ADSP-BF527KBCZ-6C2 [ADI]

暂无描述;
ADSP-BF527KBCZ-6C2
型号: ADSP-BF527KBCZ-6C2
厂家: ADI    ADI
描述:

暂无描述

文件: 总36页 (文件大小:1032K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin Embedded  
Processor with Codec  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
PROCESSOR FEATURES  
EMBEDDED CODEC FEATURES  
Up to 600 MHz high performance Blackfin processor  
RISC-like register and instruction model for ease of  
programming and compiler-friendly support  
Advanced debug, trace, and performance monitoring  
Accepts a wide range of supply voltages for internal and I/O  
operations. See operating conditions in the published  
ADSP-BF52x processor data sheet.  
Programmable on-chip voltage regulator (ADSP-BF523/  
ADSP-BF525/ADSP-BF527processors only)  
Embedded low power audio codec  
Stereo, 24-bit ADCs and DACs  
DAC SNR: 100 dB (A-weighted), THD: –80 dB at 48 kHz, 3.3 V  
ADC SNR: 90 dB (A-weighted), THD: –80 dB at 48 kHz, 3.3 V  
Highly efficient headphone amplifier  
Stereo line input and monaural microphone input  
Low power  
7 mW stereo playback (1.8 V supply)  
14 mW record and playback (1.8 V supply)  
Low supply voltages  
Analog: 1.8 V to 3.6 V  
Digital core: 1.8 V min  
Digital I/O: 1.8 V to 3.6 V  
289-ball (12 mm x 12 mm) CSP_BGA package  
132K bytes of on-chip memory  
External memory controller with glueless support for SDRAM  
and asynchronous 8-bit and 16-bit memories  
Flexible booting options from external flash, SPI and TWI  
memory or from host devices including SPI, TWI, and UART  
Code security with Lockbox Secure Technology  
one-time-programmable (OTP) memory  
256 × fS /384 × fS oversampling rate in normal mode;  
250 × fS/272 × fS oversampling rate in USB mode  
Audio sampling rates: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz,  
22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz,  
and 96 kHz  
PERIPHERALS  
Memory management unit providing memory protection  
2 dual-channel memory DMA controllers  
See the published ADSP-BF52x processor data sheet for  
additional peripherals  
WATCHDOG TIMER  
OTP MEMORY  
RTC  
VOLTAGE REGULATOR*  
JTAG TEST AND EMULATION  
PERIPHERAL  
COUNTER  
SPORT0  
SPORT1  
ACCESS BUS  
INTERRUPT  
CONTROLLER  
GPIO  
PORT F  
UART1  
UART0  
NFC  
B
L1 INSTRUCTION  
MEMORY  
L1 DATA  
MEMORY  
GPIO  
DMA  
PPI  
PORT G  
CONTROLLER  
DMA  
ACCESS  
BUS  
EAB  
16  
CODEC  
SPI  
DCB  
USB  
TIMER7-1  
TIMER0  
GPIO  
PORT H  
DEB  
BOOT  
ROM  
EXTERNAL PORT  
FLASH, SDRAM CONTROL  
EMAC  
HOST DMA  
TWI  
PORT J  
*REGULATOR AVAILABLE ON ADSP-BF523/ADSP-BF525/ADSP-BF527 PROCESSORS ONLY  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2010 Analog Devices, Inc. All rights reserved.  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
TABLE OF CONTENTS  
Processor Features ................................................... 1  
Embedded Codec Features ......................................... 1  
Peripherals ............................................................. 1  
Table of Contents ..................................................... 2  
Revision History ...................................................... 2  
General Description ................................................. 3  
Codec Description ................................................ 3  
ADC and DAC ..................................................... 4  
ADC High-Pass and DAC De-Emphasis Filters ............ 4  
Analog Audio Interfaces ......................................... 4  
Stereo Line and Monaural Microphone Inputs .......... 4  
Bypass and Sidetone Paths to Output ...................... 5  
Line and Headphone Outputs ............................... 5  
Digital Audio Interface ........................................... 6  
Recording Mode ................................................ 8  
Playback Mode .................................................. 8  
Digital Audio Data Sampling Rate .......................... 8  
Software Control Interface .................................... 11  
Codec Pin Descriptions ........................................... 12  
Register Details ..................................................... 15  
Bit Descriptions .................................................. 16  
Specifications ........................................................ 21  
Operating Conditions ........................................... 21  
Codec Electrical Characteristics .............................. 21  
Absolute Maximum Ratings ................................... 23  
ESD Sensitivity ................................................... 23  
Package Information ............................................ 23  
Power Consumption ............................................ 24  
Timing Specifications ........................................... 25  
TWI Timing ................................................... 25  
SPI Timing ..................................................... 26  
Digital Audio Interface Slave Mode Timing ............ 27  
Digital Audio Interface Master Mode Timing .......... 28  
System Clock Timing ........................................ 29  
Digital Filter Characteristics ................................ 30  
Converter Filter Response ..................................... 30  
Digital De-Emphasis ............................................ 31  
289-Ball CSP_BGA Ball Assignment ........................ 32  
Outline Dimensions ................................................ 35  
Ordering Guide ..................................................... 36  
REVISION HISTORY  
3/10—Rev. 0 to Rev. A  
Revised the following figures.  
Recommended Application Circuit Using SPI Control .... 13  
Recommended Application Circuit Using TWI Control .. 14  
Added Sampling Rate = 48 kHz to all figures in  
Converter Filter Response ........................................ 30  
Revised Ordering Guide .......................................... 36  
Rev. A  
| Page 2 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
GENERAL DESCRIPTION  
This document describes the differences between the  
ADSP-BF52xC and the ADSP-BF52x standard Blackfin® prod-  
uct. Please refer to the published ADSP-BF52x data sheet for  
general description and specifications. This document only  
describes the differences from that data sheet.  
The codec software-programmable stereo output options  
provide the programmer with many application possibilities  
because the device can be used as a headphone driver or as a  
speaker driver. Its volume control functions provide a large  
range of gain control of the audio signal.  
The ADSP-BF52xC processors add a low power, high quality  
stereo audio codec for portable digital audio applications with  
one set of stereo programmable gain amplifier (PGA) line  
inputs and one monaural microphone input. It features two 24-  
bit analog-to-digital converter (ADC) channels and two 24-bit  
digital-to-analog (DAC) converter channels.  
The codec can operate as a master or a slave. It supports various  
master clock frequencies, including 12 MHz or 24 MHz for USB  
devices; standard 256 × fS or 384 × fS based rates, such as  
12.288 MHz and 24.576 MHz; and many common audio sam-  
pling rates, such as 96 kHz, 88.2 kHz, 48 kHz, 44.1 kHz, 32 kHz,  
24 kHz, 22.05 kHz, 16 kHz, 12 kHz, 11.025 kHz, and 8 kHz.  
CODEC DESCRIPTION  
The ADSP-BF52xC codec contains a central clock source, called  
the codec master clock (CODEC_MCLK) that produces a refer-  
ence clock for all internal audio data processing and synch-  
