ADUM1402BRWZ [ADI]

Quad-Channel Digital Isolators; 四通道数字隔离器
ADUM1402BRWZ
型号: ADUM1402BRWZ
厂家: ADI    ADI
描述:

Quad-Channel Digital Isolators
四通道数字隔离器

光电二极管
文件: 总24页 (文件大小:1271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel Digital Isolators  
ADuM1400/ADuM1401/ADuM1402  
GENERAL DESCRIPTION  
FEATURES  
Low power operation  
5 V operation  
The ADuM140x are 4-channel digital isolators based on Analog  
Devices’ iCoupler® technology. Combining high speed CMOS  
and monolithic air core transformer technology, these isolation  
components provide outstanding performance characteristics  
superior to alternatives such as optocoupler devices.  
1.0 mA per channel max @ 0 Mbps to 2 Mbps  
3.5 mA per channel max @ 10 Mbps  
31 mA per channel max @ 90 Mbps  
3 V operation  
0.7 mA per channel max @ 0 Mbps to 2 Mbps  
2.1 mA per channel max @ 10 Mbps  
20 mA per channel max @ 90 Mbps  
Bidirectional communication  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with  
optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discretes  
is eliminated with these iCoupler products. Furthermore,  
iCoupler devices consumes one-tenth to one-sixth the power of  
optocouplers at comparable signal data rates.  
3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns max pulse-width distortion  
2 ns max channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
The ADuM140x isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). All models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. In  
addition, the ADuM140x provides low pulse-width distortion  
(<2 ns for CRW grade) and tight channel-to-channel matching  
(<2 ns for CRW grade). Unlike other optocoupler alternatives,  
the ADuM140x isolators have a patented refresh feature that  
ensures dc correctness in the absence of input logic transitions  
and during power-up/power-down conditions.  
Wide body 16-lead SOIC package, Pb-free models available  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA component acceptance notice #5A  
VDE certificate of conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
VIORM = 560 V peak  
APPLICATIONS  
General-purpose multichannel isolation  
SPI® interface/data converter isolation  
RS-232/RS-422/RS-485 transceiver  
Industrial field bus isolation  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
4
5
6
7
8
16  
1
2
3
16  
15  
14  
1
2
3
4
5
6
7
8
16  
V
V
V
V
V
V
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
GND  
15 GND  
GND  
GND  
2
GND  
15 GND  
2
1
IA  
IB  
IC  
2
1
IA  
IB  
IC  
1
IA  
IB  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
14  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
14  
13  
12  
11  
10  
9
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
OA  
OB  
OC  
ID  
OA  
OB  
IC  
13  
12  
11  
10  
9
4
5
6
7
8
13  
12  
11  
10  
9
V
V
OC  
OD  
V
V
OD  
ID  
NC  
GND  
ID  
V
V
E1  
E2  
E1  
E2  
GND  
2
GND  
GND  
2
GND  
GND  
2
1
1
1
Figure 1. ADuM1400 Functional Block Diagram  
Figure 2. ADuM1401 Functional Block Diagram  
Figure 3. ADuM1402 Functional Block Diagram  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADuM1400/ADuM1401/ADuM1402  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
ESD Caution................................................................................ 14  
Pin Configurations and Pin Function Descriptions.................. 15  
Typical Performance Characteristics ........................................... 17  
Application Information................................................................ 19  
PC Board Layout ........................................................................ 19  
Propagation Delay-Related Parameters................................... 19  
DC Correctness and Magnetic Field Immunity........................... 19  
Power Consumption .................................................................. 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 6  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 8  
Package Characteristics ............................................................. 12  
Regulatory Information............................................................. 12  
Insulation and Safety-Related Specifications.......................... 12  
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ............................................................................ 13  
Recommended Operating Conditions .................................... 13  
Absolute Maximum Ratings.......................................................... 14  
REVISION HISTORY  
6/04—Data Sheet Changed from Rev. A to Rev. B.  
Changes to Format .............................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Electrical Characteristics—5 V Operation ............... 3  
Changes to Electrical Characteristics—3 V Operation ............... 5  
Changes to Electrical Characteristics—Mixed 5 V/3 V or  
3 V/5 V Operation ............................................................................ 7  
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2)  
Insulation Characteristics Title..................................................... 11  
Changes to the Ordering Guide.................................................... 19  
5/04—Data Sheet Changed from Rev. 0 to Rev. A.  
Updated Format..................................................................Universal  
Changes to the Features................................................................... 1  
Changes to Table 7 and Table 8..................................................... 14  
Changes to Table 9.......................................................................... 15  
Changes to the DC Correctness and Magnetic Field Immunity  
Section.............................................................................................. 20  
Changes to the Power Consumption Section ............................. 21  
Changes to the Ordering Guide.................................................... 22  
9/03—Revision 0: Initial Version.  
Rev. B | Page 2 of 24  
ADuM1400/ADuM1401/ADuM1402  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max specifications apply over the entire recommended operation range, unless other-  
wise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
Output Supply Current, per Channel, Quiescent  
ADuM1400, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.21 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
0.9  
2.8  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
8.6  
2.6  
10.6 mA  
3.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
76  
21  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
25  
mA  
ADuM1401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.8  
1.2  
2.4  
1.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
7.1  
4.1  
9.0  
5.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
62  
35  
82  
43  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
1.5  
5.6  
49  
2.1  
7.0  
62  
mA  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
–10  
2.0  
+0.01 +10 µA  
V
0 ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.8  
V
V
,
VDD1  
VDD2 – 0.1  
VDD1  
VDD2 – 0.4  
,
5.0  
4.8  
0.0  
0.04 0.1  
0.2 0.4  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
,
V
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
V
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
V
OCL, VODL  
Rev. B | Page 3 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
65  
5
Pulse-Width Distortion, |tPLH – tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM140xBRW  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
32  
5
50  
3
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
Propagation Delay5  
tPHL, tPLH  
PWD  
32  
2
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
10  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
at Logic High Output8  
t
PHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tPZH, tPZL  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/µs  
25  
25  
Common-Mode Transient Immunity  
at Logic Low Output8  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current, per Channel9  
Output Dynamic Supply Current, per Channel9  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
See Notes on next page.  
Rev. B | Page 4 of 24  
ADuM1400/ADuM1401/ADuM1402  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on  
Page 20. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11  
through Figure 14 for total IDD1 and IDD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 20 for guidance on calculating the per-channel sup-  
ply current for a given data rate.  
Rev. B | Page 5 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—3 V OPERATION1  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all min/max specifications apply over the entire recommended operation range, unless other-  
wise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
Output Supply Current, per Channel, Quiescent  
ADuM1400, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.14 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.5  
1.9 mA  
0.9 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
1.4  
6.5 mA  
2.0 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
42  
11  
65  
15  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
0.7  
1.6 mA  
1.2 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.7  
2.2  
5.4 mA  
3.0 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
34  
19  
52  
27  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
0.9  
3.0  
27  
1.5 mA  
4.2 mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
39  
mA  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
–10  
1.6  
+0.01 +10 µA  
V
0 ≤ VIA, VIB, VIC, VID ≤ VDD1 or  
V
DD2, 0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.4  
V
V
V
V
V
V
,
VDD1, VDD2 – 0.1 3.0  
VDD1, VDD2 – 0.4 2.8  
0.0  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
75  
5
Pulse-Width Distortion, |tPLH – tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. B | Page 6 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM140xBRW  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
38  
5
50  
3
ns  
ns  
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
22  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
45  
2
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
16  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
|CMH|  
25  
25  
35  
kV/µs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current, per Channel9 IDDI (D)  
Output Dynamic Supply Current, per Channel9 IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on  
Page 20. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11  
through Figure 14 for total IDD1 and IDD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 20 for guidance on calculating the per-channel sup-  
ply current for a given data rate.  
Rev. B | Page 7 of 24  
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION1  
5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max  
specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at  
TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V; or VDD1 = 5 V, VDD2 = 3.0 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent IDDI (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.50  
0.26  
0.53 mA  
0.31 mA  
Output Supply Current, per Channel, Quiescent IDDO (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
ADuM1400, Total Supply Current, Four Channels2  
0.11  
0.19  
0.14 mA  
0.21 mA  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.2  
1.2  
2.8 mA  
1.9 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.5  
0.9  
0.9 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
8.6  
4.5  
10.6 mA  
6.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.4  
2.6  
2.0 mA  
3.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
76  
42  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
65  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
11  
21  
15  
25  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.8  
1.0  
2.4 mA  
1.6 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.7  
1.2  
1.2 mA  
1.8 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
7.1  
3.7  
9.0 mA  
5.4 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
2.2  
4.1  
3.0 mA  
5.0 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. B | Page 8 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
Parameter  
90 Mbps (CRW Grade Only)  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (90)  
62  
34  
82  
52  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
19  
35  
27  
43  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.5  
0.9  
2.1 mA  
1.5 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.9  
1.5  
1.5 mA  
2.1 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.6  
3.0  
7.0 mA  
4.2 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
3.0  
5.6  
4.2 mA  
7.0 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
49  
27  
62  
39  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
27  
49  
39  
62  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
–10  
+0.01  
+10 µA  
0 ≤ VIA,VIB, VIC,VID ≤ VDD1 or  
V
DD2, 0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
Logic High Output Voltages  
VOAH, VOBH  
,
VDD1  
/
VDD1/VDD2  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
VOCH, VODH  
VDD2 – 0.1  
VDD1  
/
VDD1  
/
V
V
DD2 – 0.4  
VDD2 – 0.2  
Logic Low Output Voltages  
VOAL, VOBL,  
VOCL, VODL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
70  
5
Pulse-Width Distortion, |tPLH – tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. B | Page 9 of 24  
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM140xBRW  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
CL = 15 pF,CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
15  
Propagation Delay5  
tPHL, tPLH  
PWD  
35  
5
50  
3
ns  
ns  
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
22  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
40  
2
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
14  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
tPHZ, tPLH  
tPZH, tPZL  
tR/tf  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/µs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
Input Dynamic Supply Current, per Channel9  
1.2  
1.1  
Mbps  
Mbps  
IDDI (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
Output Dynamic Supply Current, per Channel9 IDDI (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
See Notes on next page.  
Rev. B | Page 10 of 24  
ADuM1400/ADuM1401/ADuM1402  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on Page 20. See Figure 8  
through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 14 for total IDD1 and  
I
DD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides  
of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range  
over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-  
channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 20 for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. B | Page 11 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input-Output)1  
Capacitance (Input-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located  
at center of package  
underside  
θJCO  
28  
1 Device considered a 2-terminal device; Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM140x have been approved by the organizations listed in Table 5.  
Table 5.  
UL1  
CSA  
VDE2  
Recognized under 1577  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN EN 60747-5-2  
(VDE 0884 Part 2): 2003-012  
component recognition program1  
Double insulation, 2500 V rms  
isolation voltage  
Reinforced insulation per  
CSA 60950-1-03 and IEC 60950-1,  
400 V rms maximum working voltage  
Basic insulation, 560 V peak  
Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-  
01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950:2000  
Reinforced insulation, 560 V peak  
File 205078  
File E214100  
File 2471900-4880-0001  
1 In accordance with UL1577, each ADuM140x is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 µA).  
2 In accordance with DIN EN 60747-5-2, each ADuM140x is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection  
limit = 5 pC). A “*” mark branded on the component designates DIN EN 60747-5-2 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
V rms  
1 minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
L(I01)  
L(I02)  
8.40 min mm  
8.10 min mm  
0.017 min mm  
>175  
IIIa  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
V
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. B | Page 12 of 24  
 
 
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS  
Table 7.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I–IV  
I–III  
I–II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
V
IORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VPR  
896  
V peak  
V peak  
V peak  
V
IORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/3  
IORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
672  
V
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
VTR  
4000  
Safety-Limiting Values (Maximum value allowed in the event of a failure; also see  
Thermal Derating Curve, Figure 4)  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Insulation Resistance at TS, VIO = 500 V  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protec-  
tive circuits.  
The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.  
350  
RECOMMENDED OPERATING CONDITIONS  
300  
Table 8.  
250  
Parameter  
Symbol  
Min Max Unit  
SIDE #2  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
TA  
–40 +105 °C  
200  
150  
100  
50  
VDD1, VDD 2 2.7  
5.5  
1.0  
V
ms  
SIDE #1  
1 All voltages are relative to their respective ground.  
See the DC Correctness and Magnetic Field Immunity section on Page 19 for  
information on immunity to external magnetic fields.  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. B | Page 13 of 24  
 
 
ADuM1400/ADuM1401/ADuM1402  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 9.  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Max  
Unit  
°C  
°C  
V
V
V
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages1  
Input Voltage1, 2  
Output Voltage1, 2  
Average Output Current, Per Pin3  
Side 1  
TST  
TA  
+150  
+105  
+7.0  
VDDI + 0.5  
VDDO + 0.5  
VDD1, VDD2  
VIA, VIB, VIC, VID, VE1,VE2  
VOA, VOB, VOC, VOD  
IO1  
IO2  
–18  
–22  
–100  
+18  
+22  
+100  
mA  
mA  
kV/µs  
Side 2  
Common-Mode Transients4  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or perma-  
nent damage.  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions may affect device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Table 10. Truth Table (Positive Logic)  
VIX Input1  
VEX Input2 VDDI State1 VDDO State1 VOX Output1 Notes  
H
L
X
X
H or NC  
H or NC  
L
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
H
L
Z
H
H or NC  
Unpowered Powered  
Outputs return to the input state within 1 µs of VDDI power  
restoration.  
X
X
L
X
Unpowered Powered  
Z
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 µs of VDDO power  
restoration if VEX state is H or NC. Outputs returns to high impedance  
state within 8 ns of VDDO power restoration if VEX state is L.  
1 VIX and VOX refer to the input and output signals of a given channel (A, B, C, or D). VEX refers to the output enable signal on the same side as the VOX outputs. VDDI and  
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEX to an external logic high or low is recommended.  
Rev. B | Page 14 of 24  
 
 
 
 
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
PIN CONFIGURATIONS AND PIN FUNCTION DESCRIPTIONS  
V
V
V
V
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD1  
DD2  
DD1  
DD1  
*GND  
V
GND *  
2
*GND  
V
GND *  
2
*GND  
V
GND *  
2
1
1
ADuM1401  
TOP VIEW  
(Not to Scale)  
ADuM1402  
TOP VIEW  
(Not to Scale)  
1
ADuM1400  
TOP VIEW  
(Not to Scale)  
V
V
V
IA  
IB  
IC  
OA  
IA  
IB  
OA  
IA  
IB  
IC  
ID  
OA  
V
V
V
V
V
V
V
V
V
OB  
OB  
OB  
V
V
V
V
V
OC  
OC  
IC  
OC  
V
V
V
V
OD  
ID  
OD  
ID  
OD  
V
V
V
V
NC  
*GND  
V
E1  
*GND  
E2  
E1  
*GND  
E2  
E2  
GND *  
2
GND *  
2
GND *  
2
1
1
1
NC = NO CONNECT  
Figure 6. ADuM1401 Pin Configuration  
Figure 7. ADuM1402 Pin Configuration  
Figure 5. ADuM1400 Pin Configuration  
*Pins 2 and 8 are internally connected. Connecting both to GND1 is recommended. Pins 9 and 15 are internally connected. Connecting both to GND2 is recommended.  
Output enable Pin 10 on the ADuM1400 may be left disconnected if outputs are to be always enabled. Output enable Pins 7 and 10 on the ADuM1401/ADuM1402  
may be left disconnected if outputs are to be always enabled. In noisy environments, connecting Pin 7 (for ADuM1401 and ADuM1402) and Pin 10 (for all models) to  
an external logic high or low is recommended.  
Table 11. ADuM1400 Pin Function Descriptions  
Pin  
No. Mnemonic Function  
1
2
3
4
5
6
7
8
9
VDD1  
GND1  
VIA  
VIB  
VIC  
VID  
NC  
GND1  
GND2  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
No Connect.  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
10 VE2  
Output Enable 2. Active high logic input. VOA, VOB, VOC, and VOD outputs are enabled when VE2 is high or disconnected. VOA, VOB, VOC, and  
VOD outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is recommended.  
11 VOD  
12 VOC  
13 VOB  
14 VOA  
15 GND2  
16 VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. B | Page 15 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
Table 12. ADuM1401 Pin Function Descriptions  
Pin  
No. Mnemonic Function  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VIC  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOD output is enabled when VE1 ishigh or disconnected. VOD is disabled when VE1 is low. In  
noisy environments, connecting VE1 to an external logic high or low is recommended.  
8
9
GND1  
GND2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
10 VE2  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 ishigh or disconnected. VOA, VOB, and VOC  
outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is recommended.  
11 VID  
Logic Input D.  
12 VOC  
13 VOB  
14 VOA  
15 GND2  
16 VDD2  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Table 13. ADuM1402 Pin Function Descriptions  
Pin  
No. Mnemonic Function  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
VIB  
VOC  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOC and VOD outputs are enabled when VE1 ishigh or disconnected. VOC and VOD outputs are  
disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
8
9
GND1  
GND2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
10 VE2  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 ishigh or disconnected. VOA and VOB outputs are  
disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is recommended.  
11 VID  
Logic Input D.  
12 VIC  
Logic Input C.  
13 VOB  
14 VOA  
15 GND2  
16 VDD2  
Logic Output B.  
Logic Output A.  
Ground 2. Ground Reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. B | Page 16 of 24  
ADuM1400/ADuM1401/ADuM1402  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
15  
10  
5V  
5V  
3V  
3V  
5
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 11. Typical ADuM1400 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
6
5
4
3
20  
15  
10  
10  
5V  
5V  
2
3V  
3V  
5
1
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 12. Typical ADuM1400 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
10  
50  
30  
25  
20  
15  
8
6
4
5V  
5V  
10  
3V  
3V  
2
5
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 13. Typical ADuM1401 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. B | Page 17 of 24  
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
40  
35  
30  
25  
40  
35  
30  
25  
20  
3V  
5V  
15  
10  
3V  
5V  
5
0
–50  
–25  
0
25  
50  
75  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 16. Propagation Delay vs. Temperature, C Grade  
Figure 14. Typical ADuM1401 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
50  
45  
40  
35  
30  
25  
20  
15  
5V  
3V  
10  
5
0
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
Figure 15. Typical ADuM1402 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. B | Page 18 of 24  
 
ADuM1400/ADuM1401/ADuM1402  
APPLICATION INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
The ADuM140x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins  
(Figure 17). Bypass capacitors are most conveniently connected  
between Pins 1 and 2 for VDD1 and between Pins 15 and 16 for  
VDD2. The capacitor value should be between 0.01 µF and 0.1 µF.  
The total lead length between both ends of the capacitor and  
the input power supply pin should not exceed 20 mm. Bypass-  
ing between Pins 1 and 8 and between Pins 9 and 16 should also  
be considered unless the ground pair on each package side is  
connected close to the package.  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent to the decoder via the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than 2 µs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses of more than about 5 µs, the input  
side is assumed to be unpowered or nonfunctional, in which  
case the isolator output is forced to a default state (see Table 10)  
by the watchdog timer circuit.  
V
GND  
V
DD1  
DD2  
GND  
The limitation on the ADuM140xs magnetic field immunity is  
set by the condition in which induced voltage in the transformer’s  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under  
which this may occur. The 3 V operating condition of the  
ADuM140x is examined because it represents the most  
susceptible mode of operation.  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OB  
V
V
IC/OC  
ID/OD  
OC/IC  
OD/ID  
E2  
V
E1  
GND  
GND  
2
1
Figure 17. Recommended Printed Circuit Board Layout  
The pulses at the transformer output have an amplitude greater than  
1.0 V. The decoder has a sensing threshold at about 0.5 V, therefore  
establishing a 0.5 V margin in which induced voltages can be toler-  
ated. The voltage induced across the receiving coil is given by  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isola-  
tion barrier is minimized. Furthermore, the board layout should  
be designed such that any coupling that does occur equally  
affects all pins on a given component side. Failure to ensure this  
could cause voltage differentials between pins exceeding the  
device’s Absolute Maximum Ratings, thereby leading to latch-up  
or permanent damage.  
2
V = (–dβ/dt)rn ; n = 1, 2,…, N  
where:  
β is magnetic flux density (gauss).  
PROPAGATION DELAY-RELATED PARAMETERS  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propaga-  
tion delay to a logic low output may differ from the propagation  
delay to a logic high.  
Given the geometry of the receiving coil in the ADuM140x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 19.  
INPUT (V  
IX  
)
50%  
tPLH  
tPHL  
100.000  
10.000  
1.000  
OUTPUT (V  
)
50%  
OX  
Figure 18. Propagation Delay Parameters  
Pulse-width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
0.100  
Channel-to-channel matching refers to the maximum that  
amount the propagation delay differs between channels within a  
single ADuM140x component.  
0.010  
0.001  
Propagation delay skew refers to the maximum that amount the  
propagation delay differs between multiple ADuM140x compo-  
nents operating under the same conditions.  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
Rev. B | Page 19 of 24  
 
 
 
ADuM1400/ADuM1401/ADuM1402  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from > 1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM140x isola-  
tor is a function of the supply voltage, the channels data rate,  
and the channel’s output load.  
For each input channel, the supply current is given by  
I
I
DDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADuM140x trans-  
formers. Figure 20 expresses these allowable current magnitudes as  
a function of frequency for selected distances. As seen, the  
ADuM140x is extremely immune and can be affected only by ex-  
tremely large currents operated at high frequency, very close to the  
component. For the 1 MHz example noted, one would have to place  
a 0.5 kA current 5 mm away from the ADuM140x to affect the  
component’s operation.  
For each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5fr  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f – fr) + IDDO (Q)  
f > 0.5fr  
where:  
1000.00  
I
DDI (D), IDDO (D) are the input and output dynamic supply currents  
DISTANCE = 1m  
per channel (mA/Mbps).  
100.00  
CL is output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
10.00  
DISTANCE = 100mm  
f is the input logic signal frequency (MHz, half of the input data  
1.00  
rate, NRZ signaling).  
DISTANCE = 5mm  
fr is the input stage refresh rate (Mbps).  
0.10  
0.01  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent sup-  
ply currents (mA).  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
To calculate the total IDD1 and IDD2 supply current, the supply  
currents for each input and output channel corresponding to  
IDD1 and IDD2 are calculated and totaled. Figure 8 and Figure 9  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 10 provides per-  
channel supply current as a function of data rate for a 15 pF  
output condition. Figure 11 through Figure 14 provide total  
IDD1 and IDD2 supply current as a function of data rate for  
ADuM1400/ADuM1401/ADuM1402 channel configurations.  
Figure 20. Maximum Allowable Current  
for Various Current-to-ADuM140x Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
thresholds of succeeding circuitry. Care should be taken in the  
layout of such traces to avoid this possibility.  
Rev. B | Page 20 of 24  
 
 
ADuM1400/ADuM1401/ADuM1402  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
BSC  
0.75 (0.0295)  
× 45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.25 (0.0098)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 21. 16-Lead Standard Small Outline Package [SOIC]  
Wide Body (RW-16)  
Dimension shown in millimeters (inches)  
ORDERING GUIDE  
Number of Number of Maximum Maximum  
Maximum  
Inputs,  
VDD1 Side  
Inputs,  
VDD2 Side  
Data Rate Propagation  
(Mbps) Delay, 5 V (ns) Distortion (ns) Temperature Range (°C)  
Pulse-Width  
Package  
Option1  
Model  
ADuM1400ARW2  
ADuM1400BRW2  
ADuM1400CRW2  
ADuM1400ARWZ2, 3  
ADuM1400BRWZ2, 3  
ADuM1400CRWZ2, 3  
ADuM1401ARW2  
ADuM1401BRW2  
ADuM1401CRW2  
ADuM1401ARWZ2, 3  
ADuM1401BRWZ2, 3  
ADuM1401CRWZ2, 3  
ADuM1402ARW2  
ADuM1402BRW2  
ADuM1402CRW2  
ADuM1402ARWZ2, 3  
ADuM1402BRWZ2, 3  
ADuM1402CRWZ2, 3  
4
0
1
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
4
4
4
4
4
3
3
3
3
3
3
2
2
2
2
2
2
0
0
0
0
0
1
1
1
1
1
1
2
2
2
2
2
2
10  
90  
1
10  
90  
1
10  
90  
1
10  
90  
1
10  
90  
1
10  
90  
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
1 RW-16 = 16-lead wide body SOIC.  
2 Tape and reel are available. The addition of an “-RL” suffix designates a 13” (1,000 units) tape and reel option.  
3 Z = Pb-free part.  
Rev. B | Page 21 of 24  
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
NOTES  
Rev. B | Page 22 of 24  
ADuM1400/ADuM1401/ADuM1402  
NOTES  
Rev. B | Page 23 of 24  
ADuM1400/ADuM1401/ADuM1402  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective owners.  
C03786–0–6/04(B)  
Rev. B | Page 24 of 24  

相关型号:

ADUM1402BRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI

ADUM1402CRW

Quad-Channel Digital Isolators
ADI

ADUM1402CRW-RL

SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16
ADI

ADUM1402CRWZ

Quad-Channel Digital Isolators
ADI

ADUM1402CRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI

ADUM1402CRWZN

Interface Circuit, CMOS, PDSO16
ADI

ADuM1402WSRWZ

Quad-Channel Digital Isolators
ADI

ADUM1402WSRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI

ADUM1402WSRWZ35

Interface Circuit, CMOS, PDSO16
ADI

ADUM1402WSRWZ35-RL

Interface Circuit, CMOS, PDSO16
ADI

ADuM1402WTRWZ

Quad-Channel Digital Isolators
ADI

ADUM1402WTRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI