ADRF6604 [ADI]

1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO;
ADRF6604
型号: ADRF6604
厂家: ADI    ADI
描述:

1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO

文件: 总32页 (文件大小:834K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200 MHz to 3600 MHz Rx Mixer with  
Integrated Fractional-N PLL and VCO  
ADRF6604  
Data Sheet  
The PLL can support input reference frequencies from 12 MHz  
to 160 MHz. The PFD output controls a charge pump whose  
output drives an off-chip loop filter.  
FEATURES  
Rx mixer with integrated fractional-N PLL  
RF input frequency range: 1200 MHz to 3600 MHz  
Internal LO frequency range: 2500 MHz to 2900 MHz  
Input P1dB: 14.5 dBm  
Input IP3: 27.5 dBm  
IIP3 optimization via external pin  
SSB noise figure  
The loop filter output is then applied to an integrated VCO. The  
VCO output at 2 × fLO is applied to an LO divider, as well as to a  
programmable PLL divider. The programmable PLL divider is  
controlled by a sigma-delta (Σ-Δ) modulator (SDM). The modulus  
of the SDM can be programmed from 1 to 2047.  
IP3SET pin open: 14.3 dB  
IP3SET pin at 3.3 V: 15.5 dB  
The active mixer converts the single-ended, 50 Ω RF input to  
a differential, 200 Ω IF output. The IF output can operate up  
to 500 MHz.  
Voltage conversion gain: 6.8 dB  
Matched 200 Ω IF output impedance  
IF 3 dB bandwidth: 500 MHz  
Programmable via 3-wire SPI interface  
40-lead, 6 mm × 6 mm LFCSP  
The ADRF6604 is fabricated using an advanced silicon-germanium  
BiCMOS process. It is available in a 40-lead, RoHS-compliant,  
6 mm × 6 mm LFCSP with an exposed paddle. Performance is  
specified over the −40°C to +85°C temperature range.  
APPLICATIONS  
Table 1.  
Cellular base stations  
Internal LO  
Range  
3 dB RFIN  
Balun Range  
1 dB RFIN  
Balun Range  
Part No.  
GENERAL DESCRIPTION  
ADRF6601 750 MHz  
1160 MHz  
300 MHz  
450 MHz  
The ADRF6604 is a high dynamic range active mixer with  
integrated phase-locked loop (PLL) and voltage controlled  
oscillator (VCO). The PLL/synthesizer uses a fractional-N  
PLL to generate a fLO input to the mixer. The reference input  
can be divided or multiplied and then applied to the PLL phase  
frequency detector (PFD).  
2500 MHz  
1000 MHz  
3100 MHz  
1100 MHz  
3200 MHz  
1200 MHz  
3600 MHz  
1600 MHz  
1350 MHz  
2750 MHz  
1450 MHz  
2850 MHz  
1600 MHz  
3200 MHz  
ADRF6602 1550 MHz  
2150 MHz  
ADRF6603 2100 MHz  
2600 MHz  
ADRF6604 2500 MHz  
2900 MHz  
FUNCTIONAL BLOCK DIAGRAM  
VCC1  
1
VCC2 VCC_LO VCC_MIX VCC_V2I VCC_LO  
NC NC  
10  
17  
22  
27  
34  
32  
33  
36  
LODRV_EN  
LON 37  
38  
ADRF6604  
3.3V  
LDO  
2
9
DECL3P3  
INTERNAL LO RANGE  
2500MHz TO 2900MHz  
BUFFER  
BUFFER  
2.5V  
LDO  
DECL2P5  
DECLVCO  
LOP  
VCO  
LDO  
PLL_EN 16  
DIV  
2:1  
40  
BY  
2, 1  
INTEGER  
REG  
FRACTION  
REG  
MUX  
12  
DATA  
MODULUS  
SPI  
13  
14  
CLK  
LE  
INTERFACE  
26  
29  
RF  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
IN  
VCO  
CORE  
IP3SET  
×2  
N COUNTER  
21 TO 123  
PRESCALER  
÷2  
6
8
REF_IN  
MUX  
÷2  
CHARGE PUMP  
250µA,  
500µA (DEFAULT),  
+
PHASE  
FREQUENCY  
DETECTOR  
TEMP  
SENSOR  
÷4  
750µA,  
1000µA  
5
MUXOUT  
4
7
11 15 20 21 23 24 25 28 30 31 35  
GND  
39  
18 19  
3
R
CP VTUNE IFP IFN  
SET  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF6604  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 3—Σ-Δ Modulator Dither Control  
(Default: 0x10000B)................................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
RF Specifications .......................................................................... 3  
Synthesizer/PLL Specifications................................................... 4  
Logic Input and Power Specifications ....................................... 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
RF Frequency Sweep .................................................................... 9  
IF Frequency Sweep ................................................................... 10  
Spurious Performance................................................................ 15  
Register Structure ........................................................................... 16  
Register 0—Integer Divide Control (Default: 0x0001C0)..... 16  
Register 1—Modulus Divide Control (Default: 0x003001) ........16  
Register 2—Fractional Divide Control (Default: 0x001802) ......17  
Register 4—PLL Charge Pump, PFD, and Reference Path  
Control (Default: 0x0AA7E4)................................................... 18  
Register 5—PLL Enable and LO Path Control  
(Default: 0x0000E5) ................................................................... 19  
Register 6—VCO Control and VCO Enable  
(Default: 0x1E2106) ................................................................... 19  
Register 7—Mixer Bias Enable and External VCO Enable  
(Default: 0x000007).................................................................... 19  
Theory of Operation ...................................................................... 20  
Programming the ADRF6604................................................... 20  
Initialization Sequence .............................................................. 20  
LO Selection Logic ..................................................................... 21  
Applications Information.............................................................. 22  
Basic Connections for Operation............................................. 22  
AC Test Fixture ............................................................................... 23  
Evaluation Board ............................................................................ 24  
Evaluation Board Control Software......................................... 24  
Schematic and Artwork............................................................. 26  
Evaluation Board Configuration Options............................... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
1/14—Rev. A to Rev. B  
6/10—Revision 0: Initial Version  
Change to Product Title................................................................... 1  
Updated Outline Dimensions (Lead-to-Pad Dimension)......... 29  
5/11—Rev. 0 to Rev. A  
Changes to Features and General Description Sections.............. 1  
Changes to Table 2............................................................................ 3  
Changes to Synthesizer Specifications Parameter and to Phase  
Noise Parameter, Table 3 ............................................................. 4  
Changes to Power Supplies Parameter, Table 4 ............................ 4  
Replaced Typical Performance Characteristics Section;  
Renumbered Sequentially ........................................................... 9  
Added Spurious Performance Section......................................... 15  
Change to Figure 41 ....................................................................... 17  
Changes to Figure 42...................................................................... 18  
Changes to Theory of Operation Section.................................... 20  
Changes to Figure 46...................................................................... 22  
Added AC Test Fixture Section and Figure 47 ........................... 23  
Changes to Evaluation Board Control Software Section and  
Figure 48 ...................................................................................... 24  
Changes to Figure 49...................................................................... 25  
Rev. B | Page 2 of 32  
 
