ADV3200 [ADI]

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch; 300兆赫, 32 × 32缓冲式模拟交叉点开关
ADV3200
型号: ADV3200
厂家: ADI    ADI
描述:

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
300兆赫, 32 × 32缓冲式模拟交叉点开关

开关
文件: 总36页 (文件大小:1070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300 MHz, 32 × 32 Buffered  
Analog Crosspoint Switch  
ADV3200/ADV3201  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VPOS VNEG DVCC DGND  
Large, 32 × 32, nonblocking switch array  
G = +1 (ADV3200) or G = +2 (ADV3201) operation  
Pin-compatible 32 × 16 versions available  
(ADV3202/ADV3203)  
Single 5 V supply, dual 2.5 V supply, or  
dual 3.3 V supply (G = +2)  
Serial programming of switch array  
2:1 OSD insertion mux per output  
Input sync-tip clamp  
High impedance output disable allows connection of  
multiple devices with minimal output bus load  
Excellent video performance  
CLK  
193-BIT SHIFT REGISTER  
193  
DATA  
OUT  
DATA IN  
UPDATE  
CS  
ADV3200  
(ADV3201)  
PARALLEL LATCH  
192  
RESET  
32  
32 × 5:32  
ENABLE/  
BYPASS  
ENABLE/  
DISABLE  
DECODERS  
OUTPUT  
BUFFER  
G = +1  
SYNC-TIP  
CLAMP  
1024  
(G = +2)  
60 MHz, 0.1 dB gain flatness  
0.1% differential gain error (RL = 150 Ω)  
0.1° differential phase error (RL = 150 Ω)  
Excellent ac performance  
SWITCH  
MATRIX  
OSD  
MUX  
.
.
.
.
.
.
.
.
.
.
.
.
32  
INPUTS  
32  
OUTPUTS  
Bandwidth: >300 MHz  
Slew rate: >400 V/μs  
Low power: 1.25 W  
Low all hostile crosstalk of −48 dB @ 5 MHz  
Reset pin allows disabling of all outputs  
Connected through a capacitor to ground, provides  
power-on reset capability  
32  
32  
REFERENCE  
176-lead exposed pad LQFP (24 mm × 24 mm)  
VCLAMP  
OSD  
OSD  
VREF  
INPUTS SWITCHES  
APPLICATIONS  
Figure 1.  
CCTV surveillance  
Routing of high speed signals including  
Composite video (NTSC, PAL, S, SECAM)  
RGB and component video routing  
Compressed video (MPEG, Wavelet)  
Video conferencing  
GENERAL DESCRIPTION  
The ADV3200/ADV3201 are 32 × 32 analog crosspoint switch  
matrices. They feature a selectable sync-tip clamp input for  
ac-coupled applications and an on-screen display (OSD)  
insertion mux. With −48 dB of crosstalk and −80 dB isolation  
at 5 MHz, the ADV3200/ADV3201 are useful in many high  
density routing applications. The 0.1 dB flatness out to 60 MHz  
makes the ADV3200/ADV3201 ideal for composite video  
switching.  
an output bus if building a larger array. The part is available  
in a gain of +1 (ADV3200) or +2 (ADV3201) for ease of use in  
back-terminated load applications. A single 5 V supply, dual  
2.5 V supplies, or dual 3.3 V supplies (G = +2) can be used  
while consuming only 250 mA of idle current with all outputs  
enabled. The channel switching is performed via a double  
buffered, serial digital control, which can accommodate daisy  
chaining of several devices.  
The 32 independent output buffers of the ADV3200/ADV3201  
can be placed into a high impedance state for paralleling cross-  
point outputs so that off channels present minimal loading to  
The ADV3200/ADV3201 are packaged in a 176-lead exposed  
pad LQFP (24 mm × 24 mm) and are available over the  
extended industrial temperature range of −40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
ADV3200/ADV3201  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
I/O Schematics................................................................................ 12  
Typical Performance Characteristics ........................................... 13  
ADV3200..................................................................................... 13  
ADV3201..................................................................................... 20  
Theory of Operation ...................................................................... 27  
Applications Information.............................................................. 29  
Programming.............................................................................. 29  
AC Coupling of Inputs .............................................................. 29  
On-Screen Display (OSD)......................................................... 31  
Decoupling.................................................................................. 31  
Power Dissipation....................................................................... 31  
Crosstalk...................................................................................... 32  
PCB Termination Layout........................................................... 34  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
OSD Disabled................................................................................ 3  
OSD Enabled................................................................................. 4  
Timing Characteristics (Serial Mode) ....................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Power Dissipation......................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Truth Table and Logic Diagram ............................................... 11  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 36  
 
ADV3200/ADV3201  
SPECIFICATIONS  
OSD DISABLED  
VS = 2.5 V (ADV3200), VS = 3.3 V (ADV3201) at TA = 25°C, G = +1 (ADV3200), G = +2 (ADV3201), RL = 150 Ω, all configurations,  
unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
200 mV p-p  
2 V p-p  
0.1 dB, 200 mV p-p  
0.1 dB, 2 V p-p  
1%, 2 V step  
2 V step, peak  
300  
120  
60  
40  
6
MHz  
MHz  
MHz  
MHz  
ns  
Gain Flatness  
Settling Time  
Slew Rate  
400  
V/μs  
NOISE/DISTORTION PERFORMANCE  
Differential Gain Error  
ADV3200  
ADV3201  
Differential Phase Error  
ADV3200  
NTSC or PAL  
NTSC or PAL  
0.06  
0.1  
%
%
0.06  
0.03  
−48  
−65  
−23  
−30  
−80  
Degrees  
Degrees  
dB  
dB  
dB  
ADV3201  
Crosstalk, All Hostile, RTI  
f = 5 MHz, RL = 150 Ω  
f = 5 MHz, RL = 1 kΩ  
f = 100 MHz, RL = 150 Ω  
f = 100 MHz, RL = 1 kΩ  
dB  
dB  
Off Isolation, Input-to-Output, RTI f = 5 MHz, one channel  
Input Voltage Noise  
ADV3200  
ADV3201  
0.1 MHz to 50 MHz  
25  
22  
nV/√Hz  
nV/√Hz  
DC PERFORMANCE  
Gain Error  
ADV3200  
No load (broadcast mode)  
Broadcast mode  
No load (broadcast mode)  
Broadcast mode  
No load, channel-to-channel  
Channel-to-channel  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
1.ꢀ5  
%
%
%
%
%
%
2.2  
2.2  
2.ꢀ  
2.8  
3.4  
ADV3201  
Gain Matching  
OUTPUT CHARACTERISTICS  
Output Impedance  
ADV3200  
DC, enabled  
DC, disabled  
DC, disabled  
Disabled  
0.15  
1000  
4
Ω
900  
3.2  
kΩ  
kΩ  
pF  
ADV3201  
Output Capacitance  
Output Voltage Range  
ADV3200  
3.ꢀ  
−1.1 to +1.1  
−1.5 to +1.5  
−1.5 to +1.5  
−1.2 to +1.2  
−1.6 to +2.0  
−2.0 to +2.0  
V
V
V
ADV3201  
No output load  
No output load  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Input Voltage Range  
ADV3200  
5
30  
mV  
−1.1 to +1.1  
−0.ꢀ5 to +0.ꢀ5  
−0.ꢀ5 to +0.ꢀ5  
−1.2 to +1.2  
−0.8 to +1.0  
−1.0 to +1.0  
V
V
V
ADV3201  
Rev. 0 | Page 3 of 36  
 
ADV3200/ADV3201  
Parameter  
Test Conditions/Comments  
Min  
Typ  
3
4
Max  
Unit  
pF  
MΩ  
μA  
Input Capacitance  
Input Resistance  
Input Bias Current  
1
0.1  
Sync-tip clamp enabled,  
VIN = VCLAMP + 0.1 V  
3
12  
Sync-tip clamp enabled,  
VIN = VCLAMP − 0.1 V  
Sync-tip clamp disabled  
−2.9  
−10  
−1  
−3  
−0.25  
mA  
μA  
SWITCHING CHARACTERISTICS  
Enable On Time  
Switching Time, 2 V Step  
Switching Transient (Glitch)  
POWER SUPPLIES  
50% update to 1% settling  
50% update to 1% settling  
IN00 to IN31, RTI  
50  
40  
300  
ns  
ns  
mV p-p  
Supply Current  
ADV3200  
VPOS or VNEG, outputs enabled, no load  
VPOS or VNEG, outputs disabled  
VPOS or VNEG, outputs enabled, no load  
VPOS or VNEG, outputs disabled  
250  
120  
260  
130  
2.5  
5
300  
155  
310  
165  
3.5  
mA  
mA  
mA  
mA  
mA  
V
ADV3201  
DVCC  
Supply Voltage Range  
VPOS − VNEG  
10% to  
6.6 10%  
PSR  
VNEG, VPOS, f = 1 MHz  
ADV3200  
ADV3201  
−50  
−45  
dB  
dB  
OPERATING TEMPERATURE RANGE  
Temperature Range  
θJA  
Operating (still air)  
Operating (still air)  
−40 to +85  
16  
°C  
°C/W  
OSD ENABLED  
VS = 2.5 V (ADV3200), VS = 3.3 V (ADV3201) at TA = 25°C, G = +1 (ADV3200), G = +2 (ADV3201), RL = 150 Ω, all configurations,  
unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OSD DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
ADV3200  
200 mV p-p  
2 V p-p  
200 mV p-p  
2 V p-p  
0.1 dB, 200 mV p-p  
0.1 dB, 2 V p-p  
1%, 2 V step  
2 V step, peak  
1ꢀ0  
135  
150  
130  
35  
35  
6
400  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
ADV3201  
Gain Flatness  
Settling Time  
Slew Rate  
V/μs  
OSD NOISE/DISTORTION PERFORMANCE  
Differential Gain Error  
ADV3200  
NTSC or PAL  
0.12  
0.35  
%
%
ADV3201  
Differential Phase Error  
ADV3200  
ADV3201  
NTSC or PAL  
0.06  
0.04  
Degrees  
Degrees  
Input Voltage Noise  
ADV3200  
ADV3201  
0.5 MHz to 50 MHz  
2ꢀ  
25  
nV/√Hz  
nV/√Hz  
Rev. 0 | Page 4 of 36  
 
ADV3200/ADV3201  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OSD DC PERFORMANCE  
Gain Error  
ADV3200  
No load  
No load  
0.1  
0.1  
0.1  
0.1  
2.3  
2.ꢀ  
2.2  
2.ꢀ  
%
%
%
%
ADV3201  
OSD INPUT CHARACTERISTICS  
Input Offset Voltage  
Input Bias Current  
5
−4  
30  
mV  
μA  
−10  
OSD SWITCHING CHARACTERISTICS  
OSD Switch Delay, 2 V Step  
OSD Switching Transient (Glitch)  
ADV3200  
50% OSD switch to 1% settling  
20  
ns  
15  
40  
mV p-p  
mV p-p  
ADV3201  
TIMING CHARACTERISTICS (SERIAL MODE)  
Table 3.  
Limit  
Parameter  
Symbol  
Min  
40  
50  
50  
150  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
Serial Data Setup Time  
CLK Pulse Width  
Serial Data Hold Time  
CLK Pulse Separation  
t1  
t2  
t3  
t4  
t5  
t6  
tꢀ  
CLK to UPDATE Delay  
50  
160  
130  
UPDATE Pulse Width  
40  
CLK to DATA OUT Valid  
Propagation Delay, UPDATE to Switch On or Off  
Data Load Time, CLK = 5 MHz, Serial Mode  
RESET Time  
50  
38.6  
160  
1
CS  
0
t2  
t4  
LOAD DATA INTO  
SERIAL REGISTER  
ON RISING EDGE  
1
CLK  
0
t1  
t3  
1
CLAMP  
ON/OFF  
DATA IN  
OUT31 (D5)  
OUT00 (D0)  
0
t5  
t6  
1 = LATCHED  
UPDATE  
TRANSFER DATA FROM SERIAL  
REGISTER TO PARALLEL  
LATCHES DURING LOW LEVEL  
0 = TRANSPARENT  
t7  
DATA OUT  
Figure 2. Timing Diagram, Serial Mode  
Rev. 0 | Page 5 of 36  
 
ADV3200/ADV3201  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
19  
25  
31  
36  
187  
192  
CLK  
DATA IN  
UPDATE  
INCREASING TIME  
T = 0  
Figure 3. Programming Example  
Table 4. Logic Levels, DVCC = 3.3 V  
VIH  
VIL  
VOH  
VOL  
DATA OUT  
IIH  
IIL  
RESET, CS,  
CLK, DATA IN,  
IOH  
IOL  
RESET, CS,  
CLK, DATA IN,  
RESET, CS,  
CLK, DATA IN,  
DATA OUT  
RESET, CS,  
CLK, DATA IN,  
DATA OUT  
DATA OUT  
UPDATE, OSDS UPDATE, OSDS  
UPDATE, OSDS UPDATE, OSDS  
2.5 V min 0.8 V max  
2.ꢀ V min  
0.5 V max  
0.5 μA typ −0.5 μA typ  
3 mA typ  
−3 mA typ  
Rev. 0 | Page 6 of 36  
ADV3200/ADV3201  
ABSOLUTE MAXIMUM RATINGS  
POWER DISSIPATION  
Table 5.  
The ADV3200/ADV3201 are operated with 2.5 V, 5 V, or  
3.3 V supplies and can drive loads down to 150 ꢀ, resulting in  
a large range of possible power dissipations. For this reason,  
extra care must be taken to derate the operating conditions  
based on ambient temperature.  
Parameter  
Rating  
Analog Supply Voltage  
(VPOS − VNEG)  
Digital Supply Voltage  
(DVCC − DGND)  
Ground Potential Difference  
(VNEG − DGND)  
Maximum Potential Difference  
DVCC − VNEG  
Disabled Outputs  
ADV3200 (|VOSD − VOUT|)  
ADV3201  
(|VOSD − (VOUT + VREF)/2|)  
|VCLAMP − VINxx  
VREF Input Voltage  
ADV3200  
ADV3201  
Analog Input Voltage  
Digital Input Voltage  
ꢀ.5 V  
6 V  
+0.5 V to −4 V  
The ADV3200/ADV3201 are packaged in a 176-lead exposed  
pad LQFP. The junction-to-ambient thermal impedance (θJA) of  
the ADV3200/ADV3201 is 16°C/W. For long-term reliability,  
the maximum allowed junction temperature of the die should  
not exceed 150°C. Temporarily exceeding this limit may cause a  
shift in parametric performance due to a change in stresses  
exerted on the die by the package. Exceeding a junction  
temperature of 175°C for an extended period can result in  
device failure. Figure 4 shows the range of allowed internal die  
power dissipations that meet these conditions over the −40°C to  
+85°C ambient temperature range. When using Figure 4, do not  
include external load power in the maximum power calculation,  
but do include load current dropped on the die output  
transistors.  
9.4 V  
<3 V  
<3 V  
|
6 V  
VPOS − 3.5 V to VNEG + 3.5 V  
VPOS − 4 V to VNEG + 4 V  
VNEG to VPOS  
DVCC  
Output Voltage  
(VPOS − 1 V) to (VNEG + 1 V)  
(Disabled Analog Output)  
9
Output Short-Circuit Duration  
Output Short-Circuit Current  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering 10 sec)  
Momentary  
45 mA  
−65°C to +125°C  
−40°C to +85°C  
300°C  
T
= 150°C  
J
8
7
6
5
4
3
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
15  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
THERMAL RESISTANCE  
Figure 4. Maximum Die Power Dissipation vs. Ambient Temperature  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
ESD CAUTION  
Table 6. Thermal Resistance  
Package Type  
θJA  
Unit  
1ꢀ6-Lead LQFP_EP  
16  
°C/W  
Rev. 0 | Page ꢀ of 36  
 
 
 
 
ADV3200/ADV3201  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
DVCC  
OSD00  
VNEG  
OSD11  
OSD12  
OSD13  
OSD14  
OSD15  
OSDS16  
IN16  
OSDS17  
IN17  
OSDS18  
IN18  
OSDS19  
IN19  
OSDS20  
IN20  
OSDS21  
IN21  
OSDS22  
IN22  
OSDS23  
IN23  
OSDS24  
IN24  
OSDS25  
IN25  
OSDS26  
IN26  
OSDS27  
IN27  
OSDS28  
IN28  
OSDS29  
IN29  
OSDS30  
IN30  
PIN 1  
2
3
RESET  
CLK  
DATA IN  
DATA OUT  
4
5
6
7
UPDATE  
CS  
OSDS15  
IN00  
OSDS14  
IN01  
OSDS13  
IN02  
OSDS12  
IN03  
OSDS11  
IN04  
OSDS10  
IN05  
OSDS09  
IN06  
OSDS08  
IN07  
OSDS07  
IN08  
OSDS06  
IN09  
OSDS05  
IN10  
OSDS04  
IN11  
OSDS03  
IN12  
OSDS02  
IN13  
OSDS01  
IN14  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
ADV3200/ADV3201  
TOP VIEW  
(Not to Scale)  
98  
97  
96  
OSDS31  
IN31  
95  
94  
OSDS00  
IN15  
VNEG  
VREF  
VCLAMP  
OSD31  
VPOS  
OSD16  
OSD17  
OSD18  
OSD19  
VNEG  
93  
92  
91  
90  
89  
NOTES  
1. OSDSxx: OSD SELECT FOR OUTxx  
OSDxx: OSD VIDEO INPUT FOR OUTxx  
2. THE EXPOSED PAD SHOULD BE  
CONNECTED TO ANALOG GROUND.  
Figure 5. Pin Configuration  
Rev. 0 | Page 8 of 36  
 
ADV3200/ADV3201  
Table 7. Pin Function Descriptions  
Pin  
Mnemonic  
Description  
Pin  
50  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
60  
61  
62  
63  
64  
65  
66  
6ꢀ  
68  
69  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀꢀ  
ꢀ8  
ꢀ9  
80  
81  
82  
83  
84  
85  
86  
8ꢀ  
88  
89  
90  
91  
92  
93  
94  
95  
96  
9ꢀ  
98  
99  
100  
Mnemonic  
OSD25  
OSD24  
VPOS  
OUT31  
VNEG  
OUT30  
VPOS  
OUT29  
VNEG  
OUT28  
VPOS  
OUT2ꢀ  
VNEG  
OUT26  
VPOS  
OUT25  
VNEG  
OUT24  
VPOS  
OUT23  
VNEG  
OUT22  
VPOS  
OUT21  
VNEG  
OUT20  
VPOS  
OUT19  
VNEG  
OUT18  
VPOS  
OUT1ꢀ  
VNEG  
Description  
1
2
3
DVCC  
Digital Positive Power Supply.  
OSD Input Number 0.  
OSD Input Number 25.  
OSD Input Number 24.  
Analog Positive Power Supply.  
Output Number 31.  
Analog Negative Power Supply.  
Output Number 30.  
Analog Positive Power Supply.  
Output Number 29.  
Analog Negative Power Supply.  
Output Number 28.  
Analog Positive Power Supply.  
Output Number 2ꢀ.  
Analog Negative Power Supply.  
Output Number 26.  
Analog Positive Power Supply.  
Output Number 25.  
Analog Negative Power Supply.  
Output Number 24.  
Analog Positive Power Supply.  
Output Number 23.  
Analog Negative Power Supply.  
Output Number 22.  
Analog Positive Power Supply.  
Output Number 21.  
Analog Negative Power Supply.  
Output Number 20.  
Analog Positive Power Supply.  
Output Number 19.  
Analog Negative Power Supply.  
Output Number 18.  
Analog Positive Power Supply.  
Output Number 1ꢀ.  
Analog Negative Power Supply.  
Output Number 16.  
Analog Positive Power Supply.  
OSD Input Number 23.  
OSD Input Number 22.  
OSD Input Number 21.  
OSD Input Number 20.  
Analog Negative Power Supply.  
OSD Input Number 19.  
OSD Input Number 18.  
OSD Input Number 1ꢀ.  
OSD Input Number 16.  
Analog Positive Power Supply.  
Input Number 31.  
Control Pin: OSD Select Number 31.  
Input Number 30.  
Control Pin: OSD Select Number 30.  
Input Number 29.  
Control Pin: OSD Select Number 29.  
OSD00  
RESET  
CLK  
DATA IN  
DATA OUT  
UPDATE  
CS  
Control Pin: First and Second Rank Reset.  
Control Pin: Serial Data Clock.  
Control Pin: Serial Data In.  
Control Pin: Serial Data Out.  
Control Pin: Second Rank Write Strobe.  
Control Pin: Chip Select.  
4
5
6
8
9
OSDS15  
IN00  
OSDS14  
IN01  
OSDS13  
IN02  
OSDS12  
IN03  
OSDS11  
IN04  
OSDS10  
IN05  
OSDS09  
IN06  
OSDS08  
IN0ꢀ  
OSDS0ꢀ  
IN08  
OSDS06  
IN09  
OSDS05  
IN10  
OSDS04  
IN11  
OSDS03  
IN12  
OSDS02  
IN13  
OSDS01  
IN14  
OSDS00  
IN15  
Control Pin: OSD Select Number 15.  
Input Number 0.  
Control Pin: OSD Select Number 14.  
Input Number 1.  
Control Pin: OSD Select Number 13.  
Input Number 2.  
Control Pin: OSD Select Number 12.  
Input Number 3.  
Control Pin: OSD Select Number 11.  
Input Number 4.  
Control Pin: OSD Select Number 10.  
Input Number 5.  
Control Pin: OSD Select Number 9.  
Input Number 6.  
Control Pin: OSD Select Number 8.  
Input Number ꢀ.  
Control Pin: OSD Select Number ꢀ.  
Input Number 8.  
Control Pin: OSD Select Number 6.  
Input Number 9.  
Control Pin: OSD Select Number 5.  
Input Number 10.  
Control Pin: OSD Select Number 4.  
Input Number 11.  
Control Pin: OSD Select Number 3.  
Input Number 12.  
Control Pin: OSD Select Number 2.  
Input Number 13.  
Control Pin: OSD Select Number 1.  
Input Number 14.  
Control Pin: OSD Select Number 0.  
Input Number 15.  
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
30  
31  
32  
33  
34  
35  
36  
3ꢀ  
38  
39  
40  
41  
42  
OUT16  
VPOS  
OSD23  
OSD22  
OSD21  
OSD20  
VNEG  
OSD19  
OSD18  
OSD1ꢀ  
OSD16  
VPOS  
IN31  
OSDS31  
IN30  
OSDS30  
IN29  
OSDS29  
VNEG  
VREF  
Analog Negative Power Supply.  
Reference Voltage. See the Theory of  
Operation section for details.  
Sync-Tip Clamp Voltage. See the  
Theory of Operation section for details.  
OSD Input Number 31.  
OSD Input Number 30.  
OSD Input Number 29.  
OSD Input Number 28.  
OSD Input Number 2ꢀ.  
OSD Input Number 26.  
43  
VCLAMP  
44  
45  
46  
4ꢀ  
48  
49  
OSD31  
OSD30  
OSD29  
OSD28  
OSD2ꢀ  
OSD26  
Rev. 0 | Page 9 of 36  
ADV3200/ADV3201  
Pin  
101  
102  
103  
104  
105  
106  
10ꢀ  
108  
109  
110  
111  
112  
113  
114  
115  
116  
11ꢀ  
118  
119  
120  
121  
122  
123  
124  
125  
126  
12ꢀ  
128  
129  
130  
131  
132  
133  
134  
135  
136  
13ꢀ  
138  
139  
Mnemonic  
IN28  
OSDS28  
IN2ꢀ  
OSDS2ꢀ  
IN26  
OSDS26  
IN25  
OSDS25  
IN24  
OSDS24  
IN23  
OSDS23  
IN22  
OSDS22  
IN21  
OSDS21  
IN20  
OSDS20  
IN19  
OSDS19  
IN18  
OSDS18  
IN1ꢀ  
Description  
Pin  
140  
141  
142  
143  
144  
145  
146  
14ꢀ  
148  
149  
150  
151  
152  
153  
154  
155  
156  
15ꢀ  
158  
159  
160  
161  
162  
163  
164  
165  
166  
16ꢀ  
168  
169  
1ꢀ0  
1ꢀ1  
1ꢀ2  
1ꢀ3  
1ꢀ4  
1ꢀ5  
1ꢀ6  
Mnemonic  
VPOS  
OUT13  
VNEG  
OUT12  
VPOS  
OUT11  
VNEG  
OUT10  
VPOS  
OUT09  
VNEG  
OUT08  
VPOS  
OUT0ꢀ  
VNEG  
OUT06  
VPOS  
OUT05  
VNEG  
OUT04  
VPOS  
OUT03  
VNEG  
OUT02  
VPOS  
OUT01  
VNEG  
OUT00  
VPOS  
Description  
Input Number 28.  
Control Pin: OSD Select Number 28.  
Input Number 2ꢀ.  
Control Pin: OSD Select Number 2ꢀ.  
Input Number 26.  
Control Pin: OSD Select Number 26.  
Input Number 25.  
Control Pin: OSD Select Number 25.  
Input Number 24.  
Control Pin: OSD Select Number 24.  
Input Number 23.  
Control Pin: OSD Select Number 23.  
Input Number 22.  
Control Pin: OSD Select Number 22.  
Input Number 21.  
Control Pin: OSD Select Number 21.  
Input Number 20.  
Control Pin: OSD Select Number 20.  
Input Number 19.  
Control Pin: OSD Select Number 19.  
Input Number 18.  
Control Pin: OSD Select Number 18.  
Input Number 1ꢀ.  
Control Pin: OSD Select Number 1ꢀ.  
Input Number 16.  
Control Pin: OSD Select Number 16.  
OSD Input Number 15.  
OSD Input Number 14.  
OSD Input Number 13.  
Analog Positive Power Supply.  
Output Number 13.  
Analog Negative Power Supply.  
Output Number 12.  
Analog Positive Power Supply.  
Output Number 11.  
Analog Negative Power Supply.  
Output Number 10.  
Analog Positive Power Supply.  
Output Number 9.  
Analog Negative Power Supply.  
Output Number 8.  
Analog Positive Power Supply.  
Output Number ꢀ.  
Analog Negative Power Supply.  
Output Number 6.  
Analog Positive Power Supply.  
Output Number 5.  
Analog Negative Power Supply.  
Output Number 4.  
Analog Positive Power Supply.  
Output Number 3.  
Analog Negative Power Supply.  
Output Number 2.  
Analog Positive Power Supply.  
Output Number 1.  
Analog Negative Power Supply.  
Output Number 0.  
Analog Positive Power Supply.  
OSD Input Number ꢀ.  
OSD Input Number 6.  
OSDS1ꢀ  
IN16  
OSDS16  
OSD15  
OSD14  
OSD13  
OSD12  
OSD11  
VNEG  
OSD10  
OSD09  
OSD08  
VPOS  
OSD Input Number 12.  
OSD Input Number 11.  
Analog Negative Power Supply.  
OSD Input Number 10.  
OSD Input Number 9.  
OSD Input Number 8.  
Analog Positive Power Supply.  
Output Number 15.  
Analog Negative Power Supply.  
Output Number 14.  
OSD0ꢀ  
OSD06  
OSD05  
OSD04  
OSD03  
OSD02  
OSD01  
DGND  
Exposed Pad  
OSD Input Number 5.  
OSD Input Number 4.  
OSD Input Number 3.  
OSD Input Number 2.  
OSD Input Number 1.  
Digital Negative Power Supply.  
Connect to analog ground.  
OUT15  
VNEG  
OUT14  
Rev. 0 | Page 10 of 36  
ADV3200/ADV3201  
TRUTH TABLE AND LOGIC DIAGRAM  
Table 8. Operation Truth Table  
CS  
X1  
UPDATE  
RESET  
CLK  
DATA IN  
DATA OUT  
Operation/Comment  
X
X
X
X
0
Asynchronous reset. All outputs are disabled. The 193-bit shift  
register is reset to all 0s.  
The data on the serial DATA IN line is loaded into the serial  
register. The first bit clocked into the serial register appears at  
DATA OUT 193 clock cycles later.  
Switch matrix update. Data in the 193-bit shift register is trans-  
ferred into the parallel latches that control the switch array and  
sync-tip clamps.  
0
0
1
1
0
X
Datai2  
Datai-193  
1
1
1
X
X
X
X
X
X
Chip is not selected. No change in logic.  
1 X = don’t care.  
2 Datai: serial data.  
DATA  
IN  
DATA  
OUT  
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
RESET  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
CLR  
CLK  
. . .  
CLK  
CS  
UPDATE  
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
LE  
D
OUT00 OUT00 OUT00 OUT00 OUT00 OUT00 OUT01  
OUT30 OUT31 OUT31 OUT31 OUT31 OUT31 OUT31 OUT31  
SYNC  
0
1
2
3
4
EN  
MSB  
187  
0
EN  
MSB  
7
0
LSB  
6
1
LSB  
5
2
LSB  
4
3
LSB  
3
4
LSB  
2
EN  
MSB  
1
. . .  
TIP  
EN  
0
LSB  
192  
LSB  
191  
LSB  
190  
LSB  
189  
LSB  
188  
LSB  
186  
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR  
Q
CLR Q  
RESET  
DECODE  
1024  
SWITCH MATRIX  
32  
OUTPUT  
ENABLE  
Figure 6. Logic Diagram  
Rev. 0 | Page 11 of 36  
 
 
ADV3200/ADV3201  
I/O SCHEMATICS  
CLK, UPDATE,  
DATA IN,  
1k  
OUT  
OSDS, CS  
25kΩ  
(CS ONLY)  
4k  
(ADV3201 ONLY)  
DGND  
DGND  
VREF  
Figure 7. Enabled Output  
(See Also Figure 16)  
Figure 12. Logic Input  
(See Also Figure 16)  
DVCC  
OUT  
DATA OUT  
4kΩ  
3.7pF  
(ADV3201 ONLY)  
VREF  
DGND  
Figure 8. Disabled Output  
(See Also Figure 16)  
Figure 13. Logic Output  
(See Also Figure 16)  
VREF  
IN  
6k  
VCLAMP  
50µA  
VNEG  
VNEG  
Figure 9. Receiver  
(See Also Figure 16)  
Figure 14. VCLAMP Input  
(See Also Figure 16)  
VPOS  
VPOS  
2.5kΩ  
(5kFOR ADV3201)  
IN  
VREF  
2.5kΩ  
(5kFOR ADV3201)  
5µA  
VNEG  
VNEG  
Figure 10. Receiver with Sync-Tip Clamp Enabled  
(See Also Figure 16)  
Figure 15. VREF Input  
(See Also Figure 16)  
VPOS  
DVCC  
DVCC  
CLK, RESET,  
UPDATE, CS,  
DATA IN,  
DATA OUT,  
OSDS  
25k  
1kΩ  
RESET  
VREF, VCLAMP,  
OSD, IN, OUT  
DGND  
VNEG  
DGND  
Figure 11. Reset Input  
(See Also Figure 16)  
Figure 16. ESD Protection Map  
Rev. 0 | Page 12 of 36  
 
 
 
ADV3200/ADV3201  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADV3200  
VS = 2.5 V at TA = 25°C, RL = 150 ꢀ.  
2
1
2
INxx  
0
5pF  
10pF  
2pF  
–2  
0
–1  
–2  
OSDxx  
0pF  
–4  
–6  
–8  
–3  
–4  
–10  
–12  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. ADV3200 Small Signal Frequency Response, 200 mV p-p  
Figure 20. ADV3200 Large Signal Frequency Response with Capacitive Loads,  
2 V p-p  
2
0
4
2
10pF  
5pF  
2pF  
–2  
–4  
0
–2  
–4  
–6  
–8  
–6  
0pF  
OSDxx  
–8  
INxx  
–10  
–12  
–10  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. ADV3200 Large Signal Frequency Response, 2 V p-p  
Figure 21. ADV3200 OSD Small Signal Frequency Response  
with Capacitive Loads, 200 mV p-p  
2
1
4
10pF  
2
5pF  
2pF  
5pF  
0
10pF  
0
0pF  
2pF  
–2  
–4  
–6  
–8  
0pF  
–1  
–2  
–3  
–4  
–10  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. ADV3200 OSD Large Signal Frequency Response with Capacitive  
Loads, 2 V p-p  
Figure 19. ADV3200 Small Signal Frequency Response with Capacitive Loads,  
200 mV p-p  
Rev. 0 | Page 13 of 36  
 
ADV3200/ADV3201  
600  
90  
80  
70  
60  
50  
40  
30  
20  
10  
500  
400  
300  
200  
100  
0
0
354  
362  
370  
378  
386  
394  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. ADV3200 −3 dB Bandwidth Histogram, One Device,  
All 1024 Channels  
Figure 26. ADV3200 Output Noise  
500  
475  
450  
425  
400  
375  
350  
140  
120  
100  
80  
60  
40  
20  
325  
300  
0
0.001  
0.01  
0.1  
1
10  
NUMBER OF ENABLED CHANNELS  
FREQUENCY (MHz)  
Figure 27. ADV3200 OSD Output Noise  
Figure 24. ADV3200 Small Signal Bandwidth vs. Enabled Channels  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
VNEG  
–30  
VPOS  
–40  
–50  
–60  
–70  
–80  
–100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 28. ADV3200 Crosstalk, One Adjacent Channel, RTO  
Figure 25. ADV3200 Power Supply Rejection  
Rev. 0 | Page 14 of 36  
ADV3200/ADV3201  
0
1M  
100k  
10k  
1k  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
10  
1
1
10  
100  
1k  
0.1  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. ADV3200 Crosstalk, All Hostile, RTO  
Figure 32. ADV3200 Output Impedance, Disabled  
0
100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
1
0.1  
1M  
10M  
100M  
1G  
2
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 33. ADV3200 Output Impedance, Enabled  
Figure 30. ADV3200 Off Isolation, RTO  
0.12  
0.08  
0.04  
0
1M  
100k  
10k  
1k  
–0.04  
–0.08  
–0.12  
100  
10  
1
OSDxx  
INxx  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0.1  
1
10  
100  
1k  
TIME (ns)  
FREQUENCY (MHz)  
Figure 34. ADV3200 Small Signal Pulse Response, 200 mV p-p  
Figure 31. ADV3200 Input Impedance  
Rev. 0 | Page 15 of 36  
ADV3200/ADV3201  
1.2  
0.8  
0.4  
0
600  
400  
200  
RISING EDGE  
0
–0.4  
–0.8  
–1.2  
–200  
–400  
–600  
FALLING EDGE  
INxx  
OSDxx  
14  
0
2
4
6
8
10  
12  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 35. ADV3200 Large Signal Pulse Response, 2 V p-p  
Figure 38. ADV3200 Slew Rate  
2
1
3.5  
2.5  
0.1  
0
UPDATE  
V
RISING EDGE  
OUT  
0
–1  
–2  
1.5  
–0.1  
–0.2  
–0.3  
0.5  
V
FALLING EDGE  
OUT  
–0.5  
100  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
Figure 36. ADV3200 Switching Time  
Figure 39. ADV3200 Switching Glitch  
2
3
2
15  
10  
5
OSDS  
V
RISING EDGE  
OUT  
1
0
1
–1  
–2  
0
0
V
FALLING EDGE  
OUT  
–1  
100  
–5  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
Figure 37. ADV3200 OSD Switching Time  
Figure 40. ADV3200 OSD Switching Glitch  
Rev. 0 | Page 16 of 36  
ADV3200/ADV3201  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.10  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
INPUT DC OFFSET (V)  
INPUT DC OFFSET (V)  
Figure 41. ADV3200 Differential Gain, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Figure 44. ADV3200 OSD Differential Phase, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
0.010  
0.005  
280  
I
, I (BROADCAST)  
POS NEG  
260  
240  
220  
200  
180  
160  
140  
120  
100  
0
–0.005  
–0.010  
–0.015  
I
, I (ALL OUTPUTS DISABLED)  
POS NEG  
–0.020  
–50  
–30  
–10  
10  
30  
50  
70  
90  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
TEMPERATURE (°C)  
INPUT DC OFFSET (V)  
Figure 42. ADV3200 Differential Phase, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Figure 45. ADV3200 Supply Current vs. Temperature  
0.05  
0.03  
300  
275  
250  
225  
200  
0.01  
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
175  
150  
125  
100  
–0.11  
–0.13  
–0.15  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
INPUT DC OFFSET (V)  
NUMBER OF ENABLED OUTPUTS  
Figure 46. ADV3200 Supply Current vs. Enabled Outputs  
Figure 43. ADV3200 OSD Differential Gain, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Rev. 0 | Page 1ꢀ of 36  
ADV3200/ADV3201  
250  
180  
160  
140  
120  
100  
80  
200  
150  
100  
50  
60  
40  
20  
0
0
OFFSET (mV)  
GAIN ERROR (%)  
Figure 47. ADV3200 Input Offset Distribution, One Device, All 1024 Channels  
Figure 50. ADV3200 Gain Error Distribution, One Device, All 1024 Channels  
1.5  
0.15  
4
3
2pF  
10pF  
V
RISING EDGE  
5pF  
OUT  
UPDATE  
0.10  
0.05  
0
1.0  
0.5  
0pF  
2
1
0
0
–0.05  
–0.10  
–0.15  
–0.5  
–1.0  
–1.5  
–1  
V
FALLING EDGE  
OUT  
–2  
100  
0
20  
40  
60  
80  
0
2
4
6
8
10  
TIME (ns)  
12  
14  
16  
18  
20  
TIME (ns)  
Figure 48. ADV3200 Enable Time  
Figure 51. ADV3200 Small Signal Pulse with Capacitive Loads, 200 mV p-p  
0.15  
70  
60  
50  
40  
1.4  
(V  
- V )/V  
IN  
OUT  
IN  
10pF  
1.0  
0.6  
0.2  
0.10  
V
IN  
5pF  
0.05  
0pF  
V
OUT  
2pF  
0
30  
20  
10  
–0.2  
–0.6  
–1.0  
–0.05  
–0.10  
–0.15  
0
–1.4  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–5  
0
5
TIME (ns)  
10  
15  
TIME (ns)  
Figure 49. ADV3200 Settling Time  
Figure 52. ADV3200 OSD Small Signal Pulse with Capacitive Loads,  
200 mV p-p  
Rev. 0 | Page 18 of 36  
ADV3200/ADV3201  
1.5  
1.0  
0.5  
0
2
1
V
= ±1.45V  
IN  
V
= ±1.65V  
IN  
5pF  
10pF  
2pF  
0pF  
0
–1  
–2  
V
@ V = ±1.65V  
IN  
OUT  
V
@ V = ±1.45V  
IN  
OUT  
–0.5  
–1.0  
–1.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
50  
100  
150  
200  
TIME (ns)  
TIME (ns)  
Figure 53. ADV3200 Large Signal Pulse with Capacitive Loads, 2 V p-p  
Figure 55. ADV3200 Overdrive Recovery  
1.5  
5pF  
10pF  
1.0  
2pF  
0pF  
0.5  
0
–0.5  
–1.0  
–1.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
Figure 54. ADV3200 OSD Large Signal Pulse with Capacitive Loads, 2 V p-p  
Rev. 0 | Page 19 of 36  
ADV3200/ADV3201  
ADV3201  
VS = 3.3 V at TA = 25°C, RL = 150 ꢀ.  
8
7
8
6
4
2
10pF  
5pF  
2pF  
6
5
4
INxx  
0pF  
OSDxx  
0
–2  
–4  
3
2
–6  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 56. ADV3201 Small Signal Frequency Response, 200 mV p-p  
Figure 59. ADV3201 Large Signal Frequency Response with Capacitive Loads,  
2 V p-p  
8
6
12  
10  
INxx  
OSDxx  
4
2
8
10pF  
6
5pF  
2pF  
0
–2  
–4  
4
2
0
0pF  
–6  
–2  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 57. ADV3201 Large Signal Frequency Response, 2 V p-p  
Figure 60. ADV3201 OSD Small Signal Frequency Response  
with Capacitive Loads, 200 mV p-p  
8
12  
10pF  
10  
7
5pF  
10pF  
8
6
2pF  
6
5pF  
0pF  
5
4
2
0
2pF  
4
0pF  
3
–2  
2
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 58. ADV3201 Small Signal Frequency Response with Capacitive Loads,  
200 mV p-p  
Figure 61. ADV3201 OSD Large Signal Frequency Response with Capacitive  
Loads, 2 V p-p  
Rev. 0 | Page 20 of 36  
 
ADV3200/ADV3201  
350  
300  
160  
140  
120  
100  
80  
250  
200  
150  
100  
60  
40  
50  
0
20  
0
308  
312  
316  
320  
324  
328  
332  
336  
340  
344  
0.001  
0.01  
0.1  
1
10  
10  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 62. ADV3201 −3 dB Bandwidth Histogram, One Device,  
All 1024 Channels  
Figure 65. ADV3201 Output Noise  
220  
200  
350  
180  
160  
140  
340  
330  
320  
120  
100  
80  
60  
310  
300  
40  
20  
0
0.001  
0.01  
0.1  
1
FREQUENCY (MHz)  
NUMBER OF ENABLED CHANNELS  
Figure 66. ADV3201 OSD Output Noise  
Figure 63. ADV3201 Small Signal Bandwidth vs. Enabled Channels  
0
10  
0
–10  
–20  
–20  
–40  
–60  
–80  
VPOS  
–30  
–40  
VNEG  
–50  
–60  
–70  
–100  
–120  
1
10  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 67. ADV3201 Crosstalk, One Adjacent Channel, RTO  
Figure 64. ADV3201 Power Supply Rejection  
Rev. 0 | Page 21 of 36  
ADV3200/ADV3201  
0
10k  
–20  
1k  
100  
10  
–40  
–60  
–80  
–100  
–120  
1
0.1  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 68. ADV3201 Crosstalk, All Hostile, RTO  
Figure 71. ADV3201 Output Impedance, Disabled  
0
100  
–20  
–40  
–60  
–80  
10  
1
–100  
–120  
0.1  
1M  
10M  
100M  
1G  
2
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 72. ADV3201 Output Impedance, Enabled  
Figure 69. ADV3201 Off Isolation, RTO  
1M  
0.12  
0.08  
0.04  
0
100k  
10k  
1k  
100  
10  
1
–0.04  
–0.08  
–0.12  
OSDxx  
INxx  
0.1  
1
10  
100  
1k  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
TIME (ns)  
Figure 70. ADV3201 Input Impedance  
Figure 73. ADV3201 Small Signal Pulse Response, 200 mV p-p  
Rev. 0 | Page 22 of 36  
ADV3200/ADV3201  
1.2  
0.8  
0.4  
0
600  
400  
200  
0
RISING EDGE  
–0.4  
–0.8  
–1.2  
–200  
FALLING EDGE  
OSDxx  
–400  
–600  
INxx  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
100  
100  
TIME (ns)  
TIME (ns)  
Figure 74. ADV3201 Large Signal Pulse Response, 2 V p-p  
Figure 77. ADV3201 Slew Rate  
2
1
3.5  
2.5  
0.2  
0
UPDATE  
V
RISING EDGE  
OUT  
–0.2  
–0.4  
–0.6  
–0.8  
0
–1  
–2  
1.5  
V
FALLING EDGE  
OUT  
0.5  
–0.5  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
TIME (ns)  
TIME (ns)  
Figure 75. ADV3201 Switching Time  
Figure 78. ADV3201 Switching Glitch  
2
3
2
20  
15  
10  
5
OSDS  
V
RISING EDGE  
OUT  
1
0
0
–5  
1
–10  
–15  
–20  
–1  
–2  
0
V
FALLING EDGE  
OUT  
–25  
–30  
–1  
100  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
TIME (ns)  
TIME (ns)  
Figure 76. ADV3201 OSD Switching Time  
Figure 79. ADV3201 OSD Switching Glitch  
Rev. 0 | Page 23 of 36  
ADV3200/ADV3201  
0.10  
0.05  
0
0.10  
0.05  
0
–0.05  
–0.10  
–0.05  
–0.10  
–0.15  
–0.15  
–0.20  
–0.25  
–0.30  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
INPUT DC OFFSET (V)  
INPUT DC OFFSET (V)  
Figure 80. ADV3201 Differential Gain, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Figure 83. ADV3201 OSD Differential Phase, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
0.05  
0.04  
0.03  
0.02  
0.01  
0
300  
I
, I (BROADCAST)  
POS NEG  
280  
260  
240  
220  
200  
180  
160  
140  
120  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
I
, I (ALL OUTPUTS DISABLED)  
POS NEG  
–50  
–30  
–10  
10  
30  
50  
70  
90  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
TEMPERATURE (°C)  
INPUT DC OFFSET (V)  
Figure 81. ADV3201 Differential Phase, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Figure 84. ADV3201 Supply Current vs. Temperature  
0.1  
0
300  
275  
250  
225  
200  
–0.1  
–0.2  
–0.3  
–0.4  
175  
150  
125  
100  
–0.5  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
0.7  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
INPUT DC OFFSET (V)  
NUMBER OF ENABLED OUTPUTS  
Figure 82. ADV3201 OSD Differential Gain, Carrier Frequency = 3.58 MHz,  
Subcarrier Amplitude = 300 mV p-p  
Figure 85. ADV3201 Supply Current vs. Enabled Outputs  
Rev. 0 | Page 24 of 36  
ADV3200/ADV3201  
350  
140  
120  
100  
80  
300  
250  
200  
150  
100  
60  
40  
20  
0
50  
0
OFFSET (mV)  
GAIN ERROR (%)  
Figure 86. ADV3201 Input Offset Distribution, One Device, All 1024 Channels  
Figure 89. ADV3201 Gain Error Distribution, One Device, All 1024 Channels  
1.5  
0.15  
4
3
10pF  
2pF  
V
RISING EDGE  
OUT  
5pF  
UPDATE  
0.10  
1.0  
0.5  
0pF  
0.05  
2
0
–0.05  
–0.10  
–0.15  
1
0
0
–0.5  
–1.0  
–1.5  
–1  
V
FALLING EDGE  
OUT  
–2  
100  
0
20  
40  
60  
80  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 87. ADV3201 Enable Time  
Figure 90. ADV3201 Small Signal Pulse with Capacitive Loads, 200 mV p-p  
70  
60  
50  
40  
1.4  
0.15  
5pF  
(V  
OUT  
- V )/V  
IN IN  
10pF  
1.0  
0.6  
0.2  
2pF  
0.10  
0.05  
0
V
IN  
V
0pF  
OUT  
30  
20  
10  
–0.2  
–0.6  
–1.0  
–1.4  
–0.05  
–0.10  
–0.15  
0
–5  
0
5
TIME (ns)  
10  
15  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
Figure 91. ADV3201 OSD Small Signal Pulse with Capacitive Loads,  
200 mV p-p  
Figure 88. ADV3201 Settling Time  
Rev. 0 | Page 25 of 36  
ADV3200/ADV3201  
1.5  
3
V
= ±2.3V  
IN  
V
= ±2.1V  
IN  
5pF  
10pF  
1.0  
2
1
2pF  
0pF  
0.5  
V
@ V = ±2.3V  
IN  
OUT  
0
–0.5  
–1.0  
–1.5  
0
V
@ V = ±2.1V  
IN  
OUT  
–1  
–2  
–3  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
50  
100  
150  
200  
TIME (ns)  
TIME (ns)  
Figure 92. ADV3201 Large Signal Pulse with Capacitive Loads, 2 V p-p  
Figure 94. ADV3201 Overdrive Recovery  
1.5  
5pF  
10pF  
1.0  
2pF  
0pF  
0.5  
0
–0.5  
–1.0  
–1.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
Figure 93. ADV3201 OSD Large Signal Pulse with Capacitive Loads, 2 V p-p  
Rev. 0 | Page 26 of 36  
ADV3200/ADV3201  
THEORY OF OPERATION  
The ADV3200/ADV3201 are single-ended crosspoint arrays  
with 32 outputs, each of which can be connected to any one  
of 32 inputs. Thirty-two switchable input stages are connected  
to each output buffer to form 32-to-1 multiplexers. There are 32  
of these multiplexers, each with its inputs wired in parallel, for a  
total array of 1024 stages forming a multicast-capable crosspoint  
switch (see Figure 97).  
In the ADV3201, an internal resistive feedback network and  
reference buffer provide for a total output stage gain of +2 (see  
Figure 96). The input voltage to the reference buffer is the  
VREF pin. This voltage is common to the entire chip and needs  
to be driven from a low impedance source to avoid crosstalk.  
VPOS  
OSDS00  
FROM INPUT  
STAGES  
x1  
OUT00  
In addition to connecting to any of the nominal inputs (INxx),  
each output can also be connected to an associated OSDxx input  
through an additional 2-to-1 multiplexer at each output. This  
2-to-1 multiplexer switches between the output of the 32-to-1  
multiplexer and the OSDxx input.  
VNEG  
VPOS  
OSD00  
2k  
VNEG  
VPOS  
VPOS  
OSDS00  
FROM INPUT  
2kΩ  
STAGES  
VREF  
x1  
OUT00  
VNEG  
VPOS  
VNEG  
OSD00  
Figure 96. Conceptual Diagram of Single Output Channel, G = +2 (ADV3201)  
VNEG  
Each input to the ADV3200/ADV3201 is buffered by a receiver.  
This receiver provides overvoltage protection for the input  
stages by limiting signal swing. In the ADV3200, the output  
of the receiver is limited to 1.2 V about VREF, whereas in the  
ADV3201, the signal swing is limited to 1.2 V about midsupply.  
This receiver is configured as a voltage feedback unity-gain  
amplifier. Excess loop gain bandwidth product reduces the  
effect of the closed-loop gain on the bandwidth of the device.  
Figure 95. Conceptual Diagram of Single Output Channel, G = +1 (ADV3200)  
Decoding logic for each output selects one (or none) of the  
input stages to drive the output stage. The enabled input stage  
drives the output stage, which is configured as a unity-gain  
amplifier in the ADV3200 (see Figure 95).  
ADV3200/ADV3201  
BYPASS SYNC-TIP  
CLAMP  
OPTIONAL  
AC COUPLING  
CAPACITOR  
OUTPUT  
BUFFER  
G = +1 (ADV3200)  
G = +2 (ADV3201)  
INxx  
SWITCH  
MATRIX  
SYNC-TIP  
RECEIVER  
75  
OUTxx  
CLAMP  
75Ω  
75Ω  
GND  
GND  
VCLAMP  
OSDxx OSDSxx  
VREF  
Figure 97. ADV3200/ADV3201 Signal Chain (Single I/O Path)  
Rev. 0 | Page 2ꢀ of 36  
 
 
 
 
 
ADV3200/ADV3201  
In addition to a receiver, each input also has a sync-tip clamp  
for use in ac-coupled applications. All clamps are enabled or  
disabled according to the first serial data bit shifted in during  
programming logic. When enabled, the clamp forces the lowest  
input voltage to the voltage on the VCLAMP pin. The VCLAMP  
pin is common to the entire chip and needs to be driven from a  
low impedance source to avoid crosstalk.  
Care must be taken to reduce output capacitance, which results  
in more overshoot and frequency domain peaking. In addition,  
when the outputs are disabled and driven externally, the voltage  
applied to them must not exceed the valid output swing range  
for the ADV3200/ADV3201 in order to keep these internal  
amplifiers in their linear range of operation. Applying excess  
voltage to the disabled outputs can cause damage to the  
ADV3200/ADV3201 and should be avoided (see the Absolute  
Maximum Ratings section for guidelines).  
VPOS  
VPOS  
VCLAMP  
The internal connection of the ADV3200/ADV3201 is con-  
trolled by a serial logic interface. Serial loading into a first rank  
of latches preprograms each output. A global update signal  
TO INPUT  
RECEIVER  
VNEG  
UPDATE  
(
) moves the programming data into the second rank  
IN00  
OFF-CHIP  
CAPACITOR  
of latches, simultaneously updating all outputs. A serial output  
pin (DATA OUT) allows devices to be daisy chained for single-  
pin programming of multiple ICs. A reset pin is available to  
avoid bus conflicts by disabling all outputs. This reset clears  
both the first and second rank of latches.  
5µA  
Figure 98. Conceptual Diagram of Sync-Tip Clamp in an  
AC-Coupled Application  
The output stage of the ADV3200/ADV3201 is designed for low  
differential gain and phase error when driving composite video  
signals. It also provides slew current for fast pulse response  
when driving component video signals.  
The ADV3200 can operate on a single 5 V supply, powering  
both the signal path (with the VPOS/VNEG supply pins) and  
the control logic interface (with the DVCC/DGND supply  
pins). However, in order to easily interface to ground referenced  
video signals, split supply operation is possible with 2.5 V.  
(The ADV3201 is intended to operate on 3.3 V.) In the case of  
split supplies, a flexible logic interface allows the control logic  
supplies (DVCC/DGND) to be run off 3.3 V/0 V to 5 V/0 V  
while the core remains on split supplies.  
The outputs of the ADV3200/ADV3201 can be disabled to  
minimize on-chip power dissipation. When disabled, a series of  
internal amplifiers drives internal nodes such that a wideband  
high impedance is presented at the disabled output, even when  
the output bus is under large signal swings. (In the ADV3201,  
there is 4 kꢀ of resistance terminated to the VREF voltage by  
the reference buffer.) This high impedance allows multiple ICs  
to be bussed together without additional buffering.  
Rev. 0 | Page 28 of 36  
ADV3200/ADV3201  
APPLICATIONS INFORMATION  
Reset  
PROGRAMMING  
When powering up the ADV3200/ADV3201, it is usually  
desirable to have the outputs come up in the disabled state. The  
The ADV3200/ADV3201 are programmed serially through a  
193-bit serial word that updates the matrix and the state of the  
sync-tip clamps each time the part is programmed.  
RESET  
pin, when taken low, causes all outputs to be disabled.  
UPDATE  
After power-up, the  
pin should be driven high prior  
Serial Programming Description  
RESET  
to raising  
.
The serial programming mode uses the CLK, DATA IN,  
Because the data in the shift register is random after power-up,  
it should not be used to program the matrix, or the matrix can  
enter unknown states. To prevent this, do not apply a logic low  
UPDATE  
CS  
, and  
to select the device for programming. The  
signal should be high during the time that data is shifted into  
UPDATE  
device pins. The first step is to assert a low  
CS  
UPDATE  
on  
UPDATE  
signal to  
initially after power-up. The shift register  
the serial port of the device. If  
is low, the data is still  
UPDATE  
should first be loaded with the desired data, and then  
can be taken low to program the device.  
shifted in, and the transparent, asynchronous latches allow the  
data to reach the matrix. This causes the matrix to try to update  
itself to every intermediate state defined by the shifted-in data.  
RESET  
The  
pin has a 25 kꢀ pull-up resistor to DVCC that can  
be used to create a simple power-on reset circuit. A capacitor  
RESET RESET  
low for some time while  
the rest of the device stabilizes. The low condition causes all the  
outputs to be disabled. The capacitor then charges through the  
pull-up resistor to the high state, thus allowing the full program-  
ming capability of the device.  
The data at DATA IN is clocked in at every rising edge of CLK.  
A total of 193 bits must be shifted in to complete the program-  
ming. For each of the 32 outputs, there are five bits (D4 to D0)  
that determine the source of its input followed by one bit (D5)  
that determines the enabled state of the output. If D5 is low  
(output disabled), the five associated bits (D4 to D0) do not  
matter because no input is switched to that output.  
from  
to ground holds  
CS  
The  
pin has a 25 kꢀ pull-down resistor to DGND.  
The first bit shifted into the logic is used to enable or disable  
the sync-tip clamps. If this bit is low, the sync-tip clamps are  
disabled; otherwise, they are enabled.  
AC COUPLING OF INPUTS  
Using ac-coupled inputs presents a challenge for video systems  
operating from low supply voltages or from a single 5 V supply.  
In NTSC and PAL video systems, 700 mV is the approximate  
difference between the maximum signal voltage and the black  
level, assuming that sync has been stripped. However, as shown  
in Figure 99, a dynamic range of twice the maximum signal  
swing is required if the inputs are to be ac-coupled. A solution  
to this extended requirement for dynamic range is the sync-tip  
clamp feature.  
The sync-tip clamp bit is shifted in first, followed by the most  
significant output address data (OUT31). The enable bit (D5) is  
shifted in first, followed by the input address (D4 to D0) entered  
sequentially with D4 first and D0 last. Each remaining output is  
programmed sequentially, until the least significant output  
UPDATE  
address data is shifted in. At this point,  
can be taken  
low, which causes the device to be programmed according to  
the data that was just shifted in. The second-rank latches are  
WHITE LINE WITH BLACK PIXEL  
UPDATE  
asynchronous and, when  
is low, they are transparent.  
V
REF  
If more than one ADV3200/ADV3201 device is to be serially  
programmed in a system, the DATA OUT signal from one  
device can be connected to the DATA IN of the next device to  
+700mV  
V
AVG  
V
AVG  
–700mV  
V
REF  
BLACK LINE WITH WHITE PIXEL  
+5V  
UPDATE  
form a serial chain. All of the CLK and  
pins should be  
connected in parallel and operated as described previously. The  
serial data is input to the DATA IN pin of the first device of the  
chain, and it ripples through to the last. Therefore, the data for  
the last device in the chain should come at the beginning of the  
programming sequence. The length of the programming sequence  
is 193 bits multiplied by the number of devices in the chain.  
V
V
V
= V  
+ V  
INPUT  
REF  
SIGNAL  
~ V  
REF  
AVG  
V
SIGNAL  
IS A DC VOLTAGE  
REF  
SET BY THE RESISTORS  
GND  
Figure 99. Pathological Case for Input Dynamic Range  
Rev. 0 | Page 29 of 36  
 
 
ADV3200/ADV3201  
The sync-tip clamp is enabled or disabled by the sync-tip clamp  
enable bit in the 193-bit word used to serially program the  
ADV3200/ADV3201. The sync-tip clamp enable bit turns the  
clamp function on or off for all channels; there is no clamp  
on/off control for individual channels. The sync-tip clamp  
function works only with signals that contain sync-tips, such as  
composite video. Signals that do not have sync-tips appear  
distorted if they are run through the clamp function.  
Sync-Tip Clamp for AC-Coupled Inputs  
The ADV3200/ADV3201 sync-tip clamp, when enabled, clamps  
the most negative voltage of the video to equal VCLAMP. This  
provides the correct dc level to the crosspoint switch and  
ensures that, regardless of average picture level, the dynamic  
range requirement is only the maximum input signal swing.  
A basic method for ac coupling the input is to provide a series  
capacitor at the input of the ADV3200/ADV3201. If a termina-  
tion is provided, locate it before the series coupling capacitor.  
Place the series coupling capacitor as close to the input pin as  
possible.  
The range of VCLAMP is −1 V to +0.3 V for the ADV3200  
at 2.5 V operation, and −0.5 V to +0.3 V for the ADV3201  
at 3.3 V operation. If driving VCLAMP externally, refer to  
Figure 14 for the input circuitry. Note that the VCLAMP pin  
has a 6 kꢀ resistor tied to an on-chip VREF buffered voltage  
and a 50 μA current source that sets VCLAMP nominally to  
300 mV below VREF. It is recommended that bypassing be  
added on the VCLAMP pin, because noise and offsets can be  
injected through this pin.  
It is important to choose the correct value for the ac coupling  
capacitor at the input to the ADV3200/ADV3201. Too small a  
value generates unacceptable droop as shown in Figure 100.  
Using a large enough value, such as a 100 nF ac coupling  
capacitor, prevents this droop, as shown in Figure 101.  
0.2  
0.1  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0
–0.1  
–0.2  
–0.3  
–0.4  
0.1  
0
VREF = 0V  
–0.1  
–0.2  
VCLAMP  
–0.3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (µs)  
TIME (µs)  
Figure 100. Video Signal with a 1 nF AC Coupling Capacitor  
Figure 102. Input Video Signal into Sync-Tip Clamp  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
VREF = 0V  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.4  
VCLAMP = –0.5V  
20 30 40  
–0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
50  
60  
70  
80  
90  
100  
TIME (µs)  
TIME (µs)  
Figure 101. Video Signal with a 100 nF AC Coupling Capacitor  
Figure 103. AC-Coupled Video Through ADV3201, Sync-Tip Clamp Enabled  
Rev. 0 | Page 30 of 36  
 
 
ADV3200/ADV3201  
ON-SCREEN DISPLAY (OSD)  
POWER DISSIPATION  
Calculation of Power Dissipation  
The ADV3200/ADV3201 features dedicated 2:1 muxes for each  
of the 32 outputs that allow external video or dc levels to be  
inserted and switched in with the regular input channel. The  
OSD mux switches in 20 ns, allowing for information such as  
text or other picture-on-picture signals to be displayed. The  
OSDSxx pins are the control switches used to switch each  
corresponding OSD mux (high = OSD, low = regular input).  
Pulling OSDSxx high switches the signal that appears at the  
OSDxx input to the corresponding output. Setting OSDSxx  
low switches the signal at INxx to the corresponding output.  
This switching can be done on a pixel-by-pixel basis for each  
scan line, and in this way any video signal, including graphics,  
characters, or text, can be inserted to be displayed at the output.  
The OSD signal must be synchronized to the incoming video  
signal that it is switching between; therefore, the OSDS signal  
must be correctly timed in order to correctly place the OSD  
signal on the horizontal line. In addition, the OSDxx inputs do  
not have the sync-tip clamp feature described in the previous  
section, so the dc level must be set appropriately at the OSDxx  
input.  
9
T
= 150°C  
J
8
7
6
5
4
3
15  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
Figure 104. Maximum Die Power Dissipation vs. Ambient Temperature  
The curve in Figure 104 is calculated from  
TJUNCTION, MAX TAMBIENT  
DECOUPLING  
PD, MAX  
=
(1)  
θJA  
The signal path of the ADV3200/ADV3201 is based on high  
open-loop gain amplifiers with negative feedback. Dominant-  
pole compensation is used on chip to stabilize these amplifiers  
over the range of expected applied swing and load conditions.  
To guarantee this designed stability, proper supply decoupling is  
necessary. Signal-generated currents must return to their sources  
through low impedance paths at all frequencies in which there  
is still loop gain (up to 300 MHz at a minimum). A wideband  
parallel capacitor arrangement is necessary to properly decouple  
the ADV3200/ADV3201.  
For example, if the ADV3200/ADV3201 is enclosed in an environ-  
ment at 45°C (TA), the total on-chip dissipation under all load  
and supply conditions must not be allowed to exceed 6.5 W.  
When calculating on-chip power dissipation, it is necessary to  
include the rms current being delivered to the load, multiplied  
by the rms voltage drop on the ADV3200/ADV3201 output  
devices. For a sinusoidal output, the on-chip power dissipation  
due to the load can be approximated by  
P
D,OUTPUT = (VPOS VOUTPUT,RMS) × IOUTPUT,RMS  
(2)  
The VREF and VCLAMP pins should be considered reference  
pins, not power supply pins, because they are both inputs to  
on-chip buffers. Because the VREF pin is used as a ground  
reference in the ADV3200/ADV3201, care must be taken to  
produce a low noise VREF source over the entire range of  
frequencies of interest.  
For a nonsinusoidal output, the power dissipation should be  
calculated by integrating the on-chip voltage drop multiplied  
by the load current over one period.  
The user can subtract the quiescent current for the Class AB  
output stage when calculating the loaded power dissipation. For  
each output stage driving a load, subtract the quiescent power  
according to  
P
DQ,OUTPUT = (VPOS VNEG) × IOUTPUT,QUIESCENT  
(3)  
where IOUTPUT,QUIESCENT = 0.95 mA for each single-ended output pin.  
For each disabled output, the quiescent power supply current in  
VPOS and VNEG drops by approximately 4 mA.  
Rev. 0 | Page 31 of 36  
 
 
 
 
ADV3200/ADV3201  
VPOS  
When there are many signals in close proximity in a system, as  
is undoubtedly the case in a system that uses the ADV3200/  
ADV3201, the crosstalk issues can be quite complex. A good  
understanding of the nature of crosstalk and some definition of  
terms is required in order to specify a system that uses one or  
more crosspoint devices.  
I
OUTPUT, QUIESCENT  
QNPN  
QPNP  
V
OUTPUT  
I
OUTPUT  
I
OUTPUT, QUIESCENT  
Types of Crosstalk  
Crosstalk can be propagated by any of three means: electric  
field, magnetic field, and sharing of common impedances. This  
section explains these effects.  
VNEG  
Figure 105. Simplified Output Stage  
Example  
Every conductor can be both a radiator of electric fields and a  
receiver of electric fields. The electric field crosstalk mechanism  
occurs when the electric field created by the transmitter  
propagates across a stray capacitance (for example, free space),  
couples with the receiver, and induces a voltage. This voltage is  
an unwanted crosstalk signal in any channel that receives it.  
For the ADV3200, in an ambient temperature of 85°C, with all  
32 outputs driving 1 V rms into 150 ꢀ loads and power supplies  
at 2.5 V, follow these steps:  
1. Calculate the power dissipation of the ADV3200 using data  
sheet quiescent currents. Disregard VDD current, which is  
insignificant.  
Currents flowing in conductors create magnetic fields that  
circulate around the currents. These magnetic fields then  
generate voltages in any other conductors whose paths they  
link. The undesired induced voltages in these other channels are  
crosstalk signals. The channels with crosstalk can be said to  
have a mutual inductance that couples signals from one channel  
to another.  
P
P
D,QUIESCENT = (VPOS × IVPOS) + (VNEG × IVNEG  
)
D,QUIESCENT = (2.5 V × 250 mA) + (2.5 V × 250 mA) = 1.25 W  
2. Calculate the power dissipation from the loads.  
P
P
D,OUTPUT = (VPOS VOUTPUT,RMS) × IOUTPUT,RMS  
D,OUTPUT = (2.5 V – 1 V) × (1 V/150 ꢀ) = 10 mW  
The power supplies, grounds, and other signal return paths  
of a multichannel system are generally shared by the various  
channels. When a current from one channel flows in one of  
these paths, a voltage that is developed across the impedance  
becomes an input crosstalk signal for other channels that share  
the common impedance.  
There are 32 outputs, therefore, 32 output currents.  
nPD,OUTPUT = 32 × 10 mW = 0.32 W  
3. Subtract the quiescent output stage current for the number  
of loads (32 in this example). The output stage is either  
standing or driving a load, but the current needs to be  
counted only once (valid for output voltages > 0.5 V).  
All these sources of crosstalk are vector quantities, so the mag-  
nitudes cannot simply be added together to obtain the total  
crosstalk. In fact, there are conditions where driving additional  
circuits in parallel in a given configuration can actually reduce  
the crosstalk.  
P
P
DQ,OUTPUT = (VPOS VNEG) × IOUTPUT,QUIESCENT  
DQ,OUTPUT = (2.5 V – (–2.5 V)) × (0.95 mA) = 4.75 mW  
There are 32 outputs, therefore, 32 output currents.  
nPDQ,OUTPUT = 32 × 4.75 mW = 0.15 W  
Areas of Crosstalk  
A practical ADV3200/ADV3201 circuit must be mounted to  
some sort of circuit board in order to connect it to power  
supplies and measurement equipment. Great care has been  
taken to create an evaluation board that adds minimum cross-  
talk to the intrinsic device. This, however, raises the issue that  
the crosstalk of a system is the combination of the intrinsic  
crosstalk of the devices and the crosstalk of the circuit board to  
which the devices are mounted. It is important to separate these  
two areas when attempting to minimize the effect of crosstalk.  
4. Verify that the power dissipation does not exceed the  
maximum allowed value.  
P
P
D,ON-CHIP = PD,QUIESCENT + nPD,OUTPUT nPDQ,OUTPUT  
D,ON-CHIP = 1.25 W + 0.32 W − 0.15 W= 1.42 W  
As shown in Figure 104 or Equation 1, this power dissipation is  
below the maximum allowed dissipation for all ambient temper-  
atures up to and including 85°C.  
CROSSTALK  
In addition, crosstalk can occur among the inputs to a cross-  
point switch and among the outputs. It can also occur from  
input to output. Techniques are discussed in the following  
sections for diagnosing which part of a system is contributing  
to crosstalk.  
Many systems, such as broadcast video and KVM switches, that  
handle numerous analog signal channels have strict require-  
ments for keeping the various signals from influencing any of  
the others in the system. Crosstalk is the term used to describe  
the coupling of the signals of other nearby channels to a given  
channel.  
Rev. 0 | Page 32 of 36  
 
ADV3200/ADV3201  
system channels are driven in parallel. In general, this yields the  
worst crosstalk number, but this is not always the case due to  
the vector nature of the crosstalk signal.  
Measuring Crosstalk  
Crosstalk is measured by applying a signal to one or more  
channels and measuring the relative strength of that signal on a  
desired selected channel. The measurement is usually expressed  
as decibels below the magnitude of the test signal. The crosstalk  
is expressed by  
Other useful crosstalk measurements are those created by one  
nearest neighbor or by the two nearest neighbors on either side.  
These crosstalk measurements are generally higher than those  
of more distant channels; therefore, they can serve as a worst-  
case measure for any other one-channel or two-channel crosstalk  
measurements.  
A
SEL (s)  
XT = 20 log10  
(4)  
ATEST (s)  
where:  
s = (Laplace transform variable).  
SEL(s) is the amplitude of the crosstalk induced signal in the  
selected channel.  
TEST(s) is the amplitude of the test signal.  
Input and Output Crosstalk  
Capacitive coupling is voltage-driven (dV/dt) but is generally a  
constant ratio. Capacitive crosstalk is proportional to input or  
output voltage, but this ratio is not reduced by simply reducing  
signal swings. Attenuation factors must be changed by changing  
impedances (lowering mutual capacitance), or destructive  
canceling must be utilized by summing equal and out of phase  
components. For high input impedance devices such as the  
ADV3200/ADV3201, capacitances generally dominate input-  
generated crosstalk.  
A
A
It can be seen that crosstalk is a function of frequency but not a  
function of the magnitude of the test signal (to first order). In  
addition, the crosstalk signal has a phase relative to the test  
signal associated with it.  
A network analyzer is most commonly used to measure cross-  
talk over a frequency range of interest. It can provide both  
magnitude and phase information about the crosstalk signal.  
Inductive coupling is proportional to current (dI/dt) and often  
scales as a constant ratio with signal voltage, but it also shows a  
dependence on impedances (load current). Inductive coupling  
can also be reduced by constructive canceling of equal and out  
of phase fields. In the case of driving low impedance video  
loads, output inductances contribute highly to output crosstalk.  
As a crosspoint system or device grows larger, the number of  
theoretical crosstalk combinations and permutations can become  
extremely large. For example, in the case of the 32 × 32 matrix  
of the ADV3200/ADV3201, note the number of crosstalk terms  
that can be considered for a single channel, for example, the IN00  
input. IN00 is programmed to connect to one of the ADV3200/  
ADV3201 outputs where the measurement can be made.  
The flexible programming capability of the ADV3200/ADV3201  
can be used to diagnose whether crosstalk is occurring more on  
the input side or the output side. Some examples are illustrative.  
A given input pair (IN07 in the middle for this example) can be  
programmed to drive OUT07 (also in the middle). The inputs  
to IN07 are terminated to ground (via 50 ꢀ or 75 ꢀ resistors)  
and no signal is applied.  
First, the crosstalk terms associated with driving a test signal  
into each of the other 31 inputs can be measured one at a time,  
while applying no signal to IN00. Then the crosstalk terms  
associated with driving a parallel test signal into all 31 other  
inputs can be measured two at a time in all possible combina-  
tions, then three at a time, and so on until, finally, there is only  
one way to drive a test signal into all 31 other inputs in parallel.  
All the other inputs are driven in parallel with the same test signal  
(practically provided by a distribution amplifier), with all other  
outputs except OUT07 disabled. Because the grounded IN07  
input is programmed to drive OUT07, no signal should be  
present. Any signal that is present can be attributed to the other  
15 hostile input signals because no other outputs are driven  
(they are all disabled). Thus, this method measures all the  
hostile input contribution to crosstalk into IN07. Of course, this  
method can be used for other input channels and combinations  
of hostile inputs.  
Each of these cases is legitimately different from the others and  
may yield a unique value, depending on the resolution of the  
measurement system, but it is hardly practical to measure all  
these terms and then specify them. In addition, this describes  
the crosstalk matrix for just one input channel. A similar cross-  
talk matrix can be proposed for every other input. In addition,  
if the possible combinations and permutations for connecting  
inputs to the other outputs (not used for measurement) are  
taken into consideration, the numbers quickly grow to astro-  
nomical proportions. If a larger crosspoint array of multiple  
ADV3200/ADV3201 devices is constructed, the numbers grow  
larger still.  
For output crosstalk measurement, a single input channel is  
driven (IN00, for example) and all outputs other than a given  
output (IN07 in the middle) are programmed to connect to  
IN00. OUT07 is programmed to connect to IN15 (far away  
from IN00), which is terminated to ground. Thus OUT07  
should not have a signal present because it is listening to a quiet  
input. Any signal measured at OUT07 can be attributed to the  
output crosstalk of the other 15 hostile outputs. Again, this  
method can be modified to measure other channels and other  
crosspoint matrix combinations.  
Obviously, some subset of all these cases must be selected as a  
guide for a practical measurement of crosstalk. One common  
method is to measure all hostile crosstalk; this means that the  
crosstalk to the selected channel is measured while all other  
Rev. 0 | Page 33 of 36  
ADV3200/ADV3201  
Effect of Impedances on Crosstalk  
must be carefully detailed are grounding, shielding, signal  
routing, and supply bypassing.  
Input side crosstalk can be influenced by the output impedance  
of the sources that drive the inputs. The lower the impedance of  
the drive source, the lower the magnitude of the crosstalk. The  
dominant crosstalk mechanism on the input side is capacitive  
coupling. The high impedance inputs do not have significant  
current flow to create magnetically induced crosstalk. However,  
significant current can flow through the input termination  
resistors and the loops that drive them. Thus, the PCB on the  
input side can contribute to magnetically coupled crosstalk.  
The input and output signals have minimum crosstalk if they  
are located between ground planes on layers above and below  
and are separated by ground in between. Locate vias as close to  
the IC as possible to carry the inputs and outputs to the inner  
layer. The input and output signals surface at the input termin-  
ation resistors and the output series back-termination resistors.  
To the extent possible, separate these signals as soon as they  
emerge from the IC package.  
From a circuit standpoint, the input crosstalk mechanism looks  
like a capacitor coupling to a resistive load. For low frequencies,  
the magnitude of the crosstalk is given by  
PCB TERMINATION LAYOUT  
As frequencies of operation increase, proper routing of trans-  
mission line signals becomes more important. The bandwidth  
of the ADV3200/ADV3201 is large enough so that using high  
impedance routing does not provide a flat in-band frequency  
response for practical signal trace lengths. It is necessary for  
the user to choose a characteristic impedance suitable for the  
application and to properly terminate the input and output  
signals of the ADV3200/ADV3201. Traditionally, video  
applications use 75 ꢀ single-ended environments.  
XT = 20 log10  
where:  
RS is the source resistance.  
[
(RSCM ) × s  
]
(5)  
CM is the mutual capacitance between the test signal circuit and  
the selected circuit.  
s is the Laplace transform variable.  
From the preceding equation, it can be observed that this  
crosstalk mechanism has a high-pass nature; it can also be  
minimized by reducing the coupling capacitance of the input  
circuits and lowering the output impedance of the drivers. If the  
input is driven from a 75 ꢀ terminated cable, the input crosstalk  
can be reduced by buffering this signal with a low output  
impedance buffer.  
For flexibility, the ADV3200/ADV3201 does not contain on-  
chip termination resistors. This flexibility in application comes  
with some board layout challenges. The distance between the  
termination of the input transmission line and the ADV3200/  
ADV3201 die is a high impedance stub and causes reflections  
of the input signal. With some simplification, it can be shown  
that these reflections cause peaking of the input at regular  
intervals in frequency, dependent on the propagation speed (vP)  
of the signal in the chosen board material and the distance (d)  
between the termination resistor and the ADV3200/ADV3201.  
If the distance is great enough, these peaks can occur in band.  
In fact, practical experience shows that these peaks are not  
high-Q, and should be pushed out to three or four times the  
desired bandwidth in order to not have an effect on the signal.  
For a board designer using FR4 (vP = 144 × 106 m/s), this means  
that the ADV3200/ADV3201 input should be placed no farther  
than 2 cm after the termination resistors and, preferably, should  
be placed even closer. Therefore, 2 cm PCB routing equates to  
d = 2 × 10−2 m in the calculations.  
On the output side, the crosstalk can be reduced by driving a  
lighter load. Although the ADV3200/ADV3201 are specified  
with excellent differential gain and phase when driving a  
standard 150 ꢀ video load, the crosstalk will be higher than the  
minimum obtainable due to the high output currents. These  
currents induce crosstalk via the mutual inductance of the  
output pins and bond wires of the ADV3200/ADV3201.  
From a circuit standpoint, the output crosstalk mechanism  
looks like a transformer with a mutual inductance between the  
windings that drives a load resistor. For low frequencies, the  
magnitude of the crosstalk is given by  
s
XT = 20 log10 MXY  
×
(6)  
(
2n +1 ×vP  
)
RL  
fPEAK  
=
(7)  
4d  
where:  
XY is the mutual inductance of Output X to Output Y.  
where n = {0, 1, 2, 3, …}.  
M
In some cases, it is difficult to place the termination close to  
the ADV3200/ADV3201 due to space constraints and large  
RL is the load resistance on the measured output.  
s is the Laplace transform variable.  
resistor footprints. A better solution in this case is to maintain a  
controlled transmission line past the ADV3200/ADV3201  
inputs and to terminate the end of the line. This method is  
known as fly-by termination. The input impedance of the  
ADV3200/ADV3201 is large enough, and the stub length inside  
the package is small enough, that this works well in practice.  
This crosstalk mechanism can be minimized by keeping  
the mutual inductance low and increasing RL. The mutual  
inductance can be kept low by increasing the spacing of the  
conductors and minimizing their parallel length.  
PCB Layout  
Extreme care must be exercised to minimize additional  
crosstalk generated by system circuit boards. The areas that  
Rev. 0 | Page 34 of 36  
 
ADV3200/ADV3201  
transmission line is a stub that should be minimized in length  
and parasitics using the discussed guidelines.  
ADV3200/  
ADV3201  
INxx  
OUTxx  
Although the examples discussed so far are for input termination,  
the theory is similar for output back termination. Taking the  
ADV3200/ADV3201 as an ideal voltage source, any distance of  
routing between the ADV3200/ADV3201 and a back-termination  
resistor is a stub that creates reflections. For this reason, place  
back-termination resistors close to the ADV3200/ADV3201. In  
practice, because back-termination resistors are series elements,  
their footprint in the routing is narrower, and it is easier to place  
them close to the ADV3200/ ADV3201 outputs in board layout.  
75  
Figure 106. Fly-By Input Termination (Grounds for the Two Transmission  
Lines Must Be Tied Together Close to the INxx Pin)  
If multiple ADV3200/ADV3201s are to be driven in parallel, a  
fly-by input termination scheme is very useful, but the distance  
from each ADV3200/ADV3201 input to the driven input  
USB DIGITAL  
FROM PC  
CONTROL  
VPOS VNEG DVCC DGND  
75  
TEST POINT  
OUT[15:0]  
OUT[31], OUT[15:0]  
6
[CLK, DATA IN, DATA OUT,  
UPDATE, CS, RESET]  
75Ω  
CLK, DATA IN, DATA OUT,  
UPDATE, CS, RESET  
PADS FOR  
VCLAMP  
CAPS  
OUT[18:16]  
75Ω  
BNC  
AD8003  
150Ω  
75Ω  
BNC  
IN[2:0], OSD[24:22], OSD[18:16]  
0402  
75Ω  
464Ω  
464Ω  
ADV3200/ADV3201  
75Ω  
75Ω  
RCA  
RCA  
IN[5:3], OSD[21:19]  
0402  
0402  
75Ω  
75Ω  
OUT[21:19]  
75Ω  
RCA  
AD8003  
150Ω  
OSD[27:25]  
464Ω  
464Ω  
50Ω  
SMA  
IN[8:6], OSD[30:28]  
0402  
75Ω  
75Ω  
50Ω  
OUT[24:22]  
OUT[27:25]  
75Ω  
75Ω  
BNC  
RCA  
IN[31:9], OSD[31], OSD[15:0]  
75Ω  
75Ω  
43Ω  
50Ω  
SMA  
OUT[30:28]  
86.6Ω  
VCLAMP OSDS[31:0] VREF  
TEST POINT TEST POINT  
100nF  
10nF  
1nF  
100nF  
10nF  
1nF  
OSDS[18:16]  
BNC  
2kΩ  
OSDS[31:0] TO HIGH SPEED  
BREAKOUT  
1kΩ  
TEST POINT  
OSDS[24:22]  
Figure 107. Evaluation Board Simplified Schematic  
Rev. 0 | Page 35 of 36  
ADV3200/ADV3201  
OUTLINE DIMENSIONS  
26.20  
26.00 SQ  
25.80  
24.10  
24.00 SQ  
23.90  
1.60 MAX  
0.75  
0.60  
0.45  
21.50 REF  
133  
132  
133  
132  
176  
176  
1
1
1.00 REF  
SEATING  
PLANE  
PIN 1  
7.80  
REF  
EXPOSED  
PAD  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
0.15  
0.10  
0.05  
7°  
3.5°  
0°  
BOTTOM VIEW  
(PINS UP)  
44  
44  
89  
89  
0.08  
45  
88  
88  
45  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
VIEW A  
ROTATED 90° CCW  
BSC  
LEAD PITCH  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-BGA-HD  
Figure 108. 176-Lead Low Profile Quad Flat Package [LQFP_EP]  
(SW-176-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADV3200ASWZ1  
ADV3201ASWZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
SW-1ꢀ6-1  
SW-1ꢀ6-1  
1ꢀ6-Lead Low Profile Quad Flat Package [LQFP_EP]  
1ꢀ6-Lead Low Profile Quad Flat Package [LQFP_EP]  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07176-0-10/08(0)  
Rev. 0 | Page 36 of 36  
 
 
 
 
 
 

相关型号:

ADV3200ASWZ

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3201

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3201ASWZ

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3202

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3202ASWZ

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3203

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3203ASWZ

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3205

60 MHz, G = +2, 16 × 16
ADI

ADV3205-EVALZ

60 MHz, G = +2, 16 × 16
ADI

ADV3205JSTZ

60 MHz, G = +2, 16 × 16
ADI

ADV3219

800 MHz, 2:1 Analog Multiplexers
ADI

ADV3219-EVALZ

800 MHz, 2:1 Analog Multiplexers
ADI