCE  
CPM  
INTERNAL (DEFAULT)  
EXTERNAL  
0
1
INPUT REFERENCE  
PATH SOURCE  
RS1 RS0  
2 × REF_IN  
REF_IN (DEFAULT)  
0.5 × REF_IN  
0
0
1
1
0
1
0
1
0.25 × REF_IN  
RMS2 RMS1 RMS0 REF OUTPUT MUX SELECT  
LOCK DETECT (DEFAULT)  
VPTAT  
REF_IN (BUFFERED)  
0.5 × REF_IN (BUFFERED)  
2 × REF_IN (BUFFERED)  
TRISTATE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
RESERVED  
RESERVED  
Figure 17. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map  
Rev. 0 | Page 13 of 24  
 
ADRF6601  
REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)  
PLL  
EN  
LO  
DIV1  
LO  
EXT  
LO  
DRV  
CAP DAC  
RES  
CONTROL BITS  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB6  
DB5  
DB4  
LXL  
DB3 DB2 DB1 DB0  
LDRV C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
CD3 CD2 CD1 CD0  
CAPACITOR DAC  
0
PLEN LDV1  
LO OUTPUT DRIVER  
LDRV  
CD3  
CD2  
CD1  
CD0 CONTROL FOR IIP3  
OPTIMIZATION  
ENABLE  
DRIVER OFF (DEFAULT)  
DRIVER ON  
0
1
MIN  
MAX  
0
1
0
1
0
1
0
1
EXTERNAL LO DRIVE  
ENABLE (PIN 37, PIN 38)  
LXL  
INTERNAL LO OUTPUT (DEFAULT)  
EXTERNAL LO INPUT  
0
1
LDV1 DIVIDE-BY-2 IN LO CHAIN ENABLE  
DIVIDE BY 1  
DIVIDE BY 2 (DEFAULT)  
0
1
PLEN PLL ENABLE  
DISABLE  
ENABLE (DEFAULT)  
0
1
Figure 18. Register 5—PLL Enable and LO Path Control Register Map  
REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)  
CHARGE  
PUMP  
3.3V  
LDO  
VCO  
BW SW  
CTRL  
VCO LDO VCO  
VCO  
CONTROL BITS  
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VCO BAND SELECT FROM SPI  
RESERVED  
VCO AMPLITUDE  
ENABLE ENABLE SWITCH  
ENABLE ENABLE  
DB23 DB22 DB21 DB20  
DB19  
L3EN  
DB18  
DB17  
DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
0
0
0
CPEN  
LVEN VCO EN VCO SW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)  
CHARGE PUMP ENABLE  
CPEN  
VC[5:0] VCO AMPLITUDE  
VBS[5:0] VCO BAND SELECT FROM SPI  
DISABLE  
ENABLE (DEFAULT)  
0x00  
….  
0
0x00  
0x01  
0
1
….  
DEFAULT 0x20  
….  
0x18  
….  
0x2B  
….  
24 (DEFAULT)  
….  
43  
….  
0x3F  
L3EN 3.3V LDO ENABLE  
VBSRC VCO BW CAL AND SW SOURCE CONTROL  
0
1
DISABLE  
ENABLE (DEFAULT)  
0x3F  
63 (RECOMMENDED)  
0
1
BAND CAL (DEFAULT)  
SPI  
VCO SW VCO SWITCH CONTROL FROM SPI  
LVEN VCO LDO ENABLE  
REGULAR (DEFAULT)  
BAND CAL  
0
1
0
1
DISABLE  
ENABLE (DEFAULT)  
VCO EN VCO ENABLE  
0
1
DISABLE  
ENABLE (DEFAULT)  
Figure 19. Register 6—VCO Control and VCO Enable Register Map  
REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)  
MIXER  
B_EN  
RESERVED  
CONTROL BITS  
RES XVCO  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
XVCO MBE C3(1) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MBE MIXER BIAS ENABLE  
DISABLE  
ENABLE (DEFAULT)  
0
1
EXTERNAL VCO  
XVCO  
INTERNAL VCO (DEFAULT)  
EXTERNAL VCO  
0
1
Figure 20. Register 7—Mixer Bias Enable and External VCO Enable Register Map  
Rev. 0 | Page 14 of 24  
 