Data Sheet  
ADRF6604  
SPECIFICATIONS  
RF SPECIFICATIONS  
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized  
using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
2900  
3600  
Unit  
MHz  
MHz  
INTERNAL LO FREQUENCY RANGE  
RF INPUT FREQUENCY RANGE  
RF INPUT AT 2360 MHz  
Input Return Loss  
2500  
1200  
3 dB RF input range  
Relative to 50 Ω (can be improved with external match)  
−16.2  
14.6  
54.5  
28  
14.8  
13.9  
−43  
dB  
Input P1dB  
dBm  
dBm  
dBm  
dB  
dB  
dBm  
Second-Order Intercept (IIP2)  
Third-Order Intercept (IIP3)  
Single-Sideband Noise Figure  
−5 dBm each tone (10 MHz spacing between tones)  
−5 dBm each tone (10 MHz spacing between tones)  
IP3SET = 3.3 V  
IP3SET = open  
At 1× LO frequency, 50 Ω termination at the RF port  
LO-to-IF Leakage  
RF INPUT AT 2560 MHz  
Input Return Loss  
Input P1dB  
Second-Order Intercept (IIP2)  
Third-Order Intercept (IIP3)  
Single-Sideband Noise Figure  
Relative to 50 Ω (can be improved with external match)  
−21  
14.5  
58.2  
27.6  
14.9  
14.2  
−42  
dB  
dBm  
dBm  
dBm  
dB  
dB  
dBm  
−5 dBm each tone (10 MHz spacing between tones)  
−5 dBm each tone (10 MHz spacing between tones)  
IP3SET = 3.3 V  
IP3SET = open  
At 1× LO frequency, 50 Ω termination at the RF port  
LO-to-IF Leakage  
RF INPUT AT 2760 MHz  
Input Return Loss  
Input P1dB  
Second-Order Intercept (IIP2)  
Third-Order Intercept (IIP3)  
Single-Sideband Noise Figure  
Relative to 50 Ω (can be improved with external match)  
−20  
14.4  
64.4  
27  
15.5  
14.6  
−44  
dB  
dBm  
dBm  
dBm  
dB  
dB  
dBm  
−5 dBm each tone (10 MHz spacing between tones)  
−5 dBm each tone (10 MHz spacing between tones)  
IP3SET = 3.3 V  
IP3SET = open  
At 1× LO frequency, 50 Ω termination at the RF port  
LO-to-IF Leakage  
IF OUTPUT  
Voltage Conversion Gain  
IF Bandwidth  
Output Common-Mode Voltage  
Gain Flatness  
Gain Variation  
Output Swing  
Output Return Loss  
LO INPUT/OUTPUT (LOP, LON)  
Frequency Range  
Output Level (LO as Output)  
Input Level (LO as Input)  
Input Impedance  
Differential 200 Ω load  
Small signal 3 dB bandwidth  
External pull-up balun or inductors required  
Over frequency range, any 5 MHz/50 MHz  
Over full temperature range  
6.8  
500  
5
0.2/0.5  
1.3  
2
dB  
MHz  
V
dB  
dB  
Differential 200 Ω load  
Relative to 200 Ω  
V p-p  
dB  
−15  
Externally applied 1× LO input, internal PLL disabled  
250  
−6  
6000  
+6  
MHz  
dBm  
dBm  
1× LO into a 50 Ω load, LO output buffer enabled  
−9  
0
50  
Rev. B | Page 3 of 32  
 
 
ADRF6604  
Data Sheet  
SYNTHESIZER/PLL SPECIFICATIONS  
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fREF power = 4 dBm, fPFD = 38.4 MHz, high-side LO injection,  
fIF = 140 MHz, IIP3 optimized using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SYNTHESIZER SPECIFICATIONS  
Frequency Range  
Figure of Merit1  
Synthesizer specifications referenced to 1× LO  
Internally generated LO  
PREF_IN = 0 dBm  
2500  
2900  
MHz  
dBc/Hz/Hz  
−221.4  
Reference Spurs  
fPFD = 38.4 MHz  
fPFD/4  
fPFD  
>fPFD  
−107  
−82  
−80  
dBc  
dBc  
dBc  
PHASE NOISE  
fLO = 2500 MHz to 2900 MHz, fPFD = 38.4 MHz  
1 kHz to 10 kHz offset  
100 kHz offset  
−87.7  
−96  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
500 kHz offset  
1 MHz offset  
5 MHz offset  
10 MHz offset  
−117  
−126  
−142  
−148  
−150  
0.69  
20 MHz offset  
Integrated Phase Noise  
PFD Frequency  
1 kHz to 40 MHz integration bandwidth  
20  
12  
40  
MHz  
REFERENCE CHARACTERISTICS  
REF_IN Input Frequency  
REF_IN Input Capacitance  
MUXOUT Output Level  
REF_IN, MUXOUT pins  
160  
0.25  
MHz  
pF  
V
4
VOL (lock detect output selected)  
VOH (lock detect output selected)  
2.7  
V
MUXOUT Duty Cycle  
CHARGE PUMP  
50  
%
Pump Current  
Output Compliance Range  
Programmable to 250 µA, 500 µA, 750 µA, 1 mA  
500  
µA  
V
1
2.8  
1 The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10 log 10(fPFD) – 20 log 10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 80 MHz,  
and fREF power = 10 dBm (500 V/µs slew rate) with a 40 MHz fPFD. The FOM was computed at 50 kHz offset.  
LOGIC INPUT AND POWER SPECIFICATIONS  
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized  
using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ Max Unit  
LOGIC INPUTS  
CLK, DATA, LE  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINH/IINL  
Input Capacitance, CIN  
POWER SUPPLIES  
Voltage Range  
1.4  
0
3.3  
0.7  
V
V
µA  
pF  
0.1  
5
VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins  
4.75  
5
5.25  
V
Supply Current  
PLL only  
96  
mA  
mA  
mA  
mA  
mA  
External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off)  
Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on)  
Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off)  
Power-down mode  
164  
274  
260  
30  
Rev. B | Page 4 of 32  
 
 
Data Sheet  
ADRF6604  
TIMING CHARACTERISTICS  
VCC2 = 5 V 5%.  
Table 5.  
Parameter  
Limit  
20  
10  
10  
25  
25  
10  
20  
Unit  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
LE setup time  
DATA-to-CLK setup time  
DATA-to-CLK hold time  
CLK high duration  
CLK low duration  
CLK-to-LE setup time  
LE pulse width  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
t1  
DB22  
DATA  
LE  
(CONTROL BIT C2)  
t6  
t7  
Figure 2. Timing Diagram  
Rev. B | Page 5 of 32  
 
 
ADRF6604  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VCC1, VCC2, VCC_LO,  
VCC_MIX, VCC_V2I  
−0.5 V to +5.5 V  
Digital I/O, CLK, DATA, LE, LODRV_EN,  
PLL_EN  
−0.3 V to +3.6 V  
VTUNE  
IFP, IFN  
RFIN  
0 V to 3.3 V  
−0.3 V to VCC_V2I + 0.3 V  
16 dBm  
ESD CAUTION  
LOP, LON, REF_IN  
13 dBm  
θJA (Exposed Paddle Soldered Down)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
35°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
Rev. B | Page 6 of 32  
 
 
Data Sheet  
ADRF6604  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
VCC1  
DECL3P3  
CP  
1
2
30 GND  
INDICATOR  
29 IP3SET  
28 GND  
3
GND  
27 VCC_V2I  
4
ADRF6604  
R
RF  
5
26  
25  
SET  
IN  
REF_IN  
6
GND  
TOP VIEW  
7
24 GND  
GND  
MUXOUT  
DECL2P5  
VCC2  
(Not to Scale)  
8
23 GND  
9
22 VCC_MIX  
21  
10  
GND  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A  
LOW IMPEDANCE GROUND PLANE.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VCC1  
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin  
should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.  
2
3
DECL3P3  
CP  
Decoupling Node for 3.3 V LDO. Connect a 0.1 µF capacitor between this pin and ground.  
Charge Pump Output Pin. Connect to VTUNE through the loop filter.  
Ground. Connect these pins to a low impedance ground plane.  
4, 7, 11, 15, 20, GND  
21, 23, 24, 25,  
28, 30, 31, 35  
5
RSET  
Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1 mA using  
Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In  
this mode, no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL  
)
can be externally adjusted according to the following equation:  
217.4 × I  
CP  
RSET  
=
37.8 Ω  
INOMINAL  
6
8
REF_IN  
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin is internally dc-  
biased and should be ac-coupled.  
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect  
signal. The output is selected by programming the appropriate register.  
MUXOUT  
9
10  
DECL2P5  
VCC2  
Decoupling Node for 2.5 V LDO. Connect a 0.1 µF capacitor between this pin and ground.  
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin  
should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.  
12  
13  
DATA  
CLK  
Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.  
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched  
into the 24-bit shift register on the CLK rising edge. The maximum clock frequency is 20 MHz.  
14  
16  
LE  
Load Enable. When the LE input pin goes high, the data stored in the shift register is loaded into one of the  
eight registers. The relevant latch is selected by the three control bits of the 24-bit word.  
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is  
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the  
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be  
used to switch modes.  
PLL_EN  
17, 34  
18, 19  
VCC_LO  
IFP, IFN  
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled  
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.  
Mixer IF Outputs. These outputs should be pulled to VCC_MIX with RF chokes.  
Rev. B | Page 7 of 32  
 
ADRF6604  
Data Sheet  
Pin No.  
Mnemonic Description  
22  
VCC_MIX  
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled  
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.  
26  
27  
RFIN  
VCC_V2I  
RF Input. Single-ended, 50 Ω.  
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled  
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.  
29  
32, 33  
36  
IP3SET  
NC  
Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open.  
NC = No Connect. Do not connect to this pin.  
LODRV_EN LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins  
operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set  
high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin  
or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency  
must be 1× LO. This pin has an internal 100 kΩ pull-down resistor.  
37, 38  
39  
LON, LOP  
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO  
generation is disabled, an external 1× LO can be applied to these pins.  
VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage  
range on this pin is 1.5 V to 2.5 V.  
VTUNE  
40  
DECLVCO  
EPAD  
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground.  
Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.  
Rev. B | Page 8 of 32  
Data Sheet  
ADRF6604  
TYPICAL PERFORMANCE CHARACTERISTICS  
RF FREQUENCY SWEEP  
CDAC = 0xC, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted.  
5
35  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
IP3SET = OPEN  
IP3SET = 3.3V  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
21  
20  
2360  
2410  
2460  
2510  
2560  
2610  
2660  
2710 2760  
2360  
2410  
2460  
2510  
2560  
2610  
2660  
2710 2760  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 7. Input IP3 vs. RF Frequency  
Figure 4. Gain vs. RF Frequency  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
90  
80  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
IP3SET = OPEN  
IP3SET = 3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
A
A
70  
60  
50  
40  
30  
8
2360  
2410  
2460  
2510  
2560  
2610  
2660  
2710 2760  
2360  
2410  
2460  
2510  
2560  
2610  
2660  
2710 2760  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 5. Input IP2 vs. RF Frequency  
Figure 8. Input P1dB vs. RF Frequency  
20  
18  
16  
14  
12  
10  
8
6
4
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
IP3SET = OPEN  
IP3SET = 3.3V  
2
0
2360  
2410  
2460  
2510  
2560  
2610  
2660  
2710 2760  
RF FREQUENCY (MHz)  
Figure 6. Noise Figure vs. RF Frequency  
Rev. B | Page 9 of 32  
 
 
ADRF6604  
Data Sheet  
IF FREQUENCY SWEEP  
CDAC = 0xC, internally generated swept low-side LO, fRF = 2490 MHz, RFIN = −5 dBm, unless otherwise noted.  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
IP3SET = OPEN  
IP3SET = 3.3V  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 9. Gain vs. IF Frequency  
Figure 12. Input IP3 vs. IF Frequency, RFIN = −5 dBm  
90  
80  
70  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
A
A
18  
16  
14  
12  
10  
8
60  
50  
6
4
40  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
IP3SET = OPEN  
IP3SET = 3.3V  
2
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 10. Input IP2 vs. IF Frequency, RFIN = −5 dBm  
Figure 13. Input P1dB vs. IF Frequency  
20  
18  
16  
14  
12  
10  
8
6
4
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
IP3SET = OPEN  
IP3SET = 3.3V  
2
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400  
IF FREQUENCY (MHz)  
Figure 11. Noise Figure vs. IF Frequency  
Rev. B | Page 10 of 32  
 