ronization. When using an external clock source to drive the  
CODEC_MCLK pin, care should be taken to select a clock  
source with less than 50 ps of jitter. Without careful generation  
of the CODEC_MCLK signal, the digital audio quality  
will suffer.  
To enable the codec to generate the central reference clock  
in a system, connect a crystal oscillator between the XTI/  
CODEC_MCLK input pin and the XTO output pin.  
The codec can operate at power supplies as low as 1.8 V for the  
analog circuitry and as low as 1.8 V for the digital circuitry. The  
maximum voltage supply is 3.6 V for all supplies.  
CSB  
CSDA CSCL CMODE  
AVDD  
CONTROL INTERFACE  
HPVDD  
HPGND  
VMID  
CODEC  
AGND  
MUTE  
ATTEN/  
MUTE  
VOLUME/  
MUTE  
HEADPHONE  
DRIVER  
MICBIAS  
RLINEIN  
RHPOUT  
VOLUME  
VOLUME  
MUTE  
MUTE  
MUX  
MUX  
ADC  
ADC  
DAC  
DAC  
MUTE  
MUTE  
Σ
Σ
ROUT  
LOUT  
MIC  
BOOST  
DIGITAL  
FILTERS  
MICIN  
MUTE  
MUTE  
LLINEIN  
HEADPHONE  
DRIVER  
VOLUME/  
MUTE  
LHPOUT  
ATTEN/  
MUTE  
MUTE  
OSCPD  
OSC  
CLKOUT  
DIVIDER  
CLKIN  
DIVIDER  
DIGITAL AUDIO INTERFACE  
XTO  
Figure 1. Codec Block Diagram  
Rev. A  
| Page 3 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
To allow an external device to generate the central reference  
clock, apply the external clock signal directly through the XTI/  
CODEC_MCLK input pin. In this configuration, the oscillator  
circuit of the codec can be powered down by using the OSCPD  
bit (Register R6, Bit D5) to reduce power consumption.  
To accommodate applications with very high frequency master  
clocks, the internal core reference clock of the codec can be set  
to either CODEC_MCLK or CODEC_MCLK divided by 2. This  
is enabled by adjusting the setting of the CLKDIV2 bit (Register  
R8, Bit D6). The CODEC_CLKOUT pin can also drive external  
clock sources with either the codec clock signal or codec clock  
divided by 2 by enabling the CLKODIV2 bit (Register R8,  
Bit D7).  
ANALOG AUDIO INTERFACES  
The codec includes stereo single-ended line inputs and a mon-  
aural microphone input to the on-board ADC. Either the line  
inputs or the microphone input, but not both simultaneously,  
can be connected to the ADC by setting the INSEL bit (Register  
R4, Bit D2).  
The codec also includes line and headphone outputs from the  
on-board DAC. The line or microphone inputs can be routed  
and mixed directly to the output terminals.  
Stereo Line and Monaural Microphone Inputs  
The single-ended stereo line inputs (RLINEIN and LLINEIN)  
are internally biased to VMID by way of a voltage divider  
between AVDD and AGND (see Figure 2). The line input signal  
can be connected to the internal ADC and, if desired, routed  
directly to the outputs via the bypass path by using the BYPASS  
bit (Register R4, Bit D3).  
ADC AND DAC  
The codec contains a pair of oversampling Σ-Δ ADCs. The  
maximum ADC full-scale input level is 1.0 Vrms when  
AVDD = 3.3 V. If the input signal to the ADC exceeds this  
level, data overloading occurs and causes audible distortion.  
The ADC can accept analog audio input from either the stereo  
line inputs or the monaural microphone input. Note that the  
ADC can only accept input from a single source, so the pro-  
grammer must choose either the line inputs or the microphone  
input using the INSEL bit (Register R4, Bit D2). The digital data  
from the ADC output, once converted, is processed using the  
ADC filters.  
RLINEIN  
or  
LLINEIN  
AVDD  
+
ADC  
OR  
BYPASS  
VMID  
Complementary to the Σ-Δ ADC channels, the codec contains a  
pair of oversampling DACs that convert the digital audio data  
from the internal DAC filters into an analog audio signal. The  
DAC output can also be muted by setting the DACMU bit (Reg-  
ister R5, Bit D3) in the control register.  
INTERNAL CIRCUITRY  
AGND  
Figure 2. Line Input to ADC  
The line input volume can be adjusted from –34.5 dB to +33 dB  
in steps of +1.5 dB by setting the LINVOL (Register R0, Bit D0  
to Bit D5) and RINVOL (Register R1, Bit D0 to Bit D5) bits. By  
default the volume is independently adjustable for both right  
and left line inputs. However, if the LRINBOTH or RLINBOTH  
bit is programmed, both LINVOL and RINVOL are loaded with  
the same value. The programmer can also set the LINMUTE  
(Register R0, Bit D7) and RINMUTE (Register R1, Bit D7) bits  
to mute the line input signal to the ADC.  
ADC HIGH-PASS AND DAC DE-EMPHASIS FILTERS  
The ADC and DAC employ separate digital filters that perform  
24-bit signal processing. The digital filters are used for both  
record and playback modes and are optimized for each individ-  
ual sampling rate used.  
For recording mode operations, the unprocessed data from the  
ADC enters the ADC filters and is converted to the appropriate  
sampling frequency, then is output to the digital audio interface.  
For playback mode operations, the DAC filters convert the digi-  
tal audio interface data to oversampled data using a sampling  
rate selected by the programmer. The oversampled data is pro-  
cessed by the DAC and sent to the analog output mixer by  
enabling the DACSEL (Register R4, Bit D4).  
Programmers have the option of setting up the device so that  
any dc offset in the input source signal is automatically detected  
and removed. To accomplish this, enable the digital high-pass  
filter (see Table 22 on Page 30 for characteristics) contained in  
the ADC digital filters by using the ADCHPD bit (Register R5,  
Bit D0).  
The high impedance, low capacitance monaural microphone  
input pin (MICIN, shown in Figure 3 ) has two gain stages and a  
microphone bias level (MICBIAS) that is internally biased to the  
VMID voltage level by way of a voltage divider between AVDD  
and AGND. The microphone input signal can be connected to  
the internal ADC and, if desired, routed directly to the outputs  
via the sidetone path by using the SIDETONE bit (Register R4,  
Bit D5).  
In addition, programmers can implement digital de-emphasis  
by using the DEEMPH bits (Register R5, Bit D1 and Bit D2).  
Rev. A  
| Page 4 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
selected level of attenuation occurs after the initial microphone  
50kΩ  
signal amplification from the microphone first and second stage  
gains.  
R
10kΩ  
EXT  
0dB/20dB/40dB  
GAIN BOOST  
MICIN  
Line and Headphone Outputs  
The DAC outputs, the microphone (the sidetone path), and the  
line inputs (the bypass path) are summed at an output mixer  
(see Figure 4). This output signal is then applied to both the ste-  
reo line outputs and stereo headphone outputs.  
AVDD  
ADC  
OR  
SIDETONE  
VMID  
BYPASS  
LINE  
INPUT  
INTERNAL CIRCUITRY  
AGND  
SIDETONE  
Figure 3. Microphone Input to ADC  
MICROPHONE  
INPUT  
The first gain stage is composed of a low noise operational  
amplifier set to an inverting configuration with integrated  
50 kΩ feedback and 10 kΩ input resistors. The default micro-  
phone input signal gain is 14 dB. An external resistor (REXT) can  
be connected in series with the MICIN pin to reduce the first-  
stage gain of the microphone input signal to as low as 0 dB by  
using the following equation:  
DACSEL  
DAC  
LINE OUTPUT  
AND  
OUTPUT  
HEADPHONE  
OUTPUT  
AVDD  
Microphone Input Gain = 50 kΩ/(10 kΩ + REXT  
)
The second-stage gain of the microphone signal path is derived  
from the internal microphone boost circuitry. The available set-  
tings are 0 dB, 20 dB, and 40 dB and are controlled by the  
MICBOOST (Register R4, Bit D0) and MICBOOST2 (Register  
R4, Bit D8) bits. To achieve 20 dB of secondary gain boost, the  
programmer can select either MICBOOST or MICBOOST2. To  
achieve 40 dB of secondary microphone signal gain, the pro-  
grammer must select both MICBOOST and MICBOOST2.  
VMID  
INTERNAL CIRCUITRY  
AGND  
Figure 4. Output Signal Chain  
The codec has a set of efficient headphone amplifier outputs,  
LHPOUT and RHPOUT, that are able to drive 16 Ω or 32 Ω  
headphones (shown in Figure 5).  
The MUTEMIC bit (Register R4, Bit D1) mutes the microphone  
input signal to the ADC.  
When using either the line or microphone inputs, the maximum  
full-scale input to the ADC is 1.0 V rms when AVDD = 3.3 V.  
Do not apply an input voltage larger than full-scale to avoid  
overloading the ADC, which causes distortion of sound and  
deterioration of audio quality. For best sound quality in both  
microphone and line inputs, gain should be carefully configured  
so that the ADC receives a signal equal to its full-scale. This  
maximizes the signal-to-noise ratio for best total audio quality.  
DAC/  
SIDETONE/  
BYPASS  
AVDD  
+
RHPOUT  
or  
LHPOUT  
VMID  
Bypass and Sidetone Paths to Output  
The line and microphone inputs can be routed and mixed  
directly to the output terminals by programming the SIDET-  
ONE (Register R4, Bit D5) and BYPASS (Register R4, Bit D3)  
registers. In both modes, the analog input signal is routed  
directly to the output terminals and is not digitally converted.  
The bypass signal at the output mixer is the same level as the  
output of the PGA associated with each line input.  
The sidetone signal at the output mixer can be attenuated from  
–6 dB to –15 dB in steps of –3 dB by configuring the SIDEATT  
(Register R4, Bit D6 and Bit D7) control register bits. The  
INTERNAL CIRCUITRY  
AGND  
Figure 5. Headphone Output  
Like the line inputs, the LHPOUT and RHPOUT volumes, by  
default, are independently adjusted by setting the LHPVOL  
(Register R2, Bit D0 to Bit D6) and RHPVOL (Register R3, Bit  
D0 to Bit D6) bits of the headphone output control registers.  
The headphone outputs can be muted by writing codes less than  
0110000 to the LHPVOL and RHPVOL bits.  
Rev. A  
| Page 5 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
The programmer can simultaneously load the volume control of  
both channels by writing to the LRHPBOTH (Register R2, Bit  
D8) and RLHPBOTH (Register R3, Bit D8) bits of the left- or  
right-channel DAC volume registers.  
The maximum output level of the headphone outputs is  
1.0 V rms when AVDD and HPVDD = 3.3 V. To suppress audi-  
ble pops and clicks, the headphone and line outputs are held at  
the VMID dc voltage level when the device is set to standby  
mode or when the headphone outputs are muted.  
The stereo line outputs of the codec, the LOUT and ROUT pins,  
can drive a load impedance of 10 kΩ and 50 pF. The line output  
signal levels are not adjustable at the output mixer, which has a  
fixed gain of 0 dB. The maximum output level of the line out-  
puts is 1.0 V rms when AVDD = 3.3 V.  
DIGITAL AUDIO INTERFACE  
The digital audio input can support the following digital audio  
communication protocols: right-justified mode, left-justified  
mode, I2S mode, and frame sync mode. See Figure 6 on Page 6  
through Figure 10 on Page 7.  
The mode selection is performed by writing to the FORMAT  
bits of the digital audio interface register (Register R7, Bit D1  
and Bit D0). All modes are MSB first and operate with data of 16  
to 32 bits.  
1/fS  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC/  
DACLRC  
CODEC_BCLK  
ADCDAT/  
DACDAT  
1
2
3
4
N
X
X
1
2
3
N
X
X
X = DON’T CARE.  
Figure 6. Left-Justified Audio Input Mode  
1/fS  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC/  
DACLRC  
CODEC_BCLK  
ADCDAT/  
DACDAT  
X
X
N
4
3
2
1
X
X
N
4
3
2
1
X = DON’T CARE.  
Figure 7. Right-Justified Audio Input Mode  
Rev. A  
| Page 6 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
1/fS  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC/  
DACLRC  
CODEC_BCLK  
ADCDAT/  
DACDAT  
X
1
2
3
4
N
X
N
X
X
1
2
3
X = DON’T CARE.  
Figure 8. I2S Audio Input Mode  
1/fS  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC/  
DACLRC  
CODEC_BCLK  
1
2
3
N
1
2
3
N
X
X
X
ADCDAT/  
DACDAT  
X = DON’T CARE.  
Figure 9. Frame Sync/PCM Mode Audio Input (Submode 1) [Bit LRP = 0]  
1/fS  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCLRC/  
DACLRC  
CODEC_BCLK  
X
1
2
3
N
1
2
3
N
X
X
ADCDAT/  
DACDAT  
X = DON’T CARE.  
Figure 10. Frame Sync/PCM Mode Audio Input (Submode 2) [Bit LRP = 1]  
Rev. A  
| Page 7 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Recording Mode  
The digital audio interface sends the ADC digital filter data to  
the ADCDAT output pin for recording. The ADCDAT data  
stream multiplexes the left- and right-channel audio data in the  
time domain. The ADCLRC clock signal separates left- and  
right-channel digital audio frames on the ADCDAT lines.  
The CODEC_BCLK signal clocks the digital audio data within  
the frames. The CODEC_BCLK signal is either an input or an  
output depending on whether the codec is in master or slave  
mode. During a recording operation, ADCDAT and ADCLRC  
must be synchronous to the CODEC_BCLK signal to avoid data  
corruption.  
Playback Mode  
The digital audio interface receives data on the DACDAT input  
pin for playback. The digital audio data stream on the DACDAT  
pin is time-domain-multiplexed left and right channel audio  
data. The DACLRC clock signal separates left and right channel  
digital audio frames on the DACDAT lines.  
The CODEC_BCLK signal clocks the digital audio data within  
the frames. The CODEC_BCLK signal is either an input or an  
output depending on whether the codec is in master or slave  
mode. During a playback operation, DACDAT and DACLRC  
must be synchronous to the CODEC_BCLK signal to avoid data  
corruption.  
Digital Audio Data Sampling Rate  
To accommodate a wide variety of commonly used DAC and  
ADC sampling rates, the codec allows for two modes of opera-  
tion, normal and USB, selected by the USB bit (Register R8,  
Bit D0).  
The sampling rate is generated as a fixed divider from the  
CODEC_MCLK signal. Because all audio processing references  
the CODEC_MCLK signal, corruption of this signal will corrupt  
the quality of the audio at the codec output. The ADCLRC/  
ADCDAT/CODEC_BCLK or DACLRC/DACDAT/  
CODEC_BCLK signals must be synchronized with  
CODEC_MCLK in the digital audio interface circuit.  
CODEC_MCLK must be faster or equal to the CODEC_BCLK  
frequency to guarantee that no data is lost during data synchro-  
nization. The CODEC_BCLK frequency should be greater than  
the sampling rate × word length × 2. Ensuring that the  
CODEC_BCLK frequency is greater than this, guarantees that  
all valid data bits are captured by the digital audio interface cir-  
cuitry. For example, if a 32 kHz digital audio sampling rate with  
a 32-bit word length is desired, CODEC_BCLK = 2.048 MHz.  
Rev. A  
| Page 8 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Normal Mode  
In normal mode, the codec supports digital audio sampling  
rates from 8 kHz to 96 kHz. Normal mode supports 256 × fS and  
384 × fS based clocks. To select the desired sampling rate, the  
programmer must set the appropriate sampling rate register in  
the SR control bits (Register R8, Bit D2 to Bit D5) and match  
this selection to the core clock frequency that is pulsed on the  
CODEC_MCLK pin. See Table 1 for sampling rates in  
normal mode.  
Table 1. Sampling Rate Lookup Table, Normal Mode (USB Disabled)  
CODEC_MCLK CODEC_MCLK ADC Sampling Rate  
(CLKDIV2 = 0) (CLKDIV2 = 1) (ADCLRC)  
DAC Sampling Rate  
(DACLRC)  
USB SR [3:0] BOSR CODEC_BCLK  
(MS = 1)1  
12.288 MHz  
24.576 MHz  
8 kHz (CODEC_MCLK/1536)  
8 kHz (CODEC_MCLK/1536)  
12 kHz (CODEC_MCLK/1024)  
16 kHz (CODEC_MCLK/768)  
24 kHz (CODEC_MCLK/512)  
32 kHz (CODEC_MCLK/384)  
48 kHz (CODEC_MCLK/256)  
48 kHz (CODEC_MCLK/256)  
96 kHz (CODEC_MCLK/128)  
8 kHz (CODEC_MCLK/1536)  
48 kHz (CODEC_MCLK/256)  
12 kHz (CODEC_MCLK/1024)  
16 kHz (CODEC_MCLK/768)  
24 kHz (CODEC_MCLK/512)  
32 kHz (CODEC_MCLK/384)  
8 kHz (CODEC_MCLK/1536)  
48 kHz (CODEC_MCLK/256)  
96 kHz (CODEC_MCLK/128)  
0
0
0
0
0
0
0
0
0
0011  
0010  
0100  
0101  
1110  
0110  
0001  
0000  
0111  
1011  
1010  
1100  
1101  
1001  
1000  
1111  
0011  
0010  
0100  
0101  
1110  
0110  
0000  
0001  
0111  
1011  
1010  
1100  
1101  
1001  
1000  
1111  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/2  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/4  
CODEC_MCLK/2  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/3  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/6  
CODEC_MCLK/3  
11.2896 MHz 22.5792 MHz 8.0182 kHz (CODEC_MCLK/1408) 8.0182 kHz (CODEC_MCLK/1408) 0  
8.0182 kHz (CODEC_MCLK/1408) 44.1 kHz (CODEC_MCLK/256)  
11.025 kHz (CODEC_MCLK/1024) 11.025 kHz (CODEC_MCLK/1024) 0  
0
22.05 kHz (CODEC_MCLK/512)  
44.1 kHz (CODEC_MCLK/256)  
44.1 kHz (CODEC_MCLK/256)  
88.2 kHz (CODEC_MCLK/128)  
8 kHz (CODEC_MCLK/2304)  
8 kHz (CODEC_MCLK/2304)  
12 kHz (CODEC_MCLK/1536)  
16 kHz (CODEC_MCLK/1152)  
24 kHz (CODEC_MCLK/768)  
32 kHz (CODEC_MCLK/576)  
48 kHz (CODEC_MCLK/384)  
48 kHz (CODEC_MCLK/384)  
96 kHz (CODEC_MCLK/192)  
22.05 kHz (CODEC_MCLK/512)  
8.0182 kHz (CODEC_MCLK/1408) 0  
0
44.1 kHz (CODEC_MCLK/256)  
88.2 kHz (CODEC_MCLK/128)  
8 kHz (CODEC_MCLK/2304)  
48 kHz (CODEC_MCLK/384)  
12 kHz (CODEC_MCLK/1536)  
16 kHz (CODEC_MCLK/1152)  
24 kHz (CODEC_MCLK/768)  
32 kHz (CODEC_MCLK/576)  
48 kHz (CODEC_MCLK/384)  
8 kHz (CODEC_MCLK/2304)  
96 kHz (CODEC_MCLK/192)  
0
0
0
0
0
0
0
0
0
0
0
18.432 MHz  
36.864 MHz  
16.9344 MHz 33.8688 MHz 8.0182 kHz (CODEC_MCLK/2112) 8.0182 kHz (CODEC_MCLK/2112) 0  
8.0182 kHz (CODEC_MCLK/2112) 44.1 kHz (CODEC_MCLK/384)  
11.025 kHz (CODEC_MCLK/1536) 11.025 kHz (CODEC_MCLK/1536) 0  
0
22.05 kHz (CODEC_MCLK/768)  
44.1 kHz (CODEC_MCLK/384)  
44.1 kHz (CODEC_MCLK/384)  
88.2 kHz (CODEC_MCLK/192)  
22.05 kHz (CODEC_MCLK/768)  
8.0182 kHz (CODEC_MCLK/2112) 0  
44.1 kHz (CODEC_MCLK/384)  
88.2 kHz (CODEC_MCLK/192)  
0
0
0
1
CODEC_BCLK frequency is for master mode and slave right-justified mode only.  
Rev. A  
| Page 9 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
USB Mode  
12 MHz, or to support 24 MHz if the CLKDIV2 control register  
bit is activated. The programmer must set the appropriate sam-  
pling rate in the SR control bits (Register R8, Bit D2 to Bit D5).  
See Table 2 for sampling rates in USB mode.  
In USB mode, the codec supports digital audio sampling rates  
from 8 kHz to 96 kHz. USB mode is enabled on the codec  
to support the common universal serial bus (USB) clock rate of  
Table 2. Sampling Rate Lookup Table, USB Mode (USB Enabled)  
CODEC_MCLK CODEC_MCLK ADC Sampling Rate  
(CLKDIV2 = 0) (CLKDIV2 = 1) (ADCLRC)  
DAC Sampling Rate  
(DACLRC)  
USB SR [3:0] BOSR CODEC_BCLK  
(MS = 1)1  
12.000 MHz  
24.000 MHz  
8 kHz (CODEC_MCLK/1500)  
8 kHz (CODEC_MCLK/1500)  
8.0214 kHz (CODEC_MCLK/1496) 8.0214 kHz (CODEC_MCLK/1496)  
8.0214 kHz (CODEC_MCLK/1496) 44.118 kHz (CODEC_MCLK/272)  
11.0259 kHz (CODEC_MCLK/1088) 11.0259 kHz (CODEC_MCLK/1088) 1  
12 kHz (CODEC_MCLK/1000)  
16 kHz (CODEC_MCLK/750)  
22.0588 kHz (CODEC_MCLK/544) 22.0588 kHz (CODEC_MCLK/544)  
24 kHz (CODEC_MCLK/500)  
32 kHz (CODEC_MCLK/375)  
44.118 kHz (CODEC_MCLK/272) 8.0214 kHz (CODEC_MCLK/1496)  
44.118 kHz (CODEC_MCLK/272) 44.118 kHz (CODEC_MCLK/272)  
48 kHz (CODEC_MCLK/250)  
48 kHz (CODEC_MCLK/250)  
8 kHz (CODEC_MCLK/1500)  
48 kHz (CODEC_MCLK/250)  
1
1
1
1
0011  
0010  
1011  
1010  
1100  
1000  
1010  
1101  
1110  
0110  
1001  
1000  
0001  
0000  
1111  
0111  
0
0
1
1
1
0
0
1
0
0
1
1
0
0
1
0
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
CODEC_MCLK  
12 kHz (CODEC_MCLK/1000)  
16 kHz (CODEC_MCLK/750)  
1
1
1
1
1
1
1
1
1
1
1
24 kHz (CODEC_MCLK/500)  
32 kHz (CODEC_MCLK/375)  
8 kHz (CODEC_MCLK/1500)  
48 kHz (CODEC_MCLK/250)  
88.235 kHz (CODEC_MCLK/136) 88.235 kHz (CODEC_MCLK/136)  
96 kHz (CODEC_MCLK/125) 96 kHz (CODEC_MCLK/125)  
1
CODEC_BCLK frequency is for master mode and slave right-justified mode only.  
Rev. A  
| Page 10 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
When 2-wire (TWI) mode is selected, CSDA generates the serial  
control data-word; CSCL clocks the serial data; and CSB deter-  
mines the TWI device address. If the CSB pin is set to 0, the  
address selected is 0011010; if 1, the address is 0011011.  
When 3-wire (SPI) mode is selected, CSDA generates the con-  
trol data-word, CSCL clocks the control data-word into the  
codec, and CSB latches in the control data-word.  
SOFTWARE CONTROL INTERFACE  
The software control interface provides access to the  
programmer-selectable control registers and can operate with a  
2-wire (TWI) or 3-wire (SPI) interface, depending on the setting  
of the CMODE pin. If the CMODE pin is set to 0, the 2-wire  
interface is selected; if 1, the 3-wire interface is selected.  
Within each control register is a control data-word consisting of  
16 bits, MSB first. Bit B15 to Bit B9 are the register map address,  
and Bit B8 to Bit B0 are register data for the associated register  
map.  
CSB  
CSCL  
B15  
B14 B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B0  
CSDA  
REGISTER MAP  
ADDRESS  
REGISTER  
DATA  
Figure 11. Codec SPI Serial Interface  
CSDA  
CSCL  
S
1 – 7  
8
9
1 – 7  
8
9
1 – 7  
8
9
P
START  
ADDR  
R/W  
ACK  
SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 12. Codec TWI Serial Interface  
WRITE  
S
S
A7 ... A1 A0 A(S) B15 ... B9 B8 A(S) B7 ... B0 A(S)  
P
SEQUENCE  
0
DEVICE  
REGISTER  
ADDRESS  
REGISTER  
DATA  
ADDRESS  
READ  
A7 ... A1 A0 A(S)  
0
B15 ... B9  
0
A(S)  
S
A7 ... A1 A0 A(S)  
1
B7 ... B0 A(M)  
...  
0
B8 A(M)  
0
P
SEQUENCE  
DEVICE  
REGISTER  
ADDRESS  
DEVICE  
REGISTER  
DATA  
ADDRESS  
ADDRESS  
(SLAVE DRIVE)  
S/P = START/STOP BIT.  
2
A0 = I C R/W BIT.  
A(S) = ACKNOWLEDGE BY SLAVE.  
A(M) = ACKNOWLEDGE BY MASTER.  
A(M) = ACKNOWLEDGE BY MASTER (INVERSION).  
Figure 13. Codec TWI Write and Read Sequences  
Rev. A  
| Page 11 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
CODEC PIN DESCRIPTIONS  
Table 3 shows the signals added to the ADSP-BF52xC processor  
for the embedded codec. Please refer to the published  
ADSP-BF52x data sheet for descriptions of other signals for the  
processor.  
Table 3. Codec Pin Descriptions  
Pin Name  
Codec  
Type Function  
Pull-Up/Down  
CODEC_CLKOUT  
CODEC_BCLK  
DACDAT  
DACLRC  
ADCDAT  
ADCLRC  
CMODE  
CSB  
O
I/O  
I
Codec Clock Output  
None  
Internal Pull-down1  
Codec Digital Audio Bit Clock  
Codec Digital Audio Data (DAC) Input  
Codec DAC Sample Rate Left/Right Clock  
Codec ADC Digital Audio Data Output  
Codec ADC Sample Rate Left/Right Clock  
Codec Control Interface Selection  
None  
Internal Pull-down1  
I/O  
O
I/O  
I
None  
Internal Pull-down1  
Internal Pull-up1  
Internal Pull-up1  
None  
I
Codec Chip Select Interface Address Selection  
Codec Data Input  
CSDA  
I/O  
I/O  
I
CSCL  
Codec Data Clock  
None  
XTI/CODEC_MCLK  
XTO  
Codec Crystal Input/ Clock Input  
None  
O
O
O
O
O
O
O
I
Codec Crystal Output  
None  
LHPOUT  
RHPOUT  
LOUT  
Codec Left Channel Headphone Output (Analog Output)  
Codec Right Channel Headphone Output (Analog Output)  
Codec Left Channel Line Output (Analog Output)  
Codec Right Channel Line Output (Analog Output)  
Codec Mid-rail Reference Decoupling Point (Analog Output)  
Codec Electret Microphone Bias (Analog Output)  
Codec Microphone Input; (Analog Input, AC Coupled)  
Codec Right Channel Line Input (Analog Input, AC Coupled)  
Codec Left Channel Line Input (Analog Input, AC Coupled)  
Codec Analog VDD  
None  
None  
None  
ROUT  
None  
VMID  
None  
MICBIAS  
MICIN  
None  
None  
RLINEIN  
LLINEIN  
AVDD  
I
None  
I
None  
P
N/A  
AGND  
P
Codec Analog Ground  
N/A  
CVDD  
P
Codec Digital VDD  
N/A  
HPVDD  
HPGND  
P
Codec Analog Headphone VDD  
N/A  
P
Codec Headphone Ground  
N/A  
1 To conserve power, the pull-up/pull-down is only present when the control register interface is active (= 0).  
Rev. A  
| Page 12 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Figure 14 on Page 13 and Figure 15 on Page 14 describe alterna-  
tive external connections for SPI or TWI control of the  
ADSP-BF52xC codec. The figures are the same except for the  
shaded area in each.  
ADSP-BF52XC  
1 F  
+
LLINEIN  
100  
10  
XTI/CODEC_MCLK  
XTO  
Kꢀ  
Mꢀ  
220 pF  
X1  
1 F  
+
RLINEIN  
100  
Kꢀ  
10  
Mꢀ  
220 pF  
CODEC  
CP  
CP  
680ꢀ  
MICBIAS  
MICIN  
DACLRC  
DACDAT  
ADCDAT  
+
RMIC  
47 Kꢀ  
ADCLRC  
HPVDD  
CODEC_BCLK  
HPVDD  
HPGND  
+
10 F  
0.1 F  
AVDD  
+
BLACKFIN  
PROCESSOR  
AVDD  
AGND  
LOUT  
RSCLKx  
10 F  
0.1 F  
1 F  
RFSx  
DRxPRI  
DTxPRI  
TFSx  
100 ꢀ  
47 Kꢀ  
+
SPISELx  
MOSI  
SCK  
1 F  
100 ꢀ  
+
ROUT  
SDA  
SCL  
47 Kꢀ  
47 Kꢀ  
220 F  
+
LHPOUT  
CSCL  
CSDA  
220 F  
CSB  
+
RHPOUT  
47 Kꢀ  
10 Kꢀ  
CMODE  
AVDD  
CODEC_CLKOUT  
VMID  
100 ꢀ  
SPI  
0.1 F  
+
10 F  
Figure 14. Recommended Application Circuit Using SPI Control  
Rev. A  
| Page 13 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
ADSP-BF52XC  
1 F  
+
LLINEIN  
100  
10  
XTI/CODEC_MCLK  
XTO  
Kꢀ  
Mꢀ  
220 pF  
X1  
1 F  
+
RLINEIN  
100  
Kꢀ  
10  
Mꢀ  
220 pF  
CODEC  
CP  
CP  
680ꢀ  
MICBIAS  
MICIN  
DACLRC  
DACDAT  
ADCDAT  
+
RMIC  
47 Kꢀ  
ADCLRC  
HPVDD  
CODEC_BCLK  
HPVDD  
HPGND  
+
10 F  
0.1 F  
AVDD  
+
BLACKFIN  
PROCESSOR  
AVDD  
AGND  
LOUT  
RSCLKx  
10 F  
0.1 F  
1 F  
RFSx  
DRxPRI  
DTxPRI  
TFSx  
100 ꢀ  
47 Kꢀ  
+
SPISELx  
AVDD  
R
MOSI  
SEE VERSION 2.1 OF  
THE I2C SPECIFICATION  
FOR THE PROPER  
SCK  
R
1 F  
100 ꢀ  
RESISTOR VALUE.  
+
ROUT  
SDA  
SCL  
47 Kꢀ  
47 Kꢀ  
220 F  
+
LHPOUT  
CSCL  
CSDA  
220 F  
+
10 Kꢀ  
CSB  
AVDD  
RHPOUT  
47 Kꢀ  
10 Kꢀ  
CMODE  
CODEC_CLKOUT  
VMID  
100 ꢀ  
TWI  
0.1 F  
+
10 F  
Figure 15. Recommended Application Circuit Using TWI Control  
Rev. A  
| Page 14 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
REGISTER DETAILS  
Register  
Address  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 0 Left-Channel ADC  
Input Volume on Page 16  
0x00  
LRINBOTH LINMUTE  
0
LINVOL  
Default = 010010111  
Register 1 Right-Channel ADC  
Input Volume on Page 17  
0x01  
RLINBOTH RINMUTE  
0
RINVOL  
Default = 010010111  
Register 2 Left-Channel DAC  
Volume on Page 17  
0x02 LRHPBOTH  
0x03 RLHPBOTH  
0x04 MICBOOST2  
LZCEN  
RZCEN  
LHPVOL  
Default = 001111001  
RHPVOL  
Default = 001111001  
Register 3 Right-Channel DAC  
Volume on Page 18  
Register 4 Analog Audio Path  
on Page 18  
SIDEATT[1:0]  
SIDETONE DACSEL BYPASS INSEL MUTEMIC MICBOOST  
Default = 000001010  
Register 5 Digital Audio Path  
on Page 19  
0x05  
0x06  
0x07  
0
0
0
0
0
0
HPOR DACMU DEEMPH[1:0]  
ADC HPD  
Default = 000001000  
Register6PowerManagement  
on Page 19  
POWEROFF CLKOUTPD OSCPD  
OUTPD DACPD ADCPD MICPD LINEINPD  
Default = 010011111  
LRSWAP LRP  
Register 7 Digital Audio I/F on  
Page 20  
BCLKINV  
MS  
WL[1:0]  
FORMAT[1:0]  
Default = 000001010  
SR[3:0]  
Register 8 Sampling Rate on  
Page 20  
0x08  
0x09  
0x0F  
0
0
CLKODIV2 CLKDIV2  
BOSR  
USB  
Default = 000000000  
Register 9 Active on Page 20  
0
0
0
0
0
0
0
ACTIVE  
Default = 000000000  
Register 10 Software Reset on  
Page 20  
RESET  
Default = 000000000  
Figure 16. Register Mapping  
Rev. A  
| Page 15 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
BIT DESCRIPTIONS  
Table 4 through Table 14 on Page 20 describe each bit in the  
control registers.  
Table 4. Register 0 Left-Channel ADC Input Volume  
Bit Name  
Bits  
Description  
Settings  
LRINBOTH  
B8  
Left-to-right line input ADC  
data load control  
0 = disable simultaneous loading of left-channel  
ADC data to right-channel register (default)  
1 = enable simultaneous loading of left-channel  
ADC data to right-channel register  
LINMUTE  
LINVOL  
B7  
Left-channel input mute  
0 = disable mute  
1 = enable mute on data path to ADC (default)  
00 0000 = –34.5 dB  
… 1.5 dB step up  
B[5:0] Left-channel PGA volume control  
01 0111 = 0 dB (default)  
… 1.5 dB step up  
01 1111 = 12 dB  
10 0000 = 13.5 dB  
10 0001 = 15 dB  
10 0010 = 16.5 dB  
10 0011 = 18 dB  
10 0100 = 19.5 dB  
10 0101 = 21 dB  
10 0110 = 22.5 dB  
10 0111 = 24 dB  
10 1000 = 25.5 dB  
10 1001 = 27 dB  
10 1010 = 28.5 dB  
10 1011 = 30 dB  
10 1100 = 31.5 dB  
10 1101 = 33 dB  
11 1111 to 10 1101 = 33 dB  
Rev. A  
| Page 16 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Table 5. Register 1 Right-Channel ADC Input Volume  
Bit Name  
Bits  
Description  
Settings  
RLINBOTH  
B8  
Right-to-left line input ADC  
data load control  
0 = disable simultaneous loading of right-channel  
ADC data to left-channel register (default)  
1 = enable simultaneous loading of right-channel  
ADC data to left-channel register  
RINMUTE  
RINVOL  
B7  
Right-channel input mute  
0 = disable mute  
1 = enable mute on data path to ADC (default)  
00 0000 = –34.5 dB  
… 1.5 dB step up  
B[5:0] Right-channel PGA volume control  
01 0111 = 0 dB (default)  
… 1.5 dB step up  
01 1111 = 12 dB  
10 0000 = 13.5 dB  
10 0001 = 15 dB  
10 0010 = 16.5 dB  
10 0011 = 18 dB  
10 0100 = 19.5 dB  
10 0101 = 21 dB  
10 0110 = 22.5 dB  
10 0111 = 24 dB  
10 1000 = 25.5 dB  
10 1001 = 27 dB  
10 1010 = 28.5 dB  
10 1011 = 30 dB  
10 1100 = 31.5 dB  
10 1101 = 33 dB  
11 1111 to 10 1101 = 33 dB  
Table 6. Register 2 Left-Channel DAC Volume  
Bit Name  
Bits  
Description  
Settings  
LRHPBOTH B8  
Left-to-right headphone volume  
load control  
0 = disable simultaneous loading of left-channel  
headphone volume data to right-channel register (default)  
1 = enable simultaneous loading of left-channel  
headphone volume data to right-channel register  
LZCEN  
B7  
Left-channel zero cross detect enable  
0 = disable (default)  
1 = enable  
LHPVOL  
B[6:0] Left-channel headphone volume control  
000 0000 to 010 1111 = mute  
011 0000 = –73 dB  
111 1001 = 0 dB (default)  
… 1 dB steps up to  
111 1111 = +6 dB  
Rev. A  
| Page 17 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Table 7. Register 3 Right-Channel DAC Volume  
Bit Name  
Bits  
Description  
Settings  
RLHPBOTH  
B8  
Right-to-left headphone volume load control  
0 = disable simultaneous loading of right-channel  
headphone volume data to left-channel register (default)  
1 = enable simultaneous loading of right-channel  
headphone volume data to left-channel register  
RZCEN  
B7  
Right-channel zero cross detect enable  
0 = disable (default)  
1 = enable  
RHPVOL [6:0] B[6:0] Right-channel headphone volume control  
000 0000 to 010 1111 = mute  
011 0000 = –73 dB  
111 1001 = 0 dB (default)  
… 1 dB steps up to  
111 1111 = +6 dB  
Table 8. Register 4 Analog Audio Path  
Bit Name  
Bits Description  
Settings  
MICBOOST2  
B8  
Additional microphone amplifier gain booster control  
0 = 0 dB (default)  
1 = 20 dB  
SIDEATT[1:0]  
B[7:6] Microphone sidetone gain control  
00 = –6 dB (default)  
01 = –9 dB  
10 = –12 dB  
11 = –15 dB  
SIDETONE  
DACSEL  
BYPASS  
B5  
B4  
B3  
Sidetone enable. Allow attenuated microphone  
signal to be mixed at device output terminal  
0 = sidetone disable (default)  
1 = sidetone enable  
DAC select—allow DAC output to be  
mixed at device output terminal  
0 = do not select DAC (default)  
1 = select DAC  
Bypass select—allow line input signal to be mixed  
at device output terminal  
0 = bypass disable  
1 = bypass enable (default)  
INSEL  
B2  
B1  
B0  
Line input or microphone input select to ADC  
Microphone mute control to ADC  
0 = line input select to ADC (default)  
1 = microphone input select to ADC  
0 = mute on data path to ADC disable  
1 = mute on data path to ADC enable (default)  
0 = 0 dB (default)  
MUTEMIC  
MICBOOST  
Primary microphone amplifier gain booster control  
1 = 20 dB  
Rev. A  
| Page 18 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Table 9. Register 5 Digital Audio Path  
Bit Name  
Bits  
Description  
Settings  
HPOR  
B4  
Store dc offset when high-pass filter is disabled  
0 = clear offset (default)  
1 = store offset  
DACMU  
B3  
DAC digital mute  
0 = no mute (signal active)  
1 = mute (default)  
DEEMPH[1:0]  
B[2:1] De-emphasis control  
00 = no de-emphasis (default)  
01 = 32 kHz sampling rate  
10 = 44.1 kHz sampling rate  
11 = 48 kHz sampling rate  
0 = ADC high-pass filter enable (default)  
1 = ADC high-pass filter disable  
ADCHPD  
B0  
ADC high-pass filter control  
Table 10. Register 6 Power Management  
Bit Name  
Bits  
Description  
Settings  
POWEROFF  
B7  
Whole chip power-down control  
0 = power-up  
1 = power-down (default)  
0 = power-up (default)  
1 = power-down  
CLKOUTPD  
OSCPD  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Clock output power-down control  
Crystal power-down control  
Output power-down control  
DAC power-down control  
0 = power-up (default)  
1 = power-down  
OUTPD  
0 = power-up  
1 = power-down (default)  
0 = power-up  
DACPD  
1 = power-down (default)  
0 = power-up  
ADCPD  
MICPD  
ADC power-down control  
1 = power-down (default)  
0 = power-up  
Microphone input power-down control  
Line input power-down control  
1 = power-down (default)  
0 = power-up  
LINEINPD  
1 = power-down (default)  
Rev. A  
| Page 19 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Table 11. Register 7 Digital Audio I/F  
Bit Name  
Bits Description  
Settings  
BCLKINV  
B7  
B6  
B5  
B4  
CODEC_BCLK inversion control  
0 = CODEC_BCLK not inverted (default)  
1 = CODEC_BCLK inverted  
MS  
Master mode enable  
0 = enable slave mode (default)  
1 = enable master mode  
LRSWAP  
LRP  
Swap DAC data control  
0 = output left- and right-channel data as normal (default)  
1 = swap left- and right-channel DAC data in audio interface  
Polarity control for clocks in right-justified,  
left-justified, and I2S modes  
0 = normal DACLRC and ADCLRC (default),  
or processor Submode 1  
1 = invert DACLRC and ADCLRC polarity, or processor Submode 2  
WL [1:0]  
B[3:2] Data-word length control  
00 = 16 bits  
01 = 20 bits  
10 = 24 bits (default)  
11 = 32 bits  
FORMAT [1:0] B[1:0] Digital audio input format control  
00 = right justified  
01 = left justified  
10 = I2S mode (default)  
11 = processor mode  
Table 12. Register 8 Sampling Rate  
Bit Name  
Bits  
Description  
Settings  
CLKODIV2  
B7  
CODEC_CLKOUT divider select  
0 = CODEC_CLKOUT is codec clock (default)  
1 = CODEC_CLKOUT is codec clock divided by 2  
0 = codec clock is CODEC_MCLK (default)  
1= codec clock is CODEC_MCLK divided by 2  
See Table 1 on Page 9 and Table 2 on Page 10  
USB mode:  
CLKDIV2  
B6  
Codec clock divide select  
SR [3:0]  
BOSR  
B[5:2]  
B1  
Clock setting condition  
Base oversampling rate  
0 = support for 250 × fS based clock (default)  
1 = support for 272 × fS based clock  
Normal mode:  
0 = support for 256 × fS based clock (default)  
1 = support for 384 × fS based clock  
0 = normal mode enable (default)  
1 = USB mode enable  
USB  
B0  
USB mode select  
Table 13. Register 9 Active  
Bit Name  
Bit  
Description  
Settings  
ACTIVE  
B0  
Digital core activation control  
0 = disable digital core (default)  
1 = activate digital core  
Table 14. Register 10 Software Reset  
Bit Name Bit Description  
Settings  
RESET [8:0] B[8:0] Write all 0s to this register to set all registers to their default settings.  
Other data written to this register has no effect.  
0 = reset (default)  
Rev. A  
| Page 20 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
SPECIFICATIONS  
TAmbient = 25°C, AVDD = VDDEXT = 3.3 V, HPVDD = 3.3 V,  
1 kHz signal, fS = 48 kHz, PGA gain = 0 dB, 24-bit audio data,  
unless otherwise noted.  
OPERATING CONDITIONS  
See operating conditions in the published ADSP-BF52xC  
data sheet.  
Parameter  
AVDD1  
Conditions  
Min  
1.8  
Typical  
3.3  
Max Unit  
3.6  
3.6  
V
V
HPVDD  
1.8  
3.3  
1 Note that AVDD must equal HPVDD.  
CODEC ELECTRICAL CHARACTERISTICS  
Parameter  
Conditions  
Min Typical  
Max Unit  
Line Input  
Input Signal Level (0 dB)  
Input Impedance  
AVDD/3.3  
200  
V(rms)  
PGA gain = 0 dB  
kΩ  
PGA gain = +33 dB  
PGA gain = –34.5 dB  
10  
kΩ  
480  
kΩ  
Input Capacitance  
10  
pF  
Signal-to-Noise Ratio (A-Weighted)  
PGA gain = 0 dB, AVDD = 3.3 V  
PGA gain = 0 dB, AVDD = 1.8 V  
–1 dBFS input, AVDD = 3.3 V  
–1 dBFS input, AVDD = 1.8 V  
82  
87  
84  
dB  
dB  
Total Harmonic Distortion (THD)  
–80 –84  
–71  
dB  
–60 dB  
dB  
Channel Separation1  
Programmable Gain  
Gain Step  
80  
–34.5 0  
1.5  
+33.5 dB  
dB  
Mute Attenuation  
–80  
dB  
Microphone Input  
Input Signal Level  
1
V(rms)  
Signal-to-Noise Ratio (A-Weighted)  
Total Harmonic Distortion  
Microphone gain = 0 dB (RSOURCE = 40 kΩ)  
–1 dBFS input, 0 dB gain, AVDD = 3.3 V  
–1 dBFS input, 0 dB gain, AVDD = 1.8 V  
85  
–75  
–65  
50  
80  
10  
10  
dB  
dB  
dB  
dB  
dB  
kΩ  
pF  
Power Supply Rejection Ratio  
Mute Attenuation  
Input Resistance  
Input Capacitance  
Microphone Bias  
Bias Voltage  
0.75 × AVDD  
V
Bias Current Source  
Noise in the Signal Bandwidth  
3
mA  
20 Hz to 20 kHz  
40  
nV/Hz  
Rev. A  
| Page 21 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Parameter  
Conditions  
Min Typical  
Max Unit  
Line Output  
DAC  
–1 dBFS input DAC + line output  
Full-Scale Output  
AVDD/3.3  
V(rms)  
Signal-to-Noise Ratio (A-Weighted)  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
90  
85  
95  
dB  
dB  
88  
THD + N  
–80  
–80  
50  
–70 dB  
–70 dB  
dB  
Power Supply Rejection Ratio  
Channel Separation  
80  
dB  
Headphone Output  
Full-Scale Output Voltage  
Maximum Output Power  
AVDD/3.3  
30  
V(rms)  
RL = 32 Ω  
mW  
mW  
dB  
RL = 16 Ω  
60  
Signal-to-Noise Ratio (A-Weighted)  
THD + N  
AVDD = 3.3 V  
AVDD = 1.8 V  
HPOUT = 10 mW  
HPOUT = 20 mW  
90  
80  
94  
85  
dB  
–65  
–60  
50  
dB  
dB  
Power Supply Rejection Ratio  
Mute Attenuation  
dB  
80  
dB  
LIne Input To Line Output  
Full-Scale Output Voltage  
Signal-to-Noise Ratio (A-Weighted)  
AVDD/3.3  
92  
V(rms)  
dB  
AVDD = 3.3 V  
AVDD = 1.8 V  
AVDD = 3.3 V  
AVDD = 1.8 V  
86  
dB  
Total Harmonic Distortion  
–80  
dB  
–80  
dB  
Power Supply Rejection  
50  
dB  
Microphone Input To Headphone Output  
Full-Scale Output Voltage  
AVDD/3.3  
V(rms)  
dB  
Signal-to-Noise Ratio (A-Weighted)  
AVDD = 3.3 V  
AVDD = 1.8 V  
94  
88  
50  
dB  
Power Supply Rejection Ratio  
Programmable Attenuation  
Gain Step  
dB  
6
15  
dB  
3
dB  
Mute Attenuation  
80  
dB  
1 Guaranteed but not tested.  
Rev. A  
| Page 22 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
ABSOLUTE MAXIMUM RATINGS  
See absolute maximum ratings in the published ADSP-BF52x  
processor data sheet.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
PACKAGE INFORMATION  
The information presented in Figure 17 and Table 15 provides  
details about the package branding for the ADSP-BF52xC pro-  
cessor. For a complete listing of product availability, see  
Ordering Guide on Page 36.  
a
ADSP-BF527KBCZ6C2X  
tppZccc  
vvvvvv.x n.n  
yyww country_of_origin  
B
Figure 17. Product Information on Package  
Table 15. Package Brand Information  
Brand Key  
Field Description  
Temperature Range  
Package Type  
t
pp  
Z
Lead Free Option  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Date Code  
ccc  
vvvvvv.x  
n.n  
yyww  
Rev. A  
| Page 23 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
POWER CONSUMPTION  
These current consumption values are for the codec alone.  
Please refer to the published ADSP-BF52x processor data sheet  
for the additional current consumption of the Blackfin  
processor.  
Table 16. Power Consumption  
Mode  
(1.8V)  
(3.3V)  
1
1
AVDD HPVDD VDDEXT AVDD HPVDD VDDEXT Unit  
Record and Playback  
Playback Only  
Oscillator Enabled  
External Clock  
Record Only  
0
0
0
0
0
0
0
0
7.4  
1.5  
6.3  
14.8  
2.0  
12.0  
mA  
0
0
0
1
0
1
0
0
0
0
1
1
1
1
1
1
3.1  
2.9  
1.30  
1.2  
3.0  
3.0  
4.7  
4.7  
2.0  
2.0  
6.1  
6.1  
mA  
mA  
Line Oscillator  
Line Clock  
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
2.4  
2.5  
3.6  
3.6  
N/A  
N/A  
N/A  
N/A  
3.7  
3.8  
1.9  
1.8  
4.3  
4.3  
9.4  
9.4  
N/A  
N/A  
N/A  
N/A  
7.4  
7.4  
3.6  
3.6  
mA  
mA  
mA  
mA  
Microphone 1  
Microphone 2  
Sidetone  
(Microphone-to-Headphone Output)  
Internally Generated Clock  
External Clock  
0
0
0
0
0
1
0
0
1
1
1
1
0
0
1
1
2.3  
2.3  
1.0  
1.0  
2.0  
2.0  
7.9  
7.9  
2.0  
2.0  
4.0  
4.0  
mA  
mA  
Analog Bypass  
(Line Input or Line Output)  
Internally Generated Line  
External Line  
0
0
0
0
0
1
0
0
1
1
1
1
1
1
0
0
0.9  
0.9  
1.0  
1.0  
2.0  
2.0  
1.8  
1.8  
2.0  
2.0  
4.0  
4.0  
mA  
mA  
Power-Down  
Clock Stopped  
1
1
1
1
1
1
1
1
3.1  
6.3  
3.8  
9.4  
6.3  
12.3  
μA  
1 VDDEXT here refers to the total of the codec's DCVDD and DBVDD signals and does not include VDDExt supplies in the Blackfin device.  
Rev. A  
| Page 24 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
TIMING SPECIFICATIONS  
TWI Timing  
Table 17. TWI Timing  
Parameter  
Test Conditions1 Min Max Unit  
tSCS  
tSCH  
tPH  
tPL  
Start condition setup time  
Start condition hold time  
CSCL pulse width high  
CSCL pulse width low  
CSCL frequency  
600  
600  
600  
1.3  
0
ns  
ns  
ns  
μs  
fSCL  
tDS  
tDH  
tRT  
526 kHz  
ns  
Data setup time  
100  
Data hold time  
900 ns  
300 ns  
300 ns  
ns  
CSDA and CSCL rise time  
CSDA and CSCL fall time  
Stop condition setup time  
tFT  
tHCS  
600  
1 AVDD, HPVDD, VDDEXT = 3.3 V, AGND = 0 V, TA = +25°C, Slave Mode, fS = 48 kHz, XTI/CODEC_MCLK = 256 × fS unless otherwise stated.  
t
t
SCH  
HCS  
CSDA  
t
DS  
t
SCS  
t
t
PH  
PL  
CSCL  
t
t
t
RT  
DH  
FT  
Figure 18. TWI Timing  
Rev. A  
| Page 25 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
SPI Timing  
Table 18. SPI Timing  
Parameter  
tDSU  
Test Conditions1 Min Max Unit  
CSDA to CSCL setup time  
CSCL to CSDA hold time  
CSCL pulse width high  
20  
20  
20  
20  
60  
20  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHO  
tSCH  
tSCL  
CSCL pulse width low  
tSCS  
CSCL rising edge to CSB rising edge  
CSB rising to CSCL rising  
CSB pulse width high  
tCSS  
tCSH  
tCSL  
CSB pulse width low  
tPS  
Pulse width of spikes to be suppressed  
5
1 AVDD, HPVDD, VDDEXT = 3.3 V, AGND = 0 V, TA = +25°C, Slave Mode, fS = 48 kHz, XTI/CODEC_MCLK = 256 × fS unless otherwise stated.  
t
CSH  
t
CSL  
CSB  
t
t
t
SCS  
SCH  
SCL  
t
CSS  
CSCL  
CSDA  
t
DSU  
t
DHO  
Figure 19. SPI Timing  
Rev. A  
| Page 26 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Digital Audio Interface Slave Mode Timing  
Table 19. Digital Audio Interface Slave Mode Timing  
Parameter  
tDS  
Test Conditions1 Min Max Unit  
DACDAT setup time from CODEC_BCLK rising edge  
DACDAT hold time from CODEC_BCLK rising edge  
ADCLRC/DACLRC setup time to CODEC_BCLK rising edge  
ADCLRC/DACLRC hold time to CODEC_BCLK rising edge  
ADCDAT propagation delay from CODEC_BCLK falling edge (external load of 70 pF)  
CODEC_BCLK pulse width high  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tLRSU  
tLRH  
tDD  
30  
tBCH  
25  
25  
50  
tBCL  
CODEC_BCLK pulse width low  
tBCY  
CODEC_BCLK cycle time  
1 AVDD, HPVDD, VDDEXT = 3.3 V, AGND = 0 V, TA = +25°C, Slave Mode, fS = 48 kHz, XTI/CODEC_MCLK = 256 × fS unless otherwise stated.  
t
t
BCH  
BCL  
CODEC_BCLK  
t
BCY  
DACLRC/  
ADCLRC  
t
t
LRSU  
LRH  
t
DS  
DACDAT  
ADCDAT  
t
DH  
t
DD  
Figure 20. Digital Audio Interface Slave Mode Timing  
Rev. A  
| Page 27 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Digital Audio Interface Master Mode Timing  
Table 20. Digital Audio Interface Master Mode Timing  
Parameter  
tDST  
Test Conditions1 Min  
Max  
Unit  
ns  
DACDAT setup time to CODEC_BCLK rising edge  
DACDAT hold time to CODEC_BCLK rising edge  
ADCLRC/DACLRC propagation delay from CODEC_BCLK falling edge  
ADCDAT propagation delay from CODEC_BCLK falling edge  
CODEC_BCLK rising time (10 pF load)  
30  
10  
tDHT  
ns  
tDL  
10  
10  
ns  
tDDA  
ns  
tBCLKR  
tBCLKF  
tBCLKDS  
10  
10  
ns  
CODEC_BCLK falling time (10 pF load)  
ns  
CODEC_BCLK duty cycle (normal and USB mode)  
45:55 55:45  
1 AVDD, HPVDD, VDDEXT = 3.3 V, AGND = 0 V, TA = +25°C, Slave Mode, fS = 48 kHz, XTI/CODEC_MCLK = 256 × fS unless otherwise stated.  
CODEC_BCLK  
t
DL  
DACLRC/  
ADCLRC  
t
t
DHT  
DST  
DACDAT  
ADCDAT  
t
DDA  
Figure 21. Digital Audio Interface Master Mode Timing  
Rev. A  
| Page 28 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
System Clock Timing  
Table 21. System Clock Timing  
Parameter  
tXTIY  
Test Conditions1 Min  
Max  
Unit  
XTI/CODEC_MCLK system clock cycle time  
72  
ns  
tMCLKDS  
tXTIH  
XTI/CODEC_MCLK duty cycle  
40:60  
60:40  
XTI/CODEC_MCLK system clock pulse width high  
XTI/CODEC_MCLK system clock pulse width low  
CODEC_CLKOUT propagation delay from XTI/CODEC_MCLK falling edge  
CLKODIV2 propagation delay from XTI/CODEC_MCLK falling edge  
32  
32  
20  
20  
ns  
ns  
ns  
ns  
tXTIL  
tCOP  
tCOPDIV2  
1 AVDD, HPVDD, VDDEXT = 3.3 V, AGND = 0 V, TA = +25°C, Slave Mode, fS = 48 kHz, XTI/CODEC_MCLK = 256 × fS unless otherwise stated.  
t
XTIH  
t
COP  
CODEC_MCLK/XTI  
t
XTIL  
t
XTIY  
CODEC_CLKOUT  
CODEC_CLKOUT/2  
t
COPDIV2  
Figure 22. System (CODEC_MCLK) Clock Timing  
Rev. A  
| Page 29 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Digital Filter Characteristics  
Table 22. Digital Filter Characteristics  
Parameter  
ADC FILTER  
Pass Band  
Conditions  
Min  
Typical Max  
Unit  
0.04 dB  
–6 dB  
0
0.445 × fS Hz  
0.5 × fS  
Hz  
dB  
Hz  
dB  
Hz  
Hz  
Hz  
Pass Band Ripple  
Stop Band  
0.04  
0.555 × fS  
–61  
Stop Band Attenuation  
f > 0.567 × fS  
High-Pass Filter Corner Frequency –3 dB  
3.7  
–0.5 dB  
10.4  
21.6  
–0.1 dB  
DAC FILTER  
Pass Band  
0.04 dB  
–6 dB  
0
0.445 × fS Hz  
Hz  
0.5 × fS  
Pass Band Ripple  
Stop Band  
0.04  
dB  
Hz  
dB  
0.555 × fS  
–61  
Stop Band Attenuation  
Codec Clock Tolerance  
Frequency Range  
Jitter Tolerance  
f > 0.565 × fS  
8.0  
13.8  
MHz  
pS  
50  
CONVERTER FILTER RESPONSE  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (fS)  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
FREQUENCY (fS)  
Figure 24. ADC Digital Filter Ripple, Sampling Rate = 48 kHz  
Figure 23. ADC Digital Filter Frequency Response, Sampling Rate = 48 kHz  
Rev. A  
| Page 30 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
0
0
−1  
–10  
−2  
–20  
−3  
–30  
−4  
−5  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
−6  
−7  
−8  
−9  
−10  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0
4
8
12  
16  
20  
FREQUENCY (fS)  
FREQUENCY (kHz)  
Figure 25. DAC Digital Filter Frequency Response, Sampling Rate = 48 kHz  
Figure 28. De-Emphasis Frequency Response, Sampling Rate = 44.1 kHz  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (fS)  
0
4
8
12  
16  
20  
24  
FREQUENCY (kHz)  
Figure 26. DAC Digital Filter Ripple, Sampling Rate = 48 kHz  
Figure 29. De-Emphasis Frequency Response, Sampling Rate = 48 kHz  
DIGITAL DE-EMPHASIS  
0.4  
0.3  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
−0.4  
0
4
8
12  
16  
FREQUENCY (kHz)  
0
4
8
12  
16  
Figure 30. De-Emphasis Error, Sampling Rate = 32 kHz  
FREQUENCY (kHz)  
Figure 27. De-Emphasis Frequency Response, Sampling Rate = 32 kHz  
Rev. A  
| Page 31 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
289-BALL CSP_BGA BALL ASSIGNMENT  
0.4  
Signals added or changed to the ADSP-BF52xC processor for  
0.3  
the embedded codec are shown in Table 23 and Table 24. Please  
refer to the published ADSP-BF52x processor data sheet for  
descriptions of additional signals for the processor.  
0.2  
0.1  
Table 23. 289-Ball CSP_BGA Ball Assignment  
0
(Alphabetically)  
−0.1  
Signal  
Ball No. Signal  
Ball No.  
G17  
G161  
B20  
−0.2  
−0.3  
−0.4  
ADCDAT  
ADCLRC  
AGND  
A16  
A15  
H22  
J221  
E22  
A19  
HPGND  
HPVDD  
LHPOUT  
LLINEIN  
LOUT  
0
4
8
12  
16  
20  
AVDD  
E23  
FREQUENCY (kHz)  
CMODE  
CODEC_BCLK  
F22  
Figure 31. De-Emphasis Error, Sampling Rate = 44.1 kHz  
MICBIAS  
MICIN  
H23  
J23  
0.4  
0.3  
CODEC_CLKOUT D22  
CSB  
D23  
B23  
C23  
H171  
A18  
A17  
RHPOUT  
RLINEIN  
ROUT  
B21  
CSCL  
F23  
0.2  
CSDA  
G22  
G23  
0.1  
CVDD  
DACDAT  
DACLRC  
VMID  
0
XTI/CODEC_MCLK A22  
XTO A21  
−0.1  
−0.2  
−0.3  
−0.4  
1 For ADSP-BF52x processor (without internal codec) compatibility,  
connect this ball to VDDEXT  
.
Table 24. 289-Ball CSP_BGA Ball Assignment  
(Numerically)  
0
4
8
12  
16  
20  
24  
FREQUENCY (kHz)  
Ball No. Signal  
Ball No. Signal  
Figure 32. De-Emphasis Error, Sampling Rate = 48 kHz  
A15  
A16  
A17  
A18  
A19  
A21  
A22  
B20  
B21  
B23  
C23  
D22  
D23  
ADCLRC  
ADCDAT  
DACLRC  
DACDAT  
CODEC_BCLK  
XTO  
E22  
E23  
F22  
F23  
G161  
G17  
CMODE  
LLINEIN  
LOUT  
RLINEIN  
HPVDD  
HPGND  
ROUT  
XTI/CODEC_MCLK G22  
LHPOUT  
RHPOUT  
CSCL  
G23  
H171  
H22  
H23  
VMID  
CVDD  
AGND  
MICBIAS  
AVDD  
CSDA  
CODEC_CLKOUT J221  
CSB J23  
MICIN  
1 For ADSP-BF52x processor (without internal codec) compatibility,  
connect this ball to VDDEXT  
.
Rev. A  
|
Page 32 of 36  
|
March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Figure 33 shows the top view of the ADSP-BF52xC processor  
ball configuration.  
A1 BALL  
PAD CORNER  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
TOP VIEW  
KEY:  
V
V
GND  
I/O  
DDINT  
V
DDEXT  
DDMEM  
BALLS THAT HAVE CHANGED USAGE ON THE  
ADSP-BF522C/523C/524C/525C/526C/527C:  
CODEC I/O  
AVDD  
AGND  
HPVDD  
HPGND  
Figure 33. ADSP-BF52xC Processor Ball Configuration (Top View)  
Rev. A  
| Page 33 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
Figure 34 shows the bottom view of the ADSP-BF52xC proces-  
sor ball configuration.  
A1 BALL  
PAD CORNER  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
BOTTOM VIEW  
9
8
7
6
5
4
3
2
1
KEY:  
V
V
GND  
DDINT  
I/O  
V
DDEXT  
DDMEM  
BALLS THAT HAVE CHANGED USAGE ON THE  
ADSP-BF522C/523C/524C/525C/526C/527C:  
CODEC I/O  
AVDD  
AGND  
HPVDD  
HPGND  
Figure 34. ADSP-BF52xC Processor Ball Configuration (Bottom View)  
Rev. A  
| Page 34 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
OUTLINE DIMENSIONS  
Dimensions in Figure 35, 289-Ball CSP_BGA (BC-289-2) are  
shown in millimeters.  
0.5 BSC  
BALL  
PITCH  
12.00 BSC SQ  
11.00 BSC SQ  
CL  
A1 BALL  
PAD CORNER  
A1 BALL  
PAD CORNER  
A
B
C
D
E
F
G
H
J
K
L
M
N
CL  
P
R
T
U
V
W
Y
AA  
AB  
AC  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
TOP VIEW  
BOTTOM VIEW  
1.40  
1.26  
1.11  
0.20 MIN  
DETAIL A  
SIDE VIEW  
NOTES  
0.08 MAX  
COPLANARITY  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. COMPLIES WITH JEDEC REGISTERED OUTLINE  
MO-195, VARIATION AJ AND EXCEPTION TO PACKAGE HEIGHT  
AND BALL HEIGHT.  
3. MINIMUM BALL HEIGHT 0.20  
SEATING PLANE  
0.35  
0.30  
0.25  
DETAIL A  
BALL DIAMETER  
Figure 35. 289-Ball CSP_BGA (BC-289-2)  
Rev. A  
| Page 35 of 36 | March 2010  
ADSP-BF522C/ADSP-BF523C/ADSP-BF524C/ADSP-BF525C/ADSP-BF526C/ADSP-BF527C  
ORDERING GUIDE  
Temperature  
Range2  
Instruction  
Rate (Max)  
Package  
Option  
Model1  
Package Description  
ADSP-BF522KBCZ-3C2  
ADSP-BF522KBCZ-4C2  
ADSP-BF523KBCZ-5C2  
ADSP-BF523KBCZ-6C2  
ADSP-BF524KBCZ-3C2  
ADSP-BF524KBCZ-4C2  
ADSP-BF525KBCZ-5C2  
ADSP-BF525KBCZ-6C2  
ADSP-BF526KBCZ-3C2  
ADSP-BF526KBCZ-4C2  
ADSP-BF527KBCZ-5C2  
ADSP-BF527KBCZ-6C2  
1 Z = RoHS Compliant Part.  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
300 MHz  
400 MHz  
533 MHz  
600 MHz  
300 MHz  
400 MHz  
533 MHz  
600 MHz  
300 MHz  
400 MHz  
533 MHz  
600 MHz  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
289-Ball Chip Scale Package Ball Grid Array (CSP_BGA)  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
BC-289-2  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 21 for junction temperature (TJ)  
specification which is the only temperature specification.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06876-0-3/10(A)  
Rev. A  
| Page 36 of 36 | March 2010  

相关型号:

ADSP-BF527KBCZ-6X

IC 0-BIT, 133 MHz, OTHER DSP, PBGA289, 12 X 12 MM, MO-195AJ, CSPBGA-289, Digital Signal Processor
ADI

ADSP-BF527_15

Blackfin Embedded Processor
ADI

ADSP-BF531

Blackfin Embedded Processor
ADI

ADSP-BF531SBB400

Blackfin Embedded Processor
ADI

ADSP-BF531SBBC-400

IC 16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160, Digital Signal Processor
ADI

ADSP-BF531SBBC-400

16-BIT, 40 MHz, OTHER DSP, PBGA160, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF531SBBC400

Blackfin Embedded Processor
ADI

ADSP-BF531SBBC400

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF531SBBCZ400

Blackfin Embedded Processor
ADI

ADSP-BF531SBBCZ400

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF531SBBCZ4RL

Blackfin Embedded Processor
ADI

ADSP-BF531SBBZ400

Blackfin Embedded Processor
ADI