ADRF6614-EVALZ [ADI]

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO;
ADRF6614-EVALZ
型号: ADRF6614-EVALZ
厂家: ADI    ADI
描述:

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO

文件: 总61页 (文件大小:2965K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700 MHz to 3000 MHz, Dual Passive  
Receive Mixer with Integrated PLL and VCO  
Data Sheet  
ADRF6614  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RF frequency: 700 MHz to 3000 MHz, continuous  
LO input frequency: 200 MHz to 2700 MHz, high-side or low-  
side injection  
IF range: 40 MHz to 500 MHz  
Power conversion gain of 9.0 dB  
Phase noise performance of −144 dBc/Hz at 800 kHz offset  
supporting stringent GSM standards in both 800 MHz to  
900 MHz and 1800 MHz to 1900 MHz bands  
Single-sideband (SSB) noise figure of 11.3 dB  
Input IP3 of 30 dBm  
2
46  
45 44  
48 47 43 42  
39 38  
41 40 37  
1
3
6
7
34  
33  
32  
GND  
GND  
GND  
VCC1  
VCC10  
VCC9  
VCC8  
PLL REF BUFFER  
PFD/CP  
FRACTIONAL DIVIDER  
VCO  
VCO  
VCO  
36  
35  
RFBCT1  
RFIN1  
31 VCC7  
30 LDO2  
÷1 TO  
32  
4
5
EXTVCOIN+  
EXTVCOIN–  
26  
RFIN2  
ADRF6614  
8
25  
DECL1  
DECL2  
DECL3  
DECL4  
DECL5  
RFBCT2  
PLL  
3.3V  
LDO  
VCO  
LDO  
9
Input P1dB of 10.6 dBm  
Typical LO input drive of 0 dBm  
Single-ended, 50 Ω RF port  
29  
28  
27  
VCC6  
VCC5  
VCC4  
SPI  
CONTROL  
10  
11  
12  
SPI  
2.5V 3.3V  
LDO LDO  
DIV  
13 14  
15 16 17 18 19  
22 23  
20 21 24  
Single-ended or balanced LO input port  
Serial port interface (SPI) control on all functions  
Exposed pad, 7 mm × 7 mm, 48-lead LFCSP  
Figure 1.  
APPLICATIONS  
Multiband/multistandard cellular base station diversity receivers  
Wideband radio link diversity downconverters  
Multimode cellular extenders and picocells  
IF buffer amplifiers follow the passive mixer cores, yielding  
typical power conversion gains of 9.0 dB, and can be matched  
to a wide range of output impedances.  
GENERAL DESCRIPTION  
The ADRF6614 is a dual radio frequency (RF) mixer and  
intermediate frequency (IF) amplifier with an integrated phase-  
locked loop (PLL) and voltage controlled oscillators (VCOs). The  
ADRF6614 uses revolutionary broadband square wave limiting  
local oscillator (LO) amplifiers to achieve a wideband RF bandwidth  
of 700 MHz to 3000 MHz. Unlike narrow-band sine wave LO  
amplifier solutions, the LO can be applied above or below the RF  
input over a wide bandwidth. Energy storage elements are not  
utilized in the LO amplifier, thus dc current consumption also  
decreases with decreasing LO frequency.  
The PLL architecture supports both integer-N and fractional-N  
operation and can generate the entire LO frequency range of  
200 MHz to 2700 MHz using an external reference input frequency  
anywhere in the range of 12 MHz to 320 MHz. An external loop  
filter provides flexibility in trading off phase noise vs. acquisition  
time. To reduce fractional spurs in fractional-N mode, a Σ-Δ  
modulator controls the post VCO-programmable divider. The  
device integrates six VCO cores, four of which provide complete  
frequency coverage between 200 MHz and 2700 MHz, and meet  
the GSM phase noise requirements in the 800 MHz and 900 MHz  
bands. Two additional GSM only cores enable the ADRF6614 to  
meet the GSM phase noise requirements in the digital cellular  
system 1800 MHz (DCS1800) and personal communications  
service 1900 MHz (PCS1900) bands.  
The ADRF6614 utilizes highly linear, doubly balanced passive  
mixer cores with integrated RF and LO balancing circuits to  
allow single-ended operation. Integrated RF baluns allow optimal  
performance over the 700 MHz to 3000 MHz RF input frequency.  
The balanced passive mixer arrangement provides outstanding LO  
to RF and LO to IF leakages, excellent RF to IF isolation, and  
excellent intermodulation performance over the full RF bandwidth.  
All features of the ADRF6614 are controlled via a 3-wire SPI,  
resulting in optimum performance and minimum external  
components.  
The balanced mixer cores provide extremely high input linearity,  
allowing the device to be used in demanding wideband applications  
where in-band blocking signals may otherwise result in the degra-  
dation of dynamic range. Noise performance under blocking is  
comparable to narrow-band passive mixer designs. High linearity  
The ADRF6614 is fabricated using a BiCMOS, high performance  
IC process. The device is available in a 7 mm × 7 mm, 48-lead  
LFCSP package and operates over a −40°C to +85°C temperature  
range. An evaluation board is available.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF6614  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Spurious Performance ............................................................... 32  
Theory of Operation ...................................................................... 34  
RF Subsystem.............................................................................. 34  
External LO Generation ............................................................ 34  
Internal LO Generation............................................................. 34  
Applications Information .............................................................. 38  
Basic Connections by Pin Description ........................................ 39  
Mixer Optimization ....................................................................... 40  
RF Input Balun Insertion Loss Optimization......................... 40  
IIP3 Optimization ...................................................................... 40  
VGS Programming..................................................................... 41  
Low-Pass Filter Programming.................................................. 41  
GSM Mode of Operation........................................................... 43  
Register Summary .......................................................................... 44  
Register Details ............................................................................... 45  
Evaluation Board ............................................................................ 55  
Outline Dimensions....................................................................... 61  
Ordering Guide .......................................................................... 61  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
RF Specifications .......................................................................... 3  
Synthesizer/PLL Specifications................................................... 4  
VCO Specifications, Open-Loop................................................ 7  
Logic Input and Power Specifications ....................................... 8  
Digital Logic Specifications......................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Mixer, High Performance Mode............................................... 13  
Mixer, High Efficiency Mode.................................................... 22  
Synthesizer................................................................................... 23  
REVISION HISTORY  
3/16—Revision 0: Initial Version  
Rev. 0 | Page 2 of 61  
 
Data Sheet  
ADRF6614  
SPECIFICATIONS  
RF SPECIFICATIONS  
TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, frequency of the reference (fREF) = 122.88 MHz, fREF power = 4 dBm, fPFD  
1.536 MHz, low-side LO injection, optimum RF balun (RFB) and low-pass filter (LPF) settings, unless otherwise noted.  
=
Table 1. High Performance Mode  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INTERFACE  
Return Loss  
Input Impedance  
Tunable to >20 dB broadband via serial port  
17.9  
50  
dB  
RF Frequency Range (fRF)  
IF OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range (fIF)  
DC Bias Voltage1  
700  
40  
3000  
500  
+5  
MHz  
Differential impedance, f = 200 MHz  
Externally generated  
300||1.5  
IFOUTx  
Ω||pF  
MHz  
V
EXTERNAL LO INPUT  
External LO Power Input  
Return Loss  
−5  
0
−11  
50  
dBm  
dB  
Input Impedance  
External VCO Input Frequency  
LO Frequency Range  
External VCO input supports divide by 1, 2, 4, 8, 16, and 32  
Low-side or high-side LO, internally or externally  
generated  
250  
250  
5700  
2850  
MHz  
MHz  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
4:1 IF port transformer and printed circuit board (PCB) loss  
removed  
9.0  
dB  
Voltage Conversion Gain  
SSB Noise Figure  
IF Output Phase Noise Under Blocking  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω  
15.0  
11.3  
−153  
dB  
dB  
dBc/Hz  
10 dBm blocker present 10 MHz above desired the RF input,  
fRF = 1900 MHz, fBLOCK = 1910 MHz, fLO = 1697 MHz, fIF =  
203 MHz, IFBLOCKER = 213 MHz  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz, each RF  
tone at −10 dBm  
fRF1 = 1900 MHz, fRF2 = 1950 MHz, fLO = 1697 MHz, each RF  
tone at −10 dBm  
30  
60  
dBm  
dBm  
Input 1 dB Compression Point (P1dB)  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
IF/2 Spurious  
10.6  
−35  
−45  
−22  
−72  
−69  
dBm  
dBm  
dBm  
dB  
dBc  
dBc  
Unfiltered IF output  
−10 dBm input power  
−10 dBm input power  
IF/3 Spurious  
POWER INTERFACE  
VCC1, VCC2, VCC7, VCC12  
Supply Voltage  
Quiescent Current  
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9,  
VCC10, VCC11, IFOUT1+, IFOUT1−,  
IFOUT2+, IFOUT2−  
Supply Voltage  
Quiescent Current  
3.55  
3.55  
3.7  
260  
3.85  
5.25  
V
mA  
5
214  
V
mA  
LO OUTPUT (LOOUT+, LOOUT−)  
Frequency Range (fLO)  
Output Level  
200  
−5  
2700  
+7  
MHz  
dBm  
Adjustable via SPI in four steps, in 50 Ω balanced load  
Balanced  
Output Impedance  
50  
1 Supply voltage must be applied from the external circuit through choke inductors.  
Rev. 0 | Page 3 of 61  
 
 
ADRF6614  
Data Sheet  
TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection,  
optimum RFB and LPF settings, unless otherwise noted.  
Table 2. High Efficiency Mode  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
IIP3  
4:1 IF port transformer and PCB loss removed  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω  
8.7  
dB  
dB  
dB  
dBm  
14.7  
10.7  
20.5  
fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
IIP2  
fRF1 = 1900 MHz, fRF2 = 1950 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
53  
dBm  
Input P1dB  
8.2  
dBm  
dBm  
dBm  
dB  
dBc  
dBc  
LO to IF Output Leakage  
LO to RF Input Leakage  
RF to IF Output Isolation  
IF/2 Spurious  
Unfiltered IF output  
−45.0  
−52.0  
−22.8  
−58  
−10 dBm input power  
−10 dBm input power  
IF/3 Spurious  
−58  
POWER INTERFACE  
VCC1, VCC2, VCC7, VCC12  
Supply Voltage  
Quiescent Current  
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10,  
VCC11, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−  
3.55  
3.55  
3.7  
260  
3.85  
5.25  
V
mA  
Supply Voltage  
3.7  
V
Quiescent Current  
210  
mA  
SYNTHESIZER/PLL SPECIFICATIONS  
High performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 1.536 MHz,  
REF power (PREFIN) = 4 dBm, CSCALE = 8 mA, bleed = 0 µA, ABLDLY = 0.9 ns, integer mode loop filter, unless otherwise noted.  
f
Table 3. Integer Mode  
Parameter  
SYNTHESIZER SPECIFICATIONS  
Frequency Range (fLO  
Figure of Merit (FOM)1  
Test Conditions/Comments  
Synthesizer specifications referenced to 1 × LO  
Internally generated LO  
Min  
200  
0.8  
Typ  
Max  
2700  
70  
Unit  
)
MHz  
dBc/Hz/Hz  
MHz  
PREFIN = 6.5 dBm  
−223  
Phase and Frequency Detector (PFD)  
Frequency (fPFD  
)
Reference Spurs  
fPFD = 1.536 MHz  
1 × fPFD  
−105  
−105  
−90  
dBc  
dBc  
dBc  
4 × fPFD  
>4 × fPFD  
CHARGE PUMP  
Pump Current  
Output Compliance Range  
REFERENCE CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Capacitance  
Reference Divider Value  
MUXOUT Output Level  
Programmable to 250 µA, 500 µA, …, 8 mA  
REFIN, MUXOUT pins  
8
8.75  
2.5  
mA  
V
0.7  
12  
320  
MHz  
pF  
4
Programmable to 0.5, 1, 2, 3, …, 2047  
VOL (lock detect output selected)  
VOH (lock detect output selected)  
Reference output selected  
0.5  
2.7  
2047  
0.25  
V
V
%
MUXOUT Duty Cycle  
50  
Rev. 0 | Page 4 of 61  
 
Data Sheet  
ADRF6614  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VCO_0  
Phase Noise, Locked  
fLO = 2.55 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−87  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−94.9  
−103.3  
−132.9  
−154.1  
−155.2  
0.87  
Integrated Phase Noise  
VCO_1  
Phase Noise, Locked  
fLO = 2.22 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−90  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−98.4  
−106.5  
−136.1  
−154.8  
−155.5  
0.63  
Integrated Phase Noise  
VCO_2  
Phase Noise, Locked  
fLO = 1.9 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−90  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−98.1  
−109.8  
−137.1  
−155.7  
−156.2  
0.61  
Integrated Phase Noise  
VCO_3  
Phase Noise, Locked  
fLO = 1.6 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−89  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−97.2  
−107  
−136.2  
−155.7  
−157.3  
0.64  
Integrated Phase Noise  
VCO_4  
Phase Noise, Locked  
fLO = 1.57 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−90  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−109  
−119  
−144  
−145  
−156  
−156  
0.26  
Integrated Phase Noise  
VCO_5  
Phase Noise, Locked  
fLO = 1.68 GHz  
1 kHz offset  
−93  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
50 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
−107  
−118  
−144  
−145  
Rev. 0 | Page 5 of 61  
ADRF6614  
Data Sheet  
Parameter  
Test Conditions/Comments  
10 MHz offset  
40 MHz offset  
Min  
Typ  
Max  
Unit  
−157  
−157.5  
0.27  
dBc/Hz  
dBc/Hz  
°rms  
Integrated Phase Noise  
1 kHz to 40 MHz integration bandwidth  
1 The FOM is computed as phase noise (dBc/Hz) –10log10(fPFD) – 20log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 122.88 MHz and fREF power =  
6.5 dBm with a 1.536 MHz fPFD. The FOM was computed at 50 kHz offset.  
High performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 30.72 MHz, fREF power =  
4 dBm, CSCALE = 250 µA, bleed = 93.75 µA, ABLDLY = 0 ns, fractional mode loop filter, unless otherwise noted.  
Table 4. Fractional Mode  
Parameter  
Test Conditions/Comments  
Synthesizer specifications referenced to 1 × LO  
PREFIN = 6.5 dBm  
Min Typ  
Max  
Unit  
SYNTHESIZER SPECIFICATIONS  
FOM1  
219  
dBc/Hz/Hz  
REFERENCE CHARACTERISTICS  
VCO_0  
REFIN, MUXOUT pins  
Phase Noise, Locked  
fLO = 2.55 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−92.5  
−97.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−109.7  
−137.6  
−153.6  
−155.5  
0.36  
Integrated Phase Noise  
VCO_1  
Phase Noise, Locked  
fLO = 2.22 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−93.6  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−101.8  
−112.5  
−140.5  
−154.3  
−155.3  
0.32  
Integrated Phase Noise  
VCO_2  
Phase Noise, Locked  
fLO = 1.9 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−94.2  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−101.7  
−112.4  
−141.3  
−155.8  
−156.8  
0.32  
Integrated Phase Noise  
VCO_3  
Phase Noise, Locked  
fLO = 1.6 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
1 kHz to 40 MHz integration bandwidth  
−93.1  
−99.8  
−110.9  
−140.2  
−155.7  
−157.2  
0.33  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
Integrated Phase Noise  
1 The FOM is computed as phase noise (dBc/Hz) − 10log10(fPFD) – 20log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 122.88 MHz and fREF power =  
6.5 dBm with a 30.72 MHz fPFD. The FOM was computed at 45 kHz offset.  
Rev. 0 | Page 6 of 61  
Data Sheet  
ADRF6614  
VCO SPECIFICATIONS, OPEN-LOOP  
High performance mode, TA = 25°C, measured on LO output, unless otherwise noted.  
Table 5.  
Parameter  
Test Conditions/Comments  
fLO = 2.55 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
fLO = 2.15 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
fLO = 1.9 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
fLO = 1.6 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
fVCO = 3.14 GHz  
1 kHz offset  
50 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
fVCO = 3.36 GHz  
1 kHz offset  
Min  
Typ  
Max  
Unit  
VCO_0 PHASE NOISE  
−50  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−104.4  
−112.6  
−137.7  
−154  
−155.1  
VCO_1 PHASE NOISE  
VCO_2 PHASE NOISE  
VCO_3 PHASE NOISE  
−54  
−106.1  
−115  
−138.9  
−155.8  
−155.2  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−53.6  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−106.6  
−114.6  
−140.8  
−155.4  
−156.3  
−48.5  
−106  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−115.3  
−139.2  
−140.2  
−157.7  
−156.3  
VCO_4 PHASE NOISE  
−53.8  
−110.3  
−118  
−139.5  
−140.6  
−155.4  
−157.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
VCO_5 PHASE NOISE  
−54  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
50 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
10 MHz offset  
40 MHz offset  
−108.3  
−116.3  
−138.5  
−140  
−156.3  
−157.8  
Rev. 0 | Page 7 of 61  
 
ADRF6614  
Data Sheet  
LOGIC INPUT/OUTPUT AND POWER SPECIFICATIONS  
TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection,  
optimum RFB and LPF settings, unless otherwise noted.  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUT/OUTPUTS  
Input Voltage  
SCLK, SDIO, CS  
High, VIH  
Low, VIL  
1.4  
0
3.3  
0.7  
V
V
Output Voltage  
High, VOH  
Low, VOL  
IOH = −100 µA  
IOL = 100 µA  
2.3  
V
V
0.2  
Input Current, IINH/IINL  
POWER SUPPLIES  
High Performance Mode  
Voltage Range  
VCC1, VCC2, VCC7, VCC12  
0.1  
µA  
3.55  
4.75  
3.7  
5
5.25  
5.25  
V
V
VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10,  
VCC11, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−  
Power Dissipation  
Internal LO mode (internal PLL)  
External LO output enabled  
External LO output disabled  
2.7  
2.5  
W
W
High Efficiency Mode  
Voltage Range  
VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7, VCC8,  
VCC9, VCC10, VCC11, VCC12, IFOUT1+, IFOUT1−,  
IFOUT2+, IFOUT2−  
3.55  
3.7  
3.85  
V
Power Dissipation  
Internal LO mode (internal PLL)  
External LO output enabled  
External LO output disabled  
2.0  
1.8  
W
W
Rev. 0 | Page 8 of 61  
 
Data Sheet  
ADRF6614  
DIGITAL LOGIC SPECIFICATIONS  
Table 7.  
Symbol  
Description  
Min Typ Max Unit  
tCLK  
tDS  
tDH  
tS  
Serial clock period  
38  
8
8
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Setup time between falling edge of CS and SCLK  
Hold time between rising edge of CS and SCLK  
Minimum period for SCLK to be in a logic high state  
Minimum period for SCLK to be in a logic low state  
Maximum delay between falling edge of SCLK and output data Valid for a read operation  
Maximum delay between CS deactivation and SDIO bus return to high impedance  
tH  
tHIGH  
tLOW  
tACCESS  
tZ  
231  
5
tHIGH  
tH  
tDS  
tCLK  
tS  
tDH  
tLOW  
tACCESS  
CS  
DON'T CARE  
tZ  
DON'T CARE  
DON'T CARE  
SCLK  
SDIO  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D15  
D14  
D13  
D3  
D2  
D1  
D0  
DON'T CARE  
Figure 2. Setup and Hold Timing Measurements  
Rev. 0 | Page 9 of 61  
 
ADRF6614  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
THERMAL RESISTANCE  
θJC is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage (VCC1, VCC2, VCC3,  
VCC4, VCC5, VCC6, VCC7, VCC8, VCC9,  
VCC10, VCC11, VCC12, IFOUT1+,  
IFOUT1−, IFOUT2+, IFOUT2−)  
−0.5 V to +5.5 V  
Table 9. Thermal Resistance  
Package Type  
θJC  
Unit  
48-Lead LFCSP  
1.62  
°C/W  
Digital Input/Output (SCLK, SDIO, CS)  
RFINx  
−0.3 V to +3.6 V  
20 dBm  
EXTVCOIN+, EXTVCOIN−  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
13 dBm  
150°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 10 of 61  
 
 
 
Data Sheet  
ADRF6614  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
VCOVTUNE  
GND  
1
2
3
4
5
6
7
8
9
36  
RFBCT1  
35 RFIN1  
34 VCC10  
33 VCC9  
EXTVCOIN+  
EXTVCOIN–  
GND  
VCC8  
VCC7  
32  
31  
ADRF6614  
TOP VIEW  
(Not to Scale)  
VCC1  
30 LDO2  
29 VCC6  
28 VCC5  
27 VCC4  
26 RFIN2  
25 RFBCT2  
DECL1  
DECL2  
DECL3 10  
DECL4 11  
DECL5 12  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND  
PLANE WITH LOW THERMAL IMPEDANCE.  
Figure 3. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3, 6  
GND  
VCOVTUNE  
GND  
Common Ground Connection for External Loop Filter.  
Control Voltage for Internal VCO.  
Common Ground for External VCO.  
4, 5  
EXTVCOIN+, EXTVCOIN− Inputs from External VCO to Internal Divider.  
7
VCC1  
3.7 V VCO Supply.  
8, 9  
10, 11  
12  
13, 14  
15  
16  
DECL1, DECL2  
DECL3, DECL4  
DECL5  
LOOUT+, LOOUT−  
LDO1  
VCC2  
SDIO  
SCLK  
LDO Output Decouplers for VCO.  
External Decouplers for VCO Buffer.  
External Decoupler for VCO Circuitry.  
Differential Outputs of Internally Generated LO.  
External Decoupling for Internal 2.5 V SPI Port LDO.  
3.7 V Supply for Programmable SPI Port.  
Serial Data Input/Output for Programmable SPI Port.  
Clock for Programmable SPI Port.  
17  
18  
19  
CS  
SPI Chip Select, Active Low.  
20, 41  
21, 40  
22, 23  
24, 37  
25  
VCC3, VCC11  
DNC  
IFOUT2+, IFOUT2−  
GND  
RFBCT2  
RFIN2  
5 V Biases for Channel 1 and Channel 2 IF.  
Do Not Connect. Do not connect these pins externally.  
Channel 2 Differential IF Outputs.  
Ground Connections for Channel 1 and Channel 2 IF Stage.  
Balun Center Tap Connection for Channel 2 RF Input.  
Channel 2 RF Input.  
26  
27, 28, 29  
30  
31  
32, 33, 34  
35  
VCC4, VCC5, VCC6  
LDO2  
VCC7  
VCC8, VCC9, VCC10  
RFIN1  
5 V Supplies for Mixer LO Amplifiers.  
External Decoupling for Internal 3.3 V PLL/Divider LDO.  
3.7 V Supply for Mixer LO Divider Chain.  
5 V Supplies for Mixer LO Amplifiers.  
Channel 1 RF Input.  
36  
38, 39  
42  
RFBCT1  
IFOUT1−, IFOUT1+  
MUXOUT  
Balun Center Tap Connection for Channel 1 RF Input.  
Channel 1 Differential IF Outputs.  
Internal Multiplexer Output.  
Rev. 0 | Page 11 of 61  
 
ADRF6614  
Data Sheet  
Pin No.  
43  
44  
45  
46  
Mnemonic  
Description  
REFIN  
LDO3  
LDO4  
VCC12  
CPOUT  
GND  
Reference Input for Internal PLL (Single-Ended, CMOS).  
External Decoupling for Internal 2.5 V PLL LDO.  
External Decoupling for Internal 3.3 V PLL LDO.  
3.7 V Supply for Internal PLL.  
Charge Pump Output.  
Common Ground for External Charge Pump.  
47  
48  
EPAD  
Exposed Pad. The exposed pad must be connected to a ground plane with low thermal impedance.  
Rev. 0 | Page 12 of 61  
Data Sheet  
ADRF6614  
TYPICAL PERFORMANCE CHARACTERISTICS  
MIXER, HIGH PERFORMANCE MODE  
TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, low-side LO injection, optimum RFB and  
LPF settings, unless otherwise noted. For integer mode: fPFD = 1.536 MHz, CSCALE = 8 mA, bleed = 0 µA, ABLDLY = 0.9 ns. For fractional  
mode: fPFD = 30.72 MHz, CSCALE = 250 µA, bleed = 93.75 µA, ABLDLY = 0.0 ns.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
A
A
A
A
A
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 4. Power Dissipation vs. RF Frequency over Three Temperatures  
Figure 7. Input IP2 vs. RF Frequency over Three Temperatures  
11.0  
10.5  
10.0  
9.5  
15  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
13  
11  
9
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
5.5  
5.0  
4.5  
4.0  
7
5
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 5. Power Conversion Gain vs. RF Frequency over Three Temperatures,  
IF Balun and Board Loss Removed  
Figure 8. Input P1dB vs. RF Frequency over Three Temperatures  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
–40°C LOCKED  
–40°C EXTERNAL LO  
17  
16  
15  
14  
13  
12  
11  
10  
9
+25°C LOCKED  
+25°C EXTERNAL LO  
+85°C LOCKED  
+85°C EXTERNAL LO  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
18  
16  
14  
12  
10  
A
A
A
A
A
A
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 6. Input IP3 vs. RF Frequency over Three Temperatures  
Figure 9. SSB Noise Figure vs. RF Frequency over Three Temperatures  
Rev. 0 | Page 13 of 61  
 
 
ADRF6614  
Data Sheet  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
2.7  
2.5  
2.3  
2.1  
1.9  
RF = 900MHz, LOW-SIDE LO  
RF = 900MHz, LOW-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
1.7  
1.5  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 10. Power Dissipation vs. Temperature for Three RF Frequencies  
Figure 13. Input IP2 vs. Temperature for Three RF Frequencies  
10.0  
15  
RF = 900MHz, LOW-SIDE LO  
RF = 900MHz, LOW-SIDE LO  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
14  
RF = 2700MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
13  
12  
11  
10  
9
RF = 1900MHz, HIGH-SIDE LO  
RF = 2700MHz, HIGH-SIDE LO  
8
7
6
5
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 11. Power Conversion Gain vs. Temperature for Three RF Frequencies  
Figure 14. Input P1dB vs. Temperature for Three RF Frequencies  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
18  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
17  
16  
15  
14  
13  
12  
11  
10  
9
24  
RF = 900MHz, LOW-SIDE LO  
23  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
22  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
21  
20  
8
–40  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 12. Input IP3 vs. Temperature for Three RF Frequencies  
Figure 15. SSB Noise Figure vs. Temperature for Three RF Frequencies  
Rev. 0 | Page 14 of 61  
Data Sheet  
ADRF6614  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
RF = 2500MHz, HIGH-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 900MHz, LOW-SIDE LO  
RF = 900MHz, LOW-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
40  
80 120 160 200 240 280 320 360 400 440 480  
IF FREQUENCY (MHz)  
40 80 120 160 200 240 280 320 360 400 440 480  
IF FREQUENCY (MHz)  
Figure 16. Power Dissipation vs. IF Frequency for Three RF Frequencies  
Figure 19. Input IP2 vs. IF Frequency for Three RF Frequencies  
10.0  
15  
RF = 900MHz, LOW-SIDE LO  
RF = 900MHz, LOW-SIDE LO  
9.5  
RF = 1900MHz, LOW-SIDE LO  
RF = 1900MHz, LOW-SIDE LO  
14  
RF = 2500MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
9.0  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
13  
12  
11  
10  
9
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
8
7
6
5
40  
40 80 120 160 200 240 280 320 360 400 440 480  
80 120 160 200 240 280 320 360 400 440 480  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Power Conversion Gain vs. IF Frequency for Three RF Frequencies  
Figure 20. Input P1dB vs. IF Frequency for Three RF Frequencies  
18  
36  
34  
32  
30  
28  
26  
24  
22  
20  
–40°C, LOW-SIDE LO  
+25°C, LOW-SIDE LO  
17  
+85°C, LOW-SIDE LO  
–40°C, HIGH-SIDE LO  
+25°C, HIGH-SIDE LO  
+85°C, HIGH-SIDE LO  
16  
15  
14  
13  
12  
11  
10  
9
18  
RF = 900MHz, LOW-SIDE LO  
16  
14  
12  
10  
RF = 1900MHz, LOW-SIDE LO  
RF = 2500MHz, LOW-SIDE LO  
RF = 900MHz, HIGH-SIDE LO  
RF = 1900MHz, HIGH-SIDE LO  
RF = 2500MHz, HIGH-SIDE LO  
8
50  
100  
150  
200  
250  
300  
350  
400  
450  
40  
80 120 160 200 240 280 320 360 400 440 480  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 18. Input IP3 vs. IF Frequency for Three RF Frequencies  
Figure 21. SSB Noise Figure vs. IF Frequency for Three Temperatures  
Rev. 0 | Page 15 of 61  
ADRF6614  
Data Sheet  
–50  
0
–4  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
A
A
A
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–8  
–12  
–16  
–20  
–24  
–28  
–32  
–36  
–40  
–44  
–48  
–52  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 22. IF/2 Spurious vs. RF Frequency over Three Temperatures  
Figure 25. LO to IF Leakage vs. LO Frequency over Three Temperatures  
–50  
0
–4  
–8  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
A
A
A
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–12  
–16  
–20  
–24  
–28  
–32  
–36  
–40  
–44  
–48  
–52  
–56  
–60  
–64  
–68  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 23. IF/3 Spurious vs. RF Frequency over Three Temperatures  
Figure 26. LO to RF Leakage vs. LO Frequency over Three Temperatures  
0
–2  
–4  
–6  
–8  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
A
A
A
–4  
–8  
–12  
–16  
–20  
–24  
–28  
–32  
–36  
–40  
–44  
–48  
–52  
–56  
–60  
–64  
2 × LO TO RF  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
2 × LO TO IF  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 24. RF to IF Isolation vs. RF Frequency over Three Temperatures  
Figure 27. 2 × LO Leakage vs. LO Frequency over Three Temperatures (2 × LO  
to RF and 2 × LO to IF)  
Rev. 0 | Page 16 of 61  
Data Sheet  
ADRF6614  
100  
80  
60  
40  
20  
0
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
MEAN: 7.94  
SD: 0.07%  
A
A
A
–4  
–8  
–12  
–16  
–20  
–24  
–28  
–32  
–36  
–40  
–44  
–48  
–52  
–56  
–60  
–64  
3 × LO TO RF  
3 × LO TO IF  
7.70  
7.75  
7.80  
7.85  
7.90  
7.95  
8.00  
8.05  
8.10  
300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
CONVERSION GAIN (dB)  
Figure 28. 3 × LO Leakage vs. LO Frequency over Three Temperatures  
(3 × LO to RF and 3 × LO to IF)  
Figure 31. Conversion Gain Distribution  
0
100  
80  
60  
40  
20  
0
MEAN: 31.23  
SD: 0.34%  
HIGH-SIDE LO  
LOW-SIDE LO  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
500  
1000  
1500  
2000  
2500  
3000  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY (MHz)  
INPUT IP3 (dBm)  
Figure 29. RF Port Return Loss, Fixed IF LO Return Loss  
Figure 32. Input IP3 Distribution  
100  
80  
60  
40  
20  
0
0
–5  
MEAN: 10.59  
SD: 0.39%  
–10  
–15  
–20  
–25  
–30  
10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0  
100  
600  
1100  
1600  
2100  
2600  
INPUT P1dB (dBm)  
LO FREQUENCY (MHz)  
Figure 30. LO Return Loss  
Figure 33. Input P1dB Distribution  
Rev. 0 | Page 17 of 61  
ADRF6614  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
8
6
4
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
2
0
0
50  
100 150 200 250 300 350 400 450 500  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. IF Output Impedance (R Parallel C Equivalent)  
Figure 37. IF Channel to Channel Isolation vs. RF Frequency  
over Three Temperatures  
10  
9
8
7
6
5
4
3
2
1
0
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
BAL_COUT = 0  
BAL_COUT = 2  
BAL_COUT = 4  
BAL_COUT = 6  
BAL_COUT = 8  
BAL_COUT = 10  
BAL_COUT = 12  
BAL_COUT = 14  
BAL_COUT = 0  
BAL_COUT = 2  
BAL_COUT = 4  
BAL_COUT = 6  
BAL_COUT = 8  
BAL_COUT = 10  
BAL_COUT = 12  
BAL_COUT = 14  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
Figure 35. Conversion Gain vs. RF Frequency for All RFB Settings,  
VGS Bit and LPF Use Optimum Settings  
Figure 38. Input IP3 vs. RF Frequency for All RFB Settings,  
VGS Bit and LPF Use Optimum Settings  
20  
18  
BAL_COUT = 0  
BAL_COUT = 0  
BAL_COUT = 2  
BAL_COUT = 4  
BAL_COUT = 6  
BAL_COUT = 8  
BAL_COUT = 10  
BAL_COUT = 12  
BAL_COUT = 14  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
BAL_COUT = 2  
BAL_COUT = 4  
BAL_COUT = 6  
BAL_COUT = 8  
BAL_COUT = 10  
BAL_COUT = 12  
BAL_COUT = 14  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 36. Input P1dB vs. RF Frequency for All RFB Settings,  
VGS Bit and LPF Use Optimum Settings  
Figure 39. SSB Noise Figure vs. RF Frequency for All RFB Settings,  
VGS Bit and LPF Use Optimum Settings  
Rev. 0 | Page 18 of 61  
Data Sheet  
ADRF6614  
10  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
VGS = 0  
VGS = 1  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
9
8
7
6
5
4
VGS = 0  
3
VGS = 1  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
2
1
0
9.0  
8.5  
8.0  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
Figure 40. Conversion Gain vs. RF Frequency  
for All VGS Bit Settings, RFB and LPF Use Optimum Settings  
Figure 43. Input P1dB vs. RF Frequency for All VGS Bit Settings,  
RFB and LPF Use Optimum Settings  
38  
14.0  
VGS = 0  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
VGS = 1  
13.5  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
VGS = 0  
VGS = 1  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
9.0  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 41. Input IP3 vs. RF Frequency for All VGS Bit Settings,  
RFB and LPF Use Optimum Settings  
Figure 44. SSB Noise Figure vs. RF Frequency for All VGS Bit Settings,  
RFB and LPF Use Optimum Settings  
10.0  
15  
LPF = 0  
LPF = 2  
LPF = 4  
LPF = 6  
LPF = 0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
LPF = 2  
14  
LPF = 4  
LPF = 6  
13  
12  
11  
10  
9
8
7
6
5
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 42. Conversion Gain vs. RF Frequency for All LPF Settings,  
RFB and VGS Bit Use Optimum Settings  
Figure 45. Input P1dB vs. RF Frequency for All LPF Settings,  
RFB and VGS Bit Use Optimum Settings  
Rev. 0 | Page 19 of 61  
 
 
 
 
 
 
ADRF6614  
Data Sheet  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LPF = 0  
LPF = 2  
LPF = 4  
LPF = 6  
14  
LPF = 0  
13  
LPF = 2  
12  
LPF = 4  
LPF = 6  
11  
8
10  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 46. Input IP3 vs. RF Frequency for All LPF Settings,  
RFB and VGS Bit Use Optimum Settings  
Figure 49. SSB Noise Figure vs. RF Frequency for All LPF Settings,  
RFB and VGS Bit Use Optimum Settings  
40  
35  
30  
25  
20  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
IFA_MAINBIAS = 8  
IFA_MAINBIAS = 9  
IFA_MAINBIAS = 10  
IFA_MAINBIAS = 11  
IFA_MAINBIAS = 12  
IFA_MAINBIAS = 13  
IFA_MAINBIAS = 14  
IFA_MAINBIAS = 15  
IFA_MAINBIAS = 3  
IFA_MAINBIAS = 4  
IFA_MAINBIAS = 5  
IFA_MAINBIAS = 6  
IFA_MAINBIAS = 7  
IFA_MAINBIAS = 10  
IFA_MAINBIAS = 11  
IFA_MAINBIAS = 12  
IFA_MAINBIAS = 13  
IFA_MAINBIAS = 14  
IFA_MAINBIAS = 15  
IFA_MAINBIAS = 3  
IFA_MAINBIAS = 4  
IFA_MAINBIAS = 5  
IFA_MAINBIAS = 6  
IFA_MAINBIAS = 7  
IFA_MAINBIAS = 8  
IFA_MAINBIAS = 9  
15  
10  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 47. Power Dissipation vs. Temperature for Various IFA_MAINBIAS Settings  
Figure 50. Input IP3 vs. Temperature for Various IFA_MAINBIAS Settings  
2.38  
36  
34  
32  
30  
28  
IFA_LINBIAS = 0  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
IFA_LINBIAS = 15  
2.36  
2.34  
2.32  
2.30  
2.28  
2.26  
2.24  
2.22  
2.20  
2.18  
2.16  
26  
24  
22  
IFA_LINBIAS = 0  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
IFA_LINBIAS = 15  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 48. Power Dissipation vs. Temperature for Various IFA_LINBIAS Settings  
Figure 51. Input IP3 vs. Temperature for Various IFA_LINBIAS Settings  
Rev. 0 | Page 20 of 61  
 
 
Data Sheet  
ADRF6614  
–60  
–60  
–70  
890MHz +10dBm  
1910MHz +10dBm  
2510MHz +10dBm  
890MHz +10dBm  
1910MHz +10dBm  
2510MHz +10dBm  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–160  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 52. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker  
in Integer Mode  
Figure 53. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker  
in Fractional Mode  
Rev. 0 | Page 21 of 61  
ADRF6614  
Data Sheet  
MIXER, HIGH EFFICIENCY MODE  
TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection,  
optimum RFB and LPF settings, unless otherwise noted.  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
70  
65  
60  
55  
50  
45  
40  
35  
30  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= 25°C, HIGH-SIDE LO  
= 85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= 25°C, LOW-SIDE LO  
= 85°C, LOW-SIDE LO  
A
A
A
A
A
A
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 54. Power Dissipation vs. RF Frequency over Three Temperatures  
Figure 57. Input IP2 vs. RF Frequency over Three Temperatures  
12.0  
13  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
A
A
A
A
A
A
A
A
A
A
A
A
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
12  
11  
10  
9
8
7
6
5
4
3
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 55. Conversion Gain vs. RF Frequency over Three Temperatures  
Figure 58. Input P1dB vs. RF Frequency over Three Temperatures  
35  
18  
T
T
T
T
T
T
= –40°C, HIGH-SIDE LO  
= +25°C, HIGH-SIDE LO  
= +85°C, HIGH-SIDE LO  
= –40°C, LOW-SIDE LO  
= +25°C, LOW-SIDE LO  
= +85°C, LOW-SIDE LO  
–40°C LOCKED  
–40°C EXTERNAL LO  
A
A
A
A
A
A
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
+25°C LOCKED  
+25°C EXTERNAL LO  
+85°C LOCKED  
+85°C EXTERNAL LO  
7
5
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 56. Input IP3 vs. RF Frequency over Three Temperatures  
Figure 59. SSB Noise Figure vs. RF Frequency over Three Temperatures  
Rev. 0 | Page 22 of 61  
 
Data Sheet  
ADRF6614  
SYNTHESIZER  
VS = high performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 1.536 MHz, fREF  
power = 4 dBm, integer mode loop filter, unless otherwise noted.  
–40  
–60  
LO_DIV = ÷2  
LO_DIV = ÷4  
LO_DIV = ÷8  
–70  
–60  
–80  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 60. VCO_0 Open-Loop Phase Noise vs. Offset Frequency,  
VCO_0 = 2.55 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V  
Figure 63. VCO_0 Closed-Loop Phase Noise vs. Offset Frequency for Various  
LO_DIV Dividers, fVCO_0 = 5.1 GHz  
f
–40  
–60  
LO_DIV = ÷2  
LO_DIV = ÷4  
LO_DIV = ÷8  
–70  
–80  
–60  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 61. VCO_1 Open-Loop Phase Noise vs. Offset Frequency,  
Figure 64. VCO_1 Closed-Loop Phase Noise vs. Offset Frequency for Various  
LO_DIV Dividers, fVCO_1 = 4.5 GHz  
f
VCO_1 = 2.2 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V  
–40  
–60  
LO_DIV = ÷2  
LO_DIV = ÷4  
LO_DIV = ÷8  
–70  
–80  
–60  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 62. VCO_2 Open-Loop Phase Noise vs. Offset Frequency,  
VCO_2 = 1.9 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V  
Figure 65. VCO_2 Closed-Loop Phase Noise vs. Offset Frequency for Various  
LO_DIV Dividers, fVCO_2 = 3.8 GHz  
f
Rev. 0 | Page 23 of 61  
 
ADRF6614  
Data Sheet  
–60  
–70  
–40  
LO_DIV = ÷2  
LO_DIV = ÷4  
LO_DIV = ÷8  
–60  
–80  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–120  
–140  
–160  
1k  
0.001  
0.01  
0.1  
1
10  
100  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (Hz)  
Figure 66. VCO_3 Open-Loop Phase Noise vs. Offset Frequency,  
Figure 69. VCO_3 Closed-Loop Phase Noise for Various LO_DIV Dividers vs.  
Offset Frequency, fVCO_3 = 3.2 GHz  
f
VCO_3 = 1.6 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V  
–60  
0
–40°C  
–70  
–80  
+25°C  
+85°C  
–20  
–40  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 67. VCO_4 Open-Loop Phase Noise vs. Offset Frequency,  
Figure 70. VCO_4 Closed-Loop Phase Noise for Various Temperatures vs.  
Offset Frequency, fVCO_4 = 1.536 GHz, Divide by Two Selected  
f
VCO_4 = 3.087 GHz, Divide by One Selected, VCOVTUNE = 1.5 V  
0
–60  
–40°C  
–70  
–80  
+25°C  
+85°C  
–20  
–40  
–90  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 68. VCO_5 Open-Loop Phase Noise vs. Offset Frequency,  
VCO_5 = 3.375 GHz, Divide by One Selected, VCOVTUNE = 1.5 V  
Figure 71. VCO_5 Closed-Loop Phase Noise for Various Temperatures vs.  
Offset Frequency, fVCO_5 = 1.688 GHz, Divide by Two Selected  
f
Rev. 0 | Page 24 of 61  
Data Sheet  
ADRF6614  
–200  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
50kHz OFFSET  
200kHz OFFSET  
–205  
–210  
–215  
–220  
–225  
–230  
1MHz OFFSET  
40MHz OFFSET  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 72. PLL Figure of Merit (FOM) vs. LO Frequency, Integer Mode  
Figure 75. Open-Loop Phase Noise vs. LO Frequency,  
Divide by Two Selected  
0
–70  
–80  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–20  
–40  
1kHz OFFSET  
–90  
1kHz OFFSET  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100kHz OFFSET  
500kHz OFFSET  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
100kHz OFFSET  
500kHz OFFSET  
10MHz OFFSET  
10 MHz OFFSET  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 73. Open-Loop Phase Noise vs. LO Frequency,  
Divide by Two Selected  
Figure 76. Integer Loop Filter Phase Noise vs. LO Frequency, Divide by Two  
Selected, Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz  
–200  
–205  
–210  
–215  
–220  
–225  
–230  
–60  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–80  
1kHz OFFSET  
–100  
100kHz OFFSET  
–120  
500kHz OFFSET  
–140  
–160  
10MHz OFFSET  
–180  
1525  
1530  
1535  
1540  
1545  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 74. PLL Figure of Merit (FOM) vs. LO Frequency, Fractional Mode,  
Offset = 45 kHz, Bleed = 125 µA  
Figure 77. VCO_4 GSM Loop Filter Phase Noise, Divide by Two Selected,  
Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz  
Rev. 0 | Page 25 of 61  
ADRF6614  
Data Sheet  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–80  
–40°C  
+25°C  
–40°C  
+25°C  
+85°C  
+85°C  
–90  
50 kHz OFFSET  
200 kHz OFFSET  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
LO_DIV = ÷2  
1MHz OFFSET  
40MHz OFFSET  
LO_DIV = ÷4  
4360  
VCO FREQUENCY (MHz)  
LO_DIV = ÷8  
2860  
3360  
3860  
4860 5360  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
LO FREQUENCY (Hz)  
Figure 78. Integer Loop Filter Phase Noise vs. LO Frequency, Divide by Two  
Selected, Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz  
Figure 81. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency,  
Divide by Two, Four, and Eight, Including Spurs  
–90  
0.40  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
–100  
0.35  
50kHz OFFSET  
–110  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–120  
200kHz OFFSET  
–130  
–140  
1MHz OFFSET  
–150  
–160  
40MHz OFFSET  
–170  
1525  
1530  
1535  
1540  
1545  
1525  
1530  
1535  
1540  
1545  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 79. VCO_4 GSM Loop Filter Phase Noise, Divide by Two Selected,  
Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz  
Figure 82. VCO_4 10 kHz to 40 MHz Integrated Phase Noise vs. VCO  
Frequency, For Various Temperatures, Including Spurs  
–60  
–80  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
–90  
–80  
1kHz OFFSET  
–100  
50kHz OFFSET  
–100  
–110  
100kHz OFFSET  
–120  
200kHz OFFSET  
–120  
–130  
500kHz OFFSET  
–140  
–140  
1MHz OFFSET  
–150  
–160  
10MHz OFFSET  
–160  
40MHz OFFSET  
–180  
1668  
–170  
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 80. VCO_5 GSM Loop Filter Phase Noise, Divide by Two Selected,  
Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz  
Figure 83. VCO_5 GSM Loop Filter Phase Noise, Divide by Two Selected,  
Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz  
Rev. 0 | Page 26 of 61  
Data Sheet  
ADRF6614  
–75  
–85  
1.4  
–40°C LO_DIV = ÷2  
+25°C LO_DIV = ÷2  
+85°C LO_DIV = ÷2  
–40°C LO_DIV = ÷4  
+25°C LO_DIV = ÷4  
+85°C LO_DIV = ÷4  
–40°C  
+25°C  
+85°C  
1.2  
–40°C LO_DIV = ÷8  
+25°C LO_DIV = ÷8  
+85°C LO_DIV = ÷8  
LO_DIV = ÷2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–95  
–105  
–115  
–125  
–135  
LO_DIV = ÷8  
5360  
LO_DIV = ÷4  
4360  
VCO FREQUENCY (MHz)  
2860  
3360  
3860  
4860  
2860  
3360  
3860  
4360  
4860  
5360  
VCO FREQUENCY (MHz)  
Figure 84. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency,  
Divide by Two, Four, and Eight, Excluding Spurs  
Figure 87. fPFD Reference Spurs vs. VCO Frequency,  
1 × PFD Offset, Measured at LO Output, Integer Mode  
–75  
–85  
0.40  
–40°C LO_DIV = ÷2  
+25°C LO_DIV = ÷2  
+85°C LO_DIV = ÷2  
–40°C LO_DIV = ÷4  
+25°C LO_DIV = ÷4  
+85°C LO_DIV = ÷4  
–40°C LO_DIV = ÷8  
+25°C LO_DIV = ÷8  
+85°C LO_DIV = ÷8  
–40°C  
+25°C  
+85°C  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–95  
–105  
–115  
–125  
–135  
2860  
3360  
3860  
4360  
4860  
5360  
1525  
1530  
1535  
1540  
1545  
VCO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 85. VCO_4 10 kHz to 40 MHz Integrated Phase Noise vs. VCO  
Frequency, For Various Temperatures, Excluding Spurs  
Figure 88. fPFD Reference Spurs vs. VCO Frequency,  
3 × PFD Offset, Measured at LO Output, Integer Mode  
0.45  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 86. VCO_5 10 kHz to 40 MHz Integrated Phase Noise vs. VCO  
Frequency, For Various Temperatures, Including Spurs  
Figure 89. VCO_5 10 kHz to 40 MHz Integrated Phase Noise vs. VCO  
Frequency, For Various Temperatures, Excluding Spurs  
Rev. 0 | Page 27 of 61  
ADRF6614  
Data Sheet  
–75  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–40°C LO_DIV = ÷2  
–40°C LO_DIV = ÷8  
+25°C LO_DIV = ÷8  
+85°C LO_DIV = ÷8  
–40°C  
+25°C  
+85°C  
+25°C LO_DIV = ÷2  
+85°C LO_DIV = ÷2  
–40°C LO_DIV = ÷4  
+25°C LO_DIV = ÷4  
+85°C LO_DIV = ÷4  
–85  
–95  
–105  
–115  
–125  
–135  
2860  
3360  
3860  
4360  
4860  
5360  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
VCO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 90. fPFD Reference Spurs vs. VCO Frequency,  
2 × PFD Offset, Measured at LO Output, Integer Mode  
Figure 93. fPFD Reference Spurs vs. LO Frequency,  
2 × PFD Offset, Measured at LO Output, Fractional Mode  
–75  
–85  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–40°C LO_DIV = /2  
+25°C LO_DIV = /2  
+85°C LO_DIV = /2  
–40°C LO_DIV = /4  
+25°C LO_DIV = /4  
+85°C LO_DIV = /4  
–40°C LO_DIV = /8  
+25°C LO_DIV = /8  
+85°C LO_DIV = /8  
–40°C  
+25°C  
+85°C  
–95  
–105  
–115  
–125  
–135  
2860  
3360  
3860  
4360  
4860  
5360  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
VCO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 91. fPFD Reference Spurs vs. VCO Frequency,  
4 × PFD Offset, Measured at LO Output, Integer Mode  
Figure 94. fPFD Reference Spurs vs. LO Frequency,  
3 × PFD Offset, Measured at LO Output, Fractional Mode  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 92. fPFD Reference Spurs vs. LO Frequency,  
1 × PFD Offset, Measured at LO Output, Fractional Mode  
Figure 95. fPFD Reference Spurs vs. LO Frequency,  
4 × PFD Offset, Measured at LO Output, Fractional Mode  
Rev. 0 | Page 28 of 61  
Data Sheet  
ADRF6614  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IF AT –40°C  
IF AT +25°C  
IF AT +85°C  
LO AT –40°C  
LO AT +25°C  
LO AT +85°C  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 96. fPFD Reference Spurs vs. LO Frequency, Divide by Two Selected, 1 ×  
PFD Offset, Measured on LO Output and IF Output  
Figure 99. RF to LO Output Feedthrough, LO_DRV_LVL = 0  
10  
1520  
LO_DRV_LVL = 0 AT –40°C  
LO_DRV_LVL = 0 AT +25°C  
LO_DRV_LVL = 0 AT +85°C  
LO_DRV_LVL = 1 AT –40°C  
LO_DRV_LVL = 1 AT +25°C  
LO_DRV_LVL = 1 AT +85°C  
8
3
1515  
1510  
1505  
1500  
1495  
1490  
1485  
1480  
4
2
0
–2  
–4  
–6  
–8  
–10  
–12  
LO_DRV_LVL = 2 AT –40°C  
LO_DRV_LVL = 2 AT +25°C  
LO_DRV_LVL = 2 AT +85°C  
LO_DRV_LVL = 3 AT –40°C  
LO_DRV_LVL = 3 AT +25°C  
LO_DRV_LVL = 3 AT +85°C  
350  
850  
1350  
1850  
2350  
2850  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LO FREQUENCY (MHz)  
LOCK TIME (ms)  
Figure 97. LO Amplitude vs. LO Frequency, LO_DRV_LVL = 0, 1, 2, and 3  
Figure 100. LO Frequency Settling Time, Integer Mode Loop Filter,  
Integer Mode  
225  
1520  
1515  
1510  
1505  
1500  
1495  
1490  
1485  
1480  
LO_DRV_LVL = 3 AT –40°C  
LO_DRV_LVL = 3 AT +25°C  
215  
LO_DRV_LVL = 3 AT +85°C  
LO_DRV_LVL = 2 AT –40°C  
LO_DRV_LVL = 2 AT +25°C  
LO_DRV_LVL = 2 AT +85°C  
205  
195  
185  
175  
165  
155  
145  
135  
125  
LO_DRV_LVL = 1 AT –40°C  
LO_DRV_LVL = 1 AT +25°C  
LO_DRV_LVL = 1 AT +85°C  
LO_DRV_LVL = 0 AT –40°C  
LO_DRV_LVL = 0 AT +25°C  
LO_DRV_LVL = 0 AT +85°C  
350  
850  
1350  
1850  
2350  
2850  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LO FREQUENCY (MHz)  
LOCK TIME (ms)  
Figure 98. Supply Current for VCC7 vs. LO Frequency,  
LO_DRV_LVL = 0, 1, 2, and 3  
Figure 101. LO Frequency Settling Time, Fractional Loop Filter, Fractional  
Mode  
Rev. 0 | Page 29 of 61  
ADRF6614  
Data Sheet  
–60  
–70  
2.5  
3.18GHz  
3.81GHz  
4.45GHz  
5.08GHz  
+85°C  
–40°C  
2.0  
–80  
–90  
1.5  
1.0  
0.5  
0
–100  
–110  
–120  
–130  
–140  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 102. VCO Tuning Voltage (VTUNE) vs. LO Frequency for Lock at Cold  
Drift to Hot  
Figure 104. PFD Spurs vs. Offset Frequency for Four VCOs, Integer Mode  
3.5  
2.5  
+85°C  
–40°C  
+85°C  
–40°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
1525  
1530  
1535  
1540  
1545  
1430  
1630  
1830  
2030  
2230  
2430  
2630  
2830  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 103. VTUNE vs. LO Frequency for Lock at Hot Drift to Cold  
Figure 105. VCO_4 VTUNE vs. LO Frequency for Lock at Hot Drift to Cold  
Rev. 0 | Page 30 of 61  
Data Sheet  
ADRF6614  
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+85°C  
–40°C  
+85°C  
–40°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
1668  
1673  
1678  
1683  
1688  
1693  
1698  
1703  
1708  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 106. VCO_5 VTUNE vs. LO Frequency for Lock at Hot Drift to Cold  
Figure 108. VCO_5 VTUNE vs. LO Frequency for Lock at Cold Drift to Hot  
3.5  
+85°C  
–40°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1525  
1530  
1535  
1540  
1545  
LO FREQUENCY (MHz)  
Figure 107. VCO_4 VTUNE vs. LO Frequency for Lock at Cold Drift to Hot  
Rev. 0 | Page 31 of 61  
ADRF6614  
Data Sheet  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the  
IF output power level. Data was measured only for frequencies less than 6 GHz; blank cells indicate frequencies that were not measured. Typical  
noise floor of the measurement system = −100 dBm.  
High Performance Mode  
VS = high performance mode, TA = 25°C, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection,  
optimum RFB and LPF settings, unless otherwise noted.  
Table 11. RF = 900 MHz, LO = 697 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
27.1  
0.0  
32.1  
52.5  
68.8  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
39.1  
18.4  
73.4  
79.5  
<−100  
<−100  
<−100  
<−100  
<−100  
27.0  
56.6  
64.9  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
54.2  
43.6  
<−100  
94.1  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
48.5  
66.7  
68.3  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
69.3  
53.5  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
65.6  
87.4  
80.6  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
35.5  
55.3  
88.2  
<−100  
<−100  
<−100  
73.5  
68.9  
88.4  
56.6  
43.6  
66.7  
53.5  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
Table 12. RF = 1900 MHz, LO = 1697 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
37.0  
0.0  
31.2  
47.9  
81.6  
93.5  
<−100  
64.2  
52.1  
81.2  
75.2  
<−100  
<−100  
30.2  
70.8  
<−100  
74.4  
71.9  
<−100  
<−100  
67.2  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
<−100  
<−100  
<−100  
<−100  
<−100  
Table 13. RF = 2500 MHz, LO = 2297 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
40.7  
0.0  
44.1  
49.4  
75.4  
91.9  
<−100  
29.0  
81.0  
58.7  
79.0  
74.7  
<−100  
<−100  
87.3  
<−100  
84.7  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
<−100  
92.5  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
Rev. 0 | Page 32 of 61  
 
Data Sheet  
ADRF6614  
High Efficiency Mode  
VS = high efficiency mode, TA = 25°C, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection,  
optimum RFB and LPF settings, unless otherwise noted.  
Table 14. RF = 900 MHz, LO = 697 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
30.4  
0.0  
34.1  
52.6  
68.8  
96.4  
97.9  
<−100  
<−100  
<−100  
<−100  
46.7  
19.2  
71.9  
74.7  
<−100  
<−100  
<−100  
<−100  
<−100  
29.6  
61.6  
59.9  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
57.4  
44.3  
93.0  
85.0  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
51.2  
64.0  
67.8  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
74.7  
53.6  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
62.7  
91.8  
79.0  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
37.7  
70.3  
86.4  
<−100  
<−100  
<−100  
73.2  
66.4  
81.0  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
Table 15. RF = 1900 MHz, LO = 1697 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
41.4  
0.0  
35.1  
46.9  
74.6  
89.9  
<−100  
69.0  
52.2  
71.3  
67.7  
<−100  
<−100  
30.5  
71.5  
<−100  
74.4  
67.7  
<−100  
<−100  
63.6  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
<−100  
<−100  
<−100  
<−100  
<−100  
Table 16. RF = 2500 MHz, LO = 2297 MHz  
M
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
42.3  
0.0  
48.6  
48.6  
71.6  
86.2  
77.0  
29.1  
75.6  
59.4  
70.8  
66.9  
<−100  
<−100  
88.8  
59.4  
77.0  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
N
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
<−100  
Rev. 0 | Page 33 of 61  
ADRF6614  
Data Sheet  
THEORY OF OPERATION  
The ADRF6614 consists of two primary components: the RF  
subsystem and the LO subsystem. The combination of design,  
process, and packaging technology allows the functions of these  
subsystems to be integrated into a single die, using mature  
packaging and interconnection technologies to provide a high  
performance device with excellent electrical, mechanical, and  
thermal properties. The wideband frequency response and flexible  
frequency programming simplifies the receiver design, saves  
on-board space, and minimizes the need for external components.  
analog-to-digital converter (ADC) input while providing optimum  
second-order intermodulation suppression. The differential output  
impedance of the IF amplifier is approximately 200 Ω. If operation  
in a 50 Ω system is desired, the output can be transformed to 50 Ω  
by using a 4:1 transformer or an LC impedance matching network.  
EXTERNAL LO GENERATION  
The ADRF6614 LO can be generated by an externally applied  
source or by using the internal PLL synthesizer. To select the  
external LO mode, write 011 to Register 0x22, Bits[2:0] and apply  
the differential LO signal to Pin 4 (EXTVCOIN+) and Pin 5  
(EXTVCOIN−).  
The RF subsystem consists of an integrated, tunable, low loss RF  
balun, a double balanced, passive MOSFET mixer, a tunable sum  
termination network, and an IF amplifier.  
Internal dividers allow the externally applied LO signal to be  
divided before this signal arrives at the mixer LO input. The  
divider value is set by Register 0x22, Bits[5:3] and has possible  
values of 1, 2, 4, and 8. With the divider set to 1, the externally  
applied LO input frequency range is 250 MHz to 2850 MHz.  
When using a divider value of other than 1, the maximum  
externally applied LO frequency is 5700 MHz.  
The LO subsystem consists of a multistage, limiting LO amplifier.  
The purpose of the LO subsystem is to provide a large, fixed ampli-  
tude, balanced signal to drive the mixer independent of the level of  
the LO input. A schematic of the device is shown in Figure 110.  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a tunable, low loss, unbalanced to balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended to use a blocking capacitor  
to avoid running excessive dc current through the device. The RF  
balun can easily support an RF input frequency range of 700 MHz  
to 3000 MHz. This balun is tuned over the frequency range by a SPI  
controlled switched capacitor network at the output of the RF balun.  
The external LO input pins present a broadband differential 50 Ω  
input impedance. The EXTVCOIN+ and EXTVCOIN− input  
pins must be ac-coupled. When not in use, EXTVCOIN+ and  
EXTVCOIN− can be left unconnected.  
INTERNAL LO GENERATION  
Reference Input Circuitry  
The ADRF6614 includes an on-chip PLL for LO synthesis. The  
PLL, shown in Figure 109, consists of a reference input and input  
dividers, a PFD, a charge pump, VCOs, and a programmable  
fractional/integer divider with a 2× prescaler.  
The resulting balanced RF signal is applied to a passive mixer that  
commutates the RF input in accordance with the output of the LO  
subsystem. The passive mixer is a balanced, low loss switch that adds  
minimum noise to the frequency translation. The only noise con-  
tribution from the mixer is due to the resistive loss of the switches,  
which is in the order of a few ohms.  
The reference path takes in a reference clock and divides it by a  
factor of 1 to 8191 before passing it to the PFD. The PFD compares  
this signal to the divided down signal from the VCO. Depending  
on the PFD polarity selected, the PFD sends an up or down signal  
to the charge pump if the VCO signal is slow or fast compared to  
the reference frequency. The charge pump sends a current pulse  
to the off-chip loop filter to increase or decrease the tuning  
voltage (VCOVTUNE).  
The IF amplifier is a balanced feedback design that simultaneously  
provides the gain, noise figure, and input impedance required to  
achieve the overall performance. The balanced open-collector  
output of the IF amplifier, with an impedance modified by the  
feedback within the amplifier, permits the output to be connected  
directly to a high impedance filter, a differential amplifier, or an  
CPOUT  
VCOVTUNE  
LOOP FILTER  
R8  
R10  
1 TO 8191  
(REG 0x21[11:0])  
CHARGE  
PUMP  
REFIN  
PFD  
R7  
C18  
C20  
C22  
C23  
GNDCP  
FRAC  
MOD  
(REG 0x02, REG 0x03,  
REG 0x04)  
N = INT +  
2×  
PRESCALER  
MIXER 1 LO  
MIXER 2 LO  
LO DIVIDER  
(1, 2, 4, 8, 16, 32)  
(REG 0x22[5:3])  
EXTERNAL  
LO INPUT  
Figure 109. LO Generation Block Diagram  
Rev. 0 | Page 34 of 61  
 
 
 
 
 
Data Sheet  
ADRF6614  
In-band (within the band of the loop filter) phase noise perfor-  
mance is typically limited by the reference source. Due to the  
inherent phase noise reduction when performing frequency  
division, improved in-band phase noise performance can be  
achieved with higher reference divide values. However, the  
divide chain adds its own small amount of phase noise; thus,  
there is a limit on how much improvement can be gained by  
increasing the divider value.  
Table 18. Fractional Mode Loop Filter Components and PLL  
Dynamic Settings  
Loop Filter Components PLL Dynamic Settings  
C18  
R7  
C20  
1000 pF  
700 Ω  
33 nF  
R8  
C22  
R10  
C23  
1.8 kΩ  
560 pF  
20 kΩ  
39 pF  
Loop Filters  
Defining a loop filter for the ADRF6614 depends on several  
dynamic: the PLL REFIN and PFD frequency and desired PFD  
and fractional spur levels. Higher reference and PFD frequencies  
spread the PFD spurs over a wider bandwidth (wider separation  
between spurs), but also lead to higher levels of spurs coupling  
through the reference divider chain. Lower reference and PFD  
frequencies lower the spacing between PFD spurs, but the spur  
levels can be significantly improved by using lower frequencies.  
At lower PFD frequencies, it may also be possible to achieve the  
desired synthesizer frequency step size using the integer divider  
mode, therefore eliminating the risk of fractional spurs. Table 17  
shows the recommended loop filter components and dynamic  
loop settings when using integer mode and PFD frequencies at  
less than 10 MHz.  
CSCALE  
Bleed Current  
ABLDLY  
500 µA  
93.75 µA  
0 ns  
For GSM mode of operation at the PFD rate of 1.536 MHz, the  
recommended loop filter components and dynamic loop  
settings are shown in Table 19.  
Table 19. GSM Mode Loop Filter Components and PLL  
Dynamic Settings  
Loop Filter Components PLL Dynamic Settings  
C18  
R7  
2200 pF  
1.2 kΩ  
47 nF  
C20  
R8  
C22  
R10  
C23  
CSCALE  
Bleed Current  
ABLDLY  
1 kΩ  
Table 17. Integer Mode Loop Filter Components and PLL  
Dynamic Settings  
Loop Filter Components PLL Dynamic Settings  
1200 pF  
6.2 kΩ  
330 pF  
8 mA  
0 µA  
0.9 ns  
C18  
R7  
C20  
1500 pF  
910 Ω  
33 nF  
R8  
C22  
R10  
C23  
1.8 kΩ  
560 pF  
20 kΩ  
39 pF  
VCOs and Dividers  
The ADRF6614 has six internal VCOs. Considering the range of  
these VCOs, the fixed 2× prescaler after the VCO, and the LO_DIV  
(1, 2, 4, 8, 16, and 32) range, the total LO range allows an RF  
generation of 200 MHz to 2700 MHz.  
CSCALE  
Bleed Current  
ABLDLY  
8000 µA  
0 µA  
0.9 ns  
Table 20. VCO Range  
VCO_SEL (Register 0x22, Bits[2:0]) Frequency Range (GHz)  
If a smaller frequency step size is desired, the ADRF6614 can be  
used in fractional mode. The 16-bit FRAC_DIV and MOD_DIV  
values available in the ADRF6614 mean that small step sizes  
can be achieved with high PFD frequencies. PFD spurs may be  
higher in amplitude, but are spaced further apart. Fractional  
spurs may be present as well.  
000  
001  
010  
011  
100  
101  
4.6 to 5.7  
4.02 to 4.6  
3.5 to 4.02  
2.85 to 3.5  
3.050 to 3.094  
3.336 to 3.416  
Rev. 0 | Page 35 of 61  
 
 
ADRF6614  
Data Sheet  
For the VCO_0, VCO_1, VCO_2, and VCO_3 selections, it is  
required to set VTUNE_DAC_SLOPE (Register 0x49, Bits[13:9]) =  
11d, VTUNE_DAC_OFFSET (Register 0x49, Bits[8:0]) = 184d,  
VCO_LDO_R2 (Register 0x22, Bits[11:8]) = 0d, and VCO_  
LDO_R4 (Register 0x22, Bits[15:12]) = 5d. For VCO_4 and  
VC0_5 selections, the required settings are VTUNE_DAC_  
SLOPE (Register 0x49, Bits[13:9]) = 9d, VTUNE_DAC_OFFSET  
(Register 0x49, Bits[8:0]) = 171d, VCO_LDO_R2 (Register 0x22,  
Bits[11:8]) = 2d, and VCO_LDO_R4 (Register 0x22, Bits[15:12]) =  
10d. In transitioning from a GSM VCO (VCO_4 and VCO_5)  
to an octave VCO, the LDO settings must be changed before  
changing the VCO selection.  
The lock detect signal is available as one of the selectable outputs  
through the MUXOUT pin; a logic high indicates that the loop is  
locked. The MUXOUT pin is controlled by the REF_MUX_SEL bits  
(Register 0x21, Bits[14:13]); the PLL lock detect signal is the default  
configuration.  
To ensure that the PLL locks to the desired frequency, follow  
the proper write sequence of the PLL registers. The PLL  
registers must be configured accordingly to achieve the  
desired frequency, and the last writes must be to Register 0x02  
(INT_DIV in Table 26), Register 0x03 (FRAC_DIV in Table 26),  
or Register 0x04 (MOD_DIV in Table 26). When one of these  
registers is programmed, an internal VCO calibration is  
initiated, which is the last step in locking the PLL.  
The N-divider divides down the differential VCO signal to the PFD  
frequency. The N-divider can be configured for fractional mode or  
integer mode by addressing the DIV_MODE bit (Register 0x02,  
Bit 15). The default configuration is set for fractional mode.  
The time it takes to lock the PLL after the last register is written  
can be broken down into two parts: VCO band calibration and  
loop settling.  
The following equations can be used to determine the N value and  
the PLL frequency:  
After the last register is written, the PLL automatically performs  
a VCO band calibration to choose the correct VCO band. This  
calibration takes approximately 5120 PFD cycles. For a 40 MHz  
fVCO  
fPFD  
=
f
PFD, this corresponds to 128 µs. After calibration is complete, the  
2 × N  
feedback action of the PLL causes the VCO to lock eventually to  
the correct frequency. The speed with which this locking occurs  
depends on the nonlinear cycle slipping behavior, as well as the  
small signal settling of the loop. For an accurate estimation of  
the lock time, download the ADIsimPLLtool, which correctly  
captures these effects. In general, higher bandwidth loops tend  
to lock faster than lower bandwidth loops.  
where:  
f
f
PFD is the phase frequency detector frequency.  
VCO is the voltage controlled oscillator frequency.  
N is the fractional divide ratio.  
FRAC  
N = INT +  
MOD  
Additional LO Controls  
where:  
INT is the integer divide ratio programmed in Register 0x02.  
FRAC is the fractional divide ratio programmed in Register 0x03.  
MOD is the modulus divide ratio programmed in Register 0x04.  
To access the LO signal going to the mixer core through the  
LOOUT+ and LOOUT− pins (Pin 13 and Pin 14), enable the  
LO_DRV_EN bit in Register 0x01, Bit 7. This setting offers direct  
monitoring of the LO signal to the mixer for debug purposes; or the  
LO signal can be used to daisy-chain many devices synchronously.  
One ADRF6614 can serve as the master where the LO signal is  
sourced, and the subsequent slave devices share the same LO signal  
from the master. This flexibility substantially eases the LO  
requirements of a system with multiple LOs.  
f
PFD × 2 ×N  
fLO  
=
LO_DIVIDER  
where:  
LO is the LO frequency going to the mixer core when the loop is  
f
locked.  
LO_DIVIDER is the final divider block that divides the VCO  
frequency down by 1, 2, 4, or 8 before it reaches the mixer  
(see Table 21). This control is located in the LO_DIV bits  
(Register 0x22, Bits[5:3]).  
The LO output drive level is controlled by the LO_DRV_LVL bits  
(Register 0x22, Bits[7:6]). Table 22 shows the available drive levels.  
Table 22. LO Drive Levels  
LO_DRV_LVL (Register 0x22, Bits[7:6])  
Amplitude (dBm)  
Table 21. LO Divider  
LO_DIV (Register 0x22, Bits[5:3])  
00  
01  
10  
11  
−4  
0.5  
3
LO_DIVIDER  
00  
01  
10  
11  
1
2
4
8
4.5  
Rev. 0 | Page 36 of 61  
 
 
Data Sheet  
ADRF6614  
46  
41  
34  
33  
2
47  
43  
42  
40  
39 38  
8
9
10  
11  
DECL3  
DECL4  
EXPOSED  
PAD  
VCO  
VCO  
LDO BUFFER  
LDO  
VCC1  
VCC2  
VCC3  
7
REFIN  
DIVIDER  
16  
20  
VCO BAND  
SWITCH LDO  
12  
DECL5  
LDO4  
LOCK  
DETECT  
VPTAT  
SCAN  
PLL  
CHARGE PUMP 45  
3.3V LDO  
VCC4 27  
VCC5 28  
PFD  
35  
36  
RFIN1  
N-DIVIDER  
VCO  
29  
VCC6  
DIVIDE BY  
1 TO 32  
RFBCT1  
VCO  
VCO  
VCC7 31  
26  
RFIN2  
32  
VCC8  
25  
RFBCT2  
SPI  
CONTROL  
INT  
N-DIVIDER  
44  
LDO3  
2.5V  
LDO  
4
5
EXTVCOIN+  
EXTVCOIN–  
SPI  
2.5V  
LDO  
LO DIV  
3.3V  
LDO  
1
3
6
24  
37  
48  
17  
18  
19  
13  
14  
21  
22 23  
15  
30  
Figure 110. Simplified Schematic  
Rev. 0 | Page 37 of 61  
 
ADRF6614  
Data Sheet  
APPLICATIONS INFORMATION  
recommended to ac couple the RF and LO input ports to  
prevent nonzero dc voltages from damaging the RF balun or LO  
input circuit. A RFIN capacitor value of 22 pF is recommended.  
The ADRF6614 mixer is designed to downconvert radio  
frequencies (RF) primarily between 700 MHz and 3000 MHz to  
lower intermediate frequencies (IF) between 40 MHz to 500 MHz.  
Figure 111 depicts the basic connections of the mixer. It is  
+5V  
330nH  
330nH  
150pF  
(0402)  
IFOUT1  
22pF  
(0402)  
150pF  
(0402)  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
10kΩ  
(0402)  
6.8pF  
(0402)  
REFIN  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
150pF  
(0402)  
10kΩ  
(0402)  
22pF  
(0402)  
50Ω  
(0402)  
10µF  
0.1µF  
(0402)  
10pF  
(0402)  
(0603)  
100pF  
(0402)  
10µF  
(0603)  
1000pF  
(0402)  
2700pF  
(0402)  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
3.16kΩ  
(0402)  
100pF  
(0402)  
10µF  
(0603)  
46  
41  
34  
33  
2
47  
43  
42  
40  
39 38  
8
9
DECL3  
10  
11  
EXPOSED  
PAD  
100pF  
(0402)  
10µF  
(0603)  
VCO  
VCO  
DECL4  
LDO BUFFER  
VCC1  
LDO  
100pF  
(0402)  
10µF  
(0603)  
7
REFIN  
DIVIDER  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
VCC2  
VCC3  
VCC4  
VCC5  
VCC6  
VCC7  
VCC8  
DECL5  
LDO4  
16  
VCO BAND  
12  
10µF  
0.1µF  
10pF  
LOCK  
SWITCH LDO  
100pF  
(0402)  
10µF  
(0603)  
(0402)  
(0402)  
DETECT  
(0603)  
20  
27  
28  
29  
31  
32  
VPTAT  
SCAN  
PLL  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
CHARGE PUMP 45  
3.3V LDO  
100pF  
(0402)  
10µF  
(0603)  
PFD  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
22pF  
(0402)  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
RFIN1  
RFIN1  
RFIN2  
35  
36  
N-DIVIDER  
VCO  
DIVIDE BY  
1 TO 32  
RFBCT1  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
10pF  
(0402)  
10nF  
(0603)  
VCO  
VCO  
22pF  
(0402)  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
RFIN2  
26  
25  
RFBCT2  
10µF  
(0603)  
0.1µF  
(0402)  
10pF  
(0402)  
10pF  
(0402)  
10nF  
(0603)  
SPI  
CONTROL  
INT  
N-DIVIDER  
2.5V  
LDO3  
100pF  
(0402)  
44  
LDO  
10pF  
(0402)  
10µF  
(0603)  
EXTVCOIN+  
EXTVCOIN–  
LOIN  
4
5
SPI  
2.5V  
LDO  
LO DIV  
3.3V  
LDO  
100pF  
(0402)  
22 23  
1
3
6
24  
37  
48  
17  
18  
19  
13  
14  
21  
15  
30  
100pF  
(0402)  
10µF  
(0603)  
GND  
100pF  
(0402)  
10µF  
(0603)  
100pF  
(0402)  
100pF  
(0402)  
150pF  
(0402)  
LOOUT  
IFOUT2  
150pF  
(0402)  
150pF  
(0402)  
330nH  
330nH  
+5V  
Figure 111. Basic Connections Diagram  
Rev. 0 | Page 38 of 61  
 
 
Data Sheet  
ADRF6614  
BASIC CONNECTIONS BY PIN DESCRIPTION  
Table 23. Basic Connections  
Pin No.  
Mnemonic  
Description  
Basic Connection  
5 V Power  
Decouple to GND with a 10 µF, a 0.1 µF, and a 10 pF  
capacitor as close to the pin as possible.  
7
VCC1  
5 V VCO supply  
16  
VCC2  
5 V supply for SPI port  
20, 41  
VCC3, VCC11  
5 V biases for IF Channel 2 and IF Channel 1  
5 V supplies for mixer LO amplifier  
27, 28, 29, 32, 33, 34 VCC4, VCC5, VCC6,  
VCC8, VCC9, VCC10  
31  
46  
VCC7  
VCC12  
5 V supply for mixer LO divider chain  
5 V supply for internal PLL  
Internal LDO Nodes  
Decouple to GND with a 10 µF and a 100 pF  
capacitor, as close to the pin as possible.  
8, 9  
DECL1, DECL2  
VCO LDO outputs  
10, 11, 12  
15  
30  
DECL3, DECL4, DECL5 External decoupling for VCO circuitry  
LDO1  
LDO2  
External decoupling for internal 2.5 V SPI LDO  
External decoupling for internal 3.3 V  
PLL/divider LDO  
44  
45  
LDO3  
LDO4  
External decoupling for internal 2.5 V PLL LDO  
External decoupling for internal 3.3 V PLL LDO  
GND  
Connect directly to the PCB ground through a low  
impedance connection.  
1
3, 6  
24, 37  
48  
GND  
GND  
GND  
GND  
External loop filter ground  
Common ground for external loop filter  
IF stage, Channel 2 and Channel 1 ground  
External charge pump ground  
SPI  
17  
18  
SDIO  
SCLK  
CS  
SPI port data input/output  
SPI port clock  
SPI port chip select  
19  
RF, Mixer, IF Path  
4, 5  
EXTVCOIN+,  
EXTVCOIN−  
LOOUT+, LOOUT−  
IFOUT2+, IFOUT2−  
External VCO or LO inputs  
DC block with 100 pF capacitors.  
DC block with 100 pF capacitors.  
Bias to 5 V supply with 330 nH inductors and dc  
block with 150 pF capacitors.  
13, 14  
22, 23  
Differential LO outputs  
Channel 2 differential IF outputs  
25  
RFBCT2  
Internal mixer bias control for Channel 2 RF  
input  
Decouple to GND with a 10 pF and a 10 nF  
capacitor, as close to the pin as possible.  
26  
36  
RFIN2  
RFBCT1  
Channel 2 single-ended RF input  
Internal mixer bias control for Channel 1 RF  
input  
DC block with a 22 pF capacitor.  
Decouple to GND with a 10 pF and a 10 nF  
capacitor, as close to the pin as possible.  
35  
38, 39  
RFIN1  
IFOUT1−, IFOUT1+  
Channel 1 single-ended RF input  
Channel 1 differential IF outputs  
DC block with a 22 pF capacitor.  
Bias to 5 V supply with 330 nH inductors and dc  
block with 150 pF capacitors.  
PLL/VCO  
2
43  
47  
VCOVTUNE  
REFIN  
CPOUT  
Control voltage for internal VCO  
External reference for internal PLL  
Charge pump output  
Output from external loop filter.  
Input to external loop filter.  
Other  
42  
MUXOUT  
DNC  
Output for various internal analog signals,  
including PLL lock detect and voltage  
proportional to absolute temperature (VPTAT)  
Can be read directly from the pin; the user must be  
careful of loading effects; not a low impedance output.  
21, 40  
Do not connect  
Rev. 0 | Page 39 of 61  
 
ADRF6614  
Data Sheet  
MIXER OPTIMIZATION  
figure. The contour plot is located directly underneath the surface  
plot. The best approach for reading the figure is to localize the  
peaks on the surface plot, which indicate maximum IIP3, and to  
follow the same color pattern to the contour plot to determine the  
optimized IFA main bias and linearity bias settings.  
35  
RF INPUT BALUN INSERTION LOSS OPTIMIZATION  
At lower input frequencies, more capacitance is needed. This  
increase is achieved by programming higher codes into  
BAL_COUT. At high frequencies, less capacitance is required;  
therefore, lower BAL_COUT codes are appropriate.  
As shown in Figure 112 and Figure 113, this tuning range can  
be further optimized by adding capacitance across the RF input  
in conjunction with tuning BAL_COUT. This added capacitance  
can help to increase the low frequency range of the device  
significantly.  
30  
25  
20  
15  
0
–2  
–4  
IFA_LINBIAS = 0  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
10  
5
–6  
–8  
–10  
–12  
–14  
–16  
0
0
2
4
6
8
10  
12  
14  
16  
IFA_MAINBIAS  
Figure 114. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias  
(IFA_LINBIAS) Level at IF Frequency = 50 MHz  
NO CAP  
1pF  
4pF  
35  
30  
25  
20  
15  
5.6pF  
6.8pF  
–18  
2pF  
3.3pF  
–20  
500  
900  
1300  
1700  
2100  
2500  
2900  
RF FREQUENCY (MHz)  
Figure 112. Return Loss; Optimum BAL_COUT vs. RF Frequency for Various  
Tuning Capacitor Values on RFINx Using a High-Side LO  
0
–2  
IFA_LINBIAS = 0  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
–4  
10  
5
–6  
–8  
–10  
–12  
–14  
–16  
0
0
2
4
6
8
10  
12  
14  
16  
IFA_MAINBIAS  
Figure 115. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias  
(IFA_LINBIAS) Level at IF Frequency = 100 MHz  
NO CAP  
1pF  
2pF  
3.3pF  
4pF  
5.6pF  
6.8pF  
35  
30  
25  
20  
15  
–18  
–20  
500  
900  
1300  
1700  
2100  
2500  
2900  
RF FREQUENCY (MHz)  
Figure 113. Return Loss; Optimum BAL_COUT vs. RF Frequency for Various  
Tuning Capacitor Values on RFINx Using a Low-Side LO  
IIP3 OPTIMIZATION  
IFA_LINBIAS = 0  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
In applications in which performance is critical, the ADRF6614  
offers IIP3 optimization. The IF amplifier bias current can be  
reduced to trade performance vs. power consumption. This  
tradeoff saves on the overall power at the expense of degraded  
performance.  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
Figure 114 to Figure 117 show the IIP3 sweeps for all combinations  
of IFA main bias and linearity bias. The IIP3 vs. main bias and  
linearity bias figures show both a surface and a contour plot in one  
IFA_MAIN  
Figure 116. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias  
(IFA_LINBIAS) Level at IF Frequency = 150 MHz  
Rev. 0 | Page 40 of 61  
 
 
 
 
 
 
Data Sheet  
ADRF6614  
35  
30  
25  
20  
15  
VGS PROGRAMMING  
The ADRF6614 allows programmability for internal gate-to-  
source voltages (VGS) for optimizing mixer performance over  
the desired frequency bands. The ADRF6614 default VGS  
setting is 0. Both channels of the ADRF6614 are programmed  
together using the same VGS setting. Power conversion gain,  
input IP3, input P1dB, and SSB noise figure can be optimized,  
as shown in Figure 40, Figure 41, Figure 43, and Figure 44,  
respectively.  
IFA_LINBIAS = 0  
IFA_LINBIAS = 8  
IFA_LINBIAS = 9  
IFA_LINBIAS = 10  
IFA_LINBIAS = 11  
IFA_LINBIAS = 12  
IFA_LINBIAS = 13  
IFA_LINBIAS = 14  
IFA_LINBIAS = 1  
IFA_LINBIAS = 2  
IFA_LINBIAS = 3  
IFA_LINBIAS = 4  
IFA_LINBIAS = 5  
IFA_LINBIAS = 6  
IFA_LINBIAS = 7  
10  
5
LOW-PASS FILTER PROGRAMMING  
The ADRF6614 allows programmability for the low-pass filter  
terminating the mixer output. This filter blocks sum term mixing  
products at the expense of some noise figure and gain and can  
significantly increase input IP3. The ADRF6614 default LPF setting  
is 0. Both channels of the ADRF6614 are programmed together  
using the same LPF settings. Power conversion gain, input P1dB,  
input IP3, and SSB noise figure can be optimized as shown in  
Figure 42, Figure 45, Figure 46, and Figure 49, respectively.  
0
0
2
4
6
8
10  
12  
14  
16  
IFA_MAINBIAS  
Figure 117. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias  
(IFA_LINBIAS) Level at IF Frequency = 200 MHz  
Rev. 0 | Page 41 of 61  
 
 
 
ADRF6614  
Data Sheet  
Table 24. Recommended Optimum Settings for High Performance Mode (in Decimal)  
RF Frequency (MHz)  
LO Frequency (MHz)  
IFA_MAINBIAS  
IFA_LINBIAS  
BAL_COUT  
LPF  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
VGS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000  
497  
597  
697  
797  
897  
997  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
11  
11  
11  
11  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
14  
14  
10  
10  
10  
10  
10  
6
6
4
4
4
4
4
4
4
2
2
2
2
1097  
1197  
1297  
1397  
1497  
1597  
1697  
1797  
1897  
1997  
2097  
2197  
2297  
2397  
2497  
2597  
2697  
2797  
2
2
0
0
Table 25. Recommended Optimum Settings for High Efficiency Mode (in Decimal)  
RF Frequency (MHz)  
LO Frequency (MHz)  
IFA_MAINBIAS  
IFA_LINBIAS  
BAL_COUT  
LPF  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
VGS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000  
497  
597  
697  
797  
897  
997  
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
7
13  
13  
13  
13  
13  
13  
13  
13  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
14  
14  
10  
10  
10  
10  
10  
6
6
4
4
4
4
4
4
4
2
2
2
2
1097  
1197  
1297  
1397  
1497  
1597  
1697  
1797  
1897  
1997  
2097  
2197  
2297  
2397  
2497  
2597  
2697  
2797  
2
2
0
0
Rev. 0 | Page 42 of 61  
Data Sheet  
ADRF6614  
When using the VCO_4 or VCO_5 cores, it is required to  
GSM MODE OF OPERATION  
set VTUNE_DAC_SLOPE (Register 0x49, Bits[13:9]) = 9d,  
VTUNE_DAC_OFFSET (Register 0x49, Bits[8:0]) = 171d,  
VCO_LDO_R2 (Register 0x22, Bits[11:8]) = 2d, and VCO_  
LDO_R4 (Register 0x22, Bits[15:12]) = 10d. In transitioning  
from a GSM VCO (VCO_4 and VCO_5) to an octave VCO, the  
LDO settings must be changed before changing the VCO  
selection.  
The ADRF6614 supports GSM phase noise specifications in  
typical GSM bands such as the 800 MHz, 900 MHz, 1800 MHz,  
and 1900 MHz. GSM phase noise performance in the 800 MHz  
and 900 MHz bands is met by simply tuning the integrated  
PLLVCO to the desired frequency.  
Integrated VCO cores (VCO_4 and VCO_5) support GSM phase  
noise performance in the 1800 MHz and 1900 MHz GSM bands.  
To ensure that GSM phase noise performance is achieved when  
using the ADRF6614 in 1800 MHz or 1900 MHz bands, select  
the VCO_4 core by writing the VCO_SEL bits in the VCO_  
CTRL1 register (Register 0x22, Bits[2:0]) for a frequency range  
of 1.525 GHz to 1.547 GHz, and the VCO_5 core for a frequency  
range of 1.668 GHz to 1.708 GHz.  
–20  
1: 1kHz  
2: 10kHz  
3: 50kHz  
–88.8656dBc/Hz  
–91.0102dBc/Hz  
–111.8226dBc/Hz  
–30  
–40  
4: 100kHz –121.2806dBc/Hz  
5: 500kHz –141.0461dBc/Hz  
6: 800kHz –145.2453dBc/Hz  
–50  
7: 1MHz  
–148.3557dBc/Hz  
–60  
8: 10MHz –158.4950dBc/Hz  
9: 40MHz –158.6742dBc/Hz  
10: 100MHz –157.3591dBc/Hz  
–70  
–80  
START: 500Hz  
STOP: 20MHz  
CENTER: 10.00025MHz  
SPAN: 19.9995MHz  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
1
2
INTG NOISE: –47.5392dBc/19.7MHz  
RMS NOISE: 5.93684 mrad  
340.156mdeg  
RMS JITTER: 615.168fs  
RESIDUAL FM: 866.159Hz  
The VCO_4 and VCO_5 cores operate at fundamental frequencies  
of 3.050 GHz to 3.094 GHz and 3.336 GHz to 3.416 GHz, respec-  
tively. To generate the desired LO frequency in the 1800 MHz  
and 1900 MHz bands, enable divide by 2 by writing to LO_DIV  
(Register 0x22, Bits[5:3]).  
3
4
10  
5
6
7
8
9
1k  
10k  
100k  
1M  
10M  
100M  
For the GSM mode of operation, the recommended loop filter  
components and dynamic loop settings are shown in Table 19 at  
the PFD rate of 1.536 MHz.  
FREQUENCY (Hz)  
Figure 118. GSM Phase Noise Performance at 1.535 GHz  
See Figure 118 for the GSM mode phase noise performance  
of −145 dBc/Hz at 800 kHz offset at the carrier frequency of  
1.535 GHz.  
Rev. 0 | Page 43 of 61  
 
 
ADRF6614  
Data Sheet  
REGISTER SUMMARY  
Table 26. Register Summary  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x00 SOFT_RESET  
[15:8]  
[7:0]  
SOFT_RESET[15:8]  
SOFT_RESET[7:0]  
0x0000  
R
0x01 ENABLES  
[15:8] LO_LDO_EN  
[7:0] LO_DRV_EN  
LO_PATH_EN  
0x0000 RW  
LDO_3P3_EN  
0x02 INT_DIV  
0x03 FRAC_DIV  
0x04 MOD_DIV  
0x10 IF_BIAS  
[15:8] DIV_MODE  
INT_DIV[14:8]  
0x0058 RW  
0x0250 RW  
0x0600 RW  
0x02B5 RW  
[7:0]  
INT_DIV[7:0]  
[15:8]  
[7:0]  
FRAC_DIV[15:8]  
FRAC_DIV[7:0]  
MOD_DIV[15:8]  
MOD_DIV[7:0]  
[15:8]  
[7:0]  
[15:8] IFA_LIN_HIEFFP
IFA_LINBIAS_EN  
IFA_LINBIAS[3:2]  
IFA_MAINBIAS_EN  
[7:0]  
[15:8]  
[7:0]  
IFA_LINBIAS[1:0]  
UNUSED  
IFA_MAINBIAS  
CSCALE  
0x20 CP_CTRL  
0x0026 RW  
BLEED_  
BLEED  
POLARITY  
0x21 PFD_CTRL1  
0x22 VCO_CTRL1  
0x30 BALUN_CTRL  
0x40 PFD_CTRL2  
0x42 DITH_CTRL1  
0x43 DITH_CTRL2  
[15:8] UNUSED  
[7:0]  
REF_MUX_SEL  
PFD_POLARITY  
REFSEL[7:0]  
REFSEL[11:8]  
0x0003 RW  
0x000A RW  
0x0000 RW  
0x0010 RW  
0x000E RW  
0x0001 RW  
0x0000 RW  
[15:8]  
[7:0]  
VCO_LDO_R4  
BAL_COUT  
VCO_LDO_R2  
VCO_SEL  
LPF  
LO_DRV_LVL  
UNUSED  
LO_DIV  
[15:8]  
[7:0]  
VGS  
RESERVED  
[15:8]  
[7:0]  
UNUSED  
ABLDLY[3]  
CLKEDGE  
ABLDLY[2:0]  
UNUSED[3:0]  
CPCTRL  
UNUSED[11:4]  
DITH_EN  
[15:8]  
[7:0]  
DITH_MAG  
DITH_VAL_H  
[15:8]  
[7:0]  
DITH_VAL_L[15:8]  
DITH_VAL_L[7:0]  
UNUSED[9:2]  
0x44 SYNTH_FCNTN_ [15:8]  
CTRL  
[7:0]  
UNUSED[1:0]  
BANDCAL_DIVD_  
CLR  
0x45 VCO_CTRL2  
0x46 VCO_CTRL3  
[15:8]  
[7:0]  
UNUSED  
0x0020 RW  
0x0000 RW  
VCO_BAND_SRC  
BAND  
[15:8]  
[7:0]  
UNUSED  
VCO_CNTR_  
DONE  
VCO_BAND  
0x47 VCO_CNTR_  
CTRL  
[15:8]  
[7:0]  
UNUSED[11:4]  
0x0000 RW  
UNUSED[3:0]  
VCO_CNTR_EN  
0x48 VCO_CNTR_RB [15:8]  
[7:0]  
VCO_CNTR_RB[15:8]  
VCO_CNTR_RB[7:0]  
0x0000 R  
0x49 VTUNE_DAC_  
CTRL  
[15:8]  
UNUSED  
VTUNE_DAC_SLOPE  
VTUNE_DAC_  
OFFSET[8]  
0x0000 RW  
0x0000 RW  
[7:0]  
VTUNE_DAC_OFFSET[7:0]  
UNUSED  
0x4A VCO_BUF_LDO [15:8]  
[7:0]  
VCOBUF_LDO_R4  
VCOBUF_LDO_R2  
Rev. 0 | Page 44 of 61  
 
 
Data Sheet  
ADRF6614  
REGISTER DETAILS  
Address: 0x00, Reset: 0x0000, Name: SOFT_RESET  
Table 27. Bit Descriptions for SOFT_RESET  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
[15:0]  
SOFT_RESET  
Soft reset bit.  
R
R
0
Any write to this register asserts a soft reset command.  
Address: 0x01, Reset: 0x0000, Name: ENABLES  
Table 28. Bit Descriptions for ENABLES  
Bits  
Bit Name  
LO_LDO_EN  
LO2_ENP  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
15  
Power up LO LDO.  
LO 2 enable.  
14  
RW  
13  
BALUN_EN  
LO1_ENP  
Input balun enable.  
LO 1 enable.  
RW  
12  
RW  
11  
DIV2P5_EN  
PWRUPRX  
Enable dividers 2.5 V LDO.  
Power up Rx.  
RW  
[10:9]  
RW  
0x0 Power down both mixer channels.  
0x1 Power up mixer Channel 1.  
0x2 Power up mixer Channel 2.  
0x3 Power up both mixer channels.  
External LO path enable.  
8
7
LO_PATH_EN  
LO_DRV_EN  
0x0  
0x0  
RW  
RW  
LO driver enable.  
Rev. 0 | Page 45 of 61  
 