Data Sheet  
ADRF6604  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
A
A
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–10  
–11  
–12  
–13  
–50  
–55  
–60  
–14  
–15  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000 3100  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 14. LO-to-IF Feedthrough vs. LO Frequency,  
LO Output Turned Off, CDAC = 0xC  
Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)  
–20  
–25  
–30  
350  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
IP3SET = OPEN  
IP3SET = 3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
RESISTANCE  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
CAPACITANCE  
–85  
–90  
0
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 18. IF Differential Output Impedance (R Parallel, C Equivalent)  
Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off  
0
–5  
35  
IP3SET = OPEN  
IP3SET = 3.3V  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
30  
25  
20  
15  
10  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000 3100  
–60  
–50  
–40  
–30  
–20  
–10  
0
RF FREQUENCY (MHz)  
CW BLOCKER LEVEL (dBm)  
Figure 16. RF Input Return Loss vs. RF Frequency  
Figure 19. SSB Noise Figure vs. 5 MHz Offset CW Blocker Level,  
LO Frequency = 2500 MHz, RF Frequency = 2358 MHz  
Rev. B | Page 11 of 32  
ADRF6604  
Data Sheet  
0
–5  
5.0  
4.5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
A
A
–50  
–55  
–60  
0
2500  
2160  
2260  
2360  
2460  
2560  
2660  
2760  
2860 2960  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF = 140 MHz,  
LO Output Turned Off  
Figure 23. VTUNE vs. LO Frequency  
0
350  
IP3SET = OPEN  
IP3SET = 3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
IP3SET = 3.3V  
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
A
A
A
A
A
300  
250  
200  
150  
–10  
–11  
–12  
–13  
–14  
–15  
2500  
100  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 21. LO Output Amplitude vs. LO Frequency  
Figure 24. Supply Current vs. LO Frequency  
25  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
IP3SET = OPEN  
IP3SET = 3.3V  
20  
15  
10  
5
0
–5  
1.5  
1.4  
–10  
–15  
–20  
–25  
1.3  
1.2  
1.1  
1.0  
–55  
0
50  
100  
150  
200  
250  
–35  
–15  
5
25  
45  
65  
85  
105  
TIME (µs)  
TEMPERATURE (°C)  
Figure 22. Frequency Deviation from 2500 MHz vs. Time  
(Demonstrates LO Frequency Settling Time from 2490 MHz to 2500 MHz)  
Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)  
Rev. B | Page 12 of 32  
Data Sheet  
ADRF6604  
Complementary cumulative distribution function (CCDF), fRF = 2360 MHz, fIF = 140 MHz.  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IP3SET =  
OPEN  
IP3SET =  
3.3V  
IP3SET =  
OPEN  
IP3SET =  
3.3V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–0.5  
0
0.5  
1.0  
1.5  
2.0  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GAIN (dB)  
INPUT IP3 (dBm)  
Figure 26. Gain  
Figure 29. Input IP3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IP3SET =  
OPEN  
IP3SET =  
3.3V  
IP3SET =  
OPEN  
IP3SET =  
3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0  
45  
50  
55  
60  
65  
70  
75  
INPUT P1dB (dBm)  
INPUT IP2 (dBm)  
Figure 27. Input IP2  
Figure 30. Input P1dB  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
IP3SET = OPEN  
IP3SET = 3.3V  
T
T
T
= +85°C  
= +25°C  
= –40°C  
IP3SET = OPEN  
A
A
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
–50  
–48  
–46  
–44  
–42  
–40  
–38  
–36  
NOISE FIGURE (dB)  
LO FEEDTHROUGH TO IF (dBm)  
Figure 31. LO Feedthrough to IF, LO Output Turned Off  
Figure 28. Noise Figure  
Rev. B | Page 13 of 32  
ADRF6604  
Data Sheet  
Measured at IF output, CDAC = 0xC, IP3SET = open, internally generated high-side LO, fREF = 153.6 MHz, fPFD = 38.4 MHz,  
RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–70  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
LO FREQUENCY = 2883.2MHz  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
LO FREQUENCY = 2537.6MHz  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
1k  
1M  
10M  
100M  
1G  
LO FREQUENCY (MHz)  
OFFSET FREQUENCY (Hz)  
Figure 32. Phase Noise vs. Offset Frequency  
Figure 35. Integrated Phase Noise vs. LO Frequency  
–70  
–80  
OFFSET = 1kHz  
–75  
–80  
–85  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
OFFSET = 100kHz  
–90  
–95  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
OFFSET AT 2× PFD  
OFFSET AT 4× PFD  
–100  
–105  
–110  
OFFSET = 5MHz  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD)  
Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps)  
–70  
–80  
–85  
T
T
T
= +85°C  
= +25°C  
= –40°C  
OFFSET AT 3× PFD  
OFFSET AT 1× PFD  
A
A
A
–75  
–80  
–85  
–90  
OFFSET = 10kHz  
–95  
–100  
–105  
–90  
–95  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–110  
–115  
–120  
–125  
–130  
–100  
–105  
–110  
OFFSET AT 0.25× PFD  
OFFSET = 1MHz  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
2500  
2550  
2600  
2650  
2700  
2750  
2800  
2850 2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD)  
Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)  
Rev. B | Page 14 of 32  
Data Sheet  
ADRF6604  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious  
products were measured in decibels relative to the carrier (dBc) from the IF output power level. All spurious components greater than  
−125 dBc are shown.  
LO = 2500 MHz, RF = 2360 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.  
M
0
1
2
3
4
-115.19  
−23.6708  
−63.4281  
−43.0184  
0.0  
−33.3455  
−67.1671  
−61.1065  
−86.8944  
−108.708  
0
1
2
3
4
5
6
7
−47.1921  
−79.8957  
−58.5001  
−104.041  
−110.825  
−65.1191  
−83.6746  
−80.0324  
−105.514  
−108.518  
−113.19  
N
−108.548  
LO = 2700 MHz, RF = 2560 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.  
M
0
1
2
3
4
0
1
2
3
4
5
6
7
−114.804  
−22.6289  
−61.2522  
−42.7987  
0.0  
−31.9174  
−65.0063  
−57.5224  
−82.5056  
−108.087  
−48.5279  
−77.0905  
−56.9437  
−98.5103  
−110.572  
−66.5602  
−84.4436  
−76.8305  
−98.8811  
−99.2295  
−113.601  
−109.829  
N
LO = 2900 MHz, RF = 2760 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.  
M
0
1
2
3
4
0
1
2
3
4
5
6
7
−114.956  
−22.092  
−60.2824  
−44.0336  
0.0  
−31.2423  
−62.6978  
−56.7826  
−80.7407  
−108.949  
−48.9358  
−73.218  
−69.8043  
−85.957  
N
−56.7503  
−100.938  
−110.193  
−105.061  
−100.159  
−111.146  
−111.428  
Rev. B | Page 15 of 32  
 
ADRF6604  
Data Sheet  
REGISTER STRUCTURE  
This section provides the register maps for the ADRF6604. The three LSBs determine the register that is programmed.  
REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)  
DIVIDE  
MODE  
RESERVED  
INTEGER DIVIDE RATIO  
CONTROL BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID6 ID5 ID4 ID3 ID2 ID1 ID0 C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
DM  
DM  
0
DIVIDE MODE  
FRACTIONAL (DEFAULT)  
INTEGER  
1
INTEGER DIVIDE RATIO  
ID6  
0
ID5  
0
ID4  
1
ID3  
0
ID2  
1
ID1  
0
ID0  
21 (INTEGER MODE ONLY)  
1
0
22 (INTEGER MODE ONLY)  
0
0
1
0
1
1
23 (INTEGER MODE ONLY)  
0
0
1
0
1
1
1
24  
0
0
1
1
0
0
0
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
56 (DEFAULT)  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
119  
120 (INTEGER MODE ONLY)  
121 (INTEGER MODE ONLY)  
122 (INTEGER MODE ONLY)  
123 (INTEGER MODE ONLY)  
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
0
1
0
1
1
1
1
0
1
1
Figure 38. Register 0—Integer Divide Control Register Map  
REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1)  
MODULUS VALUE  
CONTROL BITS  
0
0
0
0
0
0
0
0
0
0
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0  
MODULUS VALUE  
1
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
1
0
...  
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
1536 (DEFAULT)  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
2047  
Figure 39. Register 1—Modulus Divide Control Register Map  
Rev. B | Page 16 of 32  
 
 
 
Data Sheet  
ADRF6604  
REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)  
CONTROL BITS  
DB2 DB1 DB0  
RESERVED  
FRACTIONAL VALUE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
0
0
0
0
0
0
0
0
0
0
FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 C3(0) C2(1) C1(0)  
FRACTIONAL VALUE  
FD10  
0
FD9  
0
FD8  
0
FD7  
0
FD6  
0
FD5  
0
FD4  
0
FD3  
0
FD2  
0
FD1  
0
FD0  
0
0
1
0
0
0
0
0
0
0
0
0
0
1
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
768 (DEFAULT)  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
FRACTIONAL VALUE MUST BE LESS THAN MODULUS  
<MDR  
Figure 40. Register 2—Fractional Divide Control Register Map  
REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)  
DITHER  
MAGNITUDE  
DITHER  
ENABLE  
DITHER RESTART VALUE  
CONTROL BITS  
DB23 DB22  
DITH1  
DB21  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
DITH0  
DEN  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)  
DITH1  
DITH0 DITHER MAGNITUDE  
0
0
0
1
15 (DEFAULT)  
7
1
1
0
1
3
1 (RECOMMENDED)  
DEN DITHER ENABLE  
0
1
DISABLE  
ENABLE (DEFAULT, RECOMMENDED)  
DITHER RESTART  
VALUE  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0  
0x00001 (DEFAULT)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0x1FFFF  
Figure 41. Register 3—Σ-Δ Modulator Dither Control Register Map  
Rev. B | Page 17 of 32  
 
 
ADRF6604  
Data Sheet  
REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)  
CP  
PFD ANTI-  
REF OUTPUT  
MUX SELECT  
INPUT REF  
PATH  
PFD  
POL  
PFD PHASE OFFSET  
MULTIPLIER  
CP  
CP  
CP  
CURRENT  
REF  
PFD EDGE BACKLASH  
CONTROL BITS  
CURRENT SRC CONTROL  
DELAY  
SOURCE  
DB23 DB22 DB21 DB20 DB19  
RMS2 RMS1 RMS0 RS1 RS0  
DB18  
CPM  
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1 PE0 PAB1 PAB0 C3(1) C2(0) C1(0)  
PFD ANTIBACKLASH  
PAB1 PAB0  
DELAY  
0
0
1
1
0
1
0
1
0ns (DEFAULT)  
0.5ns  
0.75ns  
0.9ns  
REFERENCE PATH EDGE  
SENSITIVITY  
PE0  
0
1
FALLING EDGE  
RISING EDGE (DEFAULT)  
DIVIDER PATH EDGE  
SENSITIVITY  
PE1  
0
1
FALLING EDGE  
RISING EDGE (DEFAULT)  
CHARGE PUMP CONTROL  
CPC1 CPC0  
BOTH ON  
PUMP DOWN  
PUMP UP  
0
0
1
1
0
1
0
1
TRISTATE (DEFAULT)  
CPS CHARGE PUMP CONTROL SOURCE  
0
1
CONTROL BASED ON STATE OF DB7 AND DB8 (CP CONTROL)  
CONTROL FROM PFD (DEFAULT)  
CPP1 CPP0 CHARGE PUMP CURRENT  
250µA  
500µA (DEFAULT)  
750µA  
0
0
1
1
0
1
0
1
1000µA  
PFD PHASE OFFSET MULTIPLIER  
CPB4 CPB3 CPB2 CPB1 CPB0  
0 × 22.5°/I  
CPMULT  
0
0
0
0
1
1
0
0
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
1
1 × 22.5°/I  
CPMULT  
6 × 22.5°/I  
CPMULT  
(RECOMMENDED)  
(DEFAULT)  
10 × 22.5°/I  
16 × 22.5°/I  
31 × 22.5°/I  
CPMULT  
CPMULT  
CPMULT  
CPBD PFD PHASE OFFSET POLARITY  
0
1
NEGATIVE  
POSITIVE (DEFAULT)  
CHARGE PUMP CURRENT  
REFERENCE SOURCE  
CPM  
INTERNAL (DEFAULT)  
EXTERNAL  
0
1
INPUT REFERENCE  
PATH SOURCE  
RS1 RS0  
2 × REFIN  
REFIN (DEFAULT)  
0.5 × REFIN  
0
0
1
1
0
1
0
1
0.25 × REFIN  
RMS2 RMS1 RMS0 REF OUTPUT MUX SELECT  
LOCK DETECT (DEFAULT)  
VPTAT  
REF_IN (BUFFERED)  
0.5 × REFIN (BUFFERED)  
2 × REFIN (BUFFERED)  
TRISTATE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
RESERVED  
RESERVED  
Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map  
Rev. B | Page 18 of 32  
 
Data Sheet  
ADRF6604  
REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)  
LO  
DIV1  
PLL  
EN  
LO  
DIV1  
LO  
EXT  
LO  
DRV  
CAP DAC  
CONTROL BITS  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB6  
DB5  
DB4  
LXL  
DB3 DB2 DB1 DB0  
LDRV C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
CD3 CD2 CD1 CD0 LDV2 PLEN LDV1  
CAPACITOR DAC  
LO OUTPUT DRIVER  
LDRV  
CD3  
0
...  
1
CD2  
CD1  
CD0 CONTROL FOR IIP3  
OPTIMIZATION  
ENABLE  
DRIVER OFF (DEFAULT)  
DRIVER ON  
0
1
MIN  
...  
MAX  
0
...  
1
0
...  
1
0
...  
1
EXTERNAL LO DRIVE  
ENABLE (PIN 37, PIN 38)  
LXL  
INTERNAL LO OUTPUT (DEFAULT)  
EXTERNAL LO INPUT  
0
1
LDV2 DIVIDE-BY-2 OR 1  
LDV1 DIVIDE-BY-2 IN LO CHAIN ENABLE  
DIVIDE BY 1  
DIVIDE BY 2 (DEFAULT)  
DIVIDE BY 1  
DIVIDE BY 2 (DEFAULT)  
0
1
0
1
PLEN PLL ENABLE  
DISABLE  
ENABLE (DEFAULT)  
0
1
Figure 43. Register 5—PLL Enable and LO Path Control Register Map  
REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)  
CHARGE  
3.3V  
VCO  
BW SW  
CTRL  
VCO LDO VCO  
VCO  
CONTROL BITS  
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
PUMP  
LDO  
VCO BAND SELECT FROM SPI  
RESERVED  
VCO AMPLITUDE  
ENABLE ENABLE SWITCH  
ENABLE ENABLE  
DB23 DB22 DB21 DB20  
DB19  
L3EN  
DB18  
DB17  
DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
0
0
0
CPEN  
LVEN VCO EN VCO SW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)  
CHARGE PUMP ENABLE  
CPEN  
VC[5:0] VCO AMPLITUDE  
VBS[5:0] VCO BAND SELECT FROM SPI  
0x00  
0x01  
….  
0x00  
….  
0
DISABLE  
ENABLE (DEFAULT)  
0
1
….  
0x18  
….  
24 (DEFAULT)  
….  
0x20  
….  
DEFAULT  
L3EN 3.3V LDO ENABLE  
0x2B  
….  
43  
….  
0x3F  
0
1
DISABLE  
ENABLE (DEFAULT)  
0x3F  
63 (RECOMMENDED)  
VBSRC VCO BW CAL AND SW SOURCE CONTROL  
VCO SW VCO SWITCH CONTROL FROM SPI  
0
1
BAND CAL (DEFAULT)  
SPI  
LVEN VCO LDO ENABLE  
REGULAR (DEFAULT)  
BAND CAL  
0
1
0
1
DISABLE  
ENABLE (DEFAULT)  
VCO EN VCO ENABLE  
0
1
DISABLE  
ENABLE (DEFAULT)  
Figure 44. Register 6—VCO Control and VCO Enable Register Map  
REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)  
MIXER  
B_EN  
RESERVED  
CONTROL BITS  
RES XVCO  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
XVCO MBE C3(1) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MBE MIXER BIAS ENABLE  
ENABLE (DEFAULT)  
DISABLE  
0
1
EXTERNAL VCO  
XVCO  
INTERNAL VCO (DEFAULT)  
EXTERNAL VCO  
0
1
Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map  
Rev. B | Page 19 of 32  
 
 
 
ADRF6604  
Data Sheet  
THEORY OF OPERATION  
The ADRF6604 integrates a high performance downconverting  
mixer with a state-of-the-art fractional-N PLL. The PLL also  
integrates a low noise VCO. The SPI port allows the user to control  
the fractional-N PLL functions and the mixer optimization  
functions, as well as allowing for an externally applied LO or VCO.  
Table 8. ADRF6604 Register Functions  
Register  
Function  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Integer divide control for the PLL  
Modulus divide control for the PLL  
Fractional divide control for the PLL  
Σ-Δ modulator dither control  
PLL charge pump, PFD, reference path control  
PLL enable and LO path control  
The mixer core within the ADRF6604 is the next generation of  
an industry-leading family of mixers from Analog Devices, Inc.  
The RF input is converted to a current and then mixed down to IF  
using high performance NPN transistors. The mixer output currents  
are transformed to a differential output. The high performance active  
mixer core results in an exceptional IIP3 and IP1dB with a very  
low output noise floor for excellent dynamic range. Over the  
specified frequency range, the ADRF6604 typically provides IF  
input P1dB of 14.5 dBm and IIP3 of 27.5 dBm.  
VCO control and VCO enable  
Mixer bias enable and external VCO enable  
Note that internal calibration for the PLL must be run when the  
ADRF6604 is initialized at a given frequency. This calibration is  
run automatically whenever Register 0, Register 1, or Register 2 is  
programmed. Because the other registers affect PLL performance,  
Register 0, Register 1, and Register 2 should always be programmed  
last and in the following order: Register 0, Register 1, Register 2.  
Improved performance at specific frequencies can be achieved  
with the use of the internal capacitor DAC (CDAC), which is  
programmable via the SPI port, and by using a resistor to a 5 V  
supply from the IP3SET pin (Pin 29). Adjustment of the capacitor  
DAC allows increments in phase shift at internal nodes in the  
ADRF6604, thus allowing cancellation of third-order distortion  
with no change in supply current. Connecting a resistor to a 5 V  
supply from the IP3SET pin increases the internal mixer core current,  
thereby improving overall IIP2 and IIP3, as well as IP1dB. Using  
the IP3SET pin for this purpose increases the overall supply current.  
To program the frequency of the ADRF6604, the user typically  
programs only Register 0, Register 1, and Register 2. However,  
if registers other than these are programmed first, a short delay  
should be inserted before programming Register 0. This delay  
ensures that the VCO band calibration has sufficient time to  
complete before the final band calibration for Register 0 is initiated.  
Software is available on the ADRF6604 product page under the  
Evaluation Boards & Kits section that allows easy programming  
from a PC running Windows® XP or Vista.  
The fractional divide function of the PLL allows the frequency  
multiplication value from REF_IN to LO output to be a fractional  
value rather than to be restricted to an integer value as in tradi-  
tional PLLs. In operation, this multiplication value is  
INITIALIZATION SEQUENCE  
To ensure proper power-up of the ADRF6604, it is important to  
reset the PLL circuitry after the VCC supply rail settles to 5 V  
0.25 V. Resetting the PLL ensures that the internal bias cells are  
properly configured, even under poor supply start-up conditions.  
INT + (FRAC/MOD)  
where:  
INT is the integer value.  
FRAC is the fractional value.  
MOD is the modulus value.  
To ensure that the PLL is reset after power-up, use the following  
procedure:  
The INT, FRAC, and MOD values are all programmable via the  
SPI port. In other fractional-N PLL designs, fractional multi-  
plication is achieved by periodically changing the fractional value  
in a deterministic way. The disadvantage of this approach is that  
there are often spurious components close to the fundamental  
signal. In the ADRF6604, a Σ-Δ modulator is used to distribute  
the fractional value randomly, thus significantly reducing the  
spurious content due to the fractional function.  
1. Disable the PLL by setting the PLEN bit to 0 (Register 5,  
Bit DB6).  
2. After a delay of >100 ms, set the PLEN bit to 1 (Register 5,  
Bit DB6).  
After this procedure is completed, the other registers should  
be programmed in the following order: Register 7, Register 6,  
Register 4, Register 3, Register 2, Register 1. Then, after a delay  
of >100 ms, Register 0 should be programmed.  
PROGRAMMING THE ADRF6604  
The ADRF6604 is programmed via a 3-pin SPI port. The timing  
requirements for the SPI port are shown in Figure 2. Eight pro-  
grammable registers, each with 24 bits, control the operation of  
the device. The register functions are listed in Table 8.  
Rev. B | Page 20 of 32  
 
 
 
 
Data Sheet  
ADRF6604  
The operation of the LO generation and whether LOP and LON  
are inputs or outputs are determined by the logic levels applied  
at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3  
(LDRV) and Bit DB6 (PLEN) in Register 5. The combination of  
externally applied logic and internal bits required for particular  
LO functions is given in Table 9.  
LO SELECTION LOGIC  
The downconverting mixer in the ADRF6604 can be used  
without the internal PLL by applying an external differential LO  
to Pin 37 (LON) and Pin 38 (LOP). In addition, when using an  
LO generated by the internal PLL, the LO signal can be accessed  
directly at these pins. This function can be used for debugging  
purposes, or the internally generated LO can be used as the LO  
for a separate mixer.  
Table 9. LO Selection Logic  
Pins1  
Register 5 Bits1  
Outputs  
Pin 16 (PLL_EN)  
Pin 36 (LODRV_EN) Bit DB6 (PLEN)  
Bit DB3 (LDRV)  
Output Buffer  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
LO  
0
0
1
1
1
1
X
X
X
0
X
1
0
1
0
1
1
1
X
X
X
0
1
X
External  
External  
External  
Internal  
Internal  
Internal  
Enabled  
1 X = don’t care.  
Rev. B | Page 21 of 32  
 
 
 
ADRF6604  
Data Sheet  
APPLICATIONS INFORMATION  
be ac-coupled and terminated with a 50 Ω resistor as shown in  
Figure 46. The reference signal, or a divided-down version of  
the reference signal, can be brought back off chip at the multiplexer  
output pin (MUXOUT). A lock detect signal and a voltage  
proportional to the ambient temperature can also be selected  
on the multiplexer output pin.  
BASIC CONNECTIONS FOR OPERATION  
Figure 46 shows the basic connections for the ADRF6604 evalu-  
ation board. The six power supply pins should be individually  
decoupled using 100 pF and 0.1 µF capacitors located as close as  
possible to the device. In addition, the internal decoupling nodes  
(DECL3P3, DECL2P5, and DECLVCO) should be decoupled  
with the capacitor values shown in Figure 46.  
The loop filter is connected between the CP and VTUNE pins.  
When connected in this way, the internal VCO is operational.  
For information about the loop filter components, see the  
Evaluation Board Configuration Options section.  
The RF input is internally ac-coupled and needs no external  
bias. The IF outputs are open collector, and a bias inductor is  
required from these outputs to VCC.  
Operation with an external VCO is also possible. In this case,  
the loop filter components should be referred to ground. The  
output of the loop filter is connected to the input voltage pin of  
the external VCO. The output of the VCO is brought back into  
the device on the LOP and LON pins, using a balun if necessary.  
A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms  
for a sine wave input) results in an IF output power of 4.7 dBm.  
The reference frequency for the PLL should be from 12 MHz to  
160 MHz and should be applied to the REF_IN pin, which should  
P1  
9-PIN  
DSUB  
1
2
3
4
5
6
7
8
9
VCC  
R36  
R19  
0  
(0402)  
R35  
R30  
0Ω  
R54  
0Ω  
0Ω  
(0402)  
R20  
10kΩ  
(0402) (0402)  
R57  
0Ω  
(0402)  
0Ω  
(0402)  
(0402)  
S2  
R53  
10kΩ  
(0402)  
C34  
OPEN  
(0402)  
R52  
OPEN  
(0402)  
VCC  
RED  
+5V  
C33  
OPEN  
(0402)  
R51  
OPEN  
(0402)  
C7  
0.1µF  
(0402)  
C25  
0.1µF  
(0402)  
C23  
0.1µF  
(0402)  
C20  
0.1µF  
(0402)  
C19  
0.1µF  
(0402)  
C9  
0.1µF  
(0402)  
R6  
R26  
R25  
R24  
R17  
R7  
VCC1  
RED  
R55  
OPEN  
(0402)  
C32  
OPEN  
(0402)  
R50  
OPEN  
(0402)  
0Ω  
0Ω  
0Ω  
0Ω  
0Ω  
0Ω  
(0402)  
C8  
(0402)  
(0402)  
(0402)  
(0402)  
(0402)  
C24  
C22  
C21  
C18  
C10  
100pF  
(0402)  
100pF  
(0402)  
100pF  
100pF  
100pF  
100pF  
(0402)  
(0402)  
(0402)  
(0402)  
S1  
OPEN  
VCC_LO  
VCC_V2I  
VCC_MIX  
VCC_LO  
VCC2  
VCC1  
34  
27  
22  
17  
10  
1
16 13 12 14  
DECL2P5  
C16  
R56  
9
2
0Ω  
LODRV_EN  
C17  
C42  
R18  
(0402)  
36  
SPI  
INTERFACE  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
0Ω  
LON  
C5  
(0402)  
37  
38  
LO IN/OUT  
4
5
3
1
DIVIDER  
÷2  
BUFFER  
BUFFER  
DECL3P3  
C12  
LOP  
1nF  
(0402)  
C11  
0.1µF  
(0402)  
C41  
OPEN  
(0603)  
R8  
0Ω  
(0402)  
100pF  
(0402)  
DIV  
BY  
2, 1  
2:1  
MUX  
T8  
TC1-1-13+  
INTEGER  
REG  
FRACTION  
REG  
C6  
1nF  
(0402)  
MODULUS  
ADRF6604  
RF  
IN  
26  
29  
RFIN  
THIRD-ORDER  
R28  
FRACTIONAL  
C31  
1nF  
0Ω  
VCO  
CORE  
INTERPOLATOR  
(0402)  
×2  
REF_IN  
N COUNTER  
21 TO 123  
PRESCALER  
÷2  
(0402)  
REF_IN  
6
8
R70  
MUX  
÷2  
IP3SET  
CHARGE PUMP  
250µA,  
49.9Ω  
+
C27  
0.1µF  
(0402)  
PHASE  
FREQUENCY  
DETECTOR  
R27  
0Ω  
(0402)  
500µA (DEFAULT),  
750µA,  
TEMP  
SENSOR  
÷4  
REFOUT  
(0402)  
MUXOUT  
1000µA  
R16  
4
7
11 15 20 21 23 24 25 28 30 31 35  
5
3
39  
40  
18  
19  
0Ω  
R
SET  
R2  
VTUNE DECLVCO IFP  
IFN  
CP  
(0402)  
1
2
4
RFOUT  
OPEN  
(0402)  
R37  
R43  
R62  
VCC  
+5V  
0Ω  
0Ω  
0Ω  
R59  
3
(0402)  
(0402)  
5
(0402)  
0Ω  
R38  
0Ω  
(0402)  
(0402)  
R9 10kΩ R65 10kΩ  
CP  
TEST  
VTUNE  
(0402)  
(0402)  
C29  
0.1µF  
(0402)  
POINT  
R10  
R63  
(ORANGE)  
3kΩ  
OPEN  
(0402)  
C14  
22pF  
(0603)  
C13  
6.8pF  
(0603)  
C40  
22pF  
(0603)  
(0603)  
C15  
2.7nF  
(1206)  
R12  
R11  
OPEN  
(0402)  
R1  
0Ω  
0Ω  
(0402)  
(0402)  
C43  
10µF  
(0603)  
C2  
OPEN  
(0402)  
C1  
100pF  
(0402)  
Figure 46. Basic Connections for Operation of the ADRF6604  
Rev. B | Page 22 of 32  
 
 
 
Data Sheet  
ADRF6604  
AC TEST FIXTURE  
Characterization data for the ADRF6604 was taken under very  
strict test conditions. All possible techniques were used to  
achieve optimum accuracy and to remove degrading effects of  
the signal generation and measurement equipment. Figure 47  
shows the typical AC test setup used in the characterization of  
the ADRF6604.  
ADRF6604 CHARACTERIZATION RACK DIAGRAM.  
ALL INSTRUMENTS ARE CONTROLLED BY A LAB  
COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY  
CHAINED TO EACH INDIVIDUAL INSTRUMENT.  
RF1 AGILENT N5181A  
HP 11636A  
POWER DIVIDER  
RF2 AGILENT N5181A  
REF_IN AGILENT N5181A  
RF  
IN  
REF_IN  
ADRF6604  
EVALUATION BOARD  
IF_OUT  
ROHDE & SCHWARZ  
FSEA30  
AGILENT 34401A SET TO IDC  
(SET FOR SUPPLY CURRENT)  
GND VIA  
10-PIN DC HEADER  
5V dc VIA  
10-PIN DC HEADER  
3.3V dc VIA  
10-PIN DC HEADER  
AGILENT 34980A WITH THREE 34921 MODULES  
AND ONE 34950 MODULE  
5V dc MEASURED FOR SUPPLY CURRENT  
AGILENT E3631A 25V SET TO  
3.3V, 6V SET TO 5V.  
RETURNS ARE  
JUMPERED TOGETHER  
Figure 47. ADRF6604 AC Test Setup  
Rev. B | Page 23 of 32  
 
 
ADRF6604  
Data Sheet  
EVALUATION BOARD  
Figure 50 shows the schematic of the RoHS-compliant evaluation  
board for the ADRF6604. This board has four layers and was  
designed using Rogers 4350 hybrid material to minimize high  
frequency losses. FR4 material is also adequate if the design can  
accept the slightly higher trace loss of this material.  
To connect the evaluation board to a USB port, a USB adapter board  
(EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices.  
This board connects to the PC using a standard USB cable with  
a USB mini-connector at one end. An additional 25-pin male to  
9-pin female adapter is required to mate the EVAL-ADF4XXXZ-  
USB board to the 9-pin D-Sub connector on the ADRF6604  
evaluation board.  
The evaluation board is designed to operate using the internal  
VCO of the device (the default configuration) or using an external  
VCO. To use an external VCO, R62 and R12 should be removed.  
Place 0 Ω resistors in R63 and R11. The input of the external  
VCO should be connected to the VTUNE SMA connector, and  
the external VCO output should be connected to the LO IN/OUT  
SMA connector. In addition to these hardware changes, internal  
register settings must be changed to enable operation with an  
external VCO (see the Register 6—VCO Control and VCO  
Enable (Default: 0x1E2106) section).  
Additional configuration options for the evaluation board are  
described in Table 10.  
EVALUATION BOARD CONTROL SOFTWARE  
Software to program the ADRF6604 is available for download  
from the ADRF6604 product page under the Evaluation Boards  
& Kits section. To install the software  
1. Download and extract the zip file:  
ADRF6x0x_customer_6p0p0_install.zip file.  
2. Follow the instructions in the read me file.  
The evaluation board can be connected to the PC using a PC  
parallel port or a USB port. These options are selectable from the  
opening menu of the software interface (see Figure 48). The  
evaluation board is shipped with a 25-pin parallel port cable  
for connection to the PC parallel port.  
Figure 48. Control Software Opening Menu  
Figure 49 shows the main window of the control software with  
the default settings displayed.  
Rev. B | Page 24 of 32  
 
 
 
Data Sheet  
ADRF6604  
Figure 49. Main Window of the ADRF6604 Evaluation Board Software  
Rev. B | Page 25 of 32  
 
ADRF6604  
Data Sheet  
SCHEMATIC AND ARTWORK  
W 1 - 4 C T  
6
4
3
2
1
0
3 4 R  
0
6 6 R  
8 2 C  
F U 1 0  
0
2 3 R  
B B _ C V C  
0
O L _ C V C  
1 3 R  
0
F R _ C V C  
9 2 R  
D
G N  
I F N  
I F P  
D
G N  
N C  
0
0
N C  
3 3 R  
O L C V C _  
N E _ L L P  
4 3 R  
0
O L C V C _  
3
1
D
G N  
2
0 2 R  
2
3
S2  
D
G N  
E L  
K L C  
D A T  
G N  
1
E N V _ R D O L  
L O N  
1 S  
0
1
L O P  
5 3 R  
A
U T N V E  
D
C V O C L D E  
0
0
2 7 R  
2 6 R  
1
0
2 1 R  
K 3  
0 1 R  
D B T  
1 7 R  
I
N D  
1 1 R  
0
7 3 R  
I
N D  
4 1 R  
1 Y  
Figure 50. Evaluation Board Schematic  
Rev. B | Page 26 of 32  
 
 
Data Sheet  
ADRF6604  
Figure 52. Evaluation Board Layout (Top)  
Figure 51. Evaluation Board Layout (Bottom)  
Rev. B | Page 27 of 32  
ADRF6604  
Data Sheet  
EVALUATION BOARD CONFIGURATION OPTIONS  
Table 10.  
Default Condition/  
Option Settings  
Component  
Description  
S1, R55, R56, R33  
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in  
combination with internal register settings, determines whether the LOP and LON pins  
function as inputs or outputs (see the LO Selection Logic section for more information).  
S1 = R55 = open  
(not installed),  
R56 = R33 = 0 Ω,  
LODRV_EN = 0 V  
LO IN/OUT  
SMA Connector  
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input  
connector.  
LO input  
REFIN  
SMA Connector  
Reference input. The input reference frequency for the PLL is applied to this connector.  
Input impedance is 50 Ω.  
REFOUT  
SMA Connector  
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The  
on-board multiplexer can be programmed to bring out the following signals: REFIN, 2×  
REFIN, REFIN/2, and REFIN/4; temperature sensor output voltage; and lock detect indicator.  
Lock detect  
CP Test Point  
Charge pump test point. The unfiltered charge pump signal can be probed at this test  
point. Note that the CP pin should not be probed during critical measurements, such as  
phase noise.  
R37, C14, R9, R10,  
C15, C13, R65, C40  
Loop filter. Loop filter components.  
R11, R12  
Loop filter return. When the internal VCO is used, the loop filter components should be  
returned to the DECLVCO pin (Pin 40) by installing a 0 Ω resistor in R12. When an external  
VCO is used, the loop filter components can be returned to ground by installing a 0 Ω  
resistor in R11.  
R12 = 0 Ω (0402),  
R11 = open (0402)  
R62, R63, VTUNE  
SMA Connector  
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are  
connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an  
external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the  
voltage input of the VCO should be connected to the VTUNE SMA connector. The output of  
the VCO is brought back into the PLL via the LO IN/OUT SMA connector.  
R62 = 0 Ω (0402),  
R63 = open (0402)  
R2  
RSET pin. This pin is unused and should be left open.  
R2 = open (0402)  
RFIN SMA Connector RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of R3 = R23 = open (0402)  
the ADRF6604 is ac-coupled; therefore, no bias is necessary.  
T3  
IF output. The differential IF output signals from the ADRF6604 (IFP and IFN) are converted  
to a single-ended signal by T3.  
Rev. B | Page 28 of 32  
 
 
Data Sheet  
ADRF6604  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
30  
40  
1
5.85  
5.75 SQ  
5.65  
0.50  
BSC  
PIN 1  
INDICATOR  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
21  
20  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
4.50 REF  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF6604ACPZ-R7  
ADRF6604-EVALZ  
Temperature Range  
Package Description  
Package Option  
CP-40-1  
−40°C to +85°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 29 of 32  
 
 
 
ADRF6604  
NOTES  
Data Sheet  
Rev. B | Page 30 of 32  
Data Sheet  
NOTES  
ADRF6604  
Rev. B | Page 31 of 32  
ADRF6604  
NOTES  
Data Sheet  
©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08553-0-1/14(B)  
Rev. B | Page 32 of 32  

相关型号:

ADRF6604-EVALZ

1200 MHz to 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6604ACPZ-R7

1200 MHz TO 3600 MHz Rx Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6612

700 MHz to 3000 MHz Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6612-EVALZ

700 MHz to 3000 MHz Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6612ACPZ-R7

700 MHz to 3000 MHz Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6614

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6614-EVALZ

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6614ACPZ-R7

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6620

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6620-EVALZ

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6620ACPZ-R7

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6650

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI