ADRV9008BBCZ-2REEL [ADI]

Integrated Dual RF Transmitters and Observation Receiver;
ADRV9008BBCZ-2REEL
型号: ADRV9008BBCZ-2REEL
厂家: ADI    ADI
描述:

Integrated Dual RF Transmitters and Observation Receiver

文件: 总95页 (文件大小:2478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Dual RF Transmitters and  
Observation Receiver  
ADRV9008-2  
Data Sheet  
global system for mobile communications (MC GSM) mode,  
which has higher inband spurious-free dynamic range (SFDR),  
the maximum large signal bandwidth is 75 MHz.  
FEATURES  
Dual transmitters  
Dual input shared observation receiver  
Maximum tunable transmitter synthesis bandwidth: 450 MHz  
Maximum observation receiver bandwidth: 450 MHz  
Fully integrated fractional-N RF synthesizers  
Fully integrated clock synthesizer  
Multichip phase synchronization for RF LO and baseband  
clocks  
The observation path consists of a wide bandwidth direct  
conversion receiver with state of the art dynamic range. The  
complete receive subsystem includes dc offset correction,  
quadrature correction, and digital filtering, thus eliminating the  
need for these functions in the digital baseband. Several  
auxiliary functions such as analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), and general-purpose  
inputs/outputs (GPIOs) for power amplifier (PA) and radio  
frequency (RF) front-end control are also integrated.  
JESD204B datapath interface  
Tuning range (center frequency): 75 MHz to 6000 MHz  
APPLICATIONS  
2G/3G/4G/5G macrocell base stations  
Active antenna systems  
Massive multiple input, multiple output (MIMO)  
Phased array radars  
Electronic warfare  
The fully integrated phase-locked loops (PLLs) provide high  
performance, low power fractional-N RF frequency synthesis for  
the transmitter and receiver sections. An additional synthesizer  
generates the clocks needed for the converters, digital circuits, and  
the serial interface. Special precautions have been taken to  
provide the isolation required in high performance base station  
applications. All voltage controlled oscillators (VCOs) and loop  
filter components are integrated.  
Military communications  
Portable test equipment  
GENERAL DESCRIPTION  
The high speed JESD204B interface supports up to 12.288 Gbps  
lane rates, resulting in two lanes per transmitter in the widest  
bandwidth mode and two lanes for the observation path  
receiver in the widest bandwidth mode.  
The ADRV9008-2 is a highly integrated, RF agile transmit  
subsystem offering dual-channel transmitters, an observation path  
receiver, integrated synthesizers, and digital signal processing  
functions. The IC delivers a versatile combination of high  
performance and low power consumption required by  
2G/3G/4G/5G macrocell base stations, and active antenna  
applications.  
The core of the ADRV9008-2 can be powered directly from  
1.3 V regulators and 1.8 V regulators and is controlled via a  
standard 4-wire serial port. Comprehensive power-down modes  
are included to minimize power consumption in normal use.  
The ADRV9008-2 is packaged in a 12 mm × 12 mm 196-ball  
chip scale ball grid array (CSP_BGA).  
The transmitters use an innovative direct conversion modulator  
that achieves multicarrier macrocell base station quality  
performance and low power. In 3G/4G mode, the maximum  
transmitter large signal bandwidth is 200 MHz. In multicarrier  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADRV9008-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 69  
Transmitter.................................................................................. 69  
Observation Receiver................................................................. 69  
Clock Input.................................................................................. 69  
Synthesizers................................................................................. 69  
Serial Peripheral Interface (SPI)............................................... 69  
JTAG Boundary Scan................................................................. 69  
Power Supply Sequence ............................................................. 69  
GPIO_x Pins ............................................................................... 70  
Auxiliary Converters.................................................................. 70  
JESD204B Data Interface .......................................................... 70  
Applications Information.............................................................. 71  
PCB Layout and Power Supply Recommendations............... 71  
PCB Material and Stackup Selection ....................................... 71  
Fanout and Trace Space Guidelines......................................... 73  
Component Placement and Routing Guidelines ................... 74  
RF and JESD204B Transmission Line Layout ........................ 79  
Isolation Techniques Used on the ADRV9008-2W/PCBZ... 83  
RF Port Interface Information.................................................. 85  
Outline Dimensions....................................................................... 95  
Ordering Guide .......................................................................... 95  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Current and Power Consumption Specifications................... 13  
Timing Diagrams........................................................................ 14  
Absolute Maximum Ratings.......................................................... 15  
Reflow Profile.............................................................................. 15  
Thermal Management ............................................................... 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configuration and Function Descriptions........................... 16  
Typical Performance Characteristics ........................................... 23  
75 MHz to 525 MHz Band ........................................................ 23  
650 MHz to 3000 MHz Band.................................................... 36  
3400 MHz to 4800 MHz Band.................................................. 47  
5100 MHz to 5900 MHz Band.................................................. 57  
Transmitter Output Impedance................................................ 67  
Observation Receiver Input Impedance.................................. 67  
Terminology .................................................................................... 68  
REVISION HISTORY  
9/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 95  
 
Data Sheet  
ADRV9008-2  
FUNCTIONAL BLOCK DIAGRAM  
ADRV9008-2  
ORX1  
ORX1_IN+  
ORX2  
SYNCIN0±  
SYNCIN1±  
SERDOUT0±  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
SERDIN0±  
SERDIN1±  
SERDIN2±  
SERDIN3±  
SYNCOUT0±  
SYNCOUT1±  
SYSREFIN±  
GP_INTERRUPT  
ORXx_ENABLE  
TXx_ENABLE  
RESET  
ORX1_IN–  
ORX2_IN+  
ADC  
ADC  
LPF  
LPF  
ORX2_IN–  
DIGITAL  
PROCESSING  
DECIMATION  
pFIR  
RF_EXT_LO_I/O+  
RF_EXT_LO_I/O–  
ARM  
Cortex-M3  
RF LO  
SYNTHESIZER  
AGC  
DC OFFSET  
QEC  
TX1  
TX2  
TX1_OUT+  
LOCAL  
OSCILLATOR  
LEAKAGE  
TX1_OUT–  
TX2_OUT+  
DAC  
DAC  
SCLK  
JESD204B  
LPF  
LPF  
TX2_OUT–  
CS  
SDO  
SDIO  
GPIOs, AUXILIARY ADCs,  
AND AUXILIARY DACs  
REF_CLK_IN+  
REF_CLK_IN–  
CLOCK  
GENERATION  
GPIO_3p3_x  
GPIO_x  
AUXADC_x  
Figure 1.  
Rev. 0 | Page 3 of 95  
 
ADRV9008-2  
Data Sheet  
SPECIFICATIONS  
Electrical characteristics at VDDA1P31 = 1.3 V, VDDD1P3_DIG = 1.3 V, VDDA1P8_TX = 1.8 V, TJ = full operating temperature range.  
Local oscillator frequency (fLO) = 1800 MHz, unless otherwise noted. The specifications in Table 1 are not de-embedded. Refer to the  
Typical Performance Characteristics section for input/output circuit path loss. The device configuration profile for the 75 MHz to  
525 MHz frequency range is as follows: transmitter = 50 MHz/100 MHz bandwidth (inphase quadrature (IQ) rate = 122.88 MHz),  
observation receiver = 100 MHz bandwidth (IQ rate = 122.88 MHz), JESD204B rate = 9.8304 GSPS, and device clock = 245.76 MHz.  
Unless otherwise specified, the device configuration for all other frequency ranges is as follows: transmitter = 200 MHz/450 MHz  
bandwidth (IQ rate = 491.52 MHz), observation receiver = 450 MHz bandwidth (IQ rate = 491.52 MHz), JESD204B rate = 9.8304 GSPS,  
and device clock = 245.76 MHz.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TRANSMITTERS  
Center Frequency  
Transmitter (Tx)  
Synthesis Bandwidth  
(BW)  
75  
6000  
450  
MHz  
MHz  
Transmitter Large Signal  
Bandwidth (3G/4G)  
Transmitter Large Signal  
Bandwidth (MC GSM)  
Peak-to-Peak Gain  
Deviation  
200  
75  
MHz  
MHz  
dB  
Low intermediate frequency (IF)  
mode  
450 MHz bandwidth, compensated  
by programmable finite impulse  
response (FIR) filter  
Any 20 MHz bandwidth span,  
compensated by programmable FIR  
filter  
1.0  
0.1  
1
Gain Slope  
dB  
Deviation from Linear  
Phase  
Degrees 450 MHz bandwidth  
Transmitter Attenuation  
Power Control Range  
0
32  
dB  
dB  
Signal-to-noise ratio (SNR) maintained  
for attenuation between 0 dB and  
20 dB  
Transmitter Attenuation  
Power Control  
Resolution  
Transmitter Attenuation  
Integral Nonlinearity  
Transmitter Attenuation  
Differential Nonlinearity  
0.05  
0.1  
INL  
dB  
dB  
For any 4 dB step  
Monotonic  
DNL  
0.04  
Transmitter Attenuation  
Serial Peripheral  
Interface 2 (SPI 2)  
Timing  
See Figure 4  
Time from CS Going  
High to Change in  
Transmitter  
tSCH  
19.5  
6.5  
24  
ns  
ns  
ns  
dB  
Attenuation  
Time Between  
Consecutive  
Microattenuation  
Steps  
tACH  
8.1  
A large change in attenuation can  
be broken up into a series of smaller  
attenuation changes  
Time Required to Reach tDCH  
Final Attenuation  
Value  
800  
+0.5  
Time required to complete the  
change in attenuation from start  
attenuation to final attenuation  
value  
Maximum Attenuation  
Overshoot During  
Transition  
−1.0  
Rev. 0 | Page 4 of 95  
 
 
Data Sheet  
ADRV9008-2  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Change in Attenuation  
0.5  
dB  
per Microstep  
Maximum Attenuation  
Change when CS  
Goes High  
32  
dB  
Adjacent Channel Leakage  
Ratio (ACLR) (LTE)  
20 MHz LTE at −12 dBFS  
−67  
−64  
−60  
dB  
dB  
dB  
75 MHz < f ≤ 2800 MHz  
2800 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
In Band Noise Floor  
0 dB attenuation, in band noise falls  
1 dB for each dB of attenuation for  
attenuation between 0 dB and 20 dB  
−147  
−148  
−149  
−150.5  
dBm/Hz 75 MHz < f ≤ 600 MHz  
dBm/Hz 600 MHz < f ≤ 3000 MHz  
dBm/Hz 3000 MHz < f ≤ 4800 MHz  
dBm/Hz 4800 MHz < f ≤ 6000 MHz  
Out of Band Noise Floor  
0 dB attenuation, 3 × bandwidth/2  
offset  
−147  
−153  
−154  
−155.5  
dBm/Hz 75 MHz < f ≤ 600 MHz  
dBm/Hz 600 MHz < f ≤ 3000 MHz  
dBm/Hz 3000 MHz < f ≤ 4800 MHz  
dBm/Hz 4800 MHz < f ≤ 6000 MHz  
Interpolation Images  
MC GSM Mode  
3G/4G Mode  
−95  
−80  
85  
dBc  
dBc  
dB  
Transmitter to  
75 MHz < f ≤ 600 MHz  
Transmitter Isolation  
75  
70  
65  
56  
dB  
dB  
dB  
dB  
600 MHz < f ≤ 2800 MHz  
2800 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 5700 MHz  
5700 MHz < f ≤ 6000 MHz  
Image Rejection  
Within Large Signal  
Bandwidth  
Quadrature error correction (QEC)  
active  
70  
65  
62  
60  
40  
dB  
dB  
dB  
dB  
dB  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4000 MHz  
4000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Assumes that distortion power  
density is 25 dB below desired  
power density  
Beyond Large Signal  
Bandwidth  
Maximum Output Power  
0 dBFS, continuous wave (CW) tone  
into 50 Ω load, 0 dB transmitter  
attenuation  
9
7
6
4.5  
dBm  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
0 dB transmitter attenuation  
Third-Order Output  
Intermodulation  
Intercept Point  
OIP3  
29  
27  
23  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4000 MHz  
4000 MHz < f ≤ 6000 MHz  
Rev. 0 | Page 5 of 95  
ADRV9008-2  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Third-Order  
Intermodulation  
IM3  
−70  
dBc  
2 × GSMK carriers, ΣPOUT  
−12 dBFS rms  
=
The two carriers can be placed  
anywhere within the transmitter band  
such that the IM3 products fall within  
the transmitter band or within 10 MHz  
of the band edges  
Carrier Leakage  
With LO leakage correction active,  
0 dB attenuation, scales decibel for  
decibel with attenuation, measured  
in 1 MHz bandwidth, resolution  
bandwidth, and video bandwidth =  
100 kHz, rms detector, 100 trace  
average  
Carrier Offset from  
Local Oscillator (LO)  
−84  
dBFS  
75 MHz < f ≤ 600 MHz  
−82  
−80  
−71  
dBFS  
dBFS  
dBFS  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Carrier on LO  
Error Vector Magnitude  
(Third Generation  
EVM  
Partnership Project  
(3GPP) Test Signals)  
75 MHz LO2  
1900 MHz LO  
3800 MHz LO  
0.5  
0.7  
0.7  
1.1  
50  
%
%
%
%
300 kHz RF PLL loop bandwidth  
50 kHz RF PLL loop bandwidth  
300 kHz RF PLL loop bandwidth  
300 kHz RF PLL loop bandwidth  
Differential (see Figure 265)  
5900 MHz LO  
Output Impedance  
OBSERVATION RECEIVER  
Center Frequency  
Gain Range  
ZOUT  
ORx  
75  
6000  
MHz  
dB  
30  
Third-order input intermodulation  
intercept point (IIP3) improves decibel  
for decibel for the first 18 dB of gain  
attenuation, QEC performance  
optimized for 0 dB to 6 dB of  
attenuation only  
Analog Gain Step  
0.5  
1
dB  
dB  
dB  
For attenuator steps from 0 dB to  
6 dB  
450 MHz bandwidth, compensated  
by programmable FIR filter  
Any 20 MHz bandwidth span,  
compensated by programmable FIR  
filter  
Peak-to-Peak Gain  
Deviation  
Gain Slope  
0.1  
Deviation from Linear  
Phase  
1
Degrees 450 MHz RF bandwidth  
Observation Receiver  
Bandwidth  
450  
MHz  
Observation Receiver  
Alias Band Rejection  
60  
dB  
Due to digital filters  
Maximum Useable Input  
Level  
PHIGH  
0 dB attenuation, increases decibel  
for decibel with attenuation,  
continuous wave corresponds to  
−1 dBFS at ADC  
−11  
−9.5  
−8  
−58.5  
−57.5  
dBm  
dBm  
dBm  
dBFS  
dBFS  
75 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
450 MHz integration bandwidth  
491.52 MHz integration bandwidth  
Integrated Noise  
Rev. 0 | Page 6 of 95  
Data Sheet  
ADRV9008-2  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Second-Order Input  
Intermodulation  
Intercept Point  
IIP2  
62  
dBm  
Maximum observation receiver gain,  
(PHIGH – 14) dB per tone (see the  
Terminology section), 75 MHz < f ≤  
600 MHz  
62  
dBm  
Maximum observation receiver gain,  
(PHIGH – 8) dB per tone (see the  
Terminology section), 600 MHz < f ≤  
3000 MHz  
Third-Order Input  
Intermodulation  
Intercept Point  
IIP3  
Narrow Band  
4
dBm  
dBm  
75 MHz < f ≤ 300 MHz, (PHIGH − 14)  
dB per tone  
300 MHz < f ≤ 600 MHz, (PHIGH − 14)  
dB per tone  
11  
IM3 product < 130 MHz at  
baseband, (PHIGH − 8) dB per tone  
12  
12  
11  
7
7
6
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Wide Band  
Third-Order  
Intermodulation  
Product  
IM3  
IM3 product < 130 MHz at  
baseband, two tones, each at (PHIGH  
− 12) dB  
−70  
−67  
−62  
−80  
dBc  
dBc  
dBc  
dBc  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
IM5 product < 50 MHz at baseband,  
two tones, each at (PHIGH − 12) dB,  
600 MHz < f ≤ 6000 MHz  
Fifth-Order  
Intermodulation  
Product (1800 MHz)  
IM5  
Seventh-Order  
Intermodulation  
Product (1800 MHz)  
Spurious-Free Dynamic  
Range  
IM7  
−80  
70  
dBc  
dB  
IM7 product < 50 MHz at baseband,  
two tones, each at (PHIGH − 12) dB,  
600 MHz < f ≤ 6000 MHz  
Non IMx related spurs, does not  
include HDx, (PHIGH − 9) dB input  
signal, 600 MHz < f ≤ 6000 MHz  
SFDR  
Harmonic Distortion  
(PHIGH − 11) dB input signal  
Second-Order Harmonic  
Distortion Product  
HD2  
HD3  
−80  
dBc  
(PHIGH – 11) dB input signal, 75 MHz <  
f ≤ 600 MHz  
(PHIGH – 9) dB input signal, 600 MHz <  
f ≤ 6000 MHz  
In band HD falls within 100 MHz  
Out of band HD falls within  
225 MHz  
−80  
−70  
−60  
dBc  
dBc  
dBc  
Third-Order Harmonic  
Distortion Product  
In band HD falls within 100 MHz  
Out of band HD falls within 225  
MHz  
Image Rejection  
QEC active  
Within Large Signal  
Bandwidth  
Outside Large Signal  
Bandwidth  
65  
55  
dB  
dB  
Rev. 0 | Page 7 of 95  
ADRV9008-2  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input Impedance  
Isolation  
Transmitter 1 (Tx1) to  
Observation  
100  
Differential (see Figure 266)  
75 MHz < f ≤ 600 MHz  
100  
dB  
Receiver 1 (ORx1)  
and Transmitter 2  
(Tx2) to Observation  
Receiver 2 (ORx2)  
65  
55  
105  
dB  
dB  
dB  
600 MHz < f ≤ 5300 MHz  
5300 MHz < f ≤ 6000 MHz  
75 MHz < f ≤ 600 MHz  
Tx1 to ORx 2 and Tx2 to  
ORx 1  
65  
55  
dB  
dB  
600 MHz < f ≤ 5300 MHz  
5300 MHz < f ≤ 6000 MHz  
LO SYNTHESIZER  
LO Frequency Step  
2.3  
Hz  
1.5 GHz to 2.8 GHz, 76.8 MHz phase  
frequency detector (PFD) frequency  
LO Spur  
Integrated Phase Noise  
75 MHz LO  
−85  
dBc  
Excludes integer boundary spurs  
2 kHz to 18 MHz  
Narrow PLL loop bandwidth  
(50 kHz)  
Narrow PLL loop bandwidth  
(50 kHz)  
0.014  
0.2  
°rms  
°rms  
1900 MHz LO  
3800 MHz LO  
5900 MHz LO  
Spot Phase Noise  
75 MHz LO  
0.36  
0.54  
°rms  
°rms  
Wide PLL loop bandwidth (300 kHz)  
Wide PLL loop bandwidth (300 kHz)  
Narrow PLL loop bandwidth  
Narrow PLL loop bandwidth  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
10 MHz Offset  
1900 MHz LO  
100 kHz Offset  
200 kHz Offset  
400 kHz Offset  
600 kHz Offset  
800 kHz Offset  
1.2 MHz Offset  
1.8 MHz Offset  
6 MHz Offset  
10 MHz Offset  
3800 MHz LO  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
5900 MHz LO  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
−126.5  
−132.8  
−150.1  
−150.7  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−100  
−115  
−120  
−129  
−132  
−135  
−140  
−150  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Wide PLL loop bandwidth  
Wide PLL loop bandwidth  
−104  
−125  
−145  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−99  
−119.7  
−135.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
LO PHASE  
SYNCHRONIZATION  
Phase Deviation  
1.6  
ps/°C  
Change in LO delay per temperature  
change  
Rev. 0 | Page 8 of 95  
Data Sheet  
ADRV9008-2  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
EXTERNAL LO INPUT  
Input Frequency  
fEXTLO  
300  
0
8000  
12  
MHz  
Input frequency must be 2× the  
desired LO frequency  
50 Ω matching at the source  
fEXTLO ≤ 2 GHz, add 0.5 dBm/GHz  
above 2 GHz  
fEXTLO = 8 GHz  
Input Signal Power  
dBm  
dBm  
3
6
dBm  
External LO Input Signal  
Differential  
To ensure adequate QEC  
Phase Error  
Amplitude Error  
Duty Cycle Error  
3.6  
1
2
ps  
dB  
%
Even-Order Harmonics  
CLOCK SYNTHESIZER  
Integrated Phase Noise  
1966.08 MHz LO  
−50  
dBc  
1 kHz to 100 MHz  
PLL optimized for close in phase  
noise  
0.4  
°rms  
Spot Phase Noise  
1966.08 MHz LO  
100 kHz Offset  
1 MHz Offset  
−109  
−129  
−149  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 MHz Offset  
REFERENCE CLOCK  
(REF_CLK_IN )  
Frequency Range  
Signal Level  
10  
0.3  
1000  
2.0  
MHz  
V p-p  
AC-coupled, common-mode voltage  
(VCM) = 618 mV, for best spurious  
performance, use <1 V p-p input  
clock  
AUXILIARY CONVERTERS  
ADC  
Resolution  
12  
Bits  
Input Voltage  
Minimum  
Maximum  
0.05  
VDDA_  
V
V
3P3 − 0.05  
DAC  
Resolution  
Output Voltage  
Minimum  
Maximum  
10  
Bits  
Includes four offset levels  
0.7  
VDDA_  
V
V
1 V VREF  
2.5 V VREF  
3P3 − 0.3  
Output Drive Capability  
10  
mA  
DIGITAL SPECIFICATIONS  
(CMOS)—SDIO, SDO,  
SCLK, CS GPIO_x,  
TXx_ENABLE,  
ORXx_ENABLE  
Logic Inputs  
Input Voltage  
High Level  
VDD_  
INTERFACE  
× 0.8  
0
VDD_INTERFACE  
V
V
Low Level  
VDD_  
INTERFACE × 0.2  
Input Current  
Rev. 0 | Page 9 of 95  
ADRV9008-2  
Data Sheet  
Parameter  
High Level  
Symbol  
Min  
−10  
−10  
Typ  
Max  
+10  
+10  
Unit  
μA  
μA  
Test Conditions/Comments  
Low Level  
Logic Outputs  
Output Voltage  
High Level  
VDD_  
V
INTERFACE  
× 0.8  
Low Level  
VDD_  
V
INTERFACE × 0.2  
Drive Capability  
3
mA  
DIGITAL SPECFICATIONS  
(CMOS)—GPIO_3p3_x  
Logic Inputs  
Input Voltage  
High Level  
VDDA_3P3  
× 0.8  
0
VDDA_  
3P3  
VDDA_  
V
V
Low Level  
3P3 × 0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
μA  
μA  
Logic Outputs  
Output Voltage  
High Level  
VDDA_  
V
3P3 × 0.8  
Low Level  
VDDA_  
V
3P3 × 0.2  
Drive Capability  
4
mA  
DIGITAL SPECIFICATIONS  
(LVDS)  
Logic Inputs  
(SYSREF_IN ,  
SYNCINx )  
Input Voltage Range  
Input Differential  
Voltage Threshold  
Receiver Differential  
Input Impedance  
825  
−100  
1675  
+100  
mV  
mV  
Each differential input in the pair  
Internal termination enabled  
100  
Logic Outputs  
(SYNCOUTx )  
Output Voltage  
High  
Low  
Output Differential  
Voltage  
1375  
mV  
mV  
mV  
1025  
225  
Programmable in 75 mV steps  
Output Offset Voltage  
SPI TIMING  
1200  
mV  
See the UG-1295 for more  
information.  
SCLK Period  
tCP  
tMP  
tSC  
20  
10  
3
ns  
ns  
ns  
SCLK Pulse Width  
CS Setup to First SCLK  
Rising Edge  
Last SCLK Falling Edge to tHC  
CS Hold  
0
2
ns  
ns  
SDIO Data Input Setup to tS  
SCLK  
Rev. 0 | Page 10 of 95  
Data Sheet  
ADRV9008-2  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SDIO Data Input Hold to  
SCLK  
tH  
0
ns  
SCLK Rising Edge to  
Output Data Delay  
(3-Wire or 4-Wire  
Mode)  
Bus Turnaround Time,  
Read After Bits per  
Pixel (BPP) Drives Last  
Address Bit  
tCO  
3
8
ns  
ns  
ns  
tHZM  
tH  
0
tCO  
Bus Turnaround Time,  
Read After ADRV9008-2  
Drives Last Data Bit  
tHZS  
tCO  
JESD204B DATA OUTPUT  
TIMING  
AC-coupled  
Unit Interval  
UI  
81.38  
3125  
320  
12,288  
ps  
Mbps  
Data Rate per Channel  
Nonreturn to Zero  
(NRZ)  
Rise Time  
Fall Time  
Output Common-Mode  
Voltage  
tR  
tF  
VCM  
24  
24  
0
39.5  
39.4  
ps  
ps  
V
20% to 80% in 100 Ω load  
20% to 80% in 100 Ω load  
AC-coupled  
1.8  
Differential Output  
Voltage  
VDIFF  
360  
600  
770  
mV  
Short-Circuit Current  
Differential Termination  
Impedance  
IDSHORT  
−100  
80  
+100  
120  
mA  
94.2  
Total Jitter  
Uncorrelated Bounded  
High Probability Jitter  
Duty Cycle Distortion  
SYSREF_IN Setup Time  
to REF_CLK_IN  
15.13  
0.56  
ps  
ps  
Bit error rate (BER) = 10−15  
UBHPJ  
DCD  
0.369  
ps  
ns  
2.5  
See Figure 2  
SYSREF_IN Hold Time  
to REF_CLK_IN  
−1.5  
ns  
See Figure 2  
Latency  
tLAT_FRM  
REF_CLK_IN = 245.76 MHz  
116.5  
Clock  
cycles  
Observation receiver bandwidth =  
450 MHz, IQ rate = 491.52 MHz, lane  
rate = 9830.4 MHz, number of  
converters (M) = 4, number of lanes  
(L) = 2, converter resolution (N) = 16,  
number of samples per converter  
(S) = 1  
237.02  
89.4  
ns  
Clock  
cycles  
Observation receiver bandwidth =  
200 MHz, IQ rate = 245.76 MHz, lane  
rate = 9830.4 MHz, M = 2, L = 2,  
N = 16, S = 1  
364.18  
ns  
JESD204B DATA INPUT  
TIMING  
AC-coupled  
Unit Interval  
Data Rate per Channel  
(NRZ)  
UI  
81.38  
3125  
320  
12288  
ps  
Mbps  
Differential Voltage  
VTT Source Impedance  
Differential Impedance  
VDIFF  
ZTT  
ZRDIFF  
125  
80  
750  
30  
120  
mV  
8.9  
105.1  
Rev. 0 | Page 11 of 95  
ADRV9008-2  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Termination Voltage  
AC-Coupled  
Latency  
VTT  
1.267  
1.33  
V
tLAT_DEFRM  
74.45  
Clock  
cycles  
Device clock = 245.76 MHz,  
transmitter bandwidth = 200 MHz,  
IQ rate = 491.52 MHz, lane rate =  
9830.4 MHz, M = 2, L = 2, N = 16, S = 1  
153.5  
ns  
1 VDDA1P3 refers to all analog 1.3 V supplies, including: VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_DES, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
2 Test equipment phase noise performance limited.  
Rev. 0 | Page 12 of 95  
Data Sheet  
ADRV9008-2  
CURRENT AND POWER CONSUMPTION SPECIFICATIONS  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CHARACTERISTICS  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_TX Supply  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
1.267  
1.267  
1.71  
1.71  
1.71  
1.3  
1.3  
1.8  
1.8  
1.8  
1.33  
1.33  
1.89  
1.89  
2.625  
V
V
V
V
V
CMOS and LVDS supply, 1.8 V to 2.5 V  
nominal range  
VDDA_3P3 Supply  
3.135  
3.3  
3.465  
V
POSITIVE SUPPLY CURRENT  
LO at 2600 MHz  
450 MHz Transmitter Bandwidth,  
Observation Receiver Disabled  
Two transmitters enabled  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_TX Supply  
1978  
611  
455  
mA  
mA  
mA  
Transmitter QEC active  
Transmitter RF attenuation = 0 dB, full  
scale continuous wave  
135  
mA  
Transmitter RF attenuation = 15 dB, full  
scale continuous wave  
VDD_INTERFACE Supply  
VDDA1P8_BB Supply  
VDDA_3P3 Supply  
8
68  
3
mA  
mA  
mA  
VDD_INTERFACE = 2.5 V  
No Auxiliary DAC x or AUXADC_x  
enabled, if enabled, AUXADC_x adds  
2.7 mA and each Auxiliary DAC x adds  
1.5 mA  
Total Power Dissipation  
4.34  
3.76  
W
W
Typical supply voltages, 0 dB  
transmitter attenuation, transmitter  
QEC active  
Typical supply voltages, 15 dB  
transmitter attenuation, transmitter  
QEC active  
450 MHz Transmitter Bandwidth,  
Observation Receiver Enabled  
Two transmitters enabled  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
2059  
1501  
mA  
mA  
Transmitter QEC tracking active,  
observation receiver QEC enabled  
VDDA1P8_TX Supply  
455  
135  
mA  
mA  
Transmitter RF attenuation = 0 dB, full  
scale continuous wave  
Transmitter RF attenuation = 15 dB, full  
scale continuous wave  
VDD_INTERFACE Supply  
VDDA1P8_BB Supply  
VDDA_3P3 Power Supply  
8
63  
3
mA  
mA  
mA  
VDD_INTERFACE = 2.5 V  
No Auxiliary DAC x or AUXADC_x  
enabled, if enabled, AUXADC_x adds  
2.7 mA and each Auxiliary DAC x adds  
1.5 mA  
Total Power Dissipation  
5.59  
5.01  
W
W
Typical supply voltages, 0 dB  
transmitter attenuation, transmitter  
QEC active  
Typical supply voltages, 15 dB  
transmitter attenuation, transmitter  
QEC active  
1 VDDA1P3 refers to all analog 1.3 V supplies, including: VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_DES, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
Rev. 0 | Page 13 of 95  
 
 
ADRV9008-2  
Data Sheet  
TIMING DIAGRAMS  
AT DEVICE PINS  
REF_CLK_IN± DELAY  
IN REFERENCE TO SYSREF_IN±  
AT DEVICE CORE  
t’H  
t’H  
tH  
tH  
tS  
tS  
t’S  
t’S  
REF_CLK_IN±  
tH = –1.5ns  
tS = +2.5ns  
CLK DELAY = 2ns  
t’H = +0.5ns  
t’S = +0.5ns  
NOTES  
1. tH AND tS ARE THE HOLD AND SETUP TIMES FOR THE REF_CLK_IN± PINS. t’H AND t’S REFER TO THE  
DELAYED HOLD AND SETUP TIMES AT THE DEVICE CORE IN REFERENCE TO THE SYSREF_N± SIGNALS  
DUE TO AN INTERNAL BUFFER THAT THE SIGNAL PASSES THROUGH.  
Figure 2. SYSREF_IN Setup and Hold Timing  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
REF_CLK_IN±  
SYSREF_IN±  
tH = –1.5ns  
tS = +2.5ns  
VALID SYSREF  
INVALID SYSREF  
Figure 3. SYSREF_IN Setup and Hold Timing Examples, Relative to Device Clock  
SCLK  
SDIO  
tDCH  
CS  
Tx  
ATTENUATION  
tSCH tACH  
Figure 4. Transmitter Attenuation Update via SPI 2 Port  
Rev. 0 | Page 14 of 95  
 
 
 
Data Sheet  
ADRV9008-2  
ABSOLUTE MAXIMUM RATINGS  
exposed die package to provide the customer with the most  
effective method of controlling the die temperature. The exposed  
die allows cooling of the die directly. Figure 5 shows the profile  
view of the device mounted to a user printed circuit board (PCB)  
and a heat sink (typically the aluminum case) to keep the junction  
(exposed die) below the maximum junction temperature shown  
in Table 3. The device is designed for a lifetime of 10 years when  
operating at the maximum junction temperature.  
Table 3.  
Parameter  
Rating  
VDDA1P31 to VSSA  
VDDD1P3_DIG to VSSD  
VDD_INTERFACE to VSSA  
VDDA_3P3 to VSSA  
VDDA1P8_TX to VSSA  
−0.3 V to +1.4 V  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
VDD_INTERFACE Logic Inputs and  
Outputs to VSSD  
−0.3 V to VDD_  
INTERFACE + 0.3 V  
THERMAL RESISTANCE  
JESD204B Logic Outputs to VSSA  
JESD204B Logic Inputs to VSSA  
−0.3 V to VDDA1P3_SER  
−0.3 V to VDDA1P3_DES  
+ 0.3 V  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
Input Current to any Pin Except  
Supplies  
10 mA  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Reflow Profile  
260°C  
Maximum Input Power into RF Port  
Maximum Transmitter Voltage  
Standing Wave Ratio (VSWR)  
23 dBm (peak)  
3:1  
Thermal resistance data for the ADRV9008-2 mounted on both  
a JEDEC 2S2P test board and a 10-layer Analog Devices, Inc.,  
evaluation board is listed in Table 4. Do not exceed the absolute  
maximum junction temperature rating in Table 3. Ten-layer  
PCB entries refer to the 10-layer Analog Devices evaluation  
board, which more accurately reflects the PCB used in customer  
applications.  
Maximum Junction Temperature  
Storage Temperature Range  
110°C  
−65°C to +150°C  
1 VDDA1P3 refers to all analog 1.3 V supplies, including: VDDA1P3_RF_SYNTH,  
VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_DES, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH,  
VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and  
VDDA1P3_AUX_VCO_LDO.  
Table 4. Thermal Resistance1, 2  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Package Type  
θJA  
θJC_TOP  
θJB  
ΨJT  
ΨJB  
Unit  
BC-196-13  
21.1  
0.04  
4.9  
0.3  
4.9  
°C/W  
1 For the θJC test, 100 µm thermal interface material (TIM) is used. TIM is  
assumed to have 3.6 thermal conductivity watts/(meter × Kelvin).  
2 Using enhanced heat removal techniques such as PCB, heat sink, and airflow  
improves the thermal resistance values.  
REFLOW PROFILE  
ESD CAUTION  
The ADRV9008-2 reflow profile is in accordance with the  
JEDEC JESD204B criteria for Pb-free devices. The maximum  
reflow temperature is 260°C.  
THERMAL MANAGEMENT  
The ADRV9008-2 is a high power device that can dissipate over  
3 W depending on the user application and configuration.  
Because of the power dissipation, the ADRV9008-2 uses an  
CUSTOMER CASE (HEAT SINK)  
CUSTOMER THERMAL FILLER  
SILICON (DIE)  
IC PROFILE  
PACKAGE SUBSTRATE  
CUSTOMER PCB  
Figure 5. Typical Thermal Management Solution  
Rev. 0 | Page 15 of 95  
 
 
 
 
 
 
 
 
ADRV9008-2  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
VSSA  
ORX2_IN+  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
ORX1_IN–  
VSSA  
VSSA  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_3P3  
VSSA  
VSSA  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0 GPIO_3p3_3  
GPIO_3p3_1 GPIO_3p3_4  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
GPIO_3p3_9  
RBIAS  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
GPIO_3p3_8 GPIO_3p3_10  
GPIO_3p3_2 GPIO_3p3_5 GPIO_3p3_6 VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3 VDDA1P8_TX GPIO_3p3_7 GPIO_3p3_11  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AUXADC_0  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AUXADC_2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
G
H
J
VSSA  
RF_SYNTH_  
VTUNE  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
GPIO_8  
TX1_OUT+  
TX1_OUT–  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
TEST  
GPIO_1  
GPIO_0  
SDO  
K
L
SYSREF_IN+ SYSREF_IN–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
SYNCIN1–  
SYNCIN0–  
SYNCIN1+  
SYNCIN0+  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
SYNCOUT1– SYNCOUT1+  
SYNCOUT0– SYNCOUT0+  
VDDA1P1_  
CLOCK_VCO  
M
N
P
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
SERDOUT3– SERDOUT3+ SERDOUT2– SERDOUT2+  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
SERDIN0+  
SERDIN2–  
VSSA  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT1– SERDOUT1+ SERDOUT0– SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
ADRV9008-2  
Figure 6. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Type  
Mnemonic  
Description  
Analog Supply Voltage (VSS).  
A1, A4 to A11, A14, B2 to B6, B9 Input  
to B14, C4, C9, C11, D3 to D9,  
D11, D12, E6, E9, F1, F2, F5 to  
F10, F12 to F14, G1 to G4, G6,  
G10 to G14, H2 to H10, H13,  
J2, J13, K1, K2, K13, K14, L1,  
L2, M2, M9, N2, N7, N14, P2,  
P3, P10  
VSSA  
A2  
Input  
ORX2_IN+  
Differential Input for Observation Receiver 2. When this pin is  
unused, connect to GND.  
Rev. 0 | Page 16 of 95  
 
 
Data Sheet  
ADRV9008-2  
Pin No.  
Type  
Mnemonic  
Description  
A3  
Input  
ORX2_IN−  
Differential Input for Observation Receiver 2. When this pin is  
unused, connect to GND.  
A12  
A13  
Input  
Input  
ORX1_IN+  
ORX1_IN−  
Differential Input for Observation Receiver 1. When this pin is  
unused, connect to GND.  
Differential Input for Observation Receiver 1. When this pin is  
unused, connect to GND.  
B1  
B7  
Input  
Input  
VDDA1P3_RX_RF  
RF_EXT_LO_I/O−  
Observation Receiver Supply.  
Differential External LO Input/Output. If this pin is used for the  
external LO, the input frequency must be 2× the desired carrier  
frequency. When this pin is unused, do not connect.  
B8  
C1  
Input  
RF_EXT_LO_I/O+  
GPIO_3p3_0  
Differential External LO Input/Output. If this pin is used for the  
external LO, the input frequency must be 2× the desired carrier  
frequency. When this pin is unused, do not connect.  
General-Purpose Inputs and Outputs (GPIO) Pin Referenced to  
3.3 V Supply. The alternative function is Auxiliary DAC 4.  
Because this pin contains an input stage, control the voltage  
on the pin. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or this  
pin can be left floating, programmed as an output, and driven low.  
Input/  
output  
C2  
Input/  
output  
GPIO_3p3_3  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. Because this pin contains an input stage, control the  
voltage on the pin. When unused, this pin can be tied to  
ground through a resistor to safeguard against misconfiguration,  
or this pin can be left floating, programmed as an output, and  
driven low.  
C3  
Input  
Input  
VDDA1P3_RX_TX  
1.3 V Supply for Transmitter/Observation Receiver Baseband  
Circuits. This pin can power the transimpedance  
amplifier/transmitter (TIA/TX), transconductance/baseband  
(GM/BB) filter/auxiliary DACs circuits.  
RF VCO LDO Supply Inputs. Connect Pin C5 to Pin C6. Use a  
separate trace on the PCB back to a common supply point.  
C5, C6  
VDDA1P3_RF_VCO_LDO  
C7  
C8  
Input  
Input  
VDDA1P1_RF_VCO  
VDDA1P3_RF_LO  
1.1 V VCO Supply. Decouple this pin with a 1 µF capacitor.  
1.3 V LO Generator for RF Synthesizer. This pin is sensitive to  
supply noise.  
C10  
C12  
Input  
Input  
VDDA1P3_AUX_VCO_LDO  
VDDA_3P3  
1.3 V Supply.  
General-Purpose Output Pull-Up Voltage and Auxiliary DAC  
Supply Voltage.  
C13  
Input/  
output  
GPIO_3p3_9  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 9. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
C14  
D1  
Input/  
output  
RBIAS  
Bias Resistor. Tie this pin to ground using a 14.3 kΩ resistor. This  
pin generates an internal current based on an external 1%  
resistor.  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 5. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
Input/  
output  
GPIO_3p3_1  
D2  
Input/  
output  
GPIO_3p3_4  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 6. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
D10  
Input  
VDDA1P1_AUX_VCO  
1.1 V VCO Supply. Decouple this pin with a 1 µF capacitor.  
Rev. 0 | Page 17 of 95  
ADRV9008-2  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
D13  
Input/  
output  
GPIO_3p3_8  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 1. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
D14  
E1  
Input/  
output  
GPIO_3p3_10  
GPIO_3p3_2  
GPIO_3p3_5  
GPIO_3p3_6  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 0. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. Because this pin contains an input stage, control the  
voltage on the pin. When unused, this pin can be tied to  
ground through a resistor to safeguard against misconfiguration,  
or this pin can be left floating, programmed as an output, and  
driven low.  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 7. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 8. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as outputs, and driven low.  
Input/  
output  
E2  
Input/  
output  
E3  
Input/  
output  
E4  
E5  
E7  
E8  
Input  
Input  
Input  
Input  
VDDA1P8_BB  
VDDA1P3_BB  
REF_CLK_IN+  
REF_CLK_IN−  
1.8 V Supply for the ADC and DAC.  
1.3 V Supply for the ADC, DAC, and auxiliary ADC.  
Device Clock Differential Input.  
Device Clock Differential Input Negative.  
Auxiliary PLL Output. When this pin is unused, do not connect.  
E10  
Output AUX_SYNTH_OUT  
E11, F3, F4, F11  
Input  
AUXADC_0 through  
AUXADC_3  
Auxiliary ADC Inputs. When these pins are unused, connect  
these pins to GND with a pull-down resistor or connect these  
pins directly to GND.  
E12  
E13  
Input  
Input/  
output  
VDDA1P8_TX  
GPIO_3p3_7  
1.8 V Supply for Transmitter.  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 2. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor  
to safeguard against misconfiguration, or this pin can be left  
floating, programmed as an output, and driven low.  
E14  
Input/  
output  
GPIO_3p3_11  
General-Purpose Inputs and Outputs Pin Referenced to 3.3 V  
Supply. The alternative function is Auxiliary DAC 3. Because this  
pin contains an input stage, control the voltage on the pin.  
When unused, this pin can be tied to ground through a resistor to  
safeguard against misconfiguration, or this pin can be left floating,  
programmed as an output, and driven low.  
G5  
G7  
Input  
Input  
Input  
VDDA1P3_CLOCK_SYNTH  
VDDA1P3_RF_SYNTH  
VDDA1P3_AUX_SYNTH  
1.3 V Supply Input for Clock Synthesizer. Use a separate trace  
on the PCB back to a common supply point.  
1.3 V RF Synthesizer Supply Input. This pin is sensitive to  
aggressors.  
1.3 V Auxiliary Synthesizer Supply Input.  
RF Synthesizer PLL Tuning Voltage (VTUNE) Output.  
G8  
G9  
Output RF_SYNTH_VTUNE  
Rev. 0 | Page 18 of 95  
Data Sheet  
ADRV9008-2  
Pin No.  
Type  
Mnemonic  
Description  
H1  
Output TX2_OUT−  
Transmitter 2 Negative Output. When unused, do not connect  
this pin.  
H11  
H12  
Input/  
output  
GPIO_12  
GPIO_11  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
Input/  
output  
H14  
J1  
Output TX1_OUT+  
Output TX2_OUT+  
Transmitter 1 Positive Output. When unused, do not connect  
this pin.  
Transmitter 2 Positive Output. When unused, do not connect  
this pin.  
J3  
Input/  
output  
GPIO_18  
Digital GPIO, 1.8 V to 2.5 V. The joint test action group (JTAG)  
function is test clock (TCLK). Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
J4  
J5  
Input  
RESET  
Active Low Chip Reset.  
Output GP_INTERRUPT  
General-Purpose Digital Interrupt Output Signal. When unused,  
do not connect this pin.  
J6  
J7  
Input  
TEST  
Pin Used for JTAG Boundary Scan. When unused, connect this  
pin to GND.  
Input/  
output  
GPIO_2  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 0.  
Because this pin contains an input stage, control the voltage  
on the pin. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or the  
pin can be left floating, programmed as an output, and driven  
low.  
J8  
J9  
Input/  
output  
GPIO_1  
SDIO  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 0.  
Because this pin contains an input stage, control the voltage  
on the pin. When unused, this pin can be tied to ground through  
a resistor to safeguard against misconfiguration, or the pin can be  
left floating, programmed as an output, and driven low.  
Input/  
output  
Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire  
Mode.  
J10  
J11  
Output SDO  
Serial Data Output. In SPI 3-wire mode, do not connect this pin.  
Input/  
GPIO_13  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin can  
be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
output  
J12  
J14  
Input/  
output  
GPIO_10  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
Output TX1_OUT−  
Transmitter 1 Negative Output. When unused, do not connect  
this pin.  
K3  
K4  
K5  
Input  
Input  
Input/  
SYSREF_IN+  
SYSREF_IN−  
GPIO_5  
LVDS Positive Input.  
LVDS Negative Input.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test data output  
(TDO). Because this pin contains an input stage, control the  
voltage on the pin. When unused, this pin can be tied to ground  
through a resistor to safeguard against misconfiguration, or the  
pin can be left floating, programmed as an output, and driven low.  
output  
Rev. 0 | Page 19 of 95  
ADRV9008-2  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
K6  
Input/  
output  
GPIO_4  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test rest (TRST).  
Because this pin contains an input stage, control the voltage on  
the pin. When unused, this pin can be tied to ground through a  
resistor to safeguard against misconfiguration, or the pin can be  
left floating, programmed as an output, and driven low.  
K7  
K8  
Input/  
output  
GPIO_3  
GPIO_0  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1.  
Because this pin contains an input stage, control the voltage on  
the pin. When unused, this pin can be tied to ground through a  
resistor to safeguard against misconfiguration, or the pin can be  
left floating, programmed as an output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1.  
Because this pin contains an input stage, control the voltage  
on the pin. When unused, this pin can be tied to ground through  
a resistor to safeguard against misconfiguration, or the pin can be  
left floating, programmed as an output, and driven low.  
Input/  
output  
K9  
K10  
K11  
Input  
Input  
SCLK  
CS  
Serial Data Bus Clock.  
Serial Data Bus Chip Select, Active Low.  
Input/  
output  
GPIO_14  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin can  
be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
K12  
Input/  
output  
GPIO_9  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed  
as an output, and driven low.  
L3  
L4  
L5  
Input  
Input  
SYNCIN1−  
SYNCIN1+  
GPIO_6  
LVDS Negative Input. When unused, connect this pin to GND  
with a pull-down resistor or connect this pin directly to GND.  
LVDS Positive Input. When unused, connect this pin to GND  
with a pull-down resistor or connect this pin directly to GND.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test data input  
(TDI). Because this pin contains an input stage, control the  
voltage on the pin. When unused, this pin can be tied to  
ground through a resistor to safeguard against misconfiguration,  
or the pin can be left floating, programmed as an output, and  
driven low.  
Input/  
output  
L6  
Input/  
output  
GPIO_7  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is test mode  
select input (TMS). Because this pin contains an input stage,  
control the voltage on the pin. When unused, this pin can be  
tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed  
as an output, and driven low.  
L7, L10  
L8, L9  
Input  
Input  
VSSD  
VDDD1P3_DIG  
Digital Supplies.  
1.3 V Digital Core. Connect L8 and L9 with a separate trace to  
common supply point.  
L11  
Input/  
output  
GPIO_15  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin can  
be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed  
as an output, and driven low.  
L12  
Input/  
output  
GPIO_8  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
L13  
L14  
M1  
Output SYNCOUT1−  
Output SYNCOUT1+  
LVDS Negative Output. When unused, do not connect this pin.  
LVDS Positive Output. When unused, do not connect this pin.  
1.1 V VCO Supply. Decouple this pin with a 1 µF capacitor.  
Input  
VDDA1P1_CLOCK_VCO  
Rev. 0 | Page 20 of 95  
Data Sheet  
ADRV9008-2  
Pin No.  
Type  
Mnemonic  
Description  
M3  
Input  
SYNCIN0−  
JESD204B Receiver Channel 0 Data Link LVDS Input. This pin  
forms the sync signal associated with observation receiver channel  
data on the JESD204B interface. When unused, connect this  
pin to GND with a pull-down resistor or directly to GND.  
M4  
Input  
SYNCIN0+  
JESD204B Receiver Channel 0 Data Link LVDS Input. This pin  
forms the sync signal associated with observation receiver channel  
data on the JESD204B interface. When unused, connect this  
pin to GND with a pull-down resistor or connect this pin  
directly to GND.  
M5  
M6  
M7  
M8  
M10  
Input  
Input  
Input  
Input  
ORX1_ENABLE  
TX1_ENABLE  
ORX2_ENABLE  
TX2_ENABLE  
GPIO_17  
Observation Receiver 1 Enable Pin. When unused, connect this  
pin to GND with a pull-down resistor or connect this pin  
directly to GND.  
Transmitter 1 Enable Pin. When unused, connect this pin to  
GND with a pull-down resistor or connect this pin directly to  
GND.  
Observation Receiver 2 Enable Pin. When unused, connect this  
pin to GND with a pull-down resistor or connect this pin  
directly to GND.  
Transmitter 2 Enable Pin. When unused, connect this pin to  
GND with a pull-down resistor or connect this pin directly to  
GND.  
Input/  
output  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
an output, and driven low.  
M11  
Input/  
output  
GPIO_16  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input  
stage, control the voltage on the pin. When unused, this pin  
can be tied to ground through a resistor to safeguard against  
misconfiguration, or the pin can be left floating, programmed as  
outputs, and driven low.  
M12  
M13  
Input  
VDD_INTERFACE  
Input/Output Interface Supply, 1.8 V to 2.5 V.  
Output SYNCOUT0−  
JESD204B Transmitter Channel Data Link LVDS Output. This pin  
forms the sync signal associated with transmitter channel data on  
the JESD204B interface. When unused, do not connect this pin.  
M14  
Output SYNCOUT0+  
JESD204B Transmitter Channel Data Link LVDS Output. This pin  
forms the sync signal associated with transmitter channel data on  
the JESD204B interface. When unused, do not connect this pin.  
N1  
N3  
Input  
VDDA1P3_CLOCK_VCO_LDO 1.3 V Separate Trace to Common Supply Point.  
Output SERDOUT3−  
RF Current Mode Logic (CML) Differential Negative Output 3.  
When unused, do not connect this pin.  
N4  
N5  
N6  
Output SERDOUT3+  
Output SERDOUT2−  
Output SERDOUT2+  
RF CML Differential Positive Output 3. When unused, do not  
connect this pin.  
RF CML Differential Negative Output 2. When unused, do not  
connect this pin.  
RF CML Differential Positive Output 2. When unused, do not  
connect this pin.  
N8, P8  
N9, P9  
N10  
Input  
Input  
Input  
VDDA1P3_SER  
VDDA1P3_DES  
SERDIN1−  
1.3 V Supply for JESD204B Serializer.  
1.3 V Supply for JESD204B Deserializer.  
RF CML Differential Negative Input 1. When unused, do not  
connect this pin.  
N11  
N12  
N13  
P1  
Input  
Input  
Input  
SERDIN1+  
SERDIN0−  
SERDIN0+  
RF CML Differential Positive Input 1. When unused, do not  
connect this pin.  
RF CML Differential Negative Input 0. When unused, do not  
connect this pin.  
RF CML Differential Positive Input 0. When unused, do not  
connect this pin.  
Auxiliary Synthesizer VTUNE Output.  
Output AUX_SYNTH_VTUNE  
Rev. 0 | Page 21 of 95  
ADRV9008-2  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
P4  
Output SERDOUT1−  
Output SERDOUT1+  
Output SERDOUT0−  
Output SERDOUT0+  
RF CML Differential Negative Output 1. When unused, do not  
connect this pin.  
RF CML Differential Positive Output 1. When unused, do not  
connect this pin.  
RF CML Differential Negative Output 0. When unused, do not  
connect this pin.  
RF CML Differential Positive Output 0. When unused, do not  
connect this pin.  
P5  
P6  
P7  
P11  
P12  
P13  
P14  
Input  
Input  
Input  
Input  
SERDIN3−  
SERDIN3+  
SERDIN2−  
SERDIN2+  
RF CML Differential Negative Input 3. When unused, do not  
connect this pin.  
RF CML Differential Positive Input 3. When unused, do not  
connect this pin.  
RF CML Differential Negative Input 2. When unused, do not  
connect this pin.  
RF CML Differential Positive Input 2. When unused, do not  
connect this pin.  
Rev. 0 | Page 22 of 95  
Data Sheet  
ADRV9008-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
The temperature settings refer to the die temperature.  
75 MHz TO 525 MHz BAND  
15  
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
8
7
6
5
4
3
2
1
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
TRANSMITTER LO FREQUENCY (MHz)  
300  
BASEBAND OFFSET AND TRANSMITTER ATTENUATION  
FREQUENCY (MHz)  
Figure 7. Transmitter Continuous Wave (CW) Output Power vs. Transmitter LO  
Frequency, Transmitter QEC and External LO Leakage Active, Transmitter  
50 MHz/100 MHz Bandwidth Mode, IQ Rate = 122.88 MHz, Attenuation = 0 dB,  
Not De-Embedded  
Figure 9. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 300 MHz  
0
0
–10  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
–10  
–30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
–70  
–90  
–110  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
75.2  
525  
BASEBAND OFFSET FREQUENCY AND  
TRANSMITTER ATTENUATION (MHz)  
BASEBAND OFFSET FREQUENCY AND  
TRANSMITTER ATTENUATION (MHz)  
Figure 8. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 75.2 MHz  
Figure 10. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 525 MHz  
Rev. 0 | Page 23 of 95  
 
 
ADRV9008-2  
Data Sheet  
0.5  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
525MHz = +110°C  
Tx1 = +110°C  
0.4  
0.3  
300MHz = +110°C  
75MHz = +110°C  
525MHz = +25°C  
300MHz = +25°C  
75MHz = +25°C  
525MHz = –40°C  
300MHz = –40°C  
75MHz = –40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
BASEBAND OFFSET FREQUENCY (MHz)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 11. Transmitter Pass Band Flatness vs. Baseband Offset Frequency, Off  
Chip Match Response De-Embedded, LO = 300 MHz, Calibrated at 25°C  
Figure 14. Transmitter Noise vs. Transmitter Attenuator Setting, Offset = 50 MHz  
–75  
–77  
–79  
–81  
–83  
–85  
–40  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–87  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–89  
–91  
–93  
–95  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET = 0MHz  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 15. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 75 MHz, LTE = 20 MHz, Peak to  
Average Ratio (PAR) = 12 dB, DAC Boost Normal, Upper Side and Lower Side,  
Performance Limited by Spectrum Analyzer at Higher Attenuation Settings  
Figure 12. Transmitter LO Leakage vs. Transmitter LO Frequency, Transmitter  
Attenuation = 0 dB, Baseband Tone Frequency = 10 MHz, Tracked  
–40  
0
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
10  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
Tx1 – Tx2  
20  
Tx2 – Tx1  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
100  
200  
300  
400  
500  
600  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET = 0MHz  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 16. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 300 MHz, LTE = 20 MHz, PAR =  
12 dB, DAC Boost Normal, Upper Side and Lower Side, Performance Limited by  
Spectrum Analyzer at Higher Attenuation Settings  
Figure 13. Transmitter to Transmitter Isolation vs. Transmitter LO Frequency,  
Temperature = 25°C  
Rev. 0 | Page 24 of 95  
Data Sheet  
ADRV9008-2  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET = 0MHz  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 17. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 525 MHz, LTE = 20 MHz, PAR =  
12 dB, DAC Boost Normal, Upper Side and Lower Side, Performance Limited by  
Spectrum Analyzer at Higher Attenuation Settings  
Figure 20. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO =  
525 MHz, Total RMS Power = −12 dBFS, 20 MHz/25 MHz Tones  
50  
50  
45  
40  
35  
30  
25  
20  
45  
+110°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10  
15  
15  
20  
20  
25  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 18. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO = 75 MHz,  
Total Root Mean Square (RMS) Power = −12 dBFS, 20 MHz/25 MHz Tones  
Figure 21. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass Band,  
LO = 75 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
50  
50  
45  
40  
35  
30  
25  
20  
45  
+110°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10  
15  
15  
20  
20  
25  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 19. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO =  
300 MHz, Total RMS Power = −12 dBFS, 20 MHz/25 MHz Tones  
Figure 22. Transmitter OIP3 Right vs. Baseband Frequency Offset, LO =  
300 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Rev. 0 | Page 25 of 95  
ADRV9008-2  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
0
–20  
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–40  
–60  
–80  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–100  
–120  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10  
10  
15  
15  
20  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 23. Transmitter OIP3 Right vs. Baseband Frequency Offset, LO =  
525 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Figure 26. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 525 MHz, CW = −15 dBFS  
0
0
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 24. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 75 MHz, CW = −15 dBFS  
Figure 27. Transmitter HD3 vs. Transmitter Attenuator Setting, LO = 75 MHz,  
CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–10  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–20  
–30  
–40  
–50  
–60  
–60  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 25. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 300 MHz, CW = −15 dBFS  
Figure 28. Transmitter HD3 vs. Transmitter Attenuator Setting, LO =  
300 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Rev. 0 | Page 26 of 95  
Data Sheet  
ADRV9008-2  
0
–10  
0
–10  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 32. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 525 MHz, CW = −15 dBFS  
Figure 29. Transmitter HD3 vs. Transmitter Attenuator Setting, LO =  
525 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0.03  
–10  
Tx1 = +110°C  
+110°C  
+25°C  
–40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–30  
0.02  
–40  
0.01  
0
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 30. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 75 MHz, CW = −15 dBFS  
Figure 33. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 75 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
0
0.03  
–10  
Tx1 = +110°C  
+110°C  
+25°C  
–40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–30  
0.02  
–40  
0.01  
0
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 34. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 300 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
Figure 31. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 300 MHz, CW = −15 dBFS  
Rev. 0 | Page 27 of 95  
ADRV9008-2  
Data Sheet  
0.03  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.02  
0.01  
0
–0.01  
–0.02  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
5
10  
15  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dB)  
Figure 35. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 525 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
Figure 38. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 525 MHz  
–30  
0
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0
5
10  
15  
20  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
TRANSMITTER ATTENUATION (dB)  
LO FREQUENCY (MHz)  
Figure 36. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz, Signal  
Centered on DC, LO = 75 MHz  
Figure 39. Observation Receiver LO Leakage vs. LO Frequency, 75 MHz,  
300 MHz, and 525 MHz, Attenuation = 0 dB  
–30  
25  
20  
15  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
10  
5
0
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
7
8
9
10  
TRANSMITTER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 37. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 300 MHz  
Figure 40. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 75 MHz, Total Nyquist Integration Bandwidth  
Rev. 0 | Page 28 of 95  
Data Sheet  
ADRV9008-2  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
+110°C  
+25°C  
–40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
0
1
2
3
4
5
6
7
8
9
10  
305 310 315 320 325 330 335 340 345 350 355  
306 311 316 321 326 331 336 341 346 351 356  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 41. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 300 MHz, Total Nyquist Integration Bandwidth  
Figure 44. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−25 dBm Each, LO = 300 MHz, Attenuation = 0 dB  
25  
20  
15  
80  
75  
70  
65  
60  
+110°C  
+25°C  
–40°C  
10  
5
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
55  
50  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
45  
0
40  
0
1
2
3
4
5
6
7
8
9
10  
530 535 540 545 550 555 560 565 570 575 380  
531 536 541 546 551 556 561 566 571 576 381  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 42. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 525 MHz, Total Nyquist Integration Bandwidth  
Figure 45. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−25 dBm Each, LO = 525 MHz, Attenuation = 0 dB  
80  
75  
70  
65  
60  
55  
100  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
50  
45  
40  
35  
30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
80  
85  
86  
90  
91  
95  
96  
100  
101  
105  
106  
110  
111  
115  
116  
120  
121  
OBSERVATION RECEIVER ATTENUATION (dB)  
81  
f1 OFFSET FREQUENCY (MHz)  
Figure 43. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−25 dBm Each, LO = 75 MHz, Attenuation = 0 dB  
Figure 46. Observation Receiver IIP2, Sum and Difference Products vs. Observation  
Receiver Attenuation, LO = 75 MHz, Tone 1 = 95 MHz, Tone 2 = 96 MHz at  
−25 dBm Plus Attenuation  
Rev. 0 | Page 29 of 95  
ADRV9008-2  
Data Sheet  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
302 302 302 302 302 302 302 302 302 302 302  
307 312 317 322 327 332 337 342 347 352 357  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 50. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = Swept, −25 dBm Each,  
Attenuation = 0 dB  
Figure 47. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, LO = 300 MHz, Tone 1 = 320 MHz,  
Tone 2 = 321 MHz at −25 dBm Plus Attenuation  
80  
70  
60  
50  
95  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
20  
10  
0
527  
532  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
527  
542  
527  
547  
527  
552  
527  
557  
527  
562  
527  
567  
527  
572  
527  
577  
527  
582  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY  
Figure 48. Observation Receiver IIP2, Sum and Difference Products vs. Observation  
Receiver Attenuation, LO = 525 MHz, Tone 1 = 545 MHz, Tone 2 = 546 MHz at  
−25 dBm Plus Attenuation  
Figure 51. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency, LO =  
525 MHz, Tone 1 = 527 MHz, Tone 2 = Swept, −25 dBm Each, Attenuation = 0 dB  
80  
70  
60  
50  
40  
90  
IIP2 SUM +110°C  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
20  
10  
0
77  
82  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
77  
87  
77  
92  
77  
97  
77  
102  
77  
107  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 49. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 75 MHz, Tone 1 = 77 MHz, Tone 2 = Swept, −25 dBm Each,  
Attenuation = 0 dB Change  
Figure 52. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 75 MHz, Tone 1 = 77 MHz, Tone 2 = 97 MHz at  
−25 dBm Plus Attenuation  
Rev. 0 | Page 30 of 95  
Data Sheet  
ADRV9008-2  
90  
85  
80  
75  
70  
65  
60  
55  
50  
25  
20  
15  
10  
5
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
305 310 315 320 325 330 335 340 345 350 355  
OBSERVATION RECEIVER ATTENUATION (dB)  
306 311 316 321 326 331 336 341 346 351 356  
f1 OFFSET FREQUENCY (MHz)  
Figure 53. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = 322 MHz at  
−25 dBm Plus Attenuation  
Figure 56. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency, LO =  
300 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass Band  
at −25 dBm Each  
90  
85  
80  
75  
70  
25  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
20  
15  
10  
5
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
65  
60  
55  
50  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 54. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver Attenuation,  
LO = 525 MHz, Tone 1 = 527 MHz, Tone 2 = 547 MHz at −25 dBm Plus  
Attenuation  
Figure 57. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 75 MHz, Tone 1 = 100 MHz, Tone 2 = 101 MHz at −24 dBm  
Plus Attenuation  
10  
25  
9
8
7
6
5
4
3
2
1
0
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
20  
15  
10  
5
0
0
2
4
6
8
10  
80  
81  
85  
86  
90  
91  
95  
96  
100 105 110 115 120 125 130  
101 106 111 116 121 126 131  
ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 58. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 300 MHz,  
Tone 1 = 345 MHz, Tone 2 = 346 MHz at − 24 dBm Plus Attenuation  
Figure 55. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation Frequency, LO  
= 75 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass Band  
at −25 dBm Each  
Rev. 0 | Page 31 of 95  
ADRV9008-2  
Data Sheet  
18  
–70  
–75  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
16  
14  
12  
10  
8
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
6
4
2
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
302 302 302 302 302 302 302 302 302 302 302  
307 312 317 322 327 332 337 342 347 352 357  
BASEBAND FREQUENCY OFFSET (MHz) AND ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 62. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset and Attenuation, CW Signal Swept Across the Band,  
LO = 300 MHz  
Figure 59. Observation Receiver IIP3, 2f1 − f2 vs. Swept Pass Band Frequency,  
LO = 300 MHz, Attenuation = 0 dB, Tone 1 = 302 MHz, Tone 2 = Swept Across  
the Pass Band, Tones Separated by 1 MHz Swept Across Pass Band at  
−19 dBm Each  
20  
22  
+110°C  
+25°C  
–40°C  
IIP3 = +110°C  
20  
18  
16  
14  
12  
10  
8
IIP3 = +25°C  
IIP3 = –40°C  
18  
16  
14  
12  
10  
8
6
4
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 63. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 75 MHz  
Figure 60. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = 352 MHz at  
−19 dBm Plus Attenuation  
20  
–70  
–75  
–80  
–85  
–90  
–95  
+110°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
–100  
–105  
–110  
–115  
–120  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
6
4
0
1
2
3
4
5
6
7
8
9
10  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz) AND ATTENUATION  
Figure 64. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 300 MHz  
Figure 61. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset and Attenuation, CW Signal Swept Across the Band,  
LO = 75 MHz  
Rev. 0 | Page 32 of 95  
Data Sheet  
ADRV9008-2  
0.5  
0.5  
0.4  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
0.3  
0.2  
0.1  
0.2  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
I RIPPLE = +110°C  
I RIPPLE = +25°C  
I RIPPLE = –40°C  
Q RIPPLE = +110°C  
Q RIPPLE = +25°C  
Q RIPPLE = –40°C  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 65. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator, LO = 75 MHz  
Figure 68. Normalized Observation Receiver Baseband Flatness vs. Baseband  
Offset Frequency, LO = 75 MHz, Attenuation = 0 dB  
0
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
–20  
–40  
0.3  
0.2  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR (dB)  
Figure 69. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 75 MHz, Baseband Frequency = 50 MHz  
Figure 66. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator, LO = 325 MHz  
0
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
–20  
–40  
0.3  
0.2  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR (dB)  
Figure 70. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 325 MHz, Baseband Frequency = 50 MHz  
Figure 67. Observation Receiver Attenuator Gain Step Error vs. Observation  
Receiver Attenuator, LO = 525 MHz  
Rev. 0 | Page 33 of 95  
ADRV9008-2  
Data Sheet  
0
–10  
–30  
HD2 RIGHT ATTN = 0 +110°C  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
HD2 RIGHT ATTN = 10 +110°C  
HD2 LEFT ATTN = 0 +110°C  
HD2 LEFT ATTN = 10 +110°C  
HD2 RIGHT ATTN = 0 +25°C  
HD2 RIGHT ATTN = 10 +25°C  
HD2 LEFT ATTN = 0 +25°C  
HD2 LEFT ATTN = 10 +25°C  
HD2 RIGHT ATTN = 0 –40°C  
HD2 RIGHT ATTN = 10 –40°C  
HD2 LEFT ATTN = 0 –40°C  
HD2 LEFT ATTN = 10 –40°C  
–20  
–40  
–50  
–70  
–60  
–90  
–80  
–110  
–130  
–150  
–100  
–120  
–50  
–30  
–10  
10  
30  
50  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
300  
FREQUENCY OFFSET FROM LO  
OFFSET FREQUENCY (MHz)  
Figure 74. Observation Receiver HD3 Left and Right vs. Frequency Offset from  
LO, Tone Level = −22 dBm at Attenuation = 0 dB, LO = 300 MHz  
Figure 71. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 75 MHz, Tone Level = −21 dBm Plus Attenuation  
–10  
0
HD2 RIGHT ATTN = 0 +110°C  
HD2 RIGHT ATTN = 10 +110°C  
HD2 LEFT ATTN = 0 +110°C  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
–30  
–20  
HD2 LEFT ATTN = 10 +110°C  
HD2 RIGHT ATTN = 0 +25°C  
HD2 RIGHT ATTN = 10 +25°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–50  
–40  
HD2 LEFT ATTN = 0 +25°C  
HD2 LEFT ATTN = 10 +25°C  
HD2 RIGHT ATTN = 0 –40°C  
HD2 RIGHT ATTN = 10 –40°C  
HD2 LEFT ATTN = 0 –40°C  
HD2 LEFT ATTN = 10 –40°C  
–70  
–90  
–60  
–80  
–110  
–130  
–150  
–100  
–120  
–50  
–30  
–10  
10  
30  
50  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
525  
FREQUENCY OFFSET FROM LO  
OFFSET FREQUENCY (MHz)  
Figure 72. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 300 MHz, Tone Level = −22 dBm Plus Attenuation  
Figure 75. Observation Receiver HD3 Left and Right vs. Frequency Offset from  
LO, Tone Level −22 dBm at Attenuation = 0 dB, LO = 525 MHz  
–10  
0
Tx1 TO ORx1  
Tx2 TO ORx1  
Tx1 TO ORx2  
Tx2 TO ORx2  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
10  
–30  
20  
30  
–50  
40  
50  
–70  
–90  
60  
70  
80  
90  
–110  
–130  
–150  
100  
110  
120  
130  
140  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
0
100  
200  
300  
400  
500  
600  
75  
FREQUENCY OFFSET FROM LO  
LO FREQUENCY (MHz)  
Figure 73. Observation Receiver HD3 Left and Right vs. Frequency Offset from  
LO, Tone Level = −21 dBm at Attenuation = 0 dB, LO = 75 MHz  
Figure 76. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Rev. 0 | Page 34 of 95  
Data Sheet  
ADRV9008-2  
–80  
–85  
–90  
–80  
–85  
–90  
100Hz = –110.00dBc/Hz  
1kHz = –120.75dBc/Hz  
10kHz = –126.54dBc/Hz  
100kHz = –132.76dBc/Hz  
1MHz = –150.09dBc/Hz  
10MHz = –151.09dBc/Hz  
100MHz = –150.74dBc/Hz  
100Hz = –95.48dBc/Hz  
1kHz = –103.55dBc/Hz  
10kHz = –109.36dBc/Hz  
100kHz = –116.28dBc/Hz  
1MHz = –144.62dBc/Hz  
10MHz = –152.33dBc/Hz  
100MHz = –152.85dBc/Hz  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 77. LO Phase Noise vs. Frequency Offset, LO = 75 MHz, PLL Loop  
Bandwidth = 50 kHz  
Figure 79. LO Phase Noise vs. Frequency Offset, LO = 525 MHz, PLL Loop  
Bandwidth = 50 kHz  
–80  
100Hz = –99.81dBc/Hz  
–85  
1kHz  
= –108.20dBc/Hz  
–90  
–95  
10kHz = –114.24dBc/Hz  
100kHz = –120.82dBc/Hz  
1MHz = –147.16dBc/Hz  
10MHz = –152.38dBc/Hz  
100MHz = –152.51dBc/Hz  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 78. LO Phase Noise vs. Frequency Offset, LO = 300 MHz, PLL Loop  
Bandwidth = 50 kHz  
Rev. 0 | Page 35 of 95  
ADRV9008-2  
Data Sheet  
650 MHz TO 3000 MHz BAND  
0
1.0  
0.8  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 80. Transmitter Matching Circuit Path Loss vs. LO Frequency (Can be  
Used for De-Embedding Performance Data)  
Figure 83. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
LO = 2600 MHz  
14  
–70  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C  
+25°C  
–40°C  
13  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
12  
11  
10  
9
8
7
6
5
4
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
TRANSMITTER LO FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 81. Transmitter CW Output Power vs. Transmitter LO Frequency,  
Transmitter QEC and External LO Leakage Active, Transmitter in  
200 MHz/450 MHz Bandwidth Mode, IQ Rate = 491.52 MHz, Attenuation =  
0 dB (Not De-Embedded)  
Figure 84. Transmitter LO Leakage vs. Transmitter LO Frequency, Transmitter  
Attenuation = 0 dB  
0
0
+110°C ATTN = 25  
+110°C ATTN = 20  
+110°C ATTN = 15  
+110°C ATTN = 10  
+110°C ATTN = 5  
+110°C ATTN = 0  
+25°C ATTN = 25  
+25°C ATTN = 20  
+25°C ATTN = 15  
+25°C ATTN = 10  
+25°C ATTN = 5  
+25°C ATTN = 0  
–40°C ATTN = 25  
–40°C ATTN = 20  
–40°C ATTN = 15  
–40°C ATTN = 10  
–40°C ATTN = 5  
–40°C ATTN = 0  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 – Tx2  
20  
Tx2 – Tx1  
40  
60  
80  
100  
120  
–100  
–50  
0
50  
100  
600  
1000  
1400  
1800  
2200  
2600  
3000  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 82. Transmitter Image Rejection vs. Baseband Frequency Offset and  
Attenuation, QEC Trained with Three Tones Placed at 10 MHz, 50 MHz, and  
100 MHz (Tracking On), Total Combined Power = −6 dBFS, Correction Then  
Frozen (Tracking Turned Off), CW Tone Swept Across Large Signal  
Bandwidth  
Figure 85. Transmitter to Transmitter Isolation vs. Transmitter LO Frequency,  
Temperature = 25°C  
Rev. 0 | Page 36 of 95  
 
Data Sheet  
ADRV9008-2  
–145  
–150  
–155  
–160  
–165  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
2600MHz = +110°C  
1800MHz = +110°C  
650MHz = +110°C  
2600MHz = +25°C  
1800MHz = +25°C  
650MHz = +25°C  
2600MHz = –40°C  
1800MHz = –40°C  
650MHz = –40°C  
–170  
–175  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0
2
4
6
8
10  
2850  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
Figure 86. Transmitter Noise vs. Transmitter Attenuator Setting  
Figure 89. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 90 MHz, LO = 2850 MHz, LTE = 20 MHz,  
PAR = 12 dB, Upper Side and Lower Side  
–40  
35  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
+110°C  
+25°C  
–40°C  
30  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
25  
20  
15  
10  
5
0
–5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
0
2
4
6
8
10  
650  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
Figure 87. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 90 MHz, LO = 650 MHz, LTE = 20 MHz,  
PAR = 12 dB, Upper Side and Lower Side  
Figure 90. Transmitter OIP3, Right or Upper Sideband Response vs.  
Transmitter Attenuator Setting, LO = 850 MHz, Digital Backoff per Tone =  
15 dB  
–40  
40  
+110°C  
+25°C  
–40°C  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
35  
30  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
25  
20  
15  
10  
5
0
–5  
–10  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
0
2
4
6
8
10  
1850  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
Figure 91. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO =  
1850 MHz, Digital Backoff per Tone = 15 dB  
Figure 88. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 90 MHz, LO = 1850 MHz,  
LTE = 20 MHz, PAR = 12 dB, Upper Side and Lower Side  
Rev. 0 | Page 37 of 95  
ADRV9008-2  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
–5  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
TRANSMITTER ATTENUATOR SETTING (dB)  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
2850  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 92. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO =  
2650 MHz, Digital Backoff per Tone = 15 dB  
Figure 95. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass Band,  
LO = 2850 MHz, Digital Backoff per Tone = 15 dB  
0
45  
40  
35  
30  
25  
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–20  
–40  
–60  
20  
Tx1 = +110°C  
–80  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
15  
10  
5
–100  
–120  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
TRANSMITTER ATTENUATOR SETTING (dB)  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
850  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 93. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass Band,  
LO = 850 MHz, Digital Backoff per Tone = 15 dB  
Figure 96. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 1850 MHz, Digital Backoff = 15 dB  
45  
40  
35  
30  
25  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
15  
10  
5
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
650  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
1850  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASSBAND (MHz)  
Figure 94. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass Band,  
LO = 1850 MHz, Digital Backoff per Tone = 15 dB  
Figure 97. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 650 MHz, Digital Backoff = 15 dB  
Rev. 0 | Page 38 of 95  
Data Sheet  
ADRV9008-2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.025  
0.020  
0.015  
0.010  
0.005  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C  
+25°C  
–40°C  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
1850  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 98. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 1850 MHz, Digital Backoff = 15 dB,  
Figure 101. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 650 MHz  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
2850  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 99. Transmitter HD3 vs. Transmitter Attenuation Setting,  
LO = 2850 MHz, Digital Backoff = 15 dB  
Figure 102. Transmitter Output Spurious, Transmitter 1 = 650 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
#VBW 1.0kHz  
1850  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 100. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuation Setting, LO = 1850 MHz,  
Digital Backoff = 15 dB  
Figure 103. Transmitter Output Spurious, Transmitter 2 = 650 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
Rev. 0 | Page 39 of 95  
ADRV9008-2  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
Figure 104. Transmitter Output Spurious, Transmitter 1 = 1850 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
Figure 107. Transmitter Output Spurious, Transmitter 2 = 2850 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
LO FREQUENCY (MHz)  
Figure 108. Observation Receiver Matching Circuit Path Loss vs. LO  
Frequency, Can be Used for De-Embedding Performance Data  
Figure 105. Transmitter Output Spurious, Transmitter 2 = 1850 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
–10  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
#VBW 1.0kHz  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 109. Observation Receiver LO Leakage vs. Transmitter LO Frequency  
Figure 106. Transmitter Output Spurious, Transmitter 1 = 2850 MHz,  
LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS, Temperature = 25°C  
Rev. 0 | Page 40 of 95  
Data Sheet  
ADRV9008-2  
24  
80  
75  
70  
65  
60  
55  
50  
45  
40  
+110°C  
+25°C  
–40°C  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
2856 2876 2896 2916 2936 2956 2976 2996 3016 3036 3056 3076 3096 3116  
2855 2875 2895 2915 2935 2955 2975 2995 3015 3035 3055 3075 3095 3115  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 110. Observation Receiver Noise Figure vs. Observation Receiver LO  
Frequency, Total Nyquist Integration Bandwidth  
Figure 113. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each, LO = 2850 MHz, Attenuation = 0 dB,  
75  
70  
65  
60  
80  
75  
70  
65  
60  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM +110°C  
50  
45  
40  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
55  
50  
0
2
4
6
8
10  
656 676 696 716 736 756 776 796 806 826 846 866 886 906  
655 675 695 715 735 755 775 795 805 825 845 865 885 905  
OBSERVATION RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 111. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each, LO = 650 MHz, Attenuation = 0 dB  
Figure 114. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, Tone 1 = 1845 MHz, Tone 2 = 1846 MHz  
at −19 dBm Plus Attenuation, LO = 1800 MHz  
80  
75  
70  
65  
60  
80  
70  
60  
50  
40  
30  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
20  
10  
0
50  
45  
40  
662 682 702 722 742 762 782 802 822 842 862 882 902  
1806 1826 1846 1866 1886 1906 1926 1946 1966 1986 2006 2026 2046 2066  
1805 1825 1845 1865 1885 1905 1925 1945 1965 1985 2005 2025 2045 2065  
f2 OFFSET FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 112. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each, LO = 1800 MHz, Attenuation = 0 dB  
Figure 115. Observation Receiver IIP2, f1 − f2 vs. f2 Offset Frequency, LO =  
650 MHz, Tone 1 = 652 MHz, Tone 2 = Swept at −19 dBm Each, Observation  
Receiver Attenuation = 0 dB  
Rev. 0 | Page 41 of 95  
ADRV9008-2  
Data Sheet  
80  
70  
60  
50  
40  
30  
25  
20  
15  
10  
5
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
20  
10  
0
0
656 676 696 716 736 756 776 796 816  
875 895 915 935  
876 896 916 936  
836 856  
835 855  
655 675 695 715 735 755 775 795 815  
f2 OFFSET FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 116. Observation Receiver IIP2, f1 − f2 vs. f2 Offset Frequency, LO =  
1800 MHz, Tone 1 = 1802 MHz, Tone 2 = Swept at −19 dBm Each,  
Attenuation = 0 dB  
Figure 119. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency, LO =  
650 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each  
80  
70  
60  
50  
40  
25  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
30  
IIP2 SUM +110°C  
20  
10  
0
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
1805 1825 1845 1865 1885 1905 1925 1945 1965 1985 2005 2025 2045  
1806 1826 1846 1866 1886 1906 1926 1946 1966 1986 2006 2026 2046  
f2 OFFSET FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 117. Observation Receiver IIP2, f1 − f2 vs. f2 Offset Frequency, LO =  
2850 MHz, Tone 1 = 2852 MHz, Tone 2 = Swept at −19 dBm Each,  
Attenuation = 0 dB  
Figure 120. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency, LO =  
1800 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each  
80  
75  
70  
65  
25  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
55  
IIP2 DIFF –40°C  
50  
0
0
2
4
6
8
10  
2855  
2885  
2886  
2915  
2916  
2945  
2946  
2975  
2976  
3005  
3006  
3035  
3036  
3065  
3066  
3095  
3096  
2856  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 118. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = 1902 MHz at  
−19 dBm Plus Attenuation  
Figure 121. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency, LO =  
2850 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each  
Rev. 0 | Page 42 of 95  
Data Sheet  
ADRV9008-2  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
6
0
0
2862  
2
4
6
8
10  
2892  
2922  
2952  
2982  
3012  
3042  
3072  
3102  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 122. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 1800 MHz, Tone 1 = 1895 MHz, Tone 2 = 1896 MHz at  
−19 dBm Plus Attenuation  
Figure 125. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 2850 MHz, Tone 1 = 2852 MHz, Tone 2 = Swept at −19 dBm  
Each  
25  
24  
22  
20  
18  
16  
14  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
20  
15  
10  
5
12  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
10  
8
0
662  
6
692  
722  
752  
782  
812  
842  
872  
902  
0
2
4
6
8
10  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 123. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 650 MHz, Tone 1 = 652 MHz, Tone 2 = Swept at  
−19 dBm Each  
Figure 126. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = 1922 MHz at  
−19 dBm Plus Attenuation  
25  
0
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
–20  
–40  
20  
15  
10  
5
–60  
–80  
–100  
–120  
0
1812  
1842  
1872  
1902  
1932  
1962  
1992  
2022  
2052  
INTERMODULATION FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 127. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 650 MHz  
Figure 124. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = Swept at  
−19 dBm Each  
Rev. 0 | Page 43 of 95  
ADRV9008-2  
Data Sheet  
18  
16  
14  
12  
10  
8
0
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
+110°C  
+25°C  
–40°C  
–20  
–40  
–60  
–80  
–100  
–120  
6
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 128. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 1850 MHz  
Figure 131. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 1800 MHz  
18  
0
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
+110°C  
+25°C  
–40°C  
16  
–20  
–40  
14  
12  
10  
8
–60  
–80  
–100  
–120  
6
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 129. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 2850 MHz  
Figure 132. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 2800 MHz  
18  
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
16  
14  
12  
10  
8
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 133. Observation Receiver Attenuator Step Accuracy vs. Observation  
Receiver Attenuator Setting, LO = 2600 MHz  
Figure 130. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 650 MHz  
Rev. 0 | Page 44 of 95  
Data Sheet  
ADRV9008-2  
0.5  
0
–20  
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
+110°C  
+25°C  
–40°C  
0.4  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
0.3  
0.2  
–40°C = 11.5 (LEFT)  
–40  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
OFFSET AND ATTENUATION FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 137. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 1850 MHz, Tone Level = −20 dBm at Attenuation = 0 dB  
Figure 134. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 1800 MHz  
0
0
HD2 RIGHT ATTENUATION = 0dB, +110°C  
HD2 RIGHT ATTENUATION = 11.0dB, +110°C  
+110°C  
+25°C  
–40°C  
–20  
–40  
–20  
–40  
HD2 LEFT ATTENUATION = 0dB, +110°C  
HD2 LEFT ATTENUATION = 11.5dB, +110°C  
HD2 RIGHT ATTENUATION = 0dB, +25°C  
HD2 RIGHT ATTENUATION = 11.5dB, +25°C  
HD2 LEFT ATTENUATION = 0dB, +25°C  
HD2 LEFT ATTENUATION = 11.5dB, +25°C  
HD2 RIGHT ATTENUATION = 0dB, –40°C  
HD2 RIGHT ATTENUATION = 11.5dB, –40°C  
HD2 LEFT ATTENUATION = 0dB, –40°C  
HD2 LEFT ATTENUATION = 11.5dB, –40°C  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
7
8
9
10  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 138. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 2850 MHz, Tone Level = −20 dBm at  
Figure 135. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 1850 MHz  
Attenuation = 0 dB  
0
0
HD3 RIGHT dBc = +110°C  
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
–40°C = 11.5 (LEFT)  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
650  
OFFSET FREQUENCY (MHz)  
OFFSET AND ATTENUATION FREQUENCY (MHz)  
Figure 136. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 650 MHz, Tone Level = −20 dBm at Attenuation = 0 dB  
Figure 139. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 650 MHz, Tone Level = −20 dBm at Attenuation = 0 dB  
Rev. 0 | Page 45 of 95  
ADRV9008-2  
Data Sheet  
0
0
20  
HD3 RIGHT dBc = +110°C  
Tx1 TO ORx1  
Tx2 TO ORx1  
Tx1 TO ORx2  
Tx2 TO ORx2  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
40  
60  
80  
100  
120  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
1850  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 143. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Figure 140. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 1850 MHz, Tone Level = −20 dBm at Attenuation = 0 dB  
0
–70  
–80  
HD3 RIGHT dBc = +110°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
1M  
10M  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
100M  
2850  
OFFSET FREQUENCY (MHz)  
FREQUENCY OFFSET (Hz)  
Figure 141. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 2850 MHz, Tone Level = −20 dBm at Attenuation = 0 dB  
Figure 144. LO Phase Noise vs. Frequency Offset, LO = 1900 MHz, Spectrum  
Analyzer Limits Far Out Noise  
0
+110°C RIGHT = 11.5dBc  
+110°C RIGHT = 0dBc  
+110°C LEFT = 11.5dBc  
+110°C LEFT = 0dBc  
+25°C RIGHT = 11.5dBc  
+25°C RIGHT = 0dBc  
+25°C LEFT = 11.5dBc  
+25°C LEFT = 0dBc  
–40°C RIGHT = 11.5dBc  
–40°C RIGHT = 0dBc  
–40°C LEFT = 11.5dBc  
–40°C LEFT = 0dBc  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
1850  
OFFSET FREQUENCY (MHz)  
Figure 142. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 1850 MHz, Observation Receiver Attenuation = 0 dB and 11.5 dB  
Rev. 0 | Page 46 of 95  
Data Sheet  
ADRV9008-2  
3400 MHz TO 4800 MHz BAND  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C ATTENUATION = 0MHz  
–40°C ATTENUATION = 5MHz  
–40°C ATTENUATION = 10MHz  
–40°C ATTENUATION = 15MHz  
–40°C ATTENUATION = 20MHz  
–40°C ATTENUATION = 25MHz  
+110°C ATTENUATION = 0MHz  
+110°C ATTENUATION = 5MHz  
+110°C ATTENUATION = 10MHz  
+110°C ATTENUATION = 15MHz  
+110°C ATTENUATION = 20MHz  
+110°C ATTENUATION = 25MHz  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
+25°C ATTENUATION = 0MHz  
+25°C ATTENUATION = 5MHz  
+25°C ATTENUATION = 10MHz  
+25°C ATTENUATION = 15MHz  
+25°C ATTENUATION = 20MHz  
+25°C ATTENUATION = 25MHz  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
–100  
–50  
0
50  
100  
LO FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 145. Transmitter Path Loss vs. LO Frequency (Simulation), Can be Used for  
De-Embedding Performance Data  
Figure 148. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Attenuation, QEC Trained with Three Tones (Tracking On), Total Combined Power  
= −6 dBFS, Correction Then Frozen (Tracking Turned Off), Continuous Wave Tone  
Swept Across Large Signal Bandwidth, LO = 4600 MHz  
10  
9
1.0  
0.9  
0.8  
0.7  
0.6  
Tx1 = –40°C  
Tx2 = –40°C  
Tx1 = +25°C  
Tx2 = +25°C  
Tx1 = +110°C  
Tx2 = +110°C  
8
0.5  
0.4  
7
0.3  
0.2  
6
0.1  
0.0  
5
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
4
3
Tx1 = –40°C  
Tx2 = –40°C  
2
Tx1 = +25°C  
Tx2 = +25°C  
1
Tx1 = +110°C  
Tx2 = +110°C  
0
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
TRANSMITTER LO FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 146. Transmitter Continuous Wave Output Power vs. Transmitter LO  
Frequency, Transmitter QEC and External LO Leakage Active, Transmitter in  
200 MHz/450 MHz Bandwidth Mode, IQ Rate = 491.52 MHz, Attenuation =0 dB,  
Not De-Embedded  
Figure 149. Transmitter Pass Band Flatness vs. Baseband Offset Frequency, Off  
Chip Match Response De-Embedded, LO = 3600 MHz  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
+110°C ATTENUATION = 0MHz  
+110°C ATTENUATION = 5MHz  
+110°C ATTENUATION = 10MHz  
+110°C ATTENUATION = 15MHz  
+110°C ATTENUATION = 20MHz  
+110°C ATTENUATION = 25MHz  
–40°C ATTENUATION = 0MHz  
–40°C ATTENUATION = 5MHz  
–40°C ATTENUATION = 10MHz  
–40°C ATTENUATION = 15MHz  
–40°C ATTENUATION = 20MHz  
–40°C ATTENUATION = 25MHz  
Tx1 = –40°C  
Tx2 = –40°C  
Tx1 = +25°C  
Tx2 = +25°C  
Tx1 = +110°C  
Tx2 = +110°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+25°C ATTENUATION = 0MHz  
+25°C ATTENUATION = 5MHz  
+25°C ATTENUATION = 10MHz  
+25°C ATTENUATION = 15MHz  
+25°C ATTENUATION = 20MHz  
+25°C ATTENUATION = 25MHz  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–100  
–50  
0
50  
100  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY AND ATTENUATION (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 147. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Attenuation, QEC Trained with Three Tones Placed at 10 MHz, 50 MHz, and  
100 MHz (Tracking On), Total Combined Power = −6 dBFS, Correction Then  
Frozen (Tracking Turned Off), Continuous Wave Tone Swept Across Large Signal  
Bandwidth, LO = 3700 MHz  
Figure 150. Transmitter Pass Band Flatness vs. Baseband Offset Frequency, Off  
Chip Match Response De-Embedded, LO = 4600 MHz  
Rev. 0 | Page 47 of 95  
 
ADRV9008-2  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
–70  
Tx1 = –40°C  
Tx2 = –40°C  
–72  
+110°C  
+25°C  
–40°C  
Tx1 = +25°C  
Tx2 = +25°C  
–74  
Tx1 = +110°C  
Tx2 = +110°C  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
0
–5  
–10  
–90  
3700  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
4600  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 154. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 3600 MHz, Total RMS Power = −12 dBFS.  
Figure 151. Transmitter LO Leakage vs. Transmitter LO Frequency,  
Transmitter Attenuation = 0 dB  
35  
0
Tx1 TO Tx2 0dB  
10  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
Tx2 TO Tx1 0dB  
20  
30  
40  
50  
60  
70  
0
80  
–5  
–10  
90  
100  
3400  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 155. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 4600 MHz, Total RMS Power = −12 dBFS  
Figure 152. Transmitter to Transmitter Isolation vs. Transmitter LO  
Frequency, Temperature = 25°C  
40  
35  
30  
25  
20  
–145  
4600MHz = +110°C  
4600MHz = +25°C  
4600MHz = –40°C  
3600MHz = +110°C  
3600MHz = +25°C  
3600MHz = –40°C  
–150  
–155  
–160  
–165  
–170  
–175  
15  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
10  
5
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
TRANSMITTER ATTENUATOR SETTING (dB)  
3600  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 153. Transmitter Noise vs. Transmitter Attenuator Setting  
Figure 156. Transmitter OIP3, Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 3600 MHz, Total RMS Power = −12 dBFS  
Rev. 0 | Page 48 of 95  
Data Sheet  
ADRV9008-2  
0
–20  
40  
35  
30  
25  
20  
15  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–40  
–60  
–80  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
10  
5
–100  
–120  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
3600  
TRANSMITTER ATTENUATOR SETTING (dB)  
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
10  
4600  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 157. Transmitter OIP3, Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 4600 MHz, Total RMS Power = −12 dBFS  
Figure 160. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 3600 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C = HD2  
+25°C = HD2  
–40°C = HD2  
+110°C = UPPER HD2  
+25°C = UPPER HD2  
–40°C = UPPER HD2  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
4600  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 158. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 3600 MHz, CW = −15 dBFS  
Figure 161. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 4600 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0
+110°C = HD2  
+25°C = HD2  
–40°C = HD2  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
–20  
–20  
+110°C = UPPER HD2  
+25°C = UPPER HD2  
–40°C = UPPER HD2  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10  
3600  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 159. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 4600 MHz, CW = −15 dBFS  
Figure 162. Transmitter HD3 Image Appears on Same Side as Desired Signal vs.  
Transmitter Attenuator Setting, LO = 3600 MHz, CW = −15 dBFS  
Rev. 0 | Page 49 of 95  
ADRV9008-2  
Data Sheet  
0
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
Tx1 = +110°C  
+110°C  
+25°C  
–40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
4600  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dBm)  
Figure 163. Transmitter HD3 Image Appears on Same Side as Desired Signal vs.  
Transmitter Attenuator Setting, LO = 4600 MHz, CW = −15 dBFS  
Figure 166. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz, Signal  
Centered on DC, LO = 3600 MHz  
–30  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–0.01  
–0.02  
+110°C  
+25°C  
–40°C  
–0.03  
–0.04  
–0.05  
0
5
10  
15  
20  
25  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATION (dBm)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 167. Transmitter EVM vs. Transmitter Attenuation,  
LTE = 20 MHz, Signal Centered on DC, LO = 4600 MHz  
Figure 164. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 3600 MHz  
–10  
–20  
0.05  
0.04  
0.03  
0.02  
0.01  
0
Tx OUTPUT  
ANALYZER NO SIGNAL  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–0.01  
–0.02  
+110°C  
+25°C  
–40°C  
–0.03  
–0.04  
–0.05  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
FREQUENCY (MHz)  
Figure 168. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 1 = 4600 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS Ripple in Noise  
Floor due to Spectrum Analyzer = −12 dBFS, Temperature = 25°C  
Figure 165. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 4600 MHz  
Rev. 0 | Page 50 of 95  
Data Sheet  
ADRV9008-2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
+110°C  
+25°C  
–40°C  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
0
1
2
3
4
5
6
7
8
9
10  
LO FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 169. Observation Receiver Off Chip Matching Circuit Path Loss vs. LO  
Frequency (Simulation), Can be Used for De-Embedding Performance Data  
Figure 172. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 4600 MHz, Total Nyquist Integration Bandwidth  
80  
75  
70  
65  
60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
50  
45  
40  
3600  
4600  
3606 3626 3646 3666 3686 3706 3726 3746 3766 3786 3806 3826  
3605 3625 3645 3665 3685 3705 3725 3745 3765 3785 3805 3825  
LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 170. Observation Receiver LO Leakage vs. LO Frequency from  
3600 MHz to 4600 MHz  
Figure 173. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across  
Pass Band at −22 dBm Each, LO = 3600 MHz, Attenuation = 0 dB  
32  
80  
75  
70  
65  
60  
+110°C  
+25°C  
–40°C  
30  
28  
26  
24  
22  
20  
18  
16  
14  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
50  
45  
40  
4606 4626 4646 4666 4686 4706 4726 4746 4766 4786 4806 4826  
4605 4625 4645 4665 4685 4705 4725 4745 4765 4785 4805 4825  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 174. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−22 dBm Each, LO = 4600 MHz, Attenuation = 0 dB  
Figure 171. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 3600 MHz, Total Nyquist Integration Bandwidth  
Rev. 0 | Page 51 of 95  
ADRV9008-2  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 175. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, LO = 3600 MHz, Tone 1 = 3645 MHz,  
Tone 2 = 3646 MHz at −22 dBm Plus Attenuation  
Figure 178. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = Swept, −22 dBm Each,  
Attenuation = 0 dB  
80  
75  
70  
65  
80  
75  
70  
65  
60  
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
55  
55  
IIP2 DIFF –40°C  
IIP2 DIFF –40°C  
50  
50  
0
2
4
6
8
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 176. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, LO = 4600 MHz, Tone 1 = 4645 MHz,  
Tone 2 = 4646 MHz at −22 dBm Plus Attenuation  
Figure 179. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 = 3702 MHz at  
−22 dBm Plus Attenuation  
80  
70  
60  
50  
40  
80  
75  
70  
65  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
20  
10  
0
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
55  
50  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 177. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 = Swept, −22 dBm Each,  
Attenuation = 0 dB  
Figure 180. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = 4612 MHz at  
−22 dBm Plus Attenuation  
Rev. 0 | Page 52 of 95  
Data Sheet  
ADRV9008-2  
25  
20  
15  
10  
5
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
6
0
3605 3625 3645 3665 3685 3705 3725 3745 3765 3785 3805 3825  
3606 3626 3646 3666 3686 3706 3726 3746 3766 3786 3806 3826  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 181. Observation Receiver IIP3, f1 − f2 vs. f1 Offset Frequency, LO =  
3600 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −22 dBm Each  
Figure 184. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 4600 MHz, Tone 1 = 4695 MHz, Tone 2 = 4696 MHz at  
−22 dBm Plus Attenuation  
25  
30  
25  
20  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
15  
INPUT IP3 SUM +110°C  
INPUT IP3 SUM +25°C  
INPUT IP3 SUM –40°C  
INPUT IP3 DIFF +110°C  
INPUT IP3 DIFF +25°C  
INPUT IP3 DIFF –40°C  
10  
5
0
0
4606 4626 4646 4666 4686 4706 4726 4746 4766 4786 4806 4826  
4605 4625 4645 4665 4685 4705 4725 4745 4765 4785 4805 4825  
f1 OFFSET FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 185. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 = Swept, −22 dBm  
Each  
Figure 182. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 4600 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −22 dBm Each  
30  
25  
20  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
15  
IIP3 SUM +110°C  
IIP3 SUM +25°C  
IIP3 SUM –40°C  
IIP3 DIFF +110°C  
IIP3 DIFF +25°C  
IIP3 DIFF –40°C  
10  
5
10  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
8
6
0
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 186. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 Swept,  
−22 dBm Each  
Figure 183. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 3600 MHz, Tone 1 = 3695 MHz, Tone 2 = 3696 MHz at  
−22 dBm Plus Attenuation  
Rev. 0 | Page 53 of 95  
ADRV9008-2  
Data Sheet  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
6
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 187. Observation Receiver IIP3, 2f1 to f2 vs. Observation Receiver  
Attenuation, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 = 3722 MHz,  
−22 dBm Plus Attenuation Each  
Figure 190. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 4600 MHz  
18  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
+110°C  
+25°C  
–40°C  
16  
14  
12  
10  
8
10  
6
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
8
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 188. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = 4722 MHz at  
−22 dBm Plus Attenuation Each  
Figure 191. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 3600 MHz  
18  
0
+110°C = 10dB  
–10  
+110°C  
+25°C  
–40°C  
16  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
–20  
–30  
–40  
14  
12  
10  
8
–50  
–60  
–70  
–80  
6
–90  
4
–100  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 189. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 3600 MHz  
Figure 192. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 4600 MHz  
Rev. 0 | Page 54 of 95  
Data Sheet  
ADRV9008-2  
0.5  
0.5  
0.4  
0.4  
+110°C  
+25°C  
–40°C  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+25°C  
–40°C  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 196. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 4600 MHz  
Figure 193. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 3600 MHz  
0
0.5  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
0.4  
0.3  
+110°C  
+25°C  
–40°C  
–20  
0.2  
–40  
–60  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 197. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 3600 MHz  
Figure 194. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 4600 MHz  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
–20  
–40  
–60  
–0.1  
–80  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+25°C  
–40°C  
–100  
–120  
0
5
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 195. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 3600 MHz  
Figure 198. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 4600 MHz  
Rev. 0 | Page 55 of 95  
ADRV9008-2  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
–20  
–40  
–40°C = 11.5 (LEFT)  
–60  
–80  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 199. Observation Receiver HD2 vs. Offset Frequency, LO = 3600 MHz,  
Tone Level = −20 dBm Plus Attenuation  
Figure 202. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 4600 MHz, Tone Level = −20 dBm  
0
0
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
Tx1 TO ORx1  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
Tx2 TO ORx1  
Tx1 TO ORx2  
Tx2 TO ORx2  
20  
40  
–20  
–40  
–40°C = 11.5 (LEFT)  
60  
–60  
80  
–80  
100  
120  
140  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 200. Observation Receiver HD2 vs. Offset Frequency, LO = 4600 MHz,  
Tone Level = −20 dBm Plus Attenuation  
Figure 203. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
–70  
–80  
0
HD3 RIGHT dBc = +110°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–90  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
FREQUENCY OFFSET (Hz)  
OFFSET FREQUENCY (MHz)  
Figure 201. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 3600 MHz, Tone Level = −20 dBm  
Figure 204. LO Phase Noise vs. Frequency Offset, LO = 3800 MHz, PLL Loop  
Bandwidth = 300 kHz, Spectrum Analyzer Limits Far Out Noise  
Rev. 0 | Page 56 of 95  
Data Sheet  
ADRV9008-2  
5100 MHz TO 5900 MHz BAND  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C = 20dB  
+110°C = 15dB  
+110°C = 10dB  
+110°C = 5dB  
+110°C = 0dB  
+25°C = 20dB  
+25°C = 15dB  
+25°C = 10dB  
+25°C = 5dB  
+25°C = 0dB  
–40°C = 20dB  
–40°C = 15dB  
–40°C = 10dB  
–40°C = 5dB  
–40°C = 0dB  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
5000  
5200  
5400  
5600  
5800  
6000  
LO FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 205. Transmitter Path Loss vs. LO Frequency (Simulation), Useful for  
De-Embedding Performance Data  
Figure 208. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Trained with Three Tones Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking  
On), Total Combined Power = −6 dBFS, Correction Then Frozen (Tracking  
Turned Off), CW Tone Swept Across Large Signal Bandwidth, LO = 5500 MHz  
0
10  
+110 – 20  
+110 – 15  
+110 – 10  
+110 – 5  
+110 – 0  
+25 – 20  
+25 – 15  
+25 – 10  
+25 – 5  
+25 – 0  
–40 – 20  
–40 – 15  
–40 – 10  
–40 – 5  
–40 – 0  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
9
8
7
6
5
4
3
2
1
0
5100  
5300  
5500  
5700  
5900  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
BASEBAND OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 209. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Trained with Three Tones Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking  
On), Total Combined Power = −6 dBFS, Correction Then Frozen (Tracking  
Turned Off), CW Tone Swept Across Large Signal Bandwidth, LO = 5900 MHz  
Figure 206. Transmitter CW Output Power vs. Transmitter LO Frequency,  
Transmitter QEC, and External LO Leakage Active, Bandwidth Mode =  
200 MHz/450 MHz, IQ Rate = 491.52 MHz, Attenuation = 0 dB,  
Not De-Embedded  
1.0  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C = 20dB  
+110°C = 15dB  
+110°C = 10dB  
+110°C = 5dB  
+110°C = 0dB  
+25°C = 20dB  
+25°C = 15dB  
+25°C = 10dB  
+25°C = 5dB  
+25°C = 0dB  
–40°C = 20dB  
–40°C = 15dB  
–40°C = 10dB  
–40°C = 5dB  
–40°C = 0dB  
0.8  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 210. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
Off Chip Match Response De-Embedded, LO = 5700 MHz, Measurements  
Performed with Device Calibrated at 25°C  
Figure 207. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Enabled (Tracking On) with Three Tones Placed at 10 MHz, 50 MHz, and  
100 MHz Offset from LO, Total Combined Power = −6 dBFS, Correction Then  
Frozen (Tracking Turned Off), CW Tone Swept Across Large Signal  
Bandwidth, LO = 5100 MHz  
Rev. 0 | Page 57 of 95  
 
ADRV9008-2  
Data Sheet  
–70  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
Tx1 = +110°C  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
5100  
5500  
TRANSMITTER LO FREQUENCY (MHz)  
5900  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 211. Transmitter LO Leakage vs. Transmitter LO Frequency,  
Transmitter Attenuation = 0 dB  
Figure 214. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5100 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
due to Spectrum Analyzer Noise Floor  
0
–40  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx1 TO Tx2  
Tx2 TO Tx1  
10  
20  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
30  
40  
50  
60  
70  
80  
90  
100  
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER LO FREQUENCY (MHz)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 212. Transmitter to Transmitter Isolation vs. Transmitter LO Frequency,  
Temperature = 25°C  
Figure 215. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5500 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
Due to Spectrum Analyzer Noise Floor  
–150  
–40  
5100MHz = +110°C  
5100MHz = +25°C  
5100MHz = –40°C  
5500MHz = +110°C  
5500MHz = +25°C  
5500MHz = –40°C  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
–45  
–50  
–55  
–60  
–65  
–70  
–155  
–160  
–165  
–170  
–175  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 216. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5900 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
Due to Spectrum Analyzer Noise Floor  
Figure 213. Transmitter Noise vs. Transmitter Attenuator Setting  
Rev. 0 | Page 58 of 95  
Data Sheet  
ADRV9008-2  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 220. Transmitter OIP3, Right vs. Baseband Frequency Offset,  
LO = 5100 MHz, Total RMS Power = −12 dBFS Power, Transmitter  
Attenuation = 4 dB  
Figure 217. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5100 MHz, Total RMS Power = −12 dBFS  
35  
30  
25  
20  
15  
+110°C  
+25°C  
–40°C  
30  
25  
20  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
10  
Tx2 = –40°C  
5
0
0
–5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 218. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5500 MHz, Total RMS Power = −12 dBFS  
Figure 221. Transmitter OIP3, Right vs. Baseband Frequency Offset,  
LO = 5500 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation =  
4 dB  
35  
30  
25  
20  
15  
+110°C  
+25°C  
–40°C  
30  
25  
20  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
10  
Tx2 = –40°C  
5
0
–5  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
5900  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 222. Transmitter OIP3, Right vs. Baseband Frequency Offset,  
LO = 5900 MHz, Total RMS Power = −12 dBFS, Transmitter  
Attenuation = 4 dB  
Figure 219. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5800 MHz, Total RMS Power = −12 dBFS  
Rev. 0 | Page 59 of 95  
ADRV9008-2  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+110°C (HD2)  
+25°C (HD2)  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–40°C (UPPER)  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5100  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 223. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 5100 MHz, CW = −15 dBFS  
Figure 226. Transmitter HD3 on Opposite Sideband vs. Transmitter  
Attenuator Setting, LO = 5100 MHz, CW = −15 dBFS, Baseband Frequency =  
10 MHz  
0
0
+110°C (HD2)  
+25°C (HD2)  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–40°C (UPPER)  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 227. Transmitter HD3 on Opposite Sideband vs. Transmitter  
Attenuator Setting, LO = 5500 MHz, CW = −15 dBFS, Baseband Frequency =  
10 MHz  
Figure 224. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 5500 MHz, CW = −15 dBFS  
0
0
+110°C (HD2)  
+25°C (HD2)  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–20  
–20  
–40°C (UPPER)  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 225. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 5900 MHz, CW = −15 dBFS  
Figure 228. Transmitter HD3 on Opposite Sideband vs. Transmitter  
Attenuator Setting, LO = 5900 MHz, CW = −15 dBFS, Baseband Frequency =  
10 MHz  
Rev. 0 | Page 60 of 95  
Data Sheet  
ADRV9008-2  
0
–10  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–0.03  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 229. Transmitter HD3 on Same Sideband as Signal vs. Transmitter  
Attenuation Setting, LO = 5100 MHz, CW = −15 dBFS  
Figure 232. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 5100 MHz  
0
0.07  
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–0.03  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 230. Transmitter HD3 on Same Sideband as Signal vs. Transmitter  
Attenuator Setting, LO = 5500 MHz, CW = −15 dBFS  
Figure 233. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 5500 MHz  
0
0.09  
+110°C  
+25°C  
–40°C  
0.08  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–30  
–40  
–50  
–60  
–70  
–80  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–90  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 231. Transmitter HD3 on Same Sideband as Signal vs. Transmitter  
Attenuator Setting, LO = 5900 MHz, CW = −15 dBFS  
Figure 234. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 5900 MHz  
Rev. 0 | Page 61 of 95  
ADRV9008-2  
Data Sheet  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
+110°C  
+25°C  
–40°C  
5000  
5200  
5400  
5600  
5800  
6000  
0
5
10  
15  
20  
25  
TRANSMITTER ATTENUATION (dBm)  
LO FREQUENCY (MHz)  
Figure 235. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 5100 MHz  
Figure 238. Observation Receiver Path Loss vs. LO Frequency (Simulation),  
Can be Used for De-Embedding Performance Data  
–30  
0
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
5200  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
TRANSMITTER ATTENUATION (dBm)  
LO FREQUENCY (MHz)  
Figure 236. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 5500 MHz  
Figure 239. Observation Receiver LO Leakage vs. LO Frequency, 5200 MHz,  
5500 MHz, and 5900 MHz  
–30  
36  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
7
8
9
10  
TRANSMITTER ATTENUATION (dBm)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 237. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 5900 MHz  
Figure 240. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 5200 MHz, Total Nyquist Integration Bandwidth  
Rev. 0 | Page 62 of 95  
Data Sheet  
ADRV9008-2  
36  
85  
80  
75  
70  
65  
60  
55  
50  
+110°C  
+25°C  
–40°C  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 244. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, LO = 5700 MHz, Tone 1 = 5725 MHz,  
Tone 2 = 5726 MHz at −19 dBm Plus Attenuation  
Figure 241. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 5500 MHz, Total Nyquist Integration Bandwidth  
36  
80  
70  
60  
50  
40  
+110°C  
+25°C  
–40°C  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
30  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
10  
5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702  
5722 5742 5762 5782 5802 5822 5842 5862 5882 5902 5922 5942  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 242. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 5800 MHz, Total Nyquist Integration Bandwidth  
Figure 245. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 Swept,  
−19 dBm Each, Attenuation = 0 dB  
80  
75  
70  
65  
60  
80  
75  
70  
65  
55  
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
50  
55  
45  
IIP2 DIFF –40°C  
40  
50  
5705 5725 5745 5765 5785 5805 5825 5845 5865 5885 5905 5925  
5706 5726 5746 5766 5786 5806 5826 5846 5866 5886 5906 5926  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 246. Observation Receiver IIP2, f1 – f2 vs. Observation Receiver  
Attenuation, LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 = 5802 MHz at  
−19 dBm Plus Attenuation  
Figure 243. Observation Receiver IIP2, Sum and Difference Products vs. f1 Offset  
Frequency, Tones Separated by 1 MHz Swept Across Pass Band at −19 dBm Each,  
LO = 5700 MHz, Attenuation = 0 dB  
Rev. 0 | Page 63 of 95  
ADRV9008-2  
Data Sheet  
25  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
15  
10  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
5
6
0
0
2
4
6
8
10  
5705 5758 5745 5765 5785 5805 5825 5845 5865 5885 5905 5925  
5706 5726 5746 5766 5786 5806 5826 5846 5866 5886 5906 5926  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 250. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 = 5822 MHz at  
−19 dBm Plus Attenuation  
Figure 247. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 5700 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across  
Pass Band at −19 dBm Each  
0
30  
28  
26  
24  
22  
20  
18  
16  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
14  
12  
10  
8
6
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET ATTENUATION (MHz)  
Figure 251. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset Attenuation, CW Signal Swept Across the Band, LO = 5200 MHz  
Figure 248. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 5700 MHz, Tone 1 = 5745 MHz, Tone 2 = 5746 MHz at  
−19 dBm Plus Attenuation  
25  
20  
15  
0
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
5
0
5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702  
5722 5742 5762 5782 5802 5822 5842 5862 5882 5902 5922 5942  
BASEBAND FREQUENCY OFFSET (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 252. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset, CW Signal Swept Across the Band, LO = 5700 MHz  
Figure 249. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 = 5722 MHz at −22 dBm Plus  
Attenuation Each  
Rev. 0 | Page 64 of 95  
Data Sheet  
ADRV9008-2  
18  
16  
14  
12  
10  
8
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 253. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 5200 MHz  
Figure 256. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5600 MHz  
16  
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
14  
0.2  
0.1  
12  
10  
8
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 254. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 5700 MHz  
Figure 257. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5600 MHz  
0.5  
0.7  
+110°C  
+25°C  
–40°C  
0.6  
0.5  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
0.4  
0.2  
0.1  
0.3  
0.2  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 255. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5200 MHz  
Figure 258. Observation Receiver Pass Band Flatness vs. Baseband Offset  
Frequency, LO = 5700 MHz  
Rev. 0 | Page 65 of 95  
ADRV9008-2  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+110°C = 0dB (RIGHT)  
+25°C = 0dB (LEFT)  
+25°C = 10dB (LEFT)  
–40°C = 0dB (RIGHT)  
–40°C = 10dB (RIGHT)  
–40°C = 0dB (LEFT)  
–40°C = 10dB (LEFT)  
+110°C = 10dB (RIGHT)  
+110°C = 0dB (LEFT)  
+110°C = 10dB (LEFT)  
+25°C = 0dB (RIGHT)  
+25°C = 10dB (RIGHT)  
–20  
–40  
–60  
–80  
–100  
–120  
–100  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 262. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 5700 MHz, Tone Level = −20 dBm  
Figure 259. Observation Receiver HD2 vs. Offset Frequency, LO = 5200 MHz,  
Tone Level = −20 dBm Plus Attenuation  
0
0
+110°C = 0dB (RIGHT)  
+110°C = 10dB (RIGHT)  
+110°C = 0dB (LEFT)  
+110°C = 10dB (LEFT)  
+25°C = 0dB (RIGHT)  
+25°C = 10dB (RIGHT)  
+25°C = 0dB (LEFT)  
+25°C = 10dB (LEFT)  
–40°C = 0dB (RIGHT)  
–40°C = 10dB (RIGHT)  
–40°C = 0dB (LEFT)  
–40°C = 10dB (LEFT)  
TX1 TO ORX1  
TX2 TO ORX1  
TX1 TO ORX2  
TX2 TO ORX2  
10  
–20  
–40  
20  
30  
40  
50  
60  
70  
80  
90  
–60  
–80  
–100  
–120  
–100  
5000  
5200  
5400  
5600  
5800  
6000  
–75  
–50  
–25  
0
25  
50  
75  
100  
LO FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 263. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Figure 260. Observation Receiver HD2 vs. Offset Frequency, LO = 5700 MHz,  
Tone Level = −20 dBm Plus Attenuation  
–20  
0
1: 100kHz, –99.0710dBc/Hz  
HD3 RIGHT dBc = +110°C  
–30  
2: 1.2MHz, –119.6888dBc/Hz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–40  
–50  
3: 10MHz, –135.4019dBc/Hz  
START 2kHz  
CENTER 9.001MHz  
SPAN 17.998MHz  
–60  
–70  
–80  
–90  
1
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
2
3
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 264. LO Phase Noise vs. Frequency Offset, LO = 5900 MHz, PLL Loop  
Bandwidth > 300 kHz, Spectrum Analyzer Limits Far Out Noise  
Figure 261. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 5200 MHz, Tone Level = −20 dBm  
Rev. 0 | Page 66 of 95  
Data Sheet  
ADRV9008-2  
TRANSMITTER OUTPUT IMPEDANCE  
TX PORT SIMULATED IMPEDANCE: SEDZ  
M26  
M21  
FREQUENCY = 3.000GHz  
S (1,1) = 0.368 / 150.626  
FREQUENCY = 100.0MHz  
S (1,1) = 0.143 / –7.865  
IMPEDANCE = 66.439 – j2.654  
M28  
IMPEDANCE = 24.355 + j10.153  
M27  
M27  
M29  
M22  
FREQUENCY = 4.000GHz  
S (1,1) = 0.484 / –107.379  
IMPEDANCE = 25.118 + j30.329  
FREQUENCY = 300.0MHz  
S (1,1) = 0.141 / –25.589  
IMPEDANCE = 64.063 – j7.987  
M26  
M28  
M23  
FREQUENCY = 5.000GHz  
S (1,1) = 0.569 / 70.352  
IMPEDANCE = 35.932 + j56.936  
FREQUENCY = 500.0MHz  
S (1,1) = 0.145 / –42.661  
IMPEDANCE = 60.623 – j12.201  
M21  
M22  
M23  
M25  
M24  
M29  
M24  
FREQUENCY = 6.000GHz  
S (1,1) = 0.614 / 36.074  
IMPEDANCE = 81.032 + j94.014  
FREQUENCY = 1.000GHz  
S (1,1) = 0.164 / –84.046  
IMPEDANCE = 49.000 – j16.447  
M25  
FREQUENCY = 2.000GHz  
S (1,1) = 0.247 / 155.186  
IMPEDANCE = 31.131 – j6.860  
FREQUENCY (0Hz TO 6.000GHz)  
Figure 265. Transmitter Output Impedance Series Equivalent Differential Impedance (SEDZ)  
OBSERVATION RECEIVER INPUT IMPEDANCE  
ORX PORT SIMULATED IMPEDANCE: SEDZ  
M20  
M15  
FREQUENCY = 3.000GHz  
S (1,1) = 0.104 / –66.720  
IMPEDANCE = 53.262 – j10.292  
FREQUENCY = 100.0MHz  
S (1,1) = 0.391 / –1.848  
IMPEDANCE = 114.099 – j3.397  
M23  
M22  
M21  
M16  
FREQUENCY = 4.000GHz  
S (1,1) = 0.116 / –104.276  
IMPEDANCE = 46.060 + j10.522  
FREQUENCY = 300.0MHz  
S (1,1) = 0.389 / –5.601  
IMPEDANCE = 112.639 – j10.091  
M21  
M21  
M22  
M17  
M15  
M16  
FREQUENCY = 5.000GHz  
S (1,1) = 0.342 / 75.761  
IMPEDANCE = 46.551 + j34.914  
FREQUENCY = 500.0MHz  
S (1,1) = 0.385 / –9.396  
IMPEDANCE = 109.556 – j16.156  
M17  
M20  
M18  
M19  
M23  
M18  
FREQUENCY = 6.000GHz  
S (1,1) = 0.525 / 53.007  
IMPEDANCE = 56.249 + j65.146  
FREQUENCY = 1.000GHz  
S (1,1) = 0.362 / –19.087  
IMPEDANCE = 97.259 – j26.513  
FREQUENCY = 2.000GHz  
S (1,1) = 0.267 / –39.928  
IMPEDANCE = 70.189 – j25.940  
FREQUENCY (0Hz TO 6.000GHz)  
Figure 266. Observation Receiver Input Impedance SEDZ  
Rev. 0 | Page 67 of 95  
 
 
 
 
ADRV9008-2  
Data Sheet  
TERMINOLOGY  
Large Signal Bandwidth  
Observation Bandwidth  
Large signal bandwidth, otherwise known as instantaneous  
bandwidth or signal bandwidth, is the bandwidth over which  
there are large signals. For example, for Band 42 LTE, the large  
signal bandwidth is 200 MHz.  
Observation bandwidth is the 1 dB bandwidth of the observation  
receiver. With the observation receiver sharing the transmitter  
LO, the observation receiver sees similar power densities, such  
as those in the occupied bandwidth and synthesis bandwidth of  
the transmitter.  
Occupied Bandwidth  
Occupied bandwidth is the total bandwidth of the active signals.  
For example, three 20 MHz carriers have a 60 MHz occupied  
bandwidth, regardless of where the carriers are placed within  
the large signal bandwidth.  
Backoff  
Backoff is the difference (in dB) between full scale and the rms  
signal power.  
PHIGH  
Synthesis Bandwidth  
PHIGH is the largest signal that can be applied without overloading  
Synthesis bandwidth is the bandwidth over which digital  
predistortion (DPD) linearization is transmitted. Synthesis  
bandwidth is the 1 dB bandwidth of the transmitter. The power  
density of the signal outside the occupied bandwidth is assumed  
to be 25 dB below the signal in the occupied bandwidth, which  
also assumes that the unlinearized power amplifier (PA)  
achieves 25 dB ACLR.  
the ADC for the observation receiver input. This input level  
results in slightly less than full scale at the digital output because  
of the nature of the continuous time Σ-Δ ADCs, which, for  
example, exhibit a soft overload in contrast to the hard clipping  
of pipeline ADCs.  
Rev. 0 | Page 68 of 95  
 
Data Sheet  
ADRV9008-2  
THEORY OF OPERATION  
The ADRV9008-2 is a highly integrated RF transmitter  
subsystem capable of configuration for a wide range of  
applications. The device integrates all RF, mixed-signal, and  
digital blocks necessary to provide all transmitter traffic and  
DPD observation receiver functions in a single device.  
Programmability allows the transmitter to be adapted for use in  
many time division duplexes (TDDs) and 2G/3G/4G/5G cellular  
standards. The ADRV9008-2 contains four high speed serial  
interface links for the transmitter chain, and four high speed  
links for the observation receiver chain. The links are  
JESD204B, Subclass 1 compliant.  
CLOCK INPUT  
The ADRV9008-2 requires a differential clock connected to the  
REF_CLK_IN_ pins. The frequency of the clock input must be  
between 10 MHz and 1000 MHz and must have very low phase  
noise because this signal generates the RF LO and internal  
sampling clocks.  
SYNTHESIZERS  
RF PLL  
The ADRV9008-2 contains a fractional-N PLL to generate the  
RF LO for the signal paths. The PLL incorporates an internal  
VCO and loop filter, requiring no external components. The  
LOs on multiple chips can be phase synchronized to support  
active antenna systems and beamforming applications.  
The ADRV9008-2 also provides tracking correction of dc offset  
QEC errors, and transmitter LO leakage to maintain high  
performance under varying temperatures and input signal  
conditions. The device also includes test modes that allow  
system designers to debug designs during prototyping and to  
optimize radio configurations.  
Clock PLL  
The ADRV9008-2 contains a PLL synthesizer that generates all  
the baseband related clock signals and serialization/deserial-  
ization (SERDES) clocks. This PLL is programmed based on the  
data rate and sample rate requirements of the system.  
TRANSMITTER  
The ADRV9008-2 transmitter section consists of two identical  
and independently controlled channels that provide all digital  
processing, mixed-signal, and RF blocks necessary to implement a  
direct conversion system while sharing a common frequency  
synthesizer. The digital data from the JESD204B lanes pass through  
a fully programmable, 128-tap FIR filter with variable interpolation  
rates. The FIR output is sent to a series of interpolation filters  
that provide additional filtering and interpolation prior to reaching  
the DAC. Each 14-bit DAC has an adjustable sample rate.  
SERIAL PERIPHERAL INTERFACE (SPI)  
The ADRV9008-2 uses an SPI interface to communicate with  
the baseband processor (BBP). This interface can be configured  
as a 4-wire interface with dedicated receiver and transmitter  
ports, or it can be configured as a 3-wire interface with a  
bidirectional data communications port. This bus allows the  
BBP to set all device control parameters using a simple address  
data serial bus protocol.  
When converted to baseband analog signals, the inphase (I) and  
quadrature (Q) signals are filtered to remove sampling artifacts  
and are fed to the upconversion mixers. Each transmitter chain  
provides a wide attenuation adjustment range with fine  
granularity to optimize SNR.  
Write commands follow a 24-bit format. The first five bits set  
the bus direction and the number of bytes to transfer. The next  
11 bits set the address where data is written. The final 8 bits are  
the data to be transferred to the specific register address.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SDIO pin and the final  
eight bits are read from the ADRV9008-2, either on the SDO  
pin in 4-wire mode or on the SDIO pin in 3-wire mode.  
OBSERVATION RECEIVER  
The ADRV9008-2 contains an independent DPD observation  
receiver front end. The observation receiver shares the common  
frequency synthesizer with the transmitter.  
JTAG BOUNDARY SCAN  
The observation receiver is a direct conversion system that  
contains a programmable attenuator stage, followed by matched  
I and Q mixers, baseband filters, and ADCs.  
The ADRV9008-2 provides support for JTAG boundary scan.  
Five dual function pins are associated with the JTAG interface.  
Use these pins, listed in Table 5, to access the on-chip test access  
port. To enable the JTAG functionality, set the GPIO_3 pin  
through the GPIO_0 pin to 1001, and then pull the TEST pin  
high.  
The continuous time Σ-Δ ADCs have inherent antialiasing that  
reduces the RF filtering requirement.  
The ADC outputs can be conditioned further by a series of  
decimation filters and a programmable FIR filter with additional  
decimation settings. The sample rate of each digital filter block  
is adjustable by changing decimation factors to produce the  
desired output data rate.  
POWER SUPPLY SEQUENCE  
The ADRV9008-2 requires a specific power-up sequence to  
avoid undesired power-up currents. In the optimal power-up  
sequence, the VDDD1P3_DIG and the VDDA1P3 supplies  
(VDDA1P3 includes all 1.3 V domains) power up first and at the  
same time. If these supplies cannot be powered up simultaneously,  
the VDDD1P3_DIG supply must power up first. Power up the  
Rev. 0 | Page 69 of 95  
 
 
 
 
 
 
 
 
ADRV9008-2  
Data Sheet  
VDDA_3P3, VDDA1P8_BB, VDDA1P8_TX, VDDA1P3_DES,  
and VDDA1P3_SER supplies after the 1.3 V supplies. The  
VDD_INTERFACE supply can be powered up at any time. Note  
that no device damage occurs if this sequence is not followed.  
However, failure to follow this sequence may result in higher  
than expected power-up currents. It is also recommended to  
running. The SPI reads provide the last value latched at the ADC  
output. The auxiliary ADC can also be multiplexed to a built in,  
diode-based temperature sensor.  
Auxiliary DAC x  
The ADRV9008-2 contains 10 identical auxiliary DACs  
(auxiliary DAC x) that can be used for bias or other system  
functionality. The auxiliary DACs are 10 bits, have an output  
voltage range of approximately 0.7 V to VDDA_3P3 − 0.3 V,  
and have an output drive of 10 mA.  
RESET  
toggle the  
signal after power stabilizes, prior to  
configuration. The power-down sequence is not critical. If a  
power-down sequence is followed, remove the VDDD1P3_DIG  
supply last to avoid any back biasing of the digital control lines.  
JESD204B DATA INTERFACE  
GPIO_x PINS  
The digital data interface for the ADRV9008-2 uses JEDEC  
JESD204B Subclass 1. The serial interface operates at speeds of  
up to 12.288 Gbps. The benefits of the JESD204B interface  
include a reduction in required board area for data interface  
routing, resulting in smaller total system size. Four high speed  
serial lanes are provided for the transmitter, and four high speed  
lanes are provided for the observation receiver. The  
ADRV9008-2 supports single-lane or dual-lane interfaces as  
well as fixed and floating point data formats for observation  
receiver data.  
The ADRV9008-2 provides 19, 1.8 V to 2.5 V GPIO signals that  
can be configured for numerous functions. When configured as  
outputs, certain pins can provide real-time signal information  
to the BBP, allowing the BBP to determine observation receiver  
performance. A pointer register selects the information that is  
output to these pins. Signals used for manual gain mode,  
calibration flags, state machine states, and various observation  
receiver parameters are among the outputs that can be  
monitored on these pins. Additionally, certain pins can be  
configured as inputs and used for various functions, such as  
setting the observation receiver gain in real time.  
Table 6. Observation Path Interface Rates  
JESD204B  
Twelve 3.3 V GPIO_x pins are also included on the device.  
These pins provide control signals to external components.  
Bandwidth Output Rate  
Lane Rate  
(Mbps)  
Number of  
Lanes  
(MHz)  
(MSPS)  
245.76  
307.2  
AUXILIARY CONVERTERS  
AUXADC_x  
200  
200  
9830.4  
12288  
12288  
9830.4  
4915.2  
1
1
1
2
4
The ADRV9008-2 contains an auxiliary ADC that is  
multiplexed to four input pins (AUXADC_x). The auxiliary  
ADC is 12 bits with an input voltage range of 0.05 V to  
VDDA_3P3 − 0.05 V. When enabled, the auxiliary ADC is free  
250  
307.2  
450  
450  
491.52  
491.52  
Table 7. Transmitter Interface Rates (Other Output Rates, Bandwidth, and JESD204B Lanes Also Supported)  
Single-Channel Operation Dual-Channel Operation  
JESD204B Lane JESD204B Number  
Input Rate  
(MSPS)  
JESD204B Lane  
Rate (Mbps)  
JESD204B Number  
of Lanes  
Bandwidth (MHz)  
Rate (Mbps)  
of Lanes  
200  
200  
250  
450  
245.76  
307.2  
307.2  
9830.4  
12288  
12288  
9830.4  
1
1
1
2
9830.4  
12288  
12288  
9830.4  
2
2
2
4
491.52  
TRANSMIT  
TRANSMIT  
HALF-BAND  
FILTER 1  
1, 2  
TRANSMIT FIR  
FILTER  
(INTERPOLATION  
1, 2, 4)  
DIGITAL  
GAIN  
QUADRATURE  
CORRECTION  
HALF-BAND  
FILTER 2  
1, 2  
I/Q DAC  
JESD204B  
Figure 267. Transmitter Datapath Filter Implementation  
RECEIVE  
HALF-BAND  
3
RECEIVE  
HALF-BAND  
2
RECEIVE  
HALF-BAND  
1
DIG  
GAIN  
FIR  
(DEC 1, 2, 4)  
DC  
JESD204B  
ADC  
CORRECTION  
Figure 268. Observation Receiver Datapath Filter Implementation  
Rev. 0 | Page 70 of 95  
 
 
 
Data Sheet  
ADRV9008-2  
APPLICATIONS INFORMATION  
PCB LAYOUT AND POWER SUPPLY  
RECOMMENDATIONS  
13 are crucial to maintaining the RF signal integrity and,  
ultimately, the ADRV9008-2 performance. Layer 3 and Layer 12  
are used to route power supply domains. To keep the RF section  
of the ADRV9008-2 isolated from the fast transients of the digital  
section, the JESD204B interface lines are routed on Layer 5 and  
Layer 10. Those layers have impedance control set to a 100 Ω  
differential. The remaining digital lines from the ADRV9008-2  
are routed on Inner Layer 7 and Inner Layer 8. RF traces on the  
outer layers must be a controlled impedance to get the best  
performance from the device. The inner layers on this board  
use 0.5 ounce copper or 1 ounce copper. The outer layers use  
1.5 ounce copper so that the RF traces are less prone to pealing.  
Ground planes on this board are full copper floods with no  
splits except for vias, through-hole components, and isolation  
structures. The ground planes must route entirely to the edge of  
the PCB under the Surface-Mount Type A (SMA) connectors to  
maintain signal launch integrity. Power planes can be pulled  
back from the board edge to decrease the risk of shorting from  
the board edge.  
Overview  
The ADRV9008-2 device is a highly integrated RF agile transceiver  
with significant signal conditioning integrated on one chip. Due  
to the increased complexity of the device and its high pin count,  
careful PCB layout is important to get the optimal performance.  
This data sheet provides a checklist of issues to look for and  
guidelines on how to optimize the PCB to mitigate performance  
issues. The goal of this data sheet is to help achieve the optimal  
performance from the ADRV9008-2 while reducing board  
layout effort. This data sheet assumes that the reader is an  
experienced analog and RF engineer with an understanding of  
RF PCB layout and RF transmission lines. This data sheet  
discusses the following issues and provides guidelines for  
system designers to achieve the optimal performance for the  
ADRV9008-2:  
PCB material and stack up selection  
Fanout and trace space layout guidelines  
Component placement and routing guidelines  
RF and JESD204B transmission line layout  
Isolation techniques used on the ADRV9008-2W/PCBZ  
Power management considerations  
Unused pin instructions  
PCB MATERIAL AND STACKUP SELECTION  
Figure 269 shows the PCB stackup used for the ADRV9008-  
2W/PCBZ. Table 8 and Table 9 list the single-ended and  
differential impedence for the stackup shown in Figure 269. The  
dielectric material used on the top and the bottom layers is 8  
mil Rogers 4350B. The remaining dielectric layers are FR4-370  
HR. The board design uses the Rogers laminate for the top and  
the bottom layers for the low loss tangent at high frequencies.  
The ground planes under the Rogers laminate (Layer 2 and  
Layer 13) are the reference planes for the transmission lines  
routed on the outer surfaces. These layers are solid copper  
planes without any splits under the RF traces. Layer 2 and Layer  
Figure 269. ADRV9008-2W/PCBZ Trace Impedance and Stackup  
Rev. 0 | Page 71 of 95  
 
 
 
 
ADRV9008-2  
Data Sheet  
Table 8. Evaluation Board Single-Ended Impedance and Stackup1  
Finished  
Trace Single-  
Ended  
Single-  
Ended  
Reference  
Layers  
Finished  
Designed  
Trace Single-  
Calculated  
Impedance  
(Ω)  
Board  
Layer Copper % Copper (oz.) (oz.)  
Starting  
Copper  
Single-Ended  
Impedance  
Ended (inches) (inches)  
1
2
3
4
5
6
7
8
N/A  
65  
50  
65  
50  
65  
50  
50  
65  
50  
65  
50  
65  
0.5  
1
0.5  
1
0.5  
1
0.5  
0.5  
1
0.5  
0.5  
1
1
0.5  
1.71  
1
1
1
0.5  
1
0.5  
0.5  
1
1
1
50 Ω 10ꢀ  
N/A  
N/A  
N/A  
50 Ω 10ꢀ  
N/A  
50 Ω 10ꢀ  
50 Ω 10ꢀ  
N/A  
50 Ω 10ꢀ  
N/A  
0.0155  
N/A  
N/A  
N/A  
0.0045  
N/A  
0.0049  
0.0049  
N/A  
0.0045  
N/A  
0.0135  
N/A  
N/A  
N/A  
0.0042  
N/A  
0.0039  
0.0039  
N/A  
0.0039  
N/A  
49.97  
N/A  
N/A  
N/A  
49.79  
N/A  
50.05  
50.05  
N/A  
49.88  
N/A  
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
N/A  
13  
9
10  
11  
12  
13  
14  
1
1
1.64  
N/A  
N/A  
50 Ω 10ꢀ  
N/A  
N/A  
0.0155  
N/A  
N/A  
0.0135  
N/A  
N/A  
49.97  
1 N/A means not applicable.  
Table 9. Evaluation Board Differential Impedance and Stackup1  
Designed  
Trace  
(inches)  
Designed Gap  
Differential  
(inches)  
Finished  
Trace  
(inches)  
Finished Gap  
Differential  
(inches)  
Differential  
Reference  
Impedance (Ω) Layers  
Differential  
Layer Impedance  
Calculated  
1
100 Ω 10ꢀ  
50 Ω 10ꢀ  
N/A  
0.008  
0.0032  
N/A  
0.006  
0.004  
0.007  
0.0304  
N/A  
0.007  
0.0056  
99.55  
50.11  
N/A  
2
2
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
N/A  
N/A  
13  
3
4
5
6
7
8
9
10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
100 Ω 10ꢀ  
N/A  
100 Ω 10ꢀ  
100 Ω 10ꢀ  
N/A  
100 Ω 10ꢀ  
N/A  
N/A  
N/A  
N/A  
100 Ω 10ꢀ  
50 Ω 10ꢀ  
0.0036  
N/A  
0.0036  
0.0038  
N/A  
0.0036  
N/A  
N/A  
N/A  
N/A  
0.008  
0.032  
0.0064  
0.0034  
N/A  
0.0034  
0.0034  
N/A  
0.003  
N/A  
N/A  
N/A  
N/A  
0.007  
0.004  
0.0065  
99.95  
N/A  
100.51  
100.51  
N/A  
100.80  
N/A  
N/A  
N/A  
N/A  
99.55  
50.11  
0.0064  
0.0062  
0.0066  
0.0066  
0.0064  
0.006  
0.007  
0.007  
11  
12  
13  
14  
13  
1 N/A means not applicable.  
Rev. 0 | Page 72 of 95  
 
 
Data Sheet  
ADRV9008-2  
The JESD204B interface signals are routed on two signal layers  
that use impedance control (Layer 5 and Layer 10). The spacing  
between the BGA pads is 17.5 mil. After the signal is on the  
inner layers, a 3.6 mil trace (50 Ω) connects the JESD204B  
signal to the field programmable gate array (FPGA) mezzanine  
card (FMC) connector. The recommended BGA land pad size is  
15 mil.  
FANOUT AND TRACE SPACE GUIDELINES  
The ADRV9008-2 device uses a 196-ball chip scale package ball  
grid array (CSP_BGA), 12 × 12 mm package. The pitch between  
the pins is 0.8 mm. This small pitch makes it impractical to route all  
signals on a single layer. RF pins are placed on the outer edges of  
the ADRV9008-2 package. The location of the pins helps route the  
critical signals without a fanout via. Each digital signal is routed  
from the BGA pad using a 4.5 mil trace. The trace is connected to  
the BGA using a via in the pad structure. The signals are buried in  
the inner layers of the board for routing to other parts of the  
system.  
Figure 270 shows the fanout scheme of the ADRV9008-2W/PCBZ.  
As mentioned before, the ADRV9008-2W/PCBZ uses a via in  
the pad technique. This routing approach can be used for the  
ADRV9008-2 if there are no issues with manufacturing  
capabilities.  
4.5mil TRACE  
AIR GAP = 17.5mil  
JESD204B INTERFACE  
TRACE WIDTH = 3.6mil  
PAD SIZE = 15mil  
VIA SIZE = 14mil  
Figure 270. Trace Fanout Scheme on the ADRV9008-2W/PCBZ (PCB Layer Top and Layer 5 Enabled)  
Rev. 0 | Page 73 of 95  
 
 
ADRV9008-2  
Data Sheet  
The observation receiver and transmitter baluns and the  
COMPONENT PLACEMENT AND ROUTING  
GUIDELINES  
matching circuits affect the overall RF performance of the  
ADRV9008-2 transceiver. Make every effort to optimize the  
component selection and placement to avoid performance  
degradation. The RF Routing Guidelines section describes  
proper matching circuit placement and routing in more detail.  
Refer to the RF Port Interface Information section for more  
information.  
The ADRV9008-2 transceiver requires few external components  
to function, but those that are used require careful placement  
and routing to optimize performance. This section provides a  
checklist for properly placing and routing critical signals and  
components.  
Signals with Highest Routing Priority  
To achieve the desired level of isolation between RF signal  
paths, use the technique described in the Isolation Techniques  
Used on the ADRV9008-2W/PCBZ section in customer  
designs.  
RF lines and JESD204B interface signals are the signals that are  
most critical and must be routed with the highest priority.  
Figure 271 shows the general directions in which each of the  
signals must be routed so that they can be properly isolated  
from noisy signals.  
In cases in which ADRV9008-2 is used, install a 10 µF capacitor  
near the transmitter balun(s) VDDA1P8_TX dc feed(s) for RF  
transmitter outputs. This acts as a reservoir for the transmitter  
supply current. The Transmitter Balun DC Feed Supplies  
section discusses more details about the transmitter output  
power supply configuration.  
VSSA  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
VSSA  
ORX1_IN–  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VSSA  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
CLOCK_VCO  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
Figure 271. RF Input/Output, REF_CLK_IN , and JESD204B Signal Routing Guidelines  
Rev. 0 | Page 74 of 95  
 
 
Data Sheet  
ADRV9008-2  
Figure 272 shows placement for ac coupling capacitors and a  
100 Ω termination resistor near the ADRV9008-2 REF_CLK_IN  
pins. Shield the traces with ground flooding that is surrounded  
with vias staggered along the edge of the trace pair. The trace  
pair creates a shielded channel that shields the reference clock  
from any interference from other signals. Refer to the ADRV9008-  
2W/PCBZ layout, including board support files included with the  
evaluation board software, for exact details.  
Routing Guidelines section outlines recommendations for  
JESD204B interface routing. Provide appropriate isolation  
between interface differential pairs. The Isolation Between  
JESD204B Lines section provides guidelines for optimizing  
isolation.  
The RF_EXT_LO_I/O− pin (B7) and the RF_EXT_LO_I/O+  
pin (B8) on the ADRV9008-2 are internally dc biased. If an  
external LO is used, connect it via ac coupling capacitors.  
Route the JESD204B interface at the beginning of the PCB  
design and with the same priority as the RF signals. The RF  
AC COUPLING  
CAPS  
100ΩTERMINATION  
RESISTOR  
TO ADRV9008-2  
BGA BALLS  
Figure 272. REF_CLK_IN Routing Recommendation  
Rev. 0 | Page 75 of 95  
 
ADRV9008-2  
Data Sheet  
Signals with Second Routing Priority  
When the recommendation is to use a trace to connect power to  
a particular domain, ensure that this trace is surrounded by  
ground.  
Power supply quality has direct impact on overall system  
performance. To achieve optimal performance, users should  
follow recommendations regarding ADRV9008-2 power supply  
routing. The following recommendations outline how to route  
different power domains that can be connected together  
directly and that can be tied to the same supply, but are  
separated by a 0 Ω placeholder resistor or ferrite bead (FB).  
Figure 273 shows an example of such traces routed on the  
ADRV9008-2W/PCBZ on Layer 12. Each trace is separated  
from any other signal by the ground plane and vias. Separating  
the traces from other signals is essential to providing necessary  
isolation between the ADRV9008-2 power domains.  
Figure 273. Layout Example of Power Supply Domains Routed with Ground Shielding (Layer 12 to Power)  
Rev. 0 | Page 76 of 95  
 
Data Sheet  
ADRV9008-2  
Each power supply pin requires a 0.1 µF bypass capacitor near  
the pin at a minimum. Place the ground side of the bypass  
capacitor so that ground currents flow away from other power  
pins and the bypass capacitors.  
capacitors are placed. The recommendation is to connect a  
ferrite bead between a power plane and the ADRV9008-2 at a  
distance away from the device The ferrite bead and the resevoir  
capacitor provide stable voltage to the ADRV9008-2 during  
operation by isolating the pin or pins that the network is connected  
to from the power plane. Then, shield that trace with ground and  
provide power to the power pins on the ADRV9008-2. Place a 100  
nF capacitor near the power supply pin with the ground side of  
the bypass capacitor placed so that ground currents flow away  
from other power pins and the bypass capacitors.  
For the domains shown in Figure 274, like the domains powered  
through a 0 Ω placeholder resistor or ferrite bead, place the 0 Ω  
placeholder resistors or ferrite beads further away from the  
device. Space 0 Ω placeholder resistors or ferrite beads apart  
from each other to ensure the electric fields on the ferrite beads  
do not influence each other. Figure 275 shows an example of  
how the ferrite beads, reservoir capacitors, and decoupling  
TRACE THROUGH 0Ω RES. TO 1.3V ANALOG PLANE (AP)  
MAINTAIN LOWEST POSSIBLE IMPEDANCE  
TRACE THROUGH 0.1Ω RESISTOR TO AP  
TRACE THROUGH 0Ω TO AP  
VSSA  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
ORX1_IN–  
VSSA  
TRACE THROUGH  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
0Ω TO AP  
TRACE THROUGH  
TRACE THROUGH FB  
TO 3.3V PLANE  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
0Ω TO AP  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VSSA  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
TRACE THROUGH  
0Ω TO 1.8V PLANE  
TRACE THROUGH  
0Ω TO 1.8V PLANE  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
TRACE THROUGH  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
0Ω TO AP  
TRACE THROUGH  
0Ω TO AP  
TRACE THROUGH  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
0Ω TO AP  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
TRACE THROUGH  
1Ω RESISTOR TO AP  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
WIDE TRACE TO  
1.3V DIGITAL SUPPLY  
HIGH CURRENT  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
TRACE THROUGH  
FB TO INTERFACE SUPPLY  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
CLOCK_VCO  
TRACE THROUGH 0Ω  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
TO 1.3V JESD204B SUPPLY  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
TRACE THROUGH  
0Ω TO AP  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
TRACE THROUGH FB  
TO 1.3V JESD204B SUPPLY  
Figure 274. Power Supply Domains Interconnection Guidelines  
Rev. 0 | Page 77 of 95  
 
ADRV9008-2  
Data Sheet  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
RESERVOIR  
CAPACITORS  
DUT  
1µ + 100nF bypass  
CAPS ORIENTED SUCH  
THAT CURRENTS FLOW  
AWAY FROM OTHER  
POWER PINS  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
Figure 275. Placement Example of 0 Ω Resistor Placeholders for Ferrite Beads, Reservoir and Bypass Capacitors on the ADRV9008-2W/PCBZ (Layer 12 to Power Layer  
and Bottom Layer)  
Rev. 0 | Page 78 of 95  
 
Data Sheet  
ADRV9008-2  
Signals with Lowest Routing Priority  
When routing analog signals such as GPIO_3p3_x/Auxiliary  
DAC x or AUXADC_x, it is recommended to route them away  
from the digital section (Row H through Row P). Do not cross  
the analog section of the ADRV9008-2 highlighted by a red-  
dotted line in Figure 276 by any digital signal routing.  
As a last step while designing the PCB layout, route signals  
shown in Figure 276. The following list outlines the  
recommended order of signal routing:  
1. Use ceramic 1 µF bypass capacitors at the VDDA1P1_RF_  
VCO, VDDA1P1_AUX_VCO, and VDDA1P1_CLOCK_  
VCO pins. Place them as close as possible to the ADRV9008-2  
device with the ground side of the bypass capacitor placed so  
that ground currents flow away from other power pins and the  
bypass capacitors, if at all possible.  
When routing digital signals from rows H and below, it is  
important to route them away from the analog section (Row A  
through Row G). Do not cross the analog section of the  
ADRV9008-2 highlighted by a red-dotted line in Figure 276 by  
any digital signal routing.  
2. Connect a 14.3 kΩ resistor to the RBIAS pin (C14). This  
resistor must have a 1% tolerance.  
RF AND JESD204B TRANSMISSION LINE LAYOUT  
RF Routing Guidelines  
3. Pull the TEST pin (J6) to ground for normal operation.  
The device has support for JTAG boundary scan, and this  
pin is used to access that function. Refer to the JTAG  
Boundary Scan section for JTAG boundary scan  
information.  
The ADRV9008-2W/PCBZ use microstrip type lines for  
observation receiver and transmitter RF traces. In general,  
Analog Devices, Inc. does not recommend using vias to route  
RF traces unless a direct line route is not possible.  
RESET  
4. Pull the  
pin (J4) high with a 10 kΩ resistor to  
VDD_INTERFACE for normal operation. To reset the  
RESET  
device, drive the  
pin low.  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
VSSA  
ORX1_IN–  
VSSA  
VSSA  
VSSA  
1µF CAPACITOR  
1µF CAPACITOR  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
14.3kΩ RESISTOR  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
GPIO_3p3_5  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
ALL DIGITAL  
GPIO SIGNALS  
ROUTED BELOW  
THE RED LINE  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSS
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
1µF CAPACITOR  
CLOCK_VCO  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
Figure 276. Auxiliary ADC, Analog, and Digital GPIO Signals Routing Guidelines  
Rev. 0 | Page 79 of 95  
 
 
 
ADRV9008-2  
Data Sheet  
Differential lines from the balun to the observation receiver and  
transmitter pins need to be as short as possible. Make the length  
of the single-ended transmission line also short to minimize the  
effects of parasitic coupling. It is important to note that these  
traces are the most critical when optimizing performance and  
are, therefore, routed before any other routing. These traces  
have the highest priority if trade-offs are needed.  
Figure 277 and Figure 278 show pi matching networks on the  
single-ended side of the baluns. The observation receiver front  
end is dc biased internally, so the differential side of the balun  
is ac-coupled. The system designer can optimize the RF  
performance with a proper selection of the balun, matching  
components, and ac coupling capacitors. The external LO  
traces and the REF_CLK_IN traces may require matching  
components as well to ensure optimal performance.  
All the RF signals mentioned previously must have a solid ground  
reference under each trace. Do not run any of the critical traces  
over a section of the reference plane that is discontinuous. The  
ground flood on the reference layer must extend all the way to  
the edge of the board. This flood length ensures signal integrity  
for the SMA launch when an edge launch connector is used.  
Refer to the RF Port Interface Information section for more  
information on RF matching recommendations for the device.  
Figure 277. Pi Network Matching Components Available on Transmitter  
Outputs  
Figure 278. Pi Network Matching Components Available on Observation Receiver Inputs  
Rev. 0 | Page 80 of 95  
 
 
Data Sheet  
ADRV9008-2  
Transmitter Balun DC Feed Supplies  
conducting the current necessary for the transmitter outputs to  
operate. To reduce switching transients when attenuation  
settings change, power the balun dc feed or transmitter output  
chokes directly by the 1.8 V plane. Design the geometry of the  
1.8 V plane so that each balun supply or each set of two chokes  
is isolated from the other. This geometry can affect tansmitter to  
transmitter isolation. Figure 279 shows the layout configuration  
used on the ADRV9008-2W/PCBZ.  
Each transmitter requires approximately 200 mA supplied  
through an external connection. On the ADRV9008-2 and  
ADRV9009 evaluation boards, bias voltages are supplied at the  
dc feed of the baluns. Layout of both boards allows the use of  
external chokes to provide a 1.8 V power domain to the  
ADRV9008-2 outputs. This configuration is useful in scenarios  
where a balun used at the transmitter output is not capable of  
Tx OUTPUT / BALUN  
1.8V SUPPLY FEED  
Figure 279. Transmitter Power Supply Planes (VDDA1P8_TX) on the ADRV9008-2W/PCBZ  
Rev. 0 | Page 81 of 95  
 
 
ADRV9008-2  
Data Sheet  
Both the positive and negative transmitter pins must be biased  
with 1.8 V. This biasing is accomplished on the evaluation board  
through dc capacitors chokes and decoupling capacitors, as  
shown in Figure 280. Match both chokes and their layout to  
avoid potential current spikes. A difference in parameters  
between both chokes can cause unwanted emission at transmitter  
outputs. Place the decoupling capacitors that are near the  
transmitter balun as close as possible to the dc feed of the balun  
or the ground pin. Make orientation of the capacitor perpendicular  
to the device so that the return current forms as small a loop as  
possible with the ground pins surrounding the transmitter input.  
A combination network of capacitors is used to provide a  
wideband and low impedance ground path and helps to  
eliminate transmitter spectrum spurs and dampens the  
transients.  
Routing Recommendations  
Route the differential pairs on a single plane using a solid  
ground plane as a reference on the layers above and/or below  
these traces.  
All JESD204B lane traces must be impedance controlled to achieve  
50 Ω to ground. It is recommended that the differential pair be  
coplanar and loosely coupled. An example of a typical  
configuration is a 5 mil trace width and 15 mil edge to edge  
spacing, with the trace width maximized as shown in Figure 281.  
Match trace widths with pin and ball widths while maintaining  
impedance control. If possible, use 1 oz. copper trace widths of  
at least 8 mil (200 µm). The coupling capacitor pad size must  
match JESD204B lane trace widths If trace width does not  
match pad size, use a smooth transition between different  
widths.  
TX OUTPUT  
The pad area for all connector and passive component choices  
must be minimized due to a capacitive plate effect that leads to  
problems with signal integrity.  
DC FEED  
CHOKES  
Reference planes for impedance controlled signals must not be  
segmented or broken for the entire length of a trace.  
DECOUPLING  
CAPACITORS  
1.8V TX POWER  
DOMAIN FEED  
The REF_CLK_IN signal trace and the SYSREF signal trace  
are impedance controlled for characteristic impedence (ZO) =  
50 Ω.  
CONDUCTING  
RESISTORS  
BALUN  
Stripline Transmission Lines vs. Microstrip Transmission  
Lines  
Stripline transmission lines have less singal loss and emit less  
electromagnetic interference than microstrip transmission lines.  
However, stripline transmission lines require the use of vias that  
add line inductance, increasing the difficulty of controlling the  
impedance.  
BALUN  
DECOUPLING  
CAPACITORS  
Microstrip transmission lines are easier to implement if the  
component placement and density allow routing on the top  
layer. Microstrip transmission lines make controlling the  
impedance easier.  
If the top layer of the PCB is used by other circuits or signals, or  
if the advantages of stripline transmission lines are more  
desirable over the advantages of microstrip transmission lines,  
follow these recommendations:  
Figure 280. Transmitter DC Chokes and Balun Feed Supply  
Minimize the number of vias.  
JESD204B Trace Routing Recommendations  
Use blind vias where possible to eliminate via stub effects,  
and use micro vias to minimize via inductance.  
When using standard vias, use a maximum via length to  
minimize the stub size. For example, on an 8-layer board,  
use Layer 7 for the stripline pair.  
The ADRV9008-2 transceiver uses the JESD204B, high speed  
serial interface. To ensure optimal performance of this interface,  
keep the differential traces as short as possible by placing the  
ADRV9008-2 as close as possible to the FPGA or BBP, and  
route the traces directly between the devices. Use a PCB  
material with a low dielectric constant (< 4) to minimize loss.  
For distances greater than 6 inches, use a premium PCB  
material, such as RO4350B or RO4003C.  
Place a pair of ground vias in close proximity to each via  
pair to minimize the impedance discontinuity.  
Route the JESD204B lines on the top side of the board as a  
differential 100 Ω pair (microstrip). For the ADRV9008-  
2W/PCBZ, the JESD204B differential signals are routed on  
inner layers of the board (Layer 5 and Layer 10) as differential  
Rev. 0 | Page 82 of 95  
 
 
Data Sheet  
ADRV9008-2  
100 Ω pairs (stripline). To minimize potential coupling, these  
signals are placed on an inner layer using a via embedded in the  
component footprint pad where the ball connects to the PCB.  
The ac coupling capacitors (100 nF) on these signals are placed  
near the connector and away from the chip to minimize  
coupling. The JESD204B interface can operate at frequencies of  
up to 12 GHz. Ensure that signal integrity from the chip to the  
connector is maintained.  
To meet these isolation goals with significant margin, isolation  
structures are introduced.  
Figure 282 shows the isolation structures used on the ADRV9008-  
2W/PCBZ. These structures consist of a combination of slots and  
square apertures. These structures are present on every copper  
layer of the PCB stack. The advantage of using square apertures  
is that signals can be routed between the openings without  
affecting the isolation benefits of the array of apertures. When  
using these isolation structures, make sure to place ground vias  
around the slots and apertures.  
ISOLATION TECHNIQUES USED ON THE  
ADRV9008-2W/PCBZ  
Isolation Goals  
Significant isolation challenges were overcome in designing the  
ADRV9008-2W/PCBZ. The following isolation requirements are  
used to accurately evaluate the ADRV9008-2 transceiver  
performance:  
Transmitter to transmitter, 75 dB out to 6 GHz  
Transmitter to observation receiver, 65 dB out to 6 GHz  
Tx  
DIFF A  
Tx  
DIFF B  
Tx DIFF A  
Tx DIFF B  
TIGHTLY COUPLED  
DIFFERENTIAL Tx LINES  
LOOSELY COUPLED  
DIFFERENTIAL Tx LINES  
Figure 281. Routing JESD204B, Differential A and Differential B Correspond to Differential Positive Signals or Negative Signals (One Differential Pair)  
Figure 282. Isolation Structures on the ADRV9008-2W/PCBZ  
Rev. 0 | Page 83 of 95  
 
 
 
ADRV9008-2  
Data Sheet  
Figure 283. Current Steering Vias Placed Next to Isolation Structures  
Figure 283 outlines the methodology used on the ADRV9008-  
2W/PCBZ. When using slots, ground vias must be placed at the  
ends of the slots and along the sides of the slots. When using  
square apertures, at least one single ground via must be placed  
adjacent to each square. These vias must be through-hole vias  
from the top to the bottom layer. The function of these vias is to  
steer return current to the ground planes near the apertures.  
Isolation Between JESD204B Lines  
The JESD204B interface uses eight line pairs that can operate at  
speeds of up to 12 GHz. When configuring the PCB layout,  
ensure these lines are routed according to the rules outlined in  
the JESD204B Trace Routing Recommendations section. In  
addition, use isolation techniques to prevent crosstalk between  
different JESD204B lane pairs.  
For accurate slot spacing and square apertures layout, use  
simulation software when designing a PCB for the ADRV9008-2  
transceiver. Spacing between square apertures must be no more  
than 1/10 of a wavelength. Calculate the wavelength using  
Equation 1:  
Figure 284 shows a technique used on the ADRV9008-2W/PCBZ  
that involves via fencing. Placing ground vias around each  
JESD204B pair provides isolation and decreases crosstalk. The  
spacing between vias is 1.2 mm.  
Figure 284 shows the rule provided in Equation 1 JESD204B  
lines are routed on Layer 5 and Layer 10 so that the lines use  
stripline structures. The dielectric material used in the inner  
layers of the ADRV9008-2W/PCBZ PCB is FR4-370HR.  
300  
(1)  
Wavelength (m) =  
Frequency (MHz) ×  
E
R
where ER is the dielectric constant of the isolator material. For  
RO4003C material, microstrip structure (+ air) ER = 2.8. For FR4-  
370HR material, stripline structure ER = 4.1.  
For accurate spacing of the JESD204B fencing vias, use layout  
simulation software. Input the following data into Equation 1 to  
calculate the wavelength and square aperture spacing:  
For example, if the maximum RF signal frequency is 6 GHz,  
and ER = 2.8 for RO4003C material, microstrip structure (+ air),  
the minimum wavelength is approximately 29.8 mm.  
The maximum JESD204B signal frequency is  
approximately 12 GHz.  
For FR4-370HR material, stripline structure, ER = 4.1, the  
minimum wavelength is approximately 12.4 mm.  
To follow the 1/10 wavelength spacing rule, square aperture  
spacing must be 2.98 mm or less.  
To follow the 1/10 wavelength spacing rule, spacing between  
vias must be 1.24 mm or less. The minimum spacing  
recommendation according to transmission line theory is 1/4  
wavelength.  
Rev. 0 | Page 84 of 95  
 
 
Data Sheet  
ADRV9008-2  
1.24mm  
Figure 284. Via Fencing Around JESD204B Lines, PCB Layer 10  
RF Port Impedance Data  
RF PORT INTERFACE INFORMATION  
This section provides the port impedance data for all  
transmitters and observation receivers in the ADRV9008-2  
integrated transceiver. Please note the following:  
This section details the RF transmitter and observation receiver  
interfaces for optimal device performance. This section also  
includes data for the anticipated ADRV9008-2 RF port  
impedance values and examples of impedance matching  
networks used in the evaluation platform. This section also  
provides information on board layout techniques and balun  
selection guidelines.  
ZO is defined as 50 Ω.  
The ADRV9008-2 ball pads are the reference plane for this  
data.  
Single-ended mode port impedance data is not available.  
However, a rough assessment is possible by taking the  
differential mode port impedance data and dividing both  
the real and imaginary components by 2.  
Contact Analog Devices applications engineering for the  
impedance data in Touchstone format.  
The ADRV9008-2 is a highly integrated transceiver with  
transmit and observation (DPD) receive signal chains. External  
impedance matching networks are required on transmitter and  
observation receiver ports to achieve performance levels  
indicated on the data sheet.  
Analog Devices recommends the use of simulation tools in the  
design and optimization of impedance matching networks. To  
achieve the closest match between computer simulated results  
and measured results, accurate models of the board  
environment, surface-mount device (SMD) components  
(including baluns and filters), and ADRV9008-2 port  
impedances are required.  
Rev. 0 | Page 85 of 95  
 
 
ADRV9008-2  
Data Sheet  
1.0  
2.0  
0.5  
m21  
m26  
FREQUENCY = 100MHz  
M28  
FREQUENCY = 3GHz  
S(1,1) = 0.368/150.626  
S(1,1) = 0.143/–7.865  
IMPEDANCE = 66.439 – j2.654  
M27  
IMPEDANCE = 24.355 + j10.153  
M29  
0.2  
m22  
5.0  
m27  
FREQUENCY = 300MHz  
S(1,1) = 0.141/–25.589  
IMPEDANCE = 64.063 – j7.987  
FREQUENCY = 4GHz  
S(1,1) = 0.484/107.379  
IMPEDANCE = 25.118 + j30.329  
M26  
m23  
m28  
FREQUENCY = 500MHz  
S(1,1) = 0.145/–42.661  
IMPEDANCE = 60.623 – j12.201  
M21  
M23  
FREQUENCY = 5GHz  
S(1,1) = 0.569/70.352  
IMPEDANCE = 35.932 + j56.936  
0
M22  
M24  
M25  
m24  
m29  
FREQUENCY = 1GHz  
S(1,1) = 0.164/–84.046  
IMPEDANCE = 49.000 + j16.447  
FREQUENCY = 6GHz  
S(1,1) = 0.614/36.074  
IMPEDANCE = 81.032 + j94.014  
–0.2  
–5.0  
m25  
FREQUENCY = 2GHz  
S(1,1) = 0.247/–155.186  
IMPEDANCE = 31.131 – j6.860  
–0.5  
–2.0  
–1.0  
FREQUENCY (0.000Hz TO 6.000Hz)  
Figure 285. Transmitter 1 and Transmitter 2 SEDZ and Parallel Equivalent Differential Impedance (PEDZ) Data  
1.0  
2.0  
0.5  
m15  
FREQUENCY = 100MHz  
S(1,1) = 0.391/–1.848  
IMPEDANCE = 114.099 – j3.397  
m20  
FREQUENCY = 3GHz  
S(1,1) = 0.104/–66.720  
IMPEDANCE = 53.262 – j10.292  
0.2  
M23  
m16  
5.0  
FREQUENCY = 300MHz  
S(1,1) = 0.389/–5.601  
IMPEDANCE = 112.639 – j10.091  
M22  
M21  
M20  
m21  
FREQUENCY = 4GHz  
S(1,1) = 0.116/104.276  
IMPEDANCE = 46.060 + j10.522  
m17  
FREQUENCY = 500MHz  
S(1,1) = 0.385/–9.396  
IMPEDANCE = 109.556 – j16.156  
M15  
M16  
M17  
M18  
0
m22  
M19  
FREQUENCY = 5GHz  
S(1,1) = 0.342/75.761  
IMPEDANCE = 46.551 + j34.914  
m18  
FREQUENCY = 1GHz  
S(1,1) = 0.362–19.087  
IMPEDANCE = 97.259 – j26.513  
m23  
FREQUENCY = 6GHz  
S(1,1) = 0.525/53.007  
IMPEDANCE = 56.249 + j65.146  
–0.2  
–5.0  
m19  
FREQUENCY = 2GHz  
S(1,1) = 0.267/–39.928  
IMPEDANCE = 70.789 – j25.940  
–0.5  
–2.0  
–1.0  
FREQUENCY (0Hz TO 6GHz)  
Figure 286. Observation Receiver 1 and Observation Receiver 2 SEDZ and PEDZ Data  
Rev. 0 | Page 86 of 95  
Data Sheet  
ADRV9008-2  
1.0  
2.0  
0.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.018/–149.643  
IMPEDANCE = 48.491 – j0.866  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
M5  
M6  
0.2  
m2  
5.0  
m7  
FREQUENCY = 750MHz  
S(1,1) = 0.074/–123.043  
IMPEDANCE = 45.753 – j5.744  
FREQUENCY = 5GHz  
L_OR_C_PE = 1.336  
m8  
FREQUENCY = 5GHz  
R_PEDZ = 31.172  
m9  
FREQUENCY = 5GHz  
X_STATUS = 1  
m3  
M4  
FREQUENCY = 1.5GHz  
S(1,1) = 0.147/–138.745  
IMPEDANCE = 39.362 – j7.804  
M1  
0
M2  
M3  
m4  
FREQUENCY = 3GHz  
S(1,1) = 0.292/–175.424  
IMPEDANCE = 27.426 – j1.397  
–0.2  
–5.0  
m5  
FREQUENCY = 6GHz  
S(1,1) = 0.538/123.271  
IMPEDANCE = 18.885 – j23.935  
m6  
FREQUENCY = 12GHz  
S(1,1) = 0.757/46.679  
IMPEDANCE = 40.002 – j103.036  
0
–0.5  
–2.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (100MHz TO 12GHz)  
Figure 287. RF_EXT_LO_I/O SEDZ and PEDZ Data  
1.0  
2.0  
0.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
13E+5  
1.2E+5  
1.1E+5  
1.0E+5  
9.0E+4  
8.0E+4  
7.0E+4  
6.0E+4  
5.0E+4  
4.0E+4  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.999/–1.396  
IMPEDANCE = 159.977 – j4.099E3  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
0.2  
m2  
5.0  
m7  
FREQUENCY = 250MHz  
S(1,1) = 0.999/–3.480  
IMPEDANCE = 30.567 – j1.645E3  
FREQUENCY = 1GHz  
L_OR_C_PE = 0.389  
m8  
FREQUENCY = 1GHz  
R_PEDZ = 4.761E4  
m9  
FREQUENCY = 1GHz  
X_STATUS = 0  
m3  
FREQUENCY = 500MHz  
M1  
0
S(1,1) = 0.999/–6.952  
M2  
M3  
M4  
M5  
IMPEDANCE = 9.723 – j823.070  
m4  
FREQUENCY = 750MHz  
S(1,1) = 0.998/–10.431  
IMPEDANCE = 5.273 – j547.733  
–0.2  
–5.0  
m5  
FREQUENCY = 1GHz  
S(1,1) = 0.999/–13.925  
IMPEDANCE = 3.521 – j409.400  
–0.5  
–2.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (0.000Hz TO 1.100GHz)  
Figure 288. REF_CLK_IN SEDZ and PEDZ Data, On Average, the Real Part of the Parallel Equivalent Differential Impedance (RP) = ~ 70 kΩ  
Rev. 0 | Page 87 of 95  
ADRV9008-2  
Data Sheet  
For the highest accuracy, electromagnetic momentum (EM)  
modelling result of the PCB artwork, S11, S22, and S21 of the  
matching components and balun must be used in the  
simulations.  
Advanced Design System (ADS) Setup Using the  
DataAccessComponent and SEDZ File  
Analog Devices supplies the port impedance as an .s1p file that  
can be downloaded from the ADRV9008-2 product page. This  
format allows simple interfacing to the ADS by using the  
DataAccessComponent. In Figure 289, Term 1 is the single-  
ended input or output, and Term 2 is the differential input or  
output RF port on the device. The pi on the single-ended side  
and the differential pi configuration on the differential side  
allow maximum flexibility in designing matching circuits. The  
pi configuration is suggested for all design layouts because the  
pi configuration can step the impedance up or down as needed  
with appropriate component population.  
Transmitter Bias and Port Interface  
This section considers the dc biasing of the ADRV9008-2  
transmitter outputs and how to interface to each transmitter  
port. The ADRV9008-2 transmitters operate over a range of  
frequencies. At full output power, each differential output side  
draws approximately 100 mA of dc bias current. The transmitter  
outputs are dc biased to a 1.8 V supply voltage using either RF  
chokes (wire wound inductors) or a transformer center tap  
connection.  
The mechanics of setting up a simulation for impedance  
measurement and impedance matching is as follows:  
Careful design of the dc bias network is required to ensure  
optimal RF performance levels. When designing the dc bias  
network, select components with low dc resistance to minimize  
the voltage drop across the series parasitic resistance element  
with either of the suggested dc bias schemes suggested in  
Figure 290. The RDCR resistors indicate the parasitic elements. As  
the impedance of the parasitics increases, the voltage drop (ΔV)  
across the parasitic element increases, which causes the transmitter  
RF performance (PO,1dB, PO,MAX, and so on) to degrade. The  
choke inductance (LC) must be at least 3× times higher than the  
load impedance at the lowest desired frequency so that it does  
not degrade the output power (see Table 10).  
1. The DataAccessComponent block reads the RF port .s1p  
file. This file is the device RF port reflection coefficient.  
2. The two equations convert the RF port reflection coefficient  
to a complex impedance. The result is the RX_SEDZ  
variable.  
3. The RF port calculated complex impedance (RX_SEDZ) is  
used to define the Term 2 impedance.  
4. Term 2 is used in a differential mode, and Term 1 is used in  
a single-ended mode.  
5. Setting up the simulation this way allows one to measure  
the input reflection (S11), output reflection (S22), and  
through reflection (S21) of the three-port system without  
complex math operations within the display page.  
Figure 289. Simulation Setup in ADS with SEDZ .s1p Files and DataAccessComponent  
Table 10. Sample Wire Wound DC Bias Choke Resistance vs. Size vs. Inductance  
Inductance (nH)  
Resistance (Size: 0603) (Ω)  
Resistance (Size: 1206) (Ω)  
100  
200  
300  
400  
500  
600  
0.10  
0.15  
0.16  
0.28  
0.45  
0.52  
0.08  
0.10  
0.12  
0.14  
0.15  
0.20  
Rev. 0 | Page 88 of 95  
 
 
Data Sheet  
ADRV9008-2  
The recommended dc bias network is shown in Figure 291. This  
network has fewer parasitics and fewer total components.  
TX1_OUT+/  
TX2_OUT+  
I
= ~100mA  
= ~100mA  
ΔV +  
BIAS  
R
1.8V  
DCR  
Figure 292 through Figure 295 identify four basic differential  
transmitter output configurations. Except in cases in which  
impedance is already matched, impedence matching networks  
(balun single-ended port) are required to achieve optimum  
device performance. In applications in which the transmitter is  
not connected to another circuit that requires or can tolerate dc  
bias on the transmitter outputs, the transmitter outputs must be  
ac-coupled because of the dc bias voltage applied to the  
differential output lines of the transmitter.  
Tx1 OR Tx2  
OUTPUT  
STAGE  
R
I
DCR  
C
BIAS  
B
TX1_OUT–/  
TX2_OUT–  
ΔV +  
Figure 291. RF DC Bias Configurations Showing Parasitic Losses Due to  
Center Tapped Transformers  
TX1_OUT+/  
TX2_OUT+  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
The recommended RF transmitter interface is shown in Figure 290  
to Figure 295, featuring a center tapped balun. This configuration  
offers the lowest component count of the options presented.  
C
B
TX1_OUT–/  
TX2_OUT–  
Descriptions of the transmitter port interface schemes are as  
follows:  
Figure 292. RF Transmitter Interface Configurations  
1.8V  
In Figure 292, the center tapped transformer passes the  
bias voltage directly to the transmitter outputs.  
In Figure 293, RF chokes bias the differential transmitter  
output lines. Additional coupling capacitors (CC) are added  
in the creation of a transmission line balun.  
C
L
L
B
C
C
TX1_OUT+/  
TX2_OUT+  
C
C
1.8V  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
C
C
TX1_OUT–/  
TX2_OUT–  
In Figure 294, RF chokes are used to bias the differential  
transmitter output lines and connect to a transformer.  
In Figure 295, RF chokes bias the differential output lines  
that are ac-coupled to the input of a driver amplifier.  
Figure 293. RF Transmitter Interface Configurations  
1.8V  
C
L
L
B
If a transmitter balun that requires a set of external dc bias chokes is  
selected, careful planning is required. It is necessary to find the  
optimum compromise between the choke physical size, choke  
dc resistance, and the balun low frequency insertion loss. In  
commercially available dc bias chokes, resistance decreases as size  
increases. As choke inductance increases, resistance increases. It is  
undesirable to use physically small chokes with high inductance  
because small chokes exhibit the greatest resistance. For example,  
the voltage drop of a 500 nH, 0603 choke at 100 mA is roughly  
50 m V.  
C
C
TX1_OUT+/  
TX2_OUT+  
1.8V  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
TX1_OUT/  
TX2_OUT–  
Figure 294. RF Transmitter Interface Configurations  
1.8V  
C
L
L
B
C
C
V
= 1.8V  
DC  
TX1_OUT+/  
TX2_OUT+  
C
C
1.8V  
1.8V  
C
L
C
Tx1 OR Tx2  
OUTPUT  
STAGE  
L
B
DRIVER  
AMPLIFIER  
C
C
R
R
C
DCR  
DCR  
TX1_OUT–/  
TX2_OUT–  
TX1_OUT+/  
TX2_OUT+  
ΔV  
+
ΔV  
+
I
= ~100mA  
BIAS  
V
V
= 1.8 – ΔV  
= 1.8 – ΔV  
Tx1 OR Tx2  
OUTPUT  
STAGE  
BIAS  
BIAS  
Figure 295. RF Transmitter Interface Configurations  
1.8V  
TX1_OUT–/  
TX2_OUT–  
I
= ~100mA  
BIAS  
Figure 290. RF DC Bias Configurations Showing Parasitic Losses Due to Wire  
Wound Chokes  
Rev. 0 | Page 89 of 95  
 
 
 
 
 
 
ADRV9008-2  
Data Sheet  
ORX1_IN–  
ORX1_IN+  
General Observation Receiver Path Interface  
OBSERVATION  
RECEIVER  
INPUT  
The ADRV9008-2 has two observation, or DPD, receivers  
(Observation Receiver 1 and Observation Receiver 2). The  
observation receivers can support up to 450 MHz bandwidth. The  
observation receiver channels are designed for differential use.  
STAGE  
(MIXER OR LNA)  
Figure 296. Differential Observation Receiver Interface Using a Transformer  
The ADRV9008-2 differential signals of the observation receivers  
interface to an integrated mixer. The mixer input pins have a dc  
bias of approximately 0.7 V and may need to be ac-coupled,  
depending on the common-mode voltage level of the external  
circuit.  
C
C
ORX1_IN–  
OBSERVATION  
RECEIVER  
INPUT  
STAGE  
C
(MIXER OR LNA)  
C
ORX1_IN+  
Important considerations for the observation receiver port  
interface are as follows:  
Figure 297. Differential Observation Receiver Interface Using a Transmission  
Line Balun  
Impedance Matching Network Example  
The device to be interfaced (filter, balun, transmit/receive  
(T/R) switch, external low noise amplifier (LNA), external  
PA, and so on).  
The observation receiver maximum safe input power is  
23 dBm (peak).  
The observation receiver optimum dc bias voltage is 0.7 V  
bias to ground.  
The board design (reference planes, transmission lines,  
impedance matching, and so on).  
Impedance matching networks are required to achieve the  
ADRV9008-2 data sheet performance levels. This section  
provides a description of matching network topologies and  
components used on the ADRV9008-2W/PCBZ.  
Device models, board models, and balun and SMD component  
models are required to build an accurate system level  
simulation. The board layout model can be obtained from an  
EM simulator. The balun and SMD component models can be  
obtained from the device vendors or built locally. Contact  
Analog Devices applications engineering for ADRV9008-2  
modeling details.  
Figure 296 and Figure 297 show possible differential  
observation receiver port interface circuits. The options in  
Figure 296 and Figure 297 are valid for all observation receiver  
inputs operating in differential mode, although only the  
Observation Receiver 1 signal names are indicated. Impedance  
matching may be necessary to obtain the performance levels.  
The impedance matching network provided in this section is  
not evaluated in terms of mean time to failure (MTTF) in high  
volume production. Consult with component vendors for long-  
term reliability concerns. Consult with balun vendors to  
determine appropriate conditions for dc biasing.  
Given wide RF bandwidth applications, SMD balun devices  
function well. Decent loss and differential balance are available  
in a relatively small (0603, 0805) package.  
Figure 299 and Figure 300 show that in a generic port impedance  
matching network, the shunt or series elements may be a resistor,  
inductor, or capacitor.  
Rev. 0 | Page 90 of 95  
 
 
Data Sheet  
ADRV9008-2  
ORX+  
ORX IN  
ORX–  
Figure 298. Impedance Matching Topology  
Rev. 0 | Page 91 of 95  
ADRV9008-2  
Data Sheet  
RF OUTPUT 1  
C307  
VDCA1P8_TX  
0.1µF  
AGND  
C323  
DNI  
L323  
DNI  
L307  
43nH  
AGND  
R307  
TX1_OUT+  
TX1_BAL+  
T302  
TCM1-83X+  
0Ω  
J303  
1
C337  
18pF  
R309  
5
4
3
2
C339  
DNI  
C338  
DNI  
RFO_1  
0Ω  
C312  
DNI  
C314  
DNI  
5
4 3 2  
R308  
TX1_OUT–  
TX1_BAL–  
AGND  
AGND  
0Ω  
NC  
1
6
AGND  
L308  
43nH  
C325  
DNI  
C344  
L325  
DNI  
51pF  
C345  
AGND  
C308  
0.1µF  
VDCA1P8_TX  
75pF  
C346  
AGND  
10pF  
C347  
27pF  
AGND  
RF OUTPUT 2  
C315  
VDDA1P8_TX  
0.1µF  
AGND  
C327  
DNI  
L327  
DNI  
L315  
43nH  
AGND  
R310  
TX2_OUT+  
TX2_BAL+  
T303  
TCM1-83X+  
0Ω  
J304  
C336  
18pF  
R312  
5
4
3
2
1
C342  
DNI  
C341  
DNI  
RFO_2  
0Ω  
C320  
DNI  
C322  
DNI  
5
4 3 2  
R311  
TX2_OUT–  
TX2_BAL–  
AGND  
AGND  
0Ω  
NC  
1
6
AGND  
L316  
43nH  
C329  
DNI  
C348  
L329  
DNI  
10pF  
C349  
AGND  
C316  
0.1µF  
VDDA1P8_TX  
27pF  
C350  
AGND  
51pF  
C351  
75pF  
AGND  
Figure 299. Transmitter 1 and Transmitter 2 Generic Matching Network Topology  
Rev. 0 | Page 92 of 95  
 
Data Sheet  
ADRV9008-2  
T205  
TCM1-83X+  
ORX1  
J203  
1
C250  
18pF  
ORX1_UNBAL  
ORX1_IN–  
ORX1_BAL–  
R219  
R216  
3
2
5
4
0Ω  
0Ω  
2
3 4 5  
C215  
DNI  
C217  
DNI  
C218  
DNI  
C221  
DNI  
NC  
AGND  
6
1
ORX1_IN+  
R220  
AGND  
AGND  
ORX1_BAL+  
C244  
10pF  
DNI  
C245  
27pF  
0Ω  
AGND  
ORX2  
T207  
TCM1-83X+  
J204  
C251  
18pF  
ORX2_UNBAL  
ORX2_IN–  
R223  
0Ω  
R226  
ORX2_BAL–  
3
2
5
1
4
0Ω  
2
3
4
5
C222  
DNI  
C224  
DNI  
C228  
DNI  
C225  
DNI  
NC  
1
AGND  
6
AGND  
AGND  
ORX2_IN+  
R227  
C247  
27pF  
ORX2_BAL+  
C246  
10pF  
0Ω  
DNI  
AGND  
Figure 300. Observation Receiver 1 and Observation Receiver 2 Generic Matching Network Topology  
Rev. 0 | Page 93 of 95  
 
ADRV9008-2  
Data Sheet  
Table 11 and Table 12 show the selected balun and component  
values used for the matching network sets. Refer to the  
ADRV9008-2 schematics for a wideband matching example that  
operates across the entire device frequency range with  
somewhat reduced performance.  
The RF matching used in the ADRV9008-2W/PCBZ allows the  
ADRV9008-2 to operate across the entire chip frequency range  
with slightly reduced performance.  
Table 11. Observation Receiver 1 and Observation Receiver 2 Evaluation Board Matching Components for Frequency Band 75 MHz  
to 6000 MHz  
Component  
Value  
C215, C22  
Do not install (DNI)  
R216, R223  
0 Ω  
C217, C224  
DNI  
C250, C251  
18 pF  
C218, C225  
DNI  
R219/R220, R226/R227  
C221, C228  
0 Ω  
DNI  
T205, T207  
Mini circuits TCM1-83X+  
Table 12. Transmitter 1 and Transmitter 2 Evaluation Board Matching Components1 for Frequency Band 75 MHz to 6000 MHz  
Component  
Value  
C314, C322  
DNI  
R309, R312  
0 Ω  
C312, C320  
DNI  
C337, C336  
18 pF  
C338, C342  
DNI  
R307/R308, R310/R311  
C339, C341  
0 Ω  
DNI  
T302, T303  
Mini circuits TCM1-83X+  
1 These matches provide VDDA1P8_TX to the TXx_OUT pins through the balun.  
Rev. 0 | Page 94 of 95  
 
 
Data Sheet  
ADRV9008-2  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
PIN A1  
INDICATOR  
10.40 SQ  
7.755 REF  
K
L
0.80  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
8.090 REF  
DETAIL A  
1.27  
1.18  
1.09  
0.91  
0.84  
0.77  
DETAIL A  
0.39  
0.34  
0.29  
0.44 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 301. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-196-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range2  
Package Description  
Package Option  
ADRV9008BBCZ-2  
ADRV9008BBCZ-2REEL  
ADRV9008-2W/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Pb-Free Evaluation Board, 75 MHz to 6000 MHz  
BC-196-13  
BC-196-13  
1 Z = RoHS Compliant Part.  
2 See the Thermal Management section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16833-0-9/18(0)  
Rev. 0 | Page 95 of 95  
 
 

相关型号:

ADRV9009

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9009-W/PCBZ

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9009BBCZ

Integrated Dual RF Tx, Rx, and Observation Rx
ADI

ADRV9009BBCZ-REEL

Integrated Dual RF Transmitter, Receiver, and Observation Receiver
ADI

ADRV9010

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-A

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-A-RL

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9010BBCZ-REEL

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9026-HB/PCBZ

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9026-MB/PCBZ

Integrated, Quad RF Transceiver with Observation Path
ADI

ADRV9029

Integrated, Quad RF Transceiver with Observation Path
ADI