 
ADRF6601  
THEORY OF OPERATION  
The ADRF6601 integrates a high performance downconverting  
mixer with a state-of-the-art fractional-N PLL. The PLL also inte-  
grates a low noise VCO. The SPI port allows the user to control the  
fractional-N PLL functions and the mixer optimization functions,  
as well as allowing for an externally applied LO or VCO.  
PROGRAMMING THE ADRF6601  
The ADRF6601 is programmed via a 3-pin SPI port. The timing  
requirements for the SPI port are shown in Figure 2. Eight pro-  
grammable registers, each with 24 bits, control the operation of  
the device. The register functions are listed in Table 8.  
The mixer core within the ADRF6601 is the next generation of  
an industry leading family of mixers from Analog Devices, Inc.  
The RF input is converted to a current and then mixed down to  
IF using high performance NPN transistors. The mixer output  
currents are transformed to a differential output voltage.  
Table 8. ADRF6601 Register Functions  
Register  
Function  
Regꢁsteꢂ 0  
Regꢁsteꢂ 1  
Regꢁsteꢂ 2  
Regꢁsteꢂ 3  
Regꢁsteꢂ 4  
Regꢁsteꢂ 5  
Regꢁsteꢂ 6  
Regꢁsteꢂ 7  
Iitegeꢂ ꢀꢁvꢁꢀe coitꢂol foꢂ the PLL  
Moꢀplps ꢀꢁvꢁꢀe coitꢂol foꢂ the PLL  
Fꢂactꢁoial ꢀꢁvꢁꢀe coitꢂol foꢂ the PLL  
Σ-Δ moꢀplatoꢂ ꢀꢁtheꢂ coitꢂol  
PLL chaꢂge npmn, PFD, ꢂefeꢂeice nath coitꢂol  
PLL eiable aiꢀ LO nath coitꢂol  
VCO coitꢂol aiꢀ VCO eiable  
The high performance active mixer core results in an excep-  
tional IIP3 and IP1dB, with a very low output noise floor for  
excellent dynamic range. Over the specified frequency range,  
the ADRF6601 typically provides an IF input P1dB of 14.3 dBm  
and an IIP3 of 31 dBm.  
Mꢁxeꢂ bꢁas eiable aiꢀ exteꢂial VCO eiable  
Improved performance at specific frequencies can be achieved  
with the use of the internal capacitor DAC (CDAC), which is  
programmable via the SPI port, and through the use of a resistor  
to a 5 V supply from the IP3SET pin (Pin 29). Adjustment of  
the capacitor DAC allows increments in phase shift at internal  
nodes in the ADRF6601, thus allowing cancellation of third-  
order distortion with no change in supply current. Connecting  
a resistor to a 5 V supply from the IP3SET pin increases the  
internal mixer core current, thereby improving overall IIP2 and  
IIP3, as well as IP1dB. Using the IP3SET pin for this purpose  
increases the overall supply current.  
Note that internal calibration for the PLL must be run when the  
ADRF6601 is initialized at a given frequency. This calibration is  
run automatically whenever Register 0, Register 1, or Register 2 is  
programmed. Because the other registers affect PLL performance,  
Register 0, Register 1, and Register 2 should always be programmed  
in the order specified in the Initialization Sequence section.  
To program the frequency of the ADRF6601, the user typically  
programs only Register 0, Register 1, and Register 2. However,  
if registers other than these are programmed first, a short delay  
should be inserted before programming Register 0. This delay  
ensures that the VCO band calibration has sufficient time to com-  
plete before the final band calibration for Register 0 is initiated.  
The fractional divide function of the PLL allows the frequency  
multiplication value from REF_IN to LO output to be a frac-  
tional value rather than be restricted to an integer value as  
in traditional PLLs. In operation, this multiplication value is  
Software is available on the ADRF6601 product page of the  
Analog Devices website (www.analog.com) that allows easy  
programming from a PC running Windows XP or Vista.  
INT + (FRAC/MOD)  
INITIALIZATION SEQUENCE  
where:  
INT is the integer value.  
FRAC is the fractional value.  
MOD is the modulus value.  
To ensure proper power-up of the ADRF6601, it is important to  
reset the PLL circuitry after the VCC supply rail settles to 5 V  
0.25 V. Resetting the PLL ensures that the internal bias cells are  
properly configured, even under poor supply start-up conditions.  
The INT, FRAC, and MOD values are all programmable via  
the SPI port.  
To ensure that the PLL is reset after power-up, follow these steps:  
In other fractional-N PLL designs, fractional multiplication  
is achieved by periodically changing the fractional value in a  
deterministic way. The disadvantage of this approach is often  
spurious components close to the fundamental signal. In the  
ADRF6601, a Σ-Δ modulator is used to distribute the fractional  
value randomly, thus significantly reducing the spurious content  
due to the fractional function.  
1. Disable the PLL by setting the PLEN bit to 0 (Register 5,  
Bit DB6).  
2. After a delay of >100 ms, set the PLEN bit to 1.  
After this procedure is followed, the other registers should be  
programmed in this order: Register 7, Register 6, Register 4,  
Register 3, Register 2, Register 1. Then, after a delay of >100 ms,  
Register 0 should be programmed.  
Rev. 0 | Page 15 of 24  
 
 
 
ADRF6601  
The operation of the LO generation and whether LOP and LON  
are inputs or outputs are determined by the logic levels applied  
at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3  
(LDRV) and Bit DB6 (PLEN) in Register 5. The combination of  
externally applied logic and internal bits required for particular  
LO functions is given in Table 9.  
LO SELECTION LOGIC  
The downconverting mixer in the ADRF6601 can be used  
without the internal PLL by applying an external differential  
LO to Pin 37 and Pin 38 (LON and LOP). In addition, when  
using an LO generated by the internal PLL, the LO signal can  
be accessed directly at these same pins. This function can be  
used for debugging purposes, or the internally generated LO  
can be used as the LO for a separate mixer.  
Table 9. LO Selection Logic  
Pins1  
Register 5 Bits1  
Outputs  
LO  
Pin 16 (PLL_EN)  
Pin 36 (LODRV_EN) Bit DB6 (PLEN)  
Bit DB3 (LDRV)  
Output Buffer  
Dꢁsableꢀ  
Dꢁsableꢀ  
Dꢁsableꢀ  
Dꢁsableꢀ  
Eiableꢀ  
0
0
1
1
1
1
X
X
X
0
X
1
0
1
0
1
1
1
X
X
X
0
1
X
Exteꢂial  
Exteꢂial  
Exteꢂial  
Iiteꢂial  
Iiteꢂial  
Iiteꢂial  
Eiableꢀ  
1 X = ꢀoi’t caꢂe.  
Rev. 0 | Page 16 of 24  
 
 
 
 
ADRF6601  
APPLICATIONS INFORMATION  
shown in Figure 21. The reference signal, or a divided-down  
version of the reference signal, can be brought back off chip at  
the multiplexer output pin (MUXOUT). A lock detect signal  
and a voltage proportional to the ambient temperature can also  
be selected on the multiplexer output pin.  
BASIC CONNECTIONS FOR OPERATION  
Figure 21 shows the basic connections for the ADRF6601. The  
six power supply pins should be individually decoupled using  
100 pF and 0.1 μF capacitors located as close as possible to the  
device. In addition, the internal decoupling nodes (DECL3P3,  
DECL2P5, and DECLVCO) should be decoupled with the  
capacitor values shown in Figure 21.  
The loop filter is connected between the CP and VTUNE pins.  
When connected in this way, the internal VCO is operational.  
For information about the loop filter components, see the  
Evaluation Board Configuration Options section.  
The RF input is internally ac-coupled and needs no external  
bias. The IF outputs are open collector, and a bias inductor  
is required from these outputs to VCC.  
Operation with an external VCO is also possible. In this case,  
the loop filter components should be referred to ground. The  
output of the loop filter is connected to the input voltage pin of  
the external VCO. The output of the VCO is brought back into  
the device on the LOP and LON pins, using a balun if necessary.  
A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms  
for a sine wave input) results in an IF output power of 4.7 dBm.  
The reference frequency for the PLL should be from 12 MHz  
to 160 MHz and should be applied to the REF_IN pin, which  
should be ac-coupled and terminated with a 50 ꢀ resistor, as  
P1  
9-PIN  
DSUB  
1
2
3
4
5
6
7
8
9
VCC  
R36  
R19  
0  
(0402)  
R35  
R30  
0Ω  
R54  
0Ω  
0Ω  
(0402)  
R20  
10kΩ  
(0402) (0402)  
R57  
0Ω  
(0402)  
0Ω  
(0402)  
(0402)  
S2  
R53  
10kΩ  
(0402)  
C34  
OPEN  
(0402)  
R52  
OPEN  
(0402)  
VCC  
RED  
+5V  
C33  
OPEN  
(0402)  
R51  
OPEN  
(0402)  
C7  
0.1µF  
(0402)  
C25  
0.1µF  
(0402)  
C23  
0.1µF  
(0402)  
C20  
0.1µF  
(0402)  
C19  
0.1µF  
(0402)  
C9  
0.1µF  
(0402)  
R6  
R26  
R25  
R24  
R17  
R7  
VCC1  
RED  
R55  
OPEN  
(0402)  
C32  
OPEN  
(0402)  
R50  
OPEN  
(0402)  
0Ω  
0Ω  
0Ω  
0Ω  
0Ω  
0Ω  
(0402)  
C8  
(0402)  
(0402)  
(0402)  
(0402)  
(0402)  
C24  
C22  
C21  
C18  
C10  
100pF  
(0402)  
100pF  
(0402)  
100pF  
100pF  
100pF  
100pF  
(0402)  
(0402)  
(0402)  
(0402)  
S1  
OPEN  
VCC_LO  
VCC_V2I  
VCC_MIX  
VCC_LO  
VCC2  
VCC1  
34  
27  
22  
17  
10  
1
16 13 12 14  
DECL2P5  
C16  
R56  
9
2
0Ω  
LODRV_EN  
C17  
C42  
R18  
(0402)  
36  
SPI  
INTERFACE  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
0Ω  
LON  
C5  
(0402)  
37  
38  
LO IN/OUT  
DIVIDER  
÷2  
4
5
3
1
BUFFER  
BUFFER  
DECL3P3  
C12  
LOP  
1nF  
(0402)  
C11  
0.1µF  
(0402)  
C41  
OPEN  
(0603)  
R8  
0Ω  
(0402)  
100pF  
(0402)  
DIV  
BY  
4, 2, 1  
2:1  
MUX  
T8  
TC1-1-13+  
INTEGER  
REG  
FRACTION  
REG  
C6  
1nF  
(0402)  
MODULUS  
ADRF6601  
RF  
IN  
26  
29  
RFIN  
THIRD-ORDER  
R28  
FRACTIONAL  
C31  
1nF  
0Ω  
VCO  
CORE  
INTERPOLATOR  
(0402)  
×2  
N COUNTER  
21 TO 123  
PRESCALER  
÷2  
REFIN  
(0402)  
REF_IN  
6
8
R70  
MUX  
÷2  
IP3SET  
CHARGE PUMP  
250µA,  
49.9Ω  
+
C27  
0.1µF  
(0402)  
PHASE  
FREQUENCY  
DETECTOR  
R27  
0Ω  
(0402)  
500µA (DEFAULT),  
750µA,  
TEMP  
SENSOR  
÷4  
REFOUT  
(0402)  
MUXOUT  
1000µA  
R16  
4
7
11 15 20 21 23 24 25 28 30 31 35  
5
3
39  
40  
18  
19  
0Ω  
R
SET  
VTUNE DECLVCO IFP  
IFN  
CP  
(0402)  
1
2
4
R2  
RFOUT  
OPEN  
(0402)  
R37  
R43  
R62  
VCC  
+5V  
0Ω  
0Ω  
0Ω  
R59  
3
(0402)  
(0402)  
5
(0402)  
0Ω  
R38  
0Ω  
(0402)  
R9 10kR65 10kΩ  
CP  
TEST  
VTUNE  
(0402)  
(0402)  
(0402)  
C29  
0.1µF  
(0402)  
POINT  
R10  
3.0kΩ  
(0603)  
R63  
(ORANGE)  
OPEN  
(0402)  
C14  
22pF  
(0603)  
C13  
6.8pF  
(0603)  
C40  
22pF  
(0603)  
C15  
2.7nF  
(1206)  
R12  
R11  
OPEN  
(0402)  
R1  
0Ω  
0Ω  
(0402)  
(0402)  
C43  
10µF  
(0603)  
C2  
OPEN  
(0402)  
C1  
100pF  
(0402)  
Figure 21. Basic Connections for Operation of the ADRF6601  
Rev. 0 | Page 17 of 24  
 
 
ADRF6601  
EVALUATION BOARD  
Figure 24 shows the schematic of the RoHS-compliant evalua-  
tion board for the ADRF6601. This board has four layers and  
was designed using Rogers 4350 hybrid material to minimize  
high frequency losses. FR4 material is also adequate if the design  
can accept the slightly higher trace loss of this material.  
To connect the evaluation board to a USB port, a USB adapter  
board (Part No. EVAL-ADF4XXXZ-USB) must be purchased  
from www.analog.com. This board connects to the PC using a  
standard USB cable with USB mini-connector at one end. An  
additional 25-pin male to 9-pin female adapter is required to  
mate the EVAL-ADF4XXXZ-USB board to the 9-pin D-Sub  
connector on the ADRF6601 evaluation board.  
The evaluation board is designed to operate using the internal  
VCO of the device (the default configuration) or with an  
external VCO. To use an external VCO, R62 and R12 should  
be removed. Place 0 ꢀ resistors in R63 and R11. The input of  
the external VCO should be connected to the VTUNE SMA  
connector, and the external VCO output should be connected  
to the LO IN/OUT SMA connector. In addition to these hard-  
ware changes, internal register settings must also be changed to  
enable operation with an external VCO (see the Register 6—  
VCO Control and VCO Enable (Default: 0x1E2106) section).  
Additional configuration options for the evaluation board are  
described in Table 10.  
EVALUATION BOARD CONTROL SOFTWARE  
Software to program the ADRF6601 is available for download  
from the ADRF6601 product page at www.analog.com. To install  
the software, download and extract the zip file. Then run the  
following installation file:  
Figure 22. Control Software Opening Menu  
ADRF6x0x_3p0p0_XP_install.exe  
The evaluation board can be connected to the PC using a PC  
parallel port or a USB port. These options are selectable from  
the opening menu of the software interface (see Figure 22). The  
evaluation board is shipped with a 25-pin parallel port cable  
for connection to the PC parallel port.  
Figure 23 shows the main window of the control software with  
the default settings displayed.  
Rev. 0 | Page 18 of 24  
 
 
ADRF6601  
Figure 23. Main Window of the ADRF6601 Evaluation Board Software  
Rev. 0 | Page 19 of 24  
 
ADRF6601  
SCHEMATICS AND ARTWORK  
2 3 0 6 - 0 8 5 4  
1 W 4 - C T  
6
4
3
2
1
0
R 4 3  
0
6
R 6  
8
C 2  
F U 1 0  
0
0
0
d d _ V C C  
O L _ V C C  
F R _ V C C  
R 3 2  
R 3 1  
R 2 9  
D N G  
N F I  
D N G  
C N  
0
P F I  
0
0
C N  
3
R 3  
O L _ C C V  
N E _ L L P  
D N G  
E L  
R 3 4  
R 2 0  
O L _ C C V  
D N G  
3
2
1
2
3
S2  
1
N E _ V R D O L  
N O L  
S 1  
0
K L C  
1
P O L  
R 3 5  
A T A D  
D N G  
E N U T V  
O C V L C E D  
0
0
R 7 2  
R 6 2  
1
0
R 1 2  
3 K  
R 1 0  
D
T d  
R 7 1  
I
D N  
R 1 1  
0
7
R 3  
I
D N  
R 1  
4
Y 1  
Figure 24. Evaluation Board Schematic  
Rev. 0 | Page 20 of 24  
 
 
ADRF6601  
Figure 25. Evaluation Board Layout (Bottom)  
Figure 26. Evaluation Board Layout (Top)  
Rev. 0 | Page 21 of 24  
ADRF6601  
EVALUATION BOARD CONFIGURATION OPTIONS  
Table 10.  
Default Condition/  
Option Settings  
Component  
Description  
S1, R55, R56, R33  
LO select. Swꢁtch aiꢀ ꢂesꢁstoꢂs to gꢂopiꢀ the LODRV_EN nꢁi. The LODRV_EN nꢁi settꢁig, ꢁi  
combꢁiatꢁoi wꢁth ꢁiteꢂial ꢂegꢁsteꢂ settꢁigs, ꢀeteꢂmꢁies whetheꢂ the LOP aiꢀ LON nꢁis  
fpictꢁoi as ꢁinpts oꢂ optnpts (see the LO Selectꢁoi Logꢁc sectꢁoi foꢂ moꢂe ꢁifoꢂmatꢁoi).  
S1 = R55 = onei  
(iot ꢁistalleꢀ)  
R56 = R33 = 0 Ω  
LODRV_EN = 0 V  
LO IN/OUT  
SMA coiiectoꢂ  
LO ꢁinpt/optnpt. Ai exteꢂial 1× LO oꢂ 2× LO fꢂeqpeicy cai be annlꢁeꢀ to thꢁs sꢁigle-eiꢀeꢀ LO ꢁinpt  
ꢁinpt coiiectoꢂ.  
REFIN  
SMA coiiectoꢂ  
Refeꢂeice ꢁinpt. The ꢁinpt ꢂefeꢂeice fꢂeqpeicy foꢂ the PLL ꢁs annlꢁeꢀ to thꢁs coiiectoꢂ.  
Iinpt ꢁmneꢀaice ꢁs 50 Ω.  
REFOUT  
SMA coiiectoꢂ  
Mpltꢁnlexeꢂ optnpt. The REFOUT coiiectoꢂ coiiects ꢀꢁꢂectly to the MUXOUT nꢁi. The  
oi-boaꢂꢀ mpltꢁnlexeꢂ cai be nꢂogꢂammeꢀ to bꢂꢁig opt the followꢁig sꢁgials:  
REF_IN, 2 × REF_IN, 0.5 × REF_IN, 0.25 × REF_IN.  
Lock ꢀetect  
Temneꢂatpꢂe seisoꢂ optnpt voltage.  
Lock ꢀetect ꢁiꢀꢁcatoꢂ.  
CP test noꢁit  
Chaꢂge npmn test noꢁit. The pifꢁlteꢂeꢀ chaꢂge npmn sꢁgial cai be nꢂobeꢀ at thꢁs test  
noꢁit. Note that the CP nꢁi shoplꢀ iot be nꢂobeꢀ ꢀpꢂꢁig cꢂꢁtꢁcal measpꢂemeits spch as  
nhase ioꢁse.  
R37, C14, R9, R10,  
C15, C13, R65, C40  
Loon fꢁlteꢂ. Loon fꢁlteꢂ comnoieits.  
R11, R12  
Loon fꢁlteꢂ ꢂetpꢂi. Whei the ꢁiteꢂial VCO ꢁs pseꢀ, the loon fꢁlteꢂ comnoieits shoplꢀ be  
ꢂetpꢂieꢀ to Pꢁi 40 (DECLVCO) by ꢁistallꢁig a 0 Ω ꢂesꢁstoꢂ ꢁi R12. Whei ai exteꢂial VCO ꢁs pseꢀ,  
the loon fꢁlteꢂ comnoieits cai be ꢂetpꢂieꢀ to gꢂopiꢀ by ꢁistallꢁig a 0 Ω ꢂesꢁstoꢂ ꢁi R11.  
R12 = 0 Ω (0402)  
R11 = onei (0402)  
R62, R63, VTUNE  
SMA coiiectoꢂ  
Iiteꢂial vs. exteꢂial VCO. Whei the ꢁiteꢂial VCO ꢁs eiableꢀ, the loon fꢁlteꢂ comnoieits aꢂe  
coiiecteꢀ ꢀꢁꢂectly to the VTUNE nꢁi (Pꢁi 39) by ꢁistallꢁig a 0 Ω ꢂesꢁstoꢂ ꢁi R62.  
To pse ai exteꢂial VCO, R62 shoplꢀ be left onei. A 0 Ω ꢂesꢁstoꢂ shoplꢀ be ꢁistalleꢀ ꢁi R63,  
aiꢀ the voltage ꢁinpt of the VCO shoplꢀ be coiiecteꢀ to the VTUNE SMA coiiectoꢂ. The  
optnpt of the VCO ꢁs bꢂopght back ꢁito the PLL vꢁa the LO IN/OUT SMA coiiectoꢂ.  
R62 = 0 Ω (0402)  
R63 = onei (0402)  
R2  
RSET nꢁi. Thꢁs nꢁi ꢁs pipseꢀ aiꢀ shoplꢀ be left onei.  
R2 = onei (0402)  
RFIN SMA coiiectoꢂ RF ꢁinpt. The RF ꢁinpt sꢁgial shoplꢀ be annlꢁeꢀ to the RFIN SMA coiiectoꢂ. The RF ꢁinpt of  
the ADRF6601 ꢁs ac-copnleꢀ; theꢂefoꢂe, io bꢁas ꢁs iecessaꢂy.  
T3  
IF optnpt. The ꢀꢁffeꢂeitꢁal IF optnpt sꢁgials fꢂom the ADRF6601 (IFP aiꢀ IFN) aꢂe coiveꢂteꢀ  
to a sꢁigle-eiꢀeꢀ sꢁgial by T3.  
Rev. 0 | Page 22 of 24  
 
 
 
ADRF6601  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 27. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF6601ACPZ-R7  
ADRF6601-EVALZ  
Temperature Range  
Package Description  
Package Option  
CP-40-1  
−40°C to +85°C  
40-Leaꢀ Leaꢀ Fꢂame Chꢁn Scale Package [LFCSP_VQ]  
Evalpatꢁoi doaꢂꢀ  
1 Z = RoHS Comnlꢁait Paꢂt.  
Rev. 0 | Page 23 of 24  
 
 
ADRF6601  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08546-0-4/10(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADRF6601ACPZ-R7

750 MHz to 1160 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602-EVALZ

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6602ACPZ-R7

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603-EVALZ

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6603ACPZ

IC,RF MIXER,BICMOS,LLCC,40PIN,PLASTIC
ADI

ADRF6603ACPZ-R7

2100 MHz to 2600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6604

1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6604-EVALZ

1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6604ACPZ-R7

1200 MHz TO 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6612

700 MHz to 3000 MHz Dual Passive Receive Mixer with Integrated PLL and VCO
ADI