ADUM1250_VD [ADI]

Hot Swappable, Dual I2C Isolators; 支持热插拔,双I2C隔离器
ADUM1250_VD
型号: ADUM1250_VD
厂家: ADI    ADI
描述:

Hot Swappable, Dual I2C Isolators
支持热插拔,双I2C隔离器

文件: 总12页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hot Swappable, Dual I2C Isolators  
ADuM1250/ADuM1251  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Bidirectional I2C communication  
Open-drain interfaces  
DECODE  
ENCODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
ENCODE  
DECODE  
8
7
6
5
V
DD2  
V
1
2
3
4
Suitable for hot swap applications  
30 mA current sink capability  
1000 kHz operation  
3.0 V to 5.5 V supply/logic levels  
8-lead SOIC RoHS-compliant package  
High temperature operation: 125°C  
Qualified for automotive applications  
Safety and regulatory approvals  
UL recognition  
DD1  
SDA  
SCL  
GND  
SDA  
SCL  
1
1
1
2
2
GND  
2
Figure 1. ADuM1250  
2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE certificate of conformity  
DECODE  
ENCODE  
DECODE  
DECODE  
8
7
6
5
V
DD2  
V
1
2
3
4
DD1  
SDA  
ENCODE  
ENCODE  
SDA  
SCL  
1
1
1
2
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
SCL  
2
V
IORM = 560 V peak  
GND  
GND  
2
Figure 2. ADuM1251  
APPLICATIONS  
Isolated I2C, SMBus, or PMBus interfaces  
Multilevel I2C interfaces  
Power supplies  
Networking  
Power-over-Ethernet  
Hybrid electric vehicle battery management  
GENERAL DESCRIPTION  
The ADuM1250/ADuM12511 are hot swappable digital isolators  
with nonlatching, bidirectional communication channels  
compatible with I2C® interfaces. This eliminates the need for  
splitting I2C signals into separate transmit and receive signals  
for use with standalone optocouplers.  
Both the ADuM1250 and ADuM1251 contain hot swap circuitry  
to prevent glitching data when an unpowered card is inserted  
onto an active bus.  
These isolators are based on iCoupler® chip scale transformer  
technology from Analog Devices, Inc. iCoupler is a magnetic  
isolation technology with functional, performance, size, and  
power consumption advantages as compared to optocouplers.  
With the ADuM1250/ADuM1251, iCoupler channels can be  
integrated with semiconductor circuitry, which enables a  
complete isolated I2C interface to be implemented in a small  
form factor.  
The ADuM1250 provides two bidirectional channels, supporting a  
complete isolated I2C interface. The ADuM1251 provides one  
bidirectional channel and one unidirectional channel for those  
applications where a bidirectional clock is not required.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADuM1250/ADuM1251  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Test Conditions..................................................................................9  
Applications Information .............................................................. 10  
Functional Description.............................................................. 10  
Startup.......................................................................................... 10  
Typical Application Diagram.................................................... 11  
Magnetic Field Immunity.......................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Automotive Products................................................................. 12  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Package Characteristics ............................................................... 5  
Regulatory Information............................................................... 5  
Insulation and Safety-Related Specifications............................ 5  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 6  
Recommended Operating Conditions ...................................... 6  
REVISION HISTORY  
7/11—Rev. C to Rev. D  
Change to Typical Application Diagram Section....................... 11  
6/07—Rev. 0 to Rev. A  
Updated VDE Certification Throughout.......................................1  
Changes to Features and Note 1 ......................................................1  
Changes to Table 4 and Table 5........................................................5  
Changes to Table 6.............................................................................6  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide.......................................................... 12  
5/10—Rev. B to Rev. C  
Changes to Features Section and Applications Section............... 1  
Changed VDD1 = 5 V, and V DD2 = 5 V to VDD1 = 3.3 V or 5 V, and  
V
DD2 = 3.3 V or 5 V........................................................................... 3  
Changed VDD1 = 5 V, and V DD2 = 5 V to VDD1 = 3.3 V or 5 V, and  
DD2 = 3.3 V or 5 V........................................................................... 4  
V
10/06—Revision 0: Initial Version  
Changes to Typical Application Diagram Section and  
Figure 9 ............................................................................................ 11  
Changes to Ordering Guide .......................................................... 12  
Added Automotive Products Section........................................... 12  
12/09—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Operating Temperature (TA) Parameter, Table 7..... 6  
Changes to Ambient Operating Temperature (TA) Parameter,  
Table 8 ................................................................................................ 7  
Changes to Ordering Guide .......................................................... 12  
Rev. D | Page 2 of 12  
 
ADuM1250/ADuM1251  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
DC Specifications1  
All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are  
at TA = 25°C, VDD1 = 3.3 V or 5 V, and VDD2 = 3.3 V or 5 V, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit Test Conditions  
ADuM1250  
Input Supply Current, Side 1, 5 V  
Input Supply Current, Side 2, 5 V  
Input Supply Current, Side 1, 3.3 V  
Input Supply Current, Side 2, 3.3 V  
ADuM1251  
IDD1  
IDD2  
IDD1  
IDD2  
2.8  
2.7  
1.9  
1.7  
5.0  
5.0  
3.0  
3.0  
mA  
mA  
mA  
mA  
VDD1 = 5 V  
VDD2 = 5 V  
VDD1 = 3.3 V  
VDD2 = 3.3 V  
Input Supply Current, Side 1, 5 V  
Input Supply Current, Side 2, 5 V  
Input Supply Current, Side 1, 3.3 V  
Input Supply Current, Side 2, 3.3 V  
LEAKAGE CURRENTS  
IDD1  
IDD2  
IDD1  
IDD2  
2.8  
2.5  
1.8  
1.6  
0.01  
6.0  
4.7  
3.0  
2.8  
10  
mA  
mA  
mA  
mA  
µA  
VDD1 = 5 V  
VDD2 = 5 V  
VDD1 = 3.3 V  
VDD2 = 3.3 V  
ISDA1, ISDA2  
,
VSDA1 = VDD1, VSDA2 = VDD2,  
I
SCL1, ISCL2  
VSCL1 = VDD1, VSCL2 = VDD2  
SIDE 1 LOGIC LEVELS  
Logic Input Threshold2  
Logic Low Output Voltages  
VSDA1T, VSCL1T  
VSDA1OL, VSCL1OL  
500  
600  
600  
50  
700  
900  
850  
mV  
mV  
mV  
mV  
ISDA1 = ISCL1 = 3.0 mA  
ISDA1 = ISCL1 = 0.5 mA  
Input/Output Logic Low Level Difference3 ΔVSDA1, ΔVSCL1  
SIDE 2 LOGIC LEVELS  
Logic Low Input Voltage  
Logic High Input Voltage  
Logic Low Output Voltage  
VSDA2IL, VSCL2IL  
VSDA2IH, VSCL2IH  
VSDA2OL, VSCL2OL  
0.3 VDD2  
400  
V
V
mV  
0.7 VDD2  
ISDA2 = ISCL2 = 30 mA  
1 All voltages are relative to their respective ground.  
2 VIL < 0.5 V, VIH > 0.7 V.  
3 ΔVS1 = VS1OL – VS1T. This is the minimum difference between the output logic low level and the input logic threshold within a given component. This ensures that there  
is no possibility of the part latching up the bus to which it is connected.  
Rev. D | Page 3 of 12  
 
 
 
 
 
 
ADuM1250/ADuM1251  
AC Specifications1  
All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications  
are at TA = 25°C, VDD1 = 3.3 V or 5 V, and VDD2 = 3.3 V or 5 V, unless otherwise noted. Refer to Figure 5.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
MAXIMUM FREQUENCY  
OUTPUT FALL TIME  
5 V Operation  
1000  
kHz  
4.5 V ≤ VDD1, VDD2 ≤ 5.5 V, CL1 = 40 pF,  
R1 = 1.6 kΩ, CL2 = 400 pF, R2 = 180 Ω  
Side 1 Output (0.9 VDD1 to 0.9 V)  
Side 2 Output (0.9 VDD2 to 0.1 VDD2  
3 V Operation  
tf1  
tf2  
13  
32  
26  
52  
120  
120  
ns  
ns  
)
)
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = 40 pF,  
R1 = 1.0 kΩ, CL2 = 400 pF, R2 = 120 Ω  
Side 1 Output (0.9 VDD1 to 0.9 V)  
Side 2 Output (0.9 VDD2 to 0.1 VDD2  
PROPAGATION DELAY  
tf1  
tf2  
13  
32  
32  
61  
120  
120  
ns  
ns  
5 V Operation  
4.5 ≤ VDD1, VDD2 ≤ 5.5 V,  
CL1 = CL2 = 0 pF, R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1-to-Side 2, Rising Edge2  
Side 1-to-Side 2, Falling Edge3  
Side 2-to-Side 1, Rising Edge4  
Side 2-to-Side 1, Falling Edge5  
3 V Operation  
tPLH12  
tPHL12  
tPLH21  
tPHL21  
95  
130  
ns  
ns  
ns  
ns  
162 275  
31  
85  
70  
155  
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1-to-Side 2, Rising Edge2  
Side 1-to-Side 2, Falling Edge3  
Side 2-to-Side 1, Rising Edge4  
Side 2-to-Side 1, Falling Edge5  
PULSE WIDTH DISTORTION  
5 V Operation  
tPLH12  
tPHL12  
tPLH21  
tPHL21  
82  
125  
ns  
ns  
ns  
ns  
196 340  
32 75  
110 210  
4.5 V ≤ VDD1, VDD2 ≤ 5.5 V, CL1 = CL2 = 0 pF,  
R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1-to-Side 2, |tPLH12 − tPHL12  
Side 2-to-Side 1, |tPLH21 − tPHL21  
3 V Operation  
|
|
PWD12  
PWD21  
67  
54  
145  
85  
ns  
ns  
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1-to-Side 2, |tPLH12 − tPHL12  
Side 2-to-Side 1, |tPLH21 − tPHL21  
COMMON-MODE TRANSIENT IMMUNITY6 |CMH|, |CML|  
|
|
PWD12  
PWD21  
114 215  
ns  
ns  
77  
35  
135  
25  
kV/µs  
1 All voltages are relative to their respective ground.  
2 tPLH12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.7 VDD2  
3 tPHL12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.4 V.  
4 tPLH21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.7 VDD1  
5 tPHL21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.9 V.  
.
.
6 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
Rev. D | Page 4 of 12  
 
 
 
 
 
 
 
 
 
 
 
ADuM1250/ADuM1251  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Symbol Min Typ Max Unit Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance  
RI-O  
CI-O  
CI  
1012  
1.0  
4.0  
46  
Ω
pF  
pF  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1 θJCI  
IC Junction-to-Case Thermal Resistance, Side 2 θJCO  
°C/W Thermocouple located at center of package underside  
°C/W  
41  
1 The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.  
REGULATORY INFORMATION  
The ADuM1250/ADuM1251 have been approved by the organizations listed in Table 4.  
Table 4.  
UL  
CSA  
VDE  
Recognized under 1577 Component  
Recognition Program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Single/basic 2500 V rms isolation voltage  
Reinforced insulation per CSA 60950-1-03 and  
IEC 60950-1, 125 V rms (177 V peak) maximum  
working voltage  
Reinforced insulation, 560 V peak  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 400 V rms (566 V peak) maximum  
working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM125x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 second (current leakage detection limit = 5 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM125x is proof tested by applying an insulation test voltage ≥1050V peak for 1 second (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Value  
Unit  
V rms  
mm  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
1-minute duration  
Measured from input terminals to output  
terminals, shortest distance through air  
Measured from input terminals to output  
terminals, shortest distance path along body  
L(I01)  
L(I02)  
4.90 min  
Minimum External Tracking (Creepage)  
4.01 min  
mm  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Maximum Working Voltage Compatible with  
50 Years Service Life  
VIORM  
565  
V peak Continuous peak voltage across the isolation barrier  
Rev. D | Page 5 of 12  
 
 
 
 
 
 
 
 
 
 
 
ADuM1250/ADuM1251  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective  
circuits. The * marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.  
Table 6.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Safety-Limiting Values  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure  
(see Figure 3)  
VTR  
4000  
V peak  
Case Temperature  
VDD1 + VDD2 Current  
Insulation Resistance at TS  
TS  
ITMAX  
RS  
150  
212  
>109  
°C  
mA  
Ω
VIO = 500 V  
350  
300  
250  
200  
150  
100  
50  
RECOMMENDED OPERATING CONDITIONS  
Table 7.  
Parameter  
Rating  
Operating Temperature (TA)  
A Grade  
−40°C to +105°C  
−40°C to +125°C  
3.0 V to 5.5 V  
5.5 V  
S Grade  
Supply Voltages (VDD1, VDD2  
1
)
Input/Output Signal Voltage  
(VSDA1, VSCL1, VSDA2, VSCL2  
Capacitive Load  
Side 1 (CL1)  
)
40 pF  
0
Side 2 (CL2)  
400 pF  
0
50  
100  
150  
200  
Static Output Loading  
CASE TEMPERATURE (°C)  
Side 1 (ISDA1, ISCL1  
Side 2 (ISDA2, ISCL2  
)
)
0.5 mA to 3 mA  
0.5 mA to 30 mA  
Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values on  
Case Temperature, per DIN V VDE V 0884-10  
1 All voltages are relative to their respective ground. See the Applications  
Information section for data on immunity to external magnetic fields.  
Rev. D | Page 6 of 12  
 
 
 
 
 
 
ADuM1250/ADuM1251  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Parameter  
Rating  
Storage Temperature (TST )  
−55°C to +150°C  
Ambient Operating  
Temperature (TA)  
A Grade  
S Grade  
Supply Voltages (VDD1,VDD2  
−40°C to+105°C  
−40°C to+125°C  
−0.5 V to +7.0 V  
1
)
ESD CAUTION  
Input/Output Voltage,  
1
Side 1 (VSDA1, VSCL1  
Side 2 (VSDA2, VSCL2  
)
−0.5 V to VDD1 + 0.5 V  
−0.5 V to VDD2 + 0.5 V  
1
)
Average Output Current per Pin2  
Side 1 (IO1)  
18 mA  
Side 2 (IO2)  
Common-Mode Transients3  
100 mA  
−100 kV/µs to +100 kV/µs  
1 All voltages are relative to their respective ground.  
2 See Figure 3 for maximum rated current values for various temperatures.  
3 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum rating may cause latch-up  
or permanent damage.  
Rev. D | Page 7 of 12  
 
 
 
 
 
 
ADuM1250/ADuM1251  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
V
DD2  
DD1  
ADuM1250/  
ADuM1251  
TOP VIEW  
(Not to Scale)  
SDA  
SCL  
GND  
SDA  
SCL  
1
1
1
2
2
GND  
2
Figure 4. ADuM1250/ADuM1251 Pin Configuration  
Table 9. ADuM1250 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
SDA1  
SCL1  
GND1  
GND2  
SCL2  
SDA2  
VDD2  
Supply Voltage, 3.0 V to 5.5 V.  
Data Input/Output, Side 1.  
Clock Input/Output, Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Isolated ground reference for Isolator Side 2.  
Clock Input/Output, Side 2.  
Data Input/Output, Side 2.  
Supply Voltage, 3.0 V to 5.5 V.  
Table 10. ADuM1251 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
SDA1  
SCL1  
GND1  
GND2  
SCL2  
SDA2  
VDD2  
Supply Voltage, 3.0 V to 5.5 V.  
Data Input/Output, Side 1.  
Clock Input, Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Isolated ground reference for Isolator Side 2.  
Clock Output, Side 2.  
Data Input/Output, Side 2.  
Supply Voltage, 3.0 V to 5.5 V.  
Rev. D | Page 8 of 12  
 
ADuM1250/ADuM1251  
TEST CONDITIONS  
V
DD2  
V
DD1  
DECODE  
ENCODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
ENCODE  
DECODE  
8
7
6
5
1
2
3
4
R2  
C
R2  
R1  
R1  
L1  
SDA  
2
SDA  
SCL  
GND  
1
1
1
SCL  
2
C
L2  
C
C
GND  
L2  
L1  
2
Figure 5. Timing Test Diagram  
Rev. D | Page 9 of 12  
 
 
ADuM1250/ADuM1251  
APPLICATIONS INFORMATION  
FUNCTIONAL DESCRIPTION  
STARTUP  
The ADuM1250/ADuM1251 interfaces on each side to a  
bidirectional I2C signal. Internally, the I2C interface is split  
into two unidirectional channels communicating in opposing  
directions via a dedicated iCoupler isolation channel for each.  
One channel (the bottom channel of each channel pair shown  
in Figure 6) senses the voltage state of the Side 1 I2C pin and  
transmits its state to its respective Side 2 I2C pin.  
Both the VDD1 and VDD2 supplies have an undervoltage lockout  
feature to prevent the signal channels from operating unless  
certain criteria are met. This avoids the possibility of input logic  
low signals from pulling down the I2C bus inadvertently during  
power-up/power-down.  
The two criteria that must be met in order for the signal  
channels to be enabled are as follows:  
Both the Side 1 and the Side 2 I2C pins are designed to interface  
to an I2C bus operating in the 3.0 V to 5.5 V range. A logic low  
on either causes the opposite pin to be pulled low enough to  
comply with the logic low threshold requirements of other I2C  
devices on the bus. Avoidance of I2C bus contention is ensured  
by an input low threshold at SDA1 or SCL1 guaranteed to be at  
least 50 mV less than the output low signal at the same pin. This  
prevents an output logic low at Side 1 being transmitted back to  
Side 2 and pulling down the I2C bus.  
Both supplies must be at least 2.5 V.  
At least 40 μs must elapse after both supplies exceed the  
internal startup threshold of 2.0 V.  
Until both of these criteria are met for both supplies, the  
ADuM1250/ADuM1251 outputs are pulled high, ensuring a  
startup that avoids any disturbances on the bus. Figure 7 and  
Figure 8 illustrate the supply conditions for fast and slow input  
supply slew rates.  
Since the Side 2 logic levels/thresholds are standard I2C values,  
multiple ADuM1250/ADuM1251 devices connected to a bus by  
their Side 2 pins can communicate with each other and with other  
devices having I2C compatibility. A distinction is made between  
I2C compatibility and I2C compliance. I2C compatibility refers to  
situations in which a component's logic levels do not necessarily  
meet the requirements of the I2C specification but still allow the  
component to communication with an I2C-compliant device.  
I2C compliance refers to situations in which a component's logic  
levels meet the requirements of the I2C specification.  
MINIMUM RECOMMENDED  
OPERATING SUPPLY, 3.0V  
SUPPLY VALID  
MINIMUM VALID SUPPLY, 2.5V  
INTERNAL STARTUP  
THRESHOLD, 2.0V  
40µs  
However, since the Side 1 pin has a modified output level/input  
threshold, this side of the ADuM1250/ADuM1251 can only  
communicate with devices conforming to the I2C standard. In  
other words, Side 2 of the ADuM1250/ADuM1251 is I2C-compliant,  
while Side 1 is only I2C-compatible.  
Figure 7. Start-Up Condition, Supply Slew Rate > 12.5 V/ms  
The output logic low levels are independent of the VDD1 and  
MIN. RECOMMENDED  
OPERATING SUPPLY, 3.0V  
V
DD2 voltages. The input logic low threshold at Side 1 is also  
MIN. VALID SUPPLY, 2.5V  
SUPPLY VALID  
independent of VDD1. However, the input logic low threshold at  
Side 2 is designed to be at 0.3 VDD2, consistent with I2C require-  
ments. The Side 1 and Side 2 pins have open-collector outputs  
whose high levels are set via pull-up resistors to their respective  
supply voltages.  
INTERNAL STARTUP  
THRESHOLD, 2.0V  
40µs  
Figure 8. Start-Up Condition, Supply Slew Rate < 12.5 V/ms  
V
DD2  
V
DECODE  
ENCODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
ENCODE  
DECODE  
8
7
6
5
1
2
3
4
DD1  
R2  
R2  
SDA  
2
SDA  
SCL  
GND  
1
1
1
SCL  
2
C
C
L
GND  
L
2
Figure 6. ADuM1250 Block Diagram  
Rev. D | Page 10 of 12  
 
 
 
 
 
 
ADuM1250/ADuM1251  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse (with  
the worst-case polarity), it reduces the received pulse from >1.0 V  
to 0.75 V. Note that this is still well above the 0.5 V sensing  
threshold of the decoder.  
TYPICAL APPLICATION DIAGRAM  
OPTIONAL  
200  
V
V
DD2  
DD1  
8
7
6
5
ADuM1250  
1
2
3
4
SDA  
2
SDA  
SCL  
GND  
2
2
I C BUS  
1
1
1
SCL  
GND  
2
Figure 9. Typical Isolated I2C Interface Using ADuM1250  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM125x transformers. Figure 11 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown in Figure 11, the ADuM125x is extremely  
immune and can be affected only by extremely large currents  
operated at high frequency and very close to the component.  
For the 1 MHz example, one would have to place a 0.5 kA  
current 5 mm away from the ADuM125x to affect the  
component’s operation.  
Figure 9 shows a typical application circuit including the pull-up  
resistors required for both Side 1 and Side 2 busses. Bypass capacitors  
of between 0.1 μF and 0.01 μF are required between VDD1 to  
GND1 and VDD2 to GND2. The 200 Ω resistor shown in Figure 9  
is required for latch-up immunity if the ambient temperature  
can be between 105°C and 125°C.  
MAGNETIC FIELD IMMUNITY  
The ADuM125x is extremely immune to external magnetic  
fields. The limitation on the ADuM125x magnetic field immunity  
is set by the condition in which induced voltage in the transformers  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under which  
this may occur. The 3 V operating condition of the ADuM125x  
is examined because it represents the most susceptible mode of  
operation.  
1000  
DISTANCE = 1m  
100  
10  
DISTANCE = 100mm  
1
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
DISTANCE = 5mm  
0.1  
V (dβ/dt) r2;n 1,2, ...N  
0.01  
n
1k  
10k  
100k  
1M  
10M  
100M  
where:  
MAGNETIC FIELD FREQUENCY (Hz)  
β is the magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
Figure 11. Maximum Allowable Current for Various  
Current-to-ADuM125x Spacings  
Note that at combinations of strong magnetic fields and high  
frequencies, any loops formed by printed circuit board traces  
can induce sufficiently large error voltages to trigger the threshold  
of succeeding circuitry. Care should be taken in the layout of  
such traces to avoid this possibility.  
Given the geometry of the receiving coil in the ADuM1250 and  
an imposed requirement that the induced voltage is at most 50%  
of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated, as shown in Figure 10.  
100  
10  
1
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 10. Maximum Allowable External Magnetic Flux Density  
Rev. D | Page 11 of 12  
 
 
 
 
 
ADuM1250/ADuM1251  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 12. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters (inches)  
ORDERING GUIDE  
Number  
of Inputs,  
VDD1 Side  
Number  
of Inputs,  
VDD2 Side  
Maximum  
Data Rate  
(Mbps)  
Maximum  
Propagation  
Delay (ns)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model1, 2  
ADuM1250ARZ  
ADuM1250ARZ-RL7  
ADuM1250SRZ  
ADuM1250 SRZ-RL7  
ADuM1250WSRZ  
ADuM1250 WSRZ-RL7  
ADuM1251ARZ  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
150  
150  
150  
150  
150  
150  
150  
150  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +105°C  
−40°C to +105°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADuM1251ARZ-RL7  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADuM1250W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06113-0-7/11(D)  
Rev. D | Page 12 of 12  
 
 
 
 
 
 

相关型号:

ADUM1251

Hot Swappable Dual I2C Isolators
ADI

ADUM1251ARZ

Hot Swappable Dual I2C Isolators
ADI

ADUM1251ARZ-RL7

Hot Swappable Dual I2C Isolators
ADI

ADuM1251WARZ

Hot Swappable, Dual I2C Isolators
ADI

ADuM1251WARZ-RL7

Hot Swappable, Dual I2C Isolators
ADI

ADUM1251_15

Hot Swappable, Dual IC Isolators
ADI

ADUM1280

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280ARZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280ARZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280BRZ

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280BRZ-RL7

3 kV RMS Dual Channel Digital Isolators
ADI

ADUM1280CRZ

3 kV RMS Dual Channel Digital Isolators
ADI