ADRF6614  
Data Sheet  
Bits  
6
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
VCOBUF_LDO_EN  
REF_BUF_EN  
VCO_EN  
VCO buffer LDO enable.  
Reference buffer enable.  
Power up VCOs.  
5
RW  
4
RW  
3
DIV_EN  
Power up dividers.  
Power up charge pump.  
Power up VCO LDO.  
Power up 3.3 V LDO.  
RW  
2
CP_EN  
RW  
1
VCO_LDO_EN  
LDO_3P3_EN  
RW  
0
RW  
Address: 0x02, Reset: 0x0058, Name: INT_DIV  
Table 29. Bit Descriptions for INT_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
DIV_MODE  
Set fractional/integer mode.  
Fractional.  
Integer.  
0x0  
RW  
0
1
[14:0]  
INT_DIV  
Set divider INT value.  
0x58  
RW  
Address: 0x03, Reset: 0x0250, Name: FRAC_DIV  
Table 30. Bit Descriptions for FRAC_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
FRAC_DIV  
Set divider FRAC value.  
0x250  
RW  
Address: 0x04, Reset: 0x0600, Name: MOD_DIV  
Table 31. Bit Descriptions for MOD_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
MOD_DIV  
Set divider MOD value.  
0x600  
RW  
Rev. 0 | Page 46 of 61  
Data Sheet  
ADRF6614  
Address: 0x10, Reset: 0x02B5, Name: IF_BIAS  
Table 32. Bit Descriptions for IF_BIAS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
IFA_LIN_HIEFFP  
Linearity RDAC.  
0x0  
RW  
0
1
High performance mode.  
High efficiency mode.  
14  
IFA_MAIN_HIEFFP  
Main RDAC.  
0x0  
RW  
0
1
High performance mode.  
High efficiency mode.  
[13:12] IFA_LINSLOPE  
[11:10] IFA_MAINSLOPE  
Linearity slope adjust for IF amps (IPMix).  
Main slope adjust for IF amps (IPMix).  
Linearity bias adjust for IF amps (IPMix).  
Enable internal linearity bias adjust for IF amps (IPMix).  
Main bias adjust for IF amps (IPMix).  
Enable internal main bias adjust for IF amps (IPMix).  
0x0  
0x0  
0xa  
0x1  
0xa  
0x1  
RW  
RW  
RW  
RW  
RW  
RW  
[9:6]  
5
IFA_LINBIAS  
IFA_LINBIAS_EN  
IFA_MAINBIAS  
IFA_MAINBIAS_EN  
[4:1]  
0
Address: 0x20, Reset: 0x0026, Name: CP_CTRL  
Table 33. Bit Descriptions for CP_CTRL  
Bits Bit Name Settings  
[15:14] UNUSED  
Description  
Reset  
0x0  
Access  
RW  
Unused.  
[13:8]  
7
[6:0]  
CSCALE  
BLEED_POLARITY  
BLEED  
Charge pump current adjust.  
Charge pump bleed current polarity.  
Charge pump bleed.  
0x0  
0x0  
0x26  
RW  
RW  
RW  
Rev. 0 | Page 47 of 61  
ADRF6614  
Data Sheet  
Address: 0x21, Reset: 0x0003, Name: PFD_CTRL1  
Table 34. Bit Descriptions for PFD_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
15  
UNUSED  
Unused.  
[14:13] REF_MUX_SEL  
Reference output divide ratio/VPTAT/SCAN/LOCK_DET.  
0x0  
RW  
000 LOCK_DET.  
001 VPTAT.  
010 REFCLK.  
011 REFCLK/2.  
100 REFCLK × 2.  
101 REFCLK/8.  
110 REFCLK/4.  
111 SCAN.  
12  
PFD_POLARITY  
REFSEL  
PFD polarity.  
Positive.  
Negative.  
0x0  
0x3  
RW  
RW  
0
1
[11:0]  
Reference input divide ratio.  
Rev. 0 | Page 48 of 61  
Data Sheet  
ADRF6614  
Address: 0x22, Reset: 0x000A, Name: VCO_CTRL1  
Table 35. Bit Descriptions for VCO_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:12] VCO_LDO_R4  
VCO LDO R4 resistor control setting.  
VCO LDO R2 resistor control setting.  
External LO amplitude.  
00 −0.8 dBm/15 mA.  
01 4.6 dBm/28 mA.  
10 7.5 dBm/40 mA.  
11 9.2 dBm/49 mA.  
LO divider.  
00 Divide by 1.  
01 Divide by 2.  
10 Divide by 4.  
11 Divide by 8.  
[11:8]  
[7:6]  
VCO_LDO_R2  
LO_DRV_LVL  
0x0  
RW  
0x0  
RW  
[5:3]  
[2:0]  
LO_DIV  
0x1  
0x2  
RW  
RW  
VCO_SEL  
Select VCO core/external LO.  
000 VCO_0 4.6 GHz to 5.7 GHz.  
001 VCO_1 4.02 GHz to 4.6 GHz.  
010 VCO_2 3.5 GHz to 4.02 GHz.  
011 VCO_3 2.85 GHz to 3.5 GHz.  
100 VCO_4 3.050 GHz to 3.094 GHz  
101 VCO_5 3.336 GHz to 3.416 GHz  
110 External LO/VCO.  
111 None  
Rev. 0 | Page 49 of 61  
ADRF6614  
Data Sheet  
Address: 0x30, Reset: 0x0000, Name: BALUN_CTRL  
Table 36. Bit Descriptions for BALUN_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RW  
RW  
[15:14] UNUSED  
[13:11] VGS  
Unused.  
Mixer VGS bias.  
[10:8]  
[7:4]  
[3:0]  
LPF  
BAL_COUT  
RESERVED  
Mixer output IF low-pass filter.  
Set balun COUT (both channels).  
Reserved, set to 0x0.  
0x0  
0x0  
0x0  
RW  
RW  
RW  
Address: 0x40, Reset: 0x0010, Name: PFD_CTRL2  
Table 37. Bit Descriptions for PFD_CTRL2  
Bits  
Bit Name  
UNUSED  
ABLDLY  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:9]  
[8:5]  
Unused.  
Set antibacklash delay.  
0x0  
RW  
00 0 ns.  
01 0.5 ns.  
10 0.75 ns.  
11 0.9 ns.  
Rev. 0 | Page 50 of 61  
Data Sheet  
ADRF6614  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:2]  
CPCTRL  
Set charge pump control.  
0x4  
RW  
000 Both on.  
001 Pump down.  
010 Pump up.  
011 Tristate.  
100 PFD.  
101 Unused.  
110 Unused.  
111 Unused.  
[1:0]  
CLKEDGE  
Set PFD edge sensitivity.  
0x0  
RW  
00 Divider and reference down edge.  
01 Divider down edge, reference up edge.  
10 Divider up edge, reference down edge.  
11 Divider and reference up edge.  
Address: 0x42, Reset: 0x000E, Name: DITH_CTRL1  
Table 38. Bit Descriptions for DITH_CTRL1  
Bits  
[15:4]  
3
Bit Name  
UNUSED  
DITH_EN  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Unused register bits.  
Set dither enable.  
Disable.  
0x1  
RW  
0
1
Enable.  
[2:1]  
0
DITH_MAG  
Dither magnitude.  
Highest bit of 17-bit dither value.  
0x3  
0x0  
RW  
RW  
DITH_VAL_H  
Address: 0x43, Reset: 0x0001, Name: DITH_CTRL2  
Table 39. Bit Descriptions for DITH_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
DITH_VAL_L  
Lowest 16 bits of 17-bit dither value.  
0x1  
RW  
Rev. 0 | Page 51 of 61  
ADRF6614  
Data Sheet  
Address: 0x44, Reset: 0x0000, Name: SYNTH_FCNTN_CTRL  
Table 40. Bit Descriptions for SYNTH_FCNTN_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[15:6]  
UNUSED  
Unused.  
5
4
3
2
1
0
DIV_SDM_DIS  
VCOCNT_CG_DIS  
BANDCAL_CG_DIS  
SDM_CG_DIS  
SDM_DIVD_CLR  
BANDCAL_DIVD_CLR  
Disable sigma-delta modulator (SDM) divider.  
Disable built in self test (BIST) clock.  
Disable VCO band calibration (BANDCAL) clock.  
Disable SDM clock.  
Clear SDM divider.  
Clear BANDCAL divider.  
Address: 0x45, Reset: 0x0020, Name: VCO_CTRL2  
Table 41. Bit Descriptions for VCO_CTRL2  
Bits  
[15:8]  
7
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
UNUSED  
Unused.  
VCO_BAND_SRC  
Set VCO band source.  
Automatic  
Manual  
0x0  
RW  
0
1
[6:0]  
BAND  
Set VCO band.  
0x20  
RW  
Rev. 0 | Page 52 of 61  
Data Sheet  
ADRF6614  
Address: 0x46, Reset: 0x0000, Name: VCO_CTRL3  
Table 42. Bit Descriptions for VCO_CTRL3  
Bits  
[15:8]  
7
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
UNUSED  
VCO_CNTR_DONE  
VCO_BAND  
Unused.  
RW  
R
R
Read back BIST counter status.  
Read back output of band capacitor mux.  
[6:0]  
0x0  
Address: 0x47, Reset: 0x0000, Name: VCO_CNTR_CTRL  
Table 43. Bit Descriptions for VCO_CNTR_CTRL  
Bits  
[15:4]  
[3:2]  
1
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
RW  
RW  
RW  
UNUSED  
Unused.  
VCO_CNTR_REFCNT  
VCO_CNTR_CLR  
VCO_CNTR_EN  
BIST counter integration interval.  
Clear BIST counter.  
Enable BIST counter.  
0
Address: 0x48, Reset: 0x0000, Name: VCO_CNTR_RB  
Table 44. Bit Descriptions for VCO_CNTR_RB  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
VCO_CNTR_RB  
Read back output of BIST counter.  
0x0  
R
Rev. 0 | Page 53 of 61  
ADRF6614  
Data Sheet  
Address: 0x49, Reset: 0x0000, Name: VTUNE_DAC_CTRL  
Table 45. Bit Descriptions for VTUNE_DAC_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:14] UNUSED  
Unused.  
[13:9]  
[8:0]  
VTUNE_DAC_SLOPE  
VTUNE_DAC_OFFSET  
Set VTUNE proportional to absolute temperature (PTAT ) DAC.  
Set VTUNE zero to absolute temperature (ZTAT ) DAC.  
0x0  
0x0  
RW  
RW  
Address: 0x4A, Reset: 0x0000, Name: VCO_BUF_LDO  
Table 46. Bit Descriptions for VCO_BUF_LDO  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RW  
RW  
[15:8]  
[7:4]  
[3:0]  
UNUSED  
VCOBUF_LDO_R4  
VCOBUF_LDO_R2  
Unused.  
VCOBUF LDO R4 control.  
VCOBUF LDO R2 control.  
0x0  
RW  
Rev. 0 | Page 54 of 61  
Data Sheet  
ADRF6614  
EVALUATION BOARD  
An evaluation board is available for the ADRF6614. The standard  
evaluation board schematic is presented in Figure 119. The USB  
interface circuitry schematic is presented in Figure 121 and/or  
Figure 120. The evaluation board layout is shown in Figure 122  
and Figure 123. The evaluation board is fabricated using  
Rogers® 3003 material. Table 47 details the configuration for the  
mixer characterization. The evaluation board software is  
available on www.analog.com.  
Rev. 0 | Page 55 of 61  
 
ADRF6614  
Data Sheet  
2
0 9 5 1 - 1 4 1  
D
G N  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
P A  
- 1 T O U I F  
+ 1 T O U I F  
C
1 1 C V C  
T U O X M U  
D G N  
- 2 T U O I F  
+ 2 T U O P I F  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
D N  
C
D N  
C V C 3  
_ I F V C C  
I F C C V _  
L E  
C L K  
N I  
F
R E  
N _ C S  
K L S C  
O I S D  
C V C 2  
1 O L D  
3 O L D  
4 O L D  
2 1 C V C  
U T O C P  
P L L O 2 P L 5 D  
P L L O 3 P L 3 D  
N T H C _ S V Y C  
A
D A T  
Y N T H C _ S V C  
5 S P I O 2 P L D  
D
G N  
E P  
- T U O L O  
+ T U O L O  
D
Figure 119. Evaluation Board, Main Circuitry  
Rev. 0 | Page 56 of 61  
 
Data Sheet  
ADRF6614  
3
0 9 5 1 - 1 1 4  
6
M T T 8 - 2 1 0 S M L  
8 6 0 M T T - 2 1 S M L  
C
V C  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
P A  
D
D
G N  
P U E K W A  
8 D F _ P D 0  
9 D F _ P D 1  
0 1 D 2 _ D F P  
1 1 D 3 _ D F P  
2 1 D 4 _ D F P  
3 1 D 5 _ D F P  
4 1 D 6 _ D F P  
5 1 D 7 _ D F P  
2 8  
2 7  
2 6  
2 5  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
V C C  
G N  
B
_ U S 3 V 3  
7 D F _ 7 P B  
6 D F _ 6 P B  
5 D F _ 5 P B  
4 D F _ 4 P B  
3 D F _ 3 P B  
2 D F _ 2 P B  
1 D F _ 1 P B  
0 D F _ 0 P B  
D
G N  
U T O K C L  
V C C  
C
V C  
G N  
P A  
B
_ U S 3 V 3  
S D A  
S C L  
D
D
D
Figure 120. Evaluation Board, Legacy USB Interface  
Rev. 0 | Page 57 of 61  
 
ADRF6614  
Data Sheet  
Figure 121. Evaluation Board, Analog Devices, Inc. SDP-S USB Interface  
Rev. 0 | Page 58 of 61  
 
Data Sheet  
ADRF6614  
Table 47. Evaluation Board Bill of Materials  
Components  
Description  
Default Conditions  
C1, C2, C8, C11, C12,  
C13, C14, C15, C18,  
C19, C20, C23, C26,  
C27  
Power supply decoupling. Nominal supply decoupling consists of a  
0.1 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C1, C2, C26, C27 = 0.1 μF (size 0402)  
C8, C11, C12, C13, C14, C15, C18, C19  
C20, C23 = 10 pF (size 0402)  
C6, C7, C24, C25  
RF input interface. The input channels are ac-coupled through C6 and  
C24. C7 and C25 provide bypassing for the center tap of the RF input  
baluns.  
C6, C24 = 22 pF (size 0402)  
C7, C25 = 22 pF (size 0402)  
C3, C4, C5, C28, C29, IF output interface. The open-collector IF output interfaces are biased  
C3, C4, C5, C28, C29, C30 = 120 pF (size 0402)  
L1, L2, L3, L4 = 470 nH (size 0603)  
R20, R23 = open  
R21, R22 = 0 Ω (size 0402)  
T1, T2 = TC4-1W+ (Mini-Circuits®)  
C30, L1, L2, L3, L4,  
R20, R21, R22, R23,  
T1, T2  
through pull-up choke Inductors L1, L2, L3, and L4. T1 and T2 are 4:1  
impedance transformers used to provide single-ended IF output  
interfaces, with C5 and C30 providing center tap bypassing. Remove  
R21 and R22 for balanced output operation.  
C17  
LO interface. C17 provides ac coupling for the local oscillator input.  
Bias control. R1and R2 set the bias point for the internal IF amplifier.  
C17 = 22 pF (size 0402)  
R1, R2 = 910 Ω (size 0402)  
R1, R2  
Figure 122. Evaluation Board, Top Layer  
Rev. 0 | Page 59 of 61  
 
 
ADRF6614  
Data Sheet  
Figure 123. Evaluation Board, Bottom Layer  
Rev. 0 | Page 60 of 61  
 
Data Sheet  
ADRF6614  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
*
EXPOSED  
PAD  
5.70  
5.60 SQ  
5.50  
24  
13  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.203 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-2  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 124. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-48-13  
ADRF6614ACPZ-R7  
ADRF6614-EVALZ  
−40°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14115-0-3/16(0)  
Rev. 0 | Page 61 of 61  
 
 

相关型号:

ADRF6614ACPZ-R7

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO
ADI

ADRF6620

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6620-EVALZ

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6620ACPZ-R7

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6650

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650-EVALZ

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650ACPZ

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650ACPZ-RL7

RF and Baseband Circuit, BICMOS
ADI

ADRF6655

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655-EVALZ

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655ACPZ-R7

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6658

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI