ADV7176A_15 [ADI]

High Quality, 10-Bit, Digital CCIR-601 to PAL/NTSC Video Encoder;
ADV7176A_15
型号: ADV7176A_15
厂家: ADI    ADI
描述:

High Quality, 10-Bit, Digital CCIR-601 to PAL/NTSC Video Encoder

文件: 总50页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Quality, 10-Bit, Digital CCIR-601  
to PAL/NTSC Video Encoder  
a
ADV7175A/ADV7176A*  
CCIR and Square Pixel Operation  
FEATURES  
Integrated Subcarrier Locking to External Video Source  
Color Signal Control/Burst Signal Control  
Interlaced/Noninterlaced Operation  
Complete On-Chip Video Timing Generator  
Programmable Multimode Master/Slave Operation  
Macrovision Antitaping Rev 7.01 (ADV7175A Only)**  
Closed Captioning Support  
ITU-R BT601/656 YCrCb to PAL/NTSC Video Encoder  
High Quality 10-Bit Video DACs  
Integral Nonlinearity <1 LSB at 10 Bits  
NTSC-M, PAL-M/N, PAL-B/D/G/H/I  
Single 27 MHz Clock Required (
؋
2 Oversampling)  
80 dB Video SNR  
32-Bit Direct Digital Synthesizer for Color Subcarrier  
Multistandard Video Output Support:  
Composite (CVBS)  
Teletext Insertion Port (PAL-WST)  
Onboard Color Bar Generation  
Onboard Voltage Reference  
Component S-Video (Y/C)  
Component YUV and RGB  
EuroSCART Output (RGB + CVBS/LUMA)  
Video Input Data Port Supports:  
2-Wire Serial MPU Interface (I2C Compatible)  
Single Supply 5 V or 3 V Operation  
Small 44-Lead MQFP Thermally Enhanced Package  
CCIR-656 4:2:2 8-Bit Parallel Input Format  
4:2:2 16-Bit Parallel Input Format  
Full Video Output Drive or Low Signal Drive Capability  
34.7 mA max into 37.5 (Doubly-Terminated 75R)  
5 mA min with External Buffers  
APPLICATIONS  
MPEG-1 and MPEG-2 Video, DVD, Digital Satellite/  
Cable Systems (Set Top Boxes/IRDs), Digital TVs,  
CD Video/Karaoke, Video Games, PC Video/Multimedia  
Programmable Simultaneous Composite  
and S-Video Y/C or RGB (SCART)/YUV Video Outputs  
Programmable Luma Filters (Low-Pass/Notch/Extended)  
Programmable VBI (Vertical Blanking Interval)  
Programmable Subcarrier Frequency and Phase  
Programmable LUMA Delay  
GENERAL DESCRIPTION  
The ADV7175A/ADV7176A is an integrated digital video encoder  
that converts Digital CCIR-601 4:2:2 8 or 16-bit component  
video data into a standard analog baseband television signal  
Individual ON/OFF Control of Each DAC  
(Continued on page 11)  
FUNCTIONAL BLOCK DIAGRAM  
M
U
L
T
I
P
L
E
X
E
R
10  
10  
10  
TELETEXT  
INSERTION  
BLOCK  
TTX  
10-BIT  
DAC  
DAC D (PIN 27)  
DAC C (PIN 26)  
DAC B (PIN 31)  
TTXREQ  
YUV TO  
RBG  
10-BIT  
DAC  
MATRIX  
V
AA  
10-BIT  
DAC  
Y
8
8
8
8
8
8
10  
8
8
8
INTER-  
ADD  
LOW-PASS  
FILTER  
COLOR  
DATA  
POLATOR  
SYNC  
YCrCb  
P7–P0  
4:2:2 TO  
4:4:4  
U
8
10  
10  
TO  
YUV  
INTER-  
POLATOR  
ADD  
BURST  
LOW-PASS  
FILTER  
INTER-  
10  
P15–P8  
10-BIT  
DAC  
MATRIX  
POLATOR  
DAC A (PIN 32)  
V
8
8
INTER-  
POLATOR  
ADD  
BURST  
LOW-PASS  
FILTER  
ADV7175A/ADV7176A  
10  
10  
HSYNC  
REAL-TIME  
CONTROL  
CIRCUIT  
V
REF  
VOLTAGE  
REFERENCE  
CIRCUIT  
2
VIDEO TIMING  
GENERATOR  
FIELD/VSYNC  
I C MPU PORT  
SIN/COS  
DDS BLOCK  
R
SET  
BLANK  
COMP  
SCRESET/RTC  
CLOCK  
SCLOCK SDATA ALSB  
GND  
RESET  
The Macrovision anticopy process is  
licensed for noncommercial home use only, which is its sole intended use in the device. Please contact sales office for latest Macrovision version available.  
NOTE: ITU-R and CCIR are used interchangeably in this document (ITU-R has replaced CCIR recommendations).  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADV7175A/ADV7176A–SPECIFICATIONS  
(V = 5 V ؎ 5%1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless otherwise noted)  
5 V SPECIFICATIONS  
AA  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
1
1
LSB  
LSB  
Differential Nonlinearity  
Guaranteed Monotonic  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Current, IIN  
2
V
V
µA  
µA  
pF  
0.8  
1
50  
3
VIN = 0.4 V or 2.4 V  
VIN = 0.4 V or 2.4 V  
4
Input Capacitance, CIN  
10  
10  
DIGITAL OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
0.4  
10  
Three-State Output Capacitance  
ANALOG OUTPUTS  
Output Current5  
33  
0
34.7  
5
0.6  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current6  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
5
1.4  
15  
IOUT = 0 mA  
30  
VOLTAGE REFERENCE  
Reference Range, VREF  
POWER REQUIREMENTS7  
VAA  
IVREFOUT = 20 µA  
1.112  
4.75  
1.235  
5.0  
1.359  
V
V
5.25  
155  
150  
Normal Power Mode  
IDAC (max)8  
150  
20  
100  
mA  
mA  
mA  
I
DAC (min)8  
9
ICCT  
Low Power Mode  
I
DAC (max)8  
80  
15  
100  
0.01  
mA  
mA  
mA  
%/%  
IDAC (min)8  
9
ICCT  
150  
0.5  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2Temperature range TMIN to TMAX: 0°C to 70°C.  
3All digital input pins except pins RESET and RTC/SCRESET.  
4Excluding all digital input pins except pins RESET and RTC/SCRESET.  
5Full drive into 37.5 load.  
6Minimum drive current (used with buffered/scaled output load).  
7Power measurements are taken with Clock Frequency = 27 MHz. Max TJ = 110°C.  
8IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 37 mA output per DAC) to drive all four DACs. Turning off individual  
DACs reduces IDAC correspondingly.  
9ICCT (Circuit Current) is the continuous current required to drive the device.  
Specifications subject to change without notice.  
–2–  
REV. C  
ADV7175A/ADV7176A  
(V = 3.0 V–3.6 V1, VREF = 1.235 V, RSET = 300 . All specifications TMIN to TMAX2 unless otherwise noted)  
3.3 V SPECIFICATIONS  
AA  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
1
1
LSB  
LSB  
Differential Nonlinearity  
Guaranteed Monotonic  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
0.8  
V
V
µA  
µA  
pF  
3, 4  
Input Current, IIN  
Input Current, IIN  
VIN = 0.4 V or 2.4 V  
VIN = 0.4 V or 2.4 V  
1
50  
3, 5  
Input Capacitance, CIN  
10  
DIGITAL OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current3  
Three-State Output Capacitance3  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
0.4  
V
V
µA  
pF  
10  
10  
ANALOG OUTPUTS3  
Output Current6, 7  
16.5  
0
17.35  
5
2.0  
18.5  
mA  
mA  
%
V
kΩ  
pF  
Output Current8  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
1.4  
30  
15  
IOUT = 0 mA  
POWER REQUIREMENTS3, 9  
VAA  
3.0  
3.3  
3.6  
V
Normal Power Mode  
IDAC (max)10  
150  
20  
45  
155  
mA  
mA  
mA  
I
DAC (min)10  
9
ICCT  
Low Power Mode  
I
DAC (max)10  
75  
15  
45  
0.01  
mA  
mA  
mA  
%/%  
IDAC (min)10  
11  
ICCT  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
NOTES  
11The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V.  
12Temperature range TMIN to TMAX: 0°C to 70°C.  
13 Guaranteed by characterization.  
14All digital input pins except pins RESET and RTC/SCRESET.  
15Excluding all digital input pins except pins RESET and RTC/SCRESET.  
16Full drive into 37.5 load.  
17DACs can output 35 mA typically at 3.3 V (RSET = 150 and RL = 75 ), optimum performance obtained at 18 mA DAC current (RSET = 300 and RL = 150 .  
18Minimum drive current (used with buffered/scaled output load).  
19Power measurements are taken with Clock Frequency = 27 MHz. Max TJ = 110°C.  
10  
I
is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all four DACs. Turning off individual  
DAC  
DACs reduces IDAC correspondingly.  
11  
I
(Circuit Current) is the continuous current required to drive the device.  
CCT  
Specifications subject to change without notice.  
REV. C  
–3–  
ADV7175A/ADV7176A–SPECIFICATIONS  
2
(VAA = 4.75 V–5.25 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX  
unless otherwise noted.)  
5 V DYNAMIC SPECIFICATIONS1  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
Filter Characteristics  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
Passband Cutoff F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
NTSC Mode  
>54 dB Attenuation  
>3 dB Attenuation  
NTSC Mode  
>40 dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>50 dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>40 dB Attenuation  
>3 dB Attenuation  
Normal Power Mode  
Normal Power Mode  
Lower Power Mode  
Lower Power Mode  
RMS  
7.0  
4.2  
MHz  
MHz  
3.2  
2.0  
MHz  
MHz  
7.4  
5.0  
MHz  
MHz  
4.0  
2.4  
MHz  
MHz  
%
Degree  
%
Degree  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degree  
%
Passband Cutoff F3 dB  
Differential Gain4  
0.4  
0.4  
2.0  
1.0  
80  
70  
60  
58  
0.5  
1.0  
0.6  
0.2  
0.4  
0.1  
0.1  
0.6  
2.0  
1.0  
66  
Differential Phase4  
Differential Gain4  
Differential Phase4  
SNR4 (Pedestal)  
SNR4 (Pedestal)  
Peak Periodic  
RMS  
Peak Periodic  
SNR4 (Ramp)  
SNR4 (Ramp)  
Hue Accuracy4  
Color Saturation Accuracy4  
Chroma Nonlinear Gain4  
Chroma Nonlinear Phase4  
Chroma Nonlinear Phase4  
Chroma/Luma Intermod4  
Chroma/Luma Intermod4  
Chroma/Luma Gain Ineq4  
Chroma/Luma Delay Ineq4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
Referenced to 40 IRE  
NTSC  
PAL  
Referenced to 714 mV (NTSC)  
Referenced to 700 mV (PAL)  
%
Degree  
Degree  
%
%
%
ns  
%
dB  
dB  
63  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2Temperature range TMIN to TMAX: 0°C to 70°C.  
3These specifications are for the low-pass filter only and guaranteed by design. For other internal filters, see Figure 4.  
4Guaranteed by characterization.  
Specifications subject to change without notice.  
–4–  
REV. C  
ADV7175A/ADV7176A  
2
(VAA = 3.0 V–3.6 V1, VREF = 1.235 V, RSET = 300 . All specifications TMIN to TMAX  
unless otherwise noted.)  
3.3 V DYNAMIC SPECIFICATIONS1  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
Filter Characteristics  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
Passband Cutoff F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
NTSC Mode  
>54 dB Attenuation  
>3 dB Attenuation  
NTSC Mode  
>40 dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>50 dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>40 dB Attenuation  
>3 dB Attenuation  
Normal Power Mode  
Normal Power Mode  
RMS  
7.0  
4.2  
MHz  
MHz  
3.2  
2.0  
MHz  
MHz  
7.4  
5.0  
MHz  
MHz  
4.0  
2.4  
MHz  
MHz  
%
Degree  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degree  
%
%
dB  
dB  
dB  
Passband Cutoff F3 dB  
Differential Gain4  
0.7  
0.5  
75  
68  
58  
Differential Phase4  
SNR4 (Pedestal)  
SNR4 (Pedestal)  
Peak Periodic  
RMS  
Peak Periodic  
SNR4 (Ramp)  
SNR4 (Ramp)  
56  
Hue Accuracy4  
1.0  
1.2  
1.1  
67  
63  
64  
Color Saturation Accuracy4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
Chroma AM Noise4  
Chroma PM Noise4  
NTSC  
NTSC  
PAL  
PAL  
63  
dB  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V.  
2Temperature range TMIN to TMAX: 0°C to 70°C.  
3These specifications are for the low-pass filter only and guaranteed by design. For other internal filters, see Figure 4.  
4Guaranteed by characterization.  
Specifications subject to change without notice.  
REV. C  
–5–  
ADV7175A/ADV7176A  
(VAA = 4.75 V–5.25 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless  
5 V TIMING SPECIFICATIONS  
otherwise noted.)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MPU PORT3, 4  
SCLOCK Frequency  
0
100  
kHz  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
4.0  
4.7  
4.0  
4.7  
250  
µs  
After This Period the First Clock Is Generated  
Relevant for Repeated Start Condition  
µs  
µs  
ns  
µs  
1
300  
ns  
µs  
4.7  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
5
0
ns  
ns  
CLOCK CONTROL  
AND PIXEL PORT3, 6  
FCLOCK  
27  
MHz  
Clock High Time, t9  
Clock Low Time, t10  
Data Setup Time, t11  
Data Hold Time, t12  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
Digital Output Hold Time, t14  
Pipeline Delay, t15  
8
8
3.5  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
24  
4
37  
Clock Cycles  
TELETEXT PORT3, 7  
Digital Output Access Time, t16  
Data Setup Time, t17  
20  
1
2
ns  
ns  
ns  
Data Hold Time, t18  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
NOTES  
1The max/min specifications are guaranteed over this range.  
2Temperature range TMIN to TMAX: 0°C to 70°C.  
3TTL input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
7Teletext Port consists of the following:  
Teletext Output:  
Teletext Input:  
TTXREQ  
TTX  
Specifications subject to change without notice.  
–6–  
REV. C  
ADV7175A/ADV7176A  
(VAA = 3.0–3.61, VREF = 1.235 V, RSET = 300 . All specifications TMIN to TMAX2 unless  
otherwise noted.)  
3.3 V TIMING SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MPU PORT3, 4  
SCLOCK Frequency  
0
100  
kHz  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
4.0  
4.7  
4.0  
4.7  
250  
µs  
After This Period the First Clock Is Generated  
for Repeated Start Condition  
µs  
µs  
ns  
µs  
1
300  
ns  
µs  
4.7  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
7
0
ns  
ns  
CLOCK CONTROL  
AND PIXEL PORT3, 4, 6, 7  
FCLOCK  
27  
MHz  
Clock High Time, t9  
Clock Low Time, t10  
Data Setup Time, t11  
Data Hold Time, t12  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
Digital Output Hold Time, t14  
Pipeline Delay, t15  
8
8
3.5  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
24  
4
37  
Clock Cycles  
TELETEXT PORT3, 6, 8  
Digital Output Access Time t16  
Data Setup Time, t17  
23  
2
2
ns  
ns  
ns  
Data Hold Time, t18  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
NOTES  
1The max/min specifications are guaranteed over this range.  
2Temperature range TMIN to TMAX: 0oC to 70oC.  
3TTL input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Characterized by design.  
7Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
8Teletext Port consists of the following:  
Teletext Output:  
Teletext Input:  
TTXREQ  
TTX  
Specifications subject to change without notice.  
REV. C  
–7–  
ADV7175A/ADV7176A  
t5  
t3  
t3  
SDATA  
t6  
t1  
SCLOCK  
t2  
t7  
t4  
t8  
Figure 1. MPU Port Timing Diagram  
CLOCK  
t12  
t9  
t10  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
I/PS  
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
Y
t11  
t13  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 2. Pixel and Control Data Timing Diagram  
TTXREQ  
CLOCK  
t16  
t17  
t18  
TTX  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
3 CLOCK  
CYCLES  
Figure 3. Teletext Timing Diagram  
–8–  
REV. C  
ADV7175A/ADV7176A  
PACKAGE THERMAL PERFORMANCE  
ABSOLUTE MAXIMUM RATINGS1  
The 44-MQFP package used for this device takes advantage of  
an ADI patented thermal coastline lead frame construction.  
This maximizes heat transfer into the leads and reduces the  
package thermal resistance.  
VAA to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Voltage on Any Digital Input Pin . GND 0.5 V to VAA + 0.5 V  
Storage Temperature (TS) . . . . . . . . . . . . . . 65°C to +150°C  
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . 150°C  
Lead Temperature (Soldering, 10 secs) . . . . . . . . . . . . 260°C  
Analog Outputs to GND2 . . . . . . . . . . . . . GND 0.5 to VAA  
The junction-to-ambient (θJA) thermal resistance in still air on a  
four-layer PCB is 35.5°C/W. The junction-to-case thermal  
resistance (θJC) is 13.75°C/W.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
2Analog output short circuit to any power supply or common can be of an indefinite  
duration.  
ORDERING GUIDE  
Temperature Package  
Range Description  
Package  
Option  
Model  
ADV7175AKS 0°C to 70°C  
ADV7176AKS 0°C to 70°C  
Plastic Quad Flatpack S-44  
Plastic Quad Flatpack S-44  
PIN CONFIGURATION  
42  
44 43  
PIN 1  
41 40 39 38 37 36 35 34  
1
2
33  
32  
V
V
AA  
REF  
DAC A  
IDENTIFIER  
P5  
P6  
3
31 DAC B  
V
30  
4
P7  
AA  
5
29 GND  
P8  
ADV7175A/ADV7176A  
V
6
MQFP  
28  
27  
P9  
AA  
DAC D  
TOP VIEW  
(Not to Scale)  
7
P10  
P11  
P12  
GND  
8
26 DAC C  
25 COMP  
24 SDATA  
9
10  
11  
V
23  
SCLOCK  
AA  
13  
12  
14 15 16 17 18 19  
21 22  
20  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADV7175A/ADV7176A feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–9–  
ADV7175A/ADV7176A  
PIN FUNCTION DESCRIPTIONS  
Input/  
Pin  
No.  
Mnemonic  
Output  
Function  
1, 11, 20,  
28, 30  
10, 19, 21,  
29, 43  
VAA  
P
Power Supply (3 V to 5 V).  
Ground Pin.  
GND  
G
15  
HSYNC  
I/O  
HSYNC (Modes 1 and 2) Control Signal. This pin may be configured to  
output (Master Mode) or accept (Slave Mode) Sync signals.  
16  
FIELD/VSYNC  
I/O  
I/O  
Dual Function FIELD (Mode 1) and VSYNC (Mode 2) Control Signal. This  
pin may be configured to output (Master Mode) or accept (Slave Mode)  
these control signals.  
17  
BLANK  
Video Blanking Control Signal. The pixel inputs are ignored when this is  
logic level 0.This signal is optional.  
18  
22  
ALSB  
RESET  
I
I
TTL Address Input. This signal sets up the LSB of the MPU address.  
The input resets the on chip timing generator and sets the ADV7175A/  
ADV7176A into default mode. This is NTSC operation, Timing Slave Mode  
0, 8-bit operation, 2 × composite and S-Video out and all DACs powered on.  
23  
24  
25  
SCLOCK  
SDATA  
COMP  
I
I/O  
O
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
Compensation Pin. Connect a 0.1 µF capacitor from COMP to VAA. For  
Optimum Dynamic Performance in Low Power Mode, the value of the  
COMP capacitor can be lowered to as low as 2.2 nF.  
26  
27  
31  
32  
DAC C  
DAC D  
DAC B  
DAC A  
O
O
O
O
RED/S-Video C/V Analog Output.  
GREEN/S-Video Y/Y Analog Output.  
BLUE/Composite/U Analog Output.  
PAL/NTSC Composite Video Output. Full-Scale Output is 180IRE (1286  
mV) for NTSC and 1300 mV for PAL.  
33  
34  
VREF  
RSET  
I/O  
I
Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
A 150 resistor connected from this pin to GND is used to control full-scale  
amplitudes of the video signals.  
35  
SCRESET/RTC  
I
This pin can be configured as an input by setting MR22 and MR21 of Mode  
Register 2. It can be configured as a subcarrier reset pin, in which case a low-  
to-high transition on this pin will reset the subcarrier to Field 0. Alternatively  
it may be configured as a Real Time Control (RTC) input.  
36  
37  
TTXREQ/GND  
TTX/VAA  
O
I
Teletext Data Request Signal/Defaults to GND when Teletext not selected  
(enables backward compatibility to ADV7175/ADV7176).  
Teletext Data/Defaults to VAA when Teletext not selected (enables backward  
compatibility to ADV7175/ADV7176).  
3842  
P0P15  
I
8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7P0) or  
29, 1214  
16-Bit YCrCb Pixel Port (P0P15). P0 represents the LSB.  
44  
CLOCK  
I
TTL Clock Input. Requires a stable 27 MHz reference Clock for standard  
operation. Alternatively, a 24.5454 MHz (NTSC) or 29.5 MHz (PAL) can be  
used for square pixel operation.  
–10–  
REV. C  
ADV7175A/ADV7176A  
(Continued from page 1)  
DATA PATH DESCRIPTION  
For PAL B, D, G, H, I, M, N and NTSC M modes, YCrCb  
4:2:2 data is input via the CCIR-656 compatible pixel port at a  
27 MHz Data Rate. The pixel data is demultiplexed to from  
three data paths. Y typically has a range of 16 to 235, Cr and  
Cb typically have a range of 128 112; however, it is pos-  
sible to input data from 1 to 254 on both Y, Cb and Cr. The  
ADV7175A/ADV7176A supports PAL (B, D, G, H, I, N, M)  
and NTSC (with and without Pedestal) standards. The appropri-  
ate SYNC, BLANK and Burst levels are added to the YCrCb  
data. Macrovision antitaping (ADV7175A only), closed caption-  
ing and teletext levels are also added to Y, and the resultant  
data is interpolated to a rate of 27 MHz. The interpolated data  
is filtered and scaled by three digital FIR filters.  
compatible with worldwide standards. The 4:2:2 YUV video  
data is interpolated to two times the pixel rate. The color-  
difference components (UV) are quadrature modulated using  
a subcarrier frequency generated by an on-chip 32-bit digital  
synthesizer (also running at two times the pixel rate). The two  
times pixel rate sampling allows for better signal-to-noise-ratio.  
A 32-bit DDS with a 10-bit look-up table produces a superior  
subcarrier in terms of both frequency and phase. In addition to  
the composite output signal, there is the facility to output S-  
Video (Y/C) video, YUV or RGB video. The Y/C, YUV or RGB  
format is simultaneously available at the analog outputs with the  
composite video signal.  
Each analog output is capable of driving the full video-level  
(35 mA) signal into an unbuffered, doubly terminated 75 Ω  
load. With external buffering, the user has the additional option  
to scale back the DAC output current to 5 mA min, thereby signifi-  
cantly reducing the power dissipation of the device.  
The U and V signals are modulated by the appropriate subcarrier  
sine/cosine phases and added together to make up the chromi-  
nance signal. The luma (Y) signal can be delayed 13 luma  
cycles (each cycle is 74 ns) with respect to the chroma signal.  
The luma and chroma signals are then added together to make  
up the composite video signal. All edges are slew rate limited.  
The ADV7175A/ADV7176A also supports both PAL and NTSC  
square pixel operation.  
The YCrCb data is also used to generate RGB data with  
appropriate SYNC and BLANK levels. The RGB data is in  
synchronization with the composite video output. Alternatively  
analog YUV data can be generated instead of RGB.  
The output video frames are synchronized with the incoming  
data timing reference codes. Optionally the encoder accepts  
(and can generate) HSYNC, VSYNC and FIELD timing signals.  
These timing signals can be adjusted to change pulsewidth and  
position while the part is in the master mode. The encoder  
requires a single two times pixel rate (27 MHz) clock for standard  
operation. Alternatively, the encoder requires a 24.5454 MHz  
clock for NTSC or 29.5 MHz clock for PAL square pixel  
mode operation. All internal timing is generated on-chip.  
The four 10-bit DACs can be used to output:  
1. Composite Video + RGB Video.  
2. Composite Video + YUV Video  
3. Two Composite Video Signals + LUMA and CHROMA  
3. (Y/C) Signals.  
A separate teletext port enables the user to directly input teletext  
data during the vertical blanking interval.  
Alternatively, each DAC can be individually powered off if  
not required.  
The ADV7175A/ADV7176A modes are set up over a two-wire  
serial bidirectional port (I2C Compatible) with two slave addresses.  
Video output levels are illustrated in Appendix 4 and Appendix 5.  
INTERNAL FILTER RESPONSE  
Functionally the ADV7175A and ADV7176A are the same with  
the exception that the ADV7175A can output the Macrovision  
anticopy algorithm.  
The Y filter supports several different frequency responses,  
including two 4.5 MHz/5.0 MHz low pass responses, PAL/  
NTSC subcarrier notch responses and a PAL/NTSC extended  
response. The U and V filters have a 2/2.4 MHz low-pass  
response for NTSC/PAL. These filter characteristics are illus-  
trated in Figures 4 to 12.  
The ADV7175A/ADV7176A is packaged in a 44-lead thermally  
enhanced MQFP package.  
PASSBAND  
CUTOFF (MHz)  
PASSBAND  
RIPPLE (dB)  
STOPBAND  
CUTOFF (MHz)  
STOPBAND  
ATTENUATION (dB)  
F
3dB  
FILTER SELECTION  
MR04  
MR03  
NTSC  
PAL  
NTSC  
PAL  
NTSC/PAL  
NTSC  
PAL  
0
0
0
0
1
1
1
0
0
1
1
0
1
1
2.3  
3.4  
1.0  
1.4  
4.0  
2.3  
3.4  
0.026  
0.098  
0.085  
0.107  
0.150  
0.054  
0.106  
7.0  
7.3  
3.57  
4.43  
7.5  
>54  
4.2  
5.0  
2.1  
2.7  
5.65  
4.2  
5.0  
>50  
>27.6  
>29.3  
>40  
>54  
>50.3  
7.0  
7.3  
Figure 4. Luminance Internal Filter Specifications  
PASSBAND  
CUTOFF (MHz)  
PASSBAND  
RIPPLE (dB)  
STOPBAND  
CUTOFF (MHz)  
STOPBAND  
ATTENUATION (dB)  
ATTENUATION @  
1.3MHz (dB)  
F
3dB  
FILTER SELECTION  
NTSC  
PAL  
1.0  
1.3  
0.085  
0.04  
3.2  
4.0  
>
40  
40  
0.3  
0.02  
2.05  
2.45  
>
Figure 5. Chrominance Internal Filter Specifications  
–11–  
REV. C  
ADV7175A/ADV7176A  
0
10  
20  
0
10  
TYPE A  
20  
30  
40  
50  
60  
30  
40  
50  
60  
TYPE B  
10  
0
2
4
6
8
10  
12  
0
2
4
6
8
12  
FREQUENCY MHz  
FREQUENCY MHz  
Figure 9. PAL Notch Filter  
Figure 6. NTSC Low-Pass Filter  
0
10  
20  
0
10  
20  
30  
40  
50  
60  
30  
40  
50  
60  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY MHz  
FREQUENCY MHz  
Figure 10. NTSC/PAL Extended Mode Filter  
Figure 7. NTSC Notch Filter  
0
0
10  
20  
10  
TYPE B  
20  
30  
40  
50  
60  
30  
40  
50  
60  
TYPE A  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY MHz  
FREQUENCY MHz  
Figure 11. NTSC UV Filter  
Figure 8. PAL Low-Pass Filter  
–12–  
REV. C  
ADV7175A/ADV7176A  
0
10  
20  
SUBCARRIER RESET  
Together with the SCRESET/RTC PIN and Bits MR22 and  
MR21 of Mode Register 2, the ADV7175A/ADV7176A can be  
used in subcarrier reset mode. The subcarrier will reset to  
Field 0 at the start of the following field when a low to high  
transition occurs on this input pin.  
30  
40  
50  
60  
REAL TIME CONTROL  
Together with the SCRESET/RTC PIN and Bits MR22 and  
MR21 of Mode Register 2, the ADV7175A/ADV7176A can be  
used to lock to an external video source. The real time control  
mode allows the ADV7175A/ADV7176A to automatically alter  
the subcarrier frequency to compensate for line length variation.  
When the part is connected to a device that outputs a digital  
datastream in the RTC format (such as an ADV7185 video  
decoder [see Figure 13]), the part will automatically change to  
the compensated subcarrier frequency on a line by line basis.  
This digital datastream is 67 bits wide and the subcarrier is  
contained in Bits 0 to 21. Each bit is two clock cycles long.  
00HEX should be written to all four subcarrier frequency regis-  
ters when using this mode.  
0
2
4
6
8
10  
12  
FREQUENCY MHz  
Figure 12. PAL UV Filter  
COLOR BAR GENERATION  
The ADV7175A/ADV7176A can be configured to generate  
100/7.5/75/7.5 for NTSC color bars or 100/0/75/0 for PAL  
color bars. These are enabled by setting MR17 of Mode Reg-  
ister 1 to Logic 1.”  
VIDEO TIMING DESCRIPTION  
The ADV7175A/ADV7176A is intended to interface to off-  
the-shelf MPEG1 and MPEG2 Decoders. Consequently, the  
ADV7175A/ADV7176A accepts 4:2:2 YCrCb Pixel Data via a  
CCIR-656 pixel port and has several video timing modes of  
operation that allow it to be configured as either system master  
video timing generator or a slave to the system video timing  
generator. The ADV7175A/ADV7176A generates all of the  
required horizontal and vertical timing periods and levels for the  
analog video outputs.  
SQUARE PIXEL MODE  
The ADV7175A/ADV7176A can be used to operate in square  
pixel mode. For NTSC operation an input clock of 24.5454 MHz  
is required. Alternatively an input clock of 29.5 MHz is required  
for PAL operation. The internal timing logic adjusts accordingly  
for square pixel mode operation.  
COLOR SIGNAL CONTROL  
The color information can be switched on and off the video  
output using Bit MR24 of Mode Register 2.  
The ADV7175A/ADV7176A calculates the width and place-  
ment of analog sync pulses, blanking levels and color burst  
envelopes. Color bursts are disabled on appropriate lines, and  
serration and equalization pulses are inserted where required.  
BURST SIGNAL CONTROL  
The burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
In addition the ADV7175A/ADV7176A supports a PAL or  
NTSC square pixel operation in slave mode. The part requires  
an input pixel clock of 24.5454 MHz for NTSC and an input  
pixel clock of 29.5 MHz for PAL. The internal horizontal line  
counters place the various video waveform sections in the cor-  
rect location for the new clock frequencies.  
NTSC PEDESTAL CONTROL  
The pedestal on both odd and even fields can be controlled on a  
line-by-line basis using the NTSC Pedestal Control Registers.  
This allows the pedestals to be controlled during the vertical  
blanking interval (Lines 10 to 25 and Lines 273 to 288).  
The ADV7175A/ADV7176A has four distinct master and four  
distinct slave timing configurations. Timing Control is estab-  
lished with the bidirectional SYNC, BLANK and FIELD/  
VSYNC pins. Timing Mode Register 1 can also be used to vary  
the timing pulsewidths and where they occur in relation to  
each other.  
PIXEL TIMING DESCRIPTION  
The ADV7175A/ADV7176A can operate in either 8-bit or  
16-bit YCrCb Mode.  
8-Bit YCrCb Mode  
This default mode accepts multiplexed YCrCb inputs through  
the P7-P0 pixel inputs. The inputs follow the sequence Cb0, Y0  
Cr0, Y1 Cb1, Y2, etc. The Y, Cb and Cr data are input on a  
rising clock edge.  
16-Bit YCrCb Mode  
This mode accepts Y inputs through the P7P0 pixel inputs and  
multiplexed CrCb inputs through the P15P8 pixel inputs. The  
data is loaded on every second rising edge of CLOCK. The inputs  
follow the sequence Cb0, Y0 Cr0, Y1 Cb1, Y2, etc.  
REV. C  
–13–  
ADV7175A/ADV7176A  
CLOCK  
LLC1  
SCRESET/RTC  
GLL  
COMPOSITE  
VIDEO  
e.g., VCR  
OR CABLE  
GREEN/LUMA/Y  
RED/CHROMA/V  
P7P0  
VIDEO  
DECODER  
ADV7185  
P19P12  
BLUE/COMPOSITE/U  
HSYNC  
COMPOSITE  
VSYNC/FIELD  
ADV7175A/ADV7176A  
SEQUENCE  
RESERVED  
2
BIT  
H/LTRANSITION  
COUNT START  
RESET  
4 BITS  
RESERVED  
5 BITS  
RESERVED  
3
BIT  
LOW  
128  
14 BITS  
RESERVED  
1
FSCPLL INCREMENT  
0
0
13  
21  
RTC  
TIME SLOT: 01  
6768  
14  
19  
NOT USED IN  
ADV7175A/ADV7176A  
VALID  
INVALID  
8/LLC  
SAMPLE SAMPLE  
NOTES:  
1
F
PLL INCREMENT IS 22 BITS LONG, VALUED LOADED INTO ADV7175A/ADV7176A FSC DDS REGISTER IS  
SC  
F
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUB CARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD  
SC  
BE WRITTEN TO THE SUB CARRIER FREQUENCY REGISTERS OF THE ADV7175A/ADV7176A.  
2
3
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE.  
RESET BIT  
RESET ADV7175A/ADV7176As DDS.  
Figure 13. RTC Timing and Connections  
Vertical Blanking Data Insertion  
It is possible to allow encoding of incoming YCbCr data on those lines of VBI that do not bear line sync or pre/post-equalization  
pulses (see Figures 15 to 26). This mode of operation is called Partial Blankingand is selected by setting MR31 to 1. It allows the  
insertion of any VBI data (Opened VBI) into the encoded output waveform. This data is present in digitized incoming YCbCr data  
stream (e.g., WSS data, CGMS, VPS, etc.). Alternatively, the entire VBI may be blanked (no VBI data inserted) on these lines by  
setting MR31 to 0.  
Mode 0 (CCIR-656): Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0)  
The ADV7175A/ADV7176A is controlled by the SAV (Start Active Video) and EAV (End Active Video) time codes in the pixel  
data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately  
before and after each line during active picture and retrace. Mode 0 is illustrated in Figure 14. The HSYNC, FIELD/VSYNC and  
BLANK (if not used) pins should be tied high during this mode.  
–14–  
REV. C  
ADV7175A/ADV7176A  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
C
b
C
b
8
0
0
0
F
F
F
F
A A  
B B  
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
INPUT PIXELS  
Y
Y
Y
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LlNES/60Hz)  
268 CLOCK  
1440 CLOCK  
1440 CLCOK  
PAL SYSTEM  
(625 LINES/50Hz)  
280 CLOCK  
END OF ACTIVE  
VIDEO LINE  
START OF ACTIVE  
VIDEO LINE  
Figure 14. Timing Mode 0 (Slave Mode)  
Mode 0 (CCIR-656): Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1)  
The ADV7175A/ADV7176A generates H, V and F signals required for the SAV (Start Active Video) and EAV (End Active Video)  
time codes in the CCIR-656 standard. The H bit is output on the HSYNC pin, the V bit is output on the BLANK pin, and the F bit  
is output on the FIELD/VSYNC pin. Mode 0 is illustrated in Figure 15 (NTSC) and Figure 16 (PAL). The H, V and F transitions  
relative to the video waveform are illustrated in Figure 17.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
ODD FIELD  
EVEN FIELD  
F
Figure 15. Timing Mode 0 (NTSC Master Mode)  
REV. C  
–15–  
ADV7175A/ADV7176A  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
335  
336  
318  
334  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD EVEN FIELD  
Figure 16. Timing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 17. Timing Mode 0 Data Transitions (Master Mode)  
–16–  
REV. C  
ADV7175A/ADV7176A  
Mode 1: Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 0)  
In this mode the ADV7175A/ADV7176A accepts horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD input  
when HSYNC is low indicates a new frame i.e., vertical retrace. The BLANK signal is optional. When the BLANK input is disabled  
the ADV7175A/ADV7176A automatically blanks all normally blank lines. Mode 1 is illustrated in Figure 18 (NTSC) and Fig-  
ure 19 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 18. Timing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 19. Timing Mode 1 (PAL)  
REV. C  
–17–  
ADV7175A/ADV7176A  
Mode 1: Master Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 1)  
In this mode the ADV7175A/ADV7176A can generate horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD  
input when HSYNC is low indicates a new frame i.e., vertical retrace. The BLANK signal is optional. When the BLANK input is  
disabled, the ADV7175A/ADV7176A automatically blanks all normally blank lines. Pixel data is latched on the rising clock edge  
following the timing signal transitions. Mode 1 is illustrated in Figure 18 (NTSC) and Figure 19 (PAL). Figure 20 illustrates the  
HSYNC, BLANK and FIELD for an odd or even field transition relative to the pixel data.  
HSYNC  
FIELD  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 20. Timing Mode 1 Odd/Even Field Transitions Master/Slave  
Mode 2: Slave Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 0)  
In this mode the ADV7175A/ADV7176A accepts horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of  
an even field. The BLANK signal is optional. When the BLANK input is disabled, the ADV7175A/ADV7176A automatically blanks  
all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 21. Timing Mode 2 (NTSC)  
–18–  
REV. C  
ADV7175A/ADV7176A  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 22. Timing Mode 2 (PAL)  
Mode 2: Master Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7175A/ADV7176A can generate horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC and VSYNC inputs indicates the start of an Odd Field. A VSYNC low transition when HSYNC is high indicates the start of  
an even field. The BLANK signal is optional. When the BLANK input is disabled, the ADV7175A/ADV7176A automatically blanks  
all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL). Figure 23 illus-  
trates the HSYNC, BLANK and VSYNC for an even-to-odd field transition relative to the pixel data. Figure 24 illustrates the  
HSYNC, BLANK and VSYNC for an odd-to-even field transition relative to the pixel data.  
HSYNC  
VSYNC  
PAL = 12 * CLOCK/2  
BLANK  
NTSC = 16 * CLOCK/2  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 23. Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 * CLOCK/2  
NTSC = 858 * CLOCK/2  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 24. Timing Mode 2 Odd-to-Even Field Transition Master/Slave  
–19–  
REV. C  
ADV7175A/ADV7176A  
Mode 3: Master/Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode, the ADV7175A/ADV7176A accepts or generates Horizontal SYNC and Odd/Even FIELD signals. A transition of the  
FIELD input when HSYNC is high indicates a new frame i.e., vertical retrace. The BLANK signal is optional. When the BLANK  
input is disabled, the ADV7175A/ADV7176A automatically blanks all normally blank lines as per CCIR-624. Mode 3 is illustrated in  
Figure 25 (NTSC) and Figure 26 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 25. Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
Figure 26. Timing Mode 3 (PAL)  
–20–  
REV. C  
ADV7175A/ADV7176A  
POWER-ON RESET  
1
1
1
0
0
1
A1  
X
After power-up, it is necessary to execute a reset operation. A  
reset occurs on the falling edge of a high-to-low transition on  
the RESET pin. This initializes the pixel port so that the  
pixel inputs, P7P0 are selected. After reset, the ADV7175A/  
ADV7176A is automatically set up to operate in NTSC mode.  
Subcarrier frequency code 21F07C16HEX is loaded into the  
subcarrier frequency registers. All other registers, with the  
exception of Mode Register 0, are set to 00H. All bits in Mode  
Register 0 are set to Logic Level 0except Bit MR02. Bit  
MR02 of Mode Register 0 is set to Logic 1.This enables the  
7.5 IRE pedestal.  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 27. ADV7175A Slave Address  
1
1
0
0
1
A1  
X
0
SCH Phase Mode  
ADDRESS  
CONTROL  
The SCH phase is configured in default mode to reset every  
four (NTSC) or eight (PAL) fields to avoid an accumulation of  
SCH phase error over time. In an ideal system, zero SCH phase  
error would be maintained forever, but in reality, this is impos-  
sible to achieve due to clock frequency variations. This effect is  
reduced by the use of a 32-bit DDS, which generates this SCH.  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Resetting the SCH phase every four or eight fields avoids the  
accumulation of SCH phase error, and results in very minor  
SCH phase jumps at the start of the four or eight field sequence.  
Figure 28. ADV7176A Slave Address  
To control the various devices on the bus, the following proto-  
col must be followed: First, the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDATA while SCLOCK remains high. This indicates that  
an address/data stream will follow. All peripherals respond to  
the start condition and shift the next eight bits (7-bit address +  
R/W bit). The bits transfer from MSB down to LSB. The  
peripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse. This is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. The idle  
condition is where the device monitors the SDATA and SCLOCK  
lines waiting for the start condition and the correct transmitted  
address. The R/W bit determines the direction of the data. A  
Logic 0on the LSB of the first byte means that the master  
will write information to the peripheral. A Logic 1on the LSB  
of the first byte means that the master will read information  
from the peripheral.  
Resetting the SCH phase should not be done if the video source  
does not have stable timing or the ADV7175A/ADV7176A is  
configured in RTC mode (MR21 = 1 and MR22 = 1). Under  
these conditions (unstable video) the subcarrier phase reset  
should be enabled MR22 = 0 and MR21 = 1) but no reset  
applied. In this configuration the SCH phase will never be reset,  
which means that the output video will now track the unstable  
input video. The subcarrier phase reset, when applied, will reset  
the SCH phase to Field 0 at the start of the next field (e.g.,  
subcarrier phase reset applied in Field 5 [PAL] on the start of  
the next field SCH phase will be reset to Field 0).  
MPU PORT DESCRIPTION  
The ADV7175A and ADV7176A support a two-wire serial (I2C  
Compatible) microprocessor bus driving multiple peripherals.  
Two inputs, serial data (SDATA) and serial clock (SCLOCK),  
carry information between any device connected to the bus. Each  
slave device is recognized by a unique address. The ADV7175A  
and ADV7176A each have four possible slave addresses for both  
read and write operations. These are unique addresses for each  
device and are illustrated in Figure 27 and Figure 28. The LSB  
sets either a read or write operation. Logic Level 1corre-  
sponds to a read operation, while Logic Level 0corresponds  
to a write operation. A1 is set by setting the ALSB pin of the  
ADV7175A/ADV7176A to Logic Level 0or Logic Level 1.”  
The ADV7175A/ADV7176A acts as a standard slave device on  
the bus. The data on the SDATA pin is 8 bits long, supporting  
the 7-bit addresses, plus the R/W bit. The ADV7175A has 37  
subaddresses and the ADV7176A has 20 subaddresses to enable  
access to the internal registers. It therefore interprets the first  
byte as the device address and the second byte as the starting  
subaddress. The subaddresses auto increment allow data to  
be written to or read from the starting subaddress. A data  
transfer is always terminated by a stop condition. The user can  
REV. C  
–21–  
ADV7175A/ADV7176A  
also access any unique subaddress register on a one by one basis  
without having to update all the registers. There is one excep-  
tion. The subcarrier frequency registers should be updated in  
sequence, starting with Subcarrier Frequency Register 0. The  
auto increment function should then be used to increment and  
access Subcarrier Frequency Registers 1, 2 and 3. The subcarrier  
frequency registers should not be accessed independently.  
1. In Read Mode, the highest subaddress register contents  
will continue to be output until the master device issues a  
no-acknowledge. This indicates the end of a read. A no-  
acknowledge condition is where the SDATA line is not pulled  
low on the ninth pulse.  
2. In Write Mode, the data for the invalid byte will not be  
loaded into any subaddress register, a no-acknowledge will  
be issued by the ADV7175A/ADV7176A and the part will  
return to the idle condition.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLOCK high  
period, the user should issue only one start condition, one  
stop condition or a single stop condition followed by a single  
start condition. If an invalid subaddress is issued by the user,  
the ADV7175A/ADV7176A will not issue an acknowledge and  
will return to the idle condition. If, in auto-increment mode  
the user exceeds the highest subaddress, the following action  
will be taken:  
SDATA  
SCLOCK  
S
1-7  
8
9
1-7  
8
9
1-7  
DATA  
8
9
P
START ADDR  
ACK SUBADDRESS ACK  
ACK  
STOP  
R/W  
Figure 29. Bus Data Transfer  
Figure 29 illustrates an example of data transfer for a read  
sequence and the start and stop conditions.  
Figure 30 shows bus write and read sequences.  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR A(S)  
LSB = 0  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
SUB ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
P
A(M)  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
S = START BIT  
P = STOP BIT  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 30. Write and Read Sequences  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
SR7SR6 (00)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7175A SUBADDRESS REGISTER  
ADV7176A SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
SR5 SR4 SR3 SR2 SR1 SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
MODE REGISTER 0  
MODE REGISTER 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
MODE REGISTER 1  
SUB CARRIER FREQ REGISTER 0  
SUB CARRIER FREQ REGISTER 1  
SUB CARRIER FREQ REGISTER 2  
SUB CARRIER FREQ REGISTER 3  
SUB CARRIER PHASE REGISTER  
TIMING REGISTER 0  
SUB CARRIER FREQ REGISTER 0  
SUB CARRIER FREQ REGISTER 1  
SUB CARRIER FREQ REGISTER 2  
SUB CARRIER FREQ REGISTER 3  
SUB CARRIER PHASE REGISTER  
TIMING REGISTER 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 1  
CLOSED CAPTIONING DATA Ϸ BYTE 0  
CLOSED CAPTIONING DATA Ϸ BYTE 1  
TIMING REGISTER 1  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 1  
CLOSED CAPTIONING DATA Ϸ BYTE 0  
CLOSED CAPTIONING DATA Ϸ BYTE 1  
TIMING REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 2  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)/TTX SETUP REG 0*  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)/TTX SETUP REG 1*  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)/TTX SETUP REG 2*  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)/TTX SETUP REG 3*  
MODE REGISTER 3  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)/TTX SETUP REG 0*  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)/TTX SETUP REG 1*  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)/TTX SETUP REG 2*  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)/TTX SETUP REG 3*  
MODE REGISTER 3  
TTXREQ CONTROL REGISTER  
MACROVISION REGISTER  
"
"
"
"
*TTX REGISTERS ARE AVAILABLE IN PAL MODE ONLY  
IN NTSC MODE THESE REGISTERS CONTROL PEDESTAL  
1
1
0
0
0
0
0
1
1
0
1
0
MACROVISION REGISTER  
TTXREQ CONTROL REGISTER  
*TTX REGISTERS ARE AVAILABLE IN PAL MODE ONLY  
IN NTSC MODE THESE REGISTERS CONTROL PEDESTAL  
Figure 31. Subaddress Register  
–22–  
REV. C  
ADV7175A/ADV7176A  
REGISTER ACCESSES  
MODE REGISTER 0 MR0 (MR07–MR00)  
The MPU can write to or read from all of the ADV7175A/  
ADV7176A registers except the subaddress register, which is a  
write-only register. The subaddress register determines which  
register the next read or write operation accesses. All communi-  
cations with the part through the bus start with an access to the  
subaddress register. A read/write operation is performed from/to  
the target address, which then increments to the next address  
until a stop command on the bus is performed.  
(Address [SR4–SR0] = 00H)  
Figure 32 shows the various operations under the control of Mode  
Register 0. This register can be read from as well as written to.  
MR0 BIT DESCRIPTION  
Output Video Standard Selection (MR01–MR00)  
These bits are used to set up the encode mode. The ADV7175A/  
ADV7176A can be set up to output NTSC, PAL (B, D, G, H, I)  
and PAL (M) standard video.  
REGISTER PROGRAMMING  
Pedestal Control (MR02)  
The following section describes each register, including subaddress  
register, mode registers, subcarrier frequency registers, subcarrier  
phase register, timing registers, closed captioning extended data  
registers, closed captioning data registers and NTSC pedestal  
control registers in terms of its configuration.  
This bit specifies whether a pedestal is to be generated on  
the NTSC composite video signal. This bit is invalid if the  
ADV7175A/ADV7176A is configured in PAL mode.  
Luminance Filter Control (MR04–MR03)  
The luminance filters are divided into two sets (NTSC/PAL) of  
four filters, low-pass A, low-pass B, notch and extended. When  
PAL is selected, bits MR03 and MR04 select one of four PAL  
luminance filters; likewise, when NTSC is selected, bits MR03  
and MR04 select one of four NTSC luminance filters. The fil-  
ters are illustrated in Figures 4 to 12.  
Subaddress Register (SR7–SR0)  
The communications register is an 8-bit write-only register.  
After the part has been accessed over the bus, and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place.  
RGB Sync (MR05)  
Figure 31 shows the various operations under the control of  
the subaddress register. Zero should always be written to  
SR7SR6.  
This bit is used to set up the RGB outputs with the sync infor-  
mation encoded on all RGB outputs. (This funcionality is only  
available on the ADV7176A.)  
Register Select (SR5–SR0)  
These bits are set up to point to the required starting address.  
Output Select (MR06)  
This bit specifies if the part is in composite video or RGB/YUV  
mode. Please note that the main composite signal is still avail-  
able in RGB/YUV mode.  
MR01  
MR06  
MR05  
MR04  
MR03  
MR02  
MR00  
MR07  
LUMINANCE FILTER CONTROL  
MR04 MR03  
OUTPUT VIDEO  
OUTPUT SELECT  
MR06  
STANDARD SELECTION  
MR01  
MR00  
0
1
YC OUTPUT  
RGB/YUV OUTPUT  
0
0
1
1
0
1
0
1
LOW PASS FILTER (A)  
NOTCH FILTER  
EXTENDED MODE  
LOW PASS FILTER (B)  
0
0
1
1
0
1
0
1
NTSC  
PAL (B, D, G, H, I)  
PAL (M)  
RESERVED  
PEDESTAL  
CONTROL  
RGB SYNC  
MR07  
(0)  
MR05  
MR02  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
0
1
PEDESTAL OFF  
PEDESTAL ON  
Figure 32. Mode Register 0 (MR0)  
MR11  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR10  
DAC D  
CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
DAC A  
CONTROL  
MR16  
MR14  
MR12  
MR11  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
DAC B  
CONTROL  
DAC C  
CONTROL  
INTERLACED MODE  
CONTROL  
MR15  
MR13  
MR10  
MR17  
0
1
INTERLACED  
NONINTERLACED  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
1
DISABLE  
ENABLE  
Figure 33. Mode Register 1 (MR1)  
–23–  
REV. C  
ADV7175A/ADV7176A  
MODE REGISTER 1 MR1 (MR17–MR10)  
SUBCARRIER  
FREQUENCY  
REG 3  
FSC30  
FSC31  
FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
(Address (SR4–SR0) = 01H)  
SUBCARRIER  
FREQUENCY  
REG 2  
Figure 33 shows the various operations under the control of Mode  
Register 1. This register can be read from as well as written to.  
FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
SUBCARRIER  
FREQUENCY  
REG 1  
FSC14  
FSC6  
FSC15  
FSC7  
FSC13 FSC12 FSC11 FSC10 FSC9  
FSC8  
FSC0  
MR1 BIT DESCRIPTION  
Interlaced Mode Control (MR10)  
This bit is used to set up the output to interlaced or noninter-  
laced mode. This mode is only relevant when the part is in  
composite video mode.  
SUBCARRIER  
FREQUENCY  
REG 0  
FSC5  
FSC4  
FSC3 FSC2 FSC1  
Figure 34. Subcarrier Frequency Register  
Closed Captioning Field Selection (MR12–MR11)  
These bits control the fields on which closed captioning data is  
displayed; closed captioning information can be displayed on an  
odd field, even field or both fields.  
SUBCARRIER PHASE REGISTER (FP7–FP0)  
(Address [SR4–SR0] = 06H)  
This 8-bit-wide register is used to set up the subcarrier phase.  
Each bit represents 1.41°.  
DAC Control (MR16–MR13)  
These bits can be used to power down the DACs. This can  
be used to reduce the power consumption of the ADV7175A/  
ADV7176A if any of the DACs are not required in the application.  
TIMING REGISTER 0 (TR07–TR00)  
(Address [SR4–SR0] = 07H)  
Figure 35 shows the various operations under the control of  
Timing Register 0. This register can be read from as well as  
written to. This register can be used to adjust the width and  
position of the master mode timing signals.  
Color Bar Control (MR17)  
This bit can be used to generate and output an internal color  
bar test pattern. The color bar configuration is 100/7.5/75/7.5  
for NTSC and 100/0/75/0 for PAL. It is important to note that  
when color bars are enabled the ADV7175A/ADV7176A is  
configured in a master timing mode as per the one selected by  
bits TR01 and TR02.  
TR0 BIT DESCRIPTION  
Master/Slave Control (TR00)  
This bit controls whether the ADV7175A/ADV7176A is in  
master or slave mode.  
SUBCARRIER FREQUENCY REGISTER 3-0  
(FSC3–FSC0)  
(Address [SR4–SR0] = 05H–02H)  
These 8-bit-wide registers are used to set up the subcarrier  
frequency. The value of these registers are calculated by using  
the following equation:  
Timing Mode Selection (TR02–TR01)  
These bits control the timing mode of the ADV7175A/  
ADV7176A. These modes are described in the Timing and  
Control section of the data sheet.  
BLANK Input Control (TR03)  
This bit controls whether the BLANK input is used when the  
part is in slave mode.  
232 1  
FCLK  
× FSCF  
Subcarrier Frequency Register =  
i.e.: NTSC Mode,  
Luma Delay (TR05–TR04)  
These bits control the addition of a luminance delay. Each bit  
represents a delay of 74 ns.  
F
CLK = 27 MHz,  
FSCF = 3.5795454 MHz  
Pixel Port Control (TR06)  
232 1  
27×106  
This bit is used to set the pixel port to accept 8-bit or 16-bit  
data. If an 8-bit input is selected the data will be set up on Pins  
P7P0.  
× 3.5795454 ×106  
Subcarrier Frequency Value =  
= 21F07C16 HEX  
Timing Register Reset (TR07)  
Figure 34 shows how the frequency is set up by the four registers.  
Toggling TR07 from low to high and low again resets the inter-  
nal timing counters. This bit should be toggled after power-up,  
reset or changing to a new timing mode.  
TR01  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR00  
TIMING  
REGISTER RESET  
MASTER/SLAVE  
CONTROL  
BLANK INPUT  
CONTROL  
TR03  
0
1
TR00  
0
1
TR07  
ENABLE  
DISABLE  
SLAVE TIMING  
MASTER TIMING  
PIXEL PORT  
CONTROL  
LUMA DELAY  
TIMING MODE  
SELECTION  
TR05 TR04  
TR06  
TR02 TR01  
0
0
1
1
0
1
0
1
0ns DELAY  
0
1
8-BIT  
16-BIT  
0
0
1
1
0
1
0
1
MODE 0  
74ns DELAY  
148ns DELAY  
222ns DELAY  
MODE 1  
MODE 2  
MODE 3  
Figure 35. Timing Register 0  
–24–  
REV. C  
ADV7175A/ADV7176A  
CLOSED CAPTIONING EVEN FIELD  
TR1 BIT DESCRIPTION  
DATA REGISTER 1–0 (CED15–CED0)  
HSYNC Width (TR11–TR10)  
(Address [SR4–SR0] = 09–08H)  
These bits adjust the HSYNC pulsewidth.  
These 8-bit-wide registers are used to set up the closed captioning  
extended data bytes on even fields. Figure 36 shows how the  
high and low bytes are set up in the registers.  
HSYNC to FIELD/VSYNC Delay (TR13–TR12)  
These bits adjust the position of the HSYNC output relative to  
the FIELD/VSYNC output.  
HSYNC to FIELD Rising Edge Delay (TR15–TR14)  
When the ADV7175A/ADV7176A is in Timing Mode 1, these  
bits adjust the position of the HSYNC output relative to the  
FIELD output rising edge.  
CED15 CED14 CED13 CED12 CED11 CED10  
CED9  
CED8  
BYTE 1  
CED7  
CED6  
CED5  
CED4  
CED3  
CED2  
CED1  
CED0  
BYTE 0  
Figure 36. Closed Captioning Extended Data Register  
VSYNC Width (TR15–TR14)  
When the ADV7175A/ADV7176A is in Timing Mode 2, these  
bits adjust the VSYNC pulsewidth.  
CLOSED CAPTIONING ODD FIELD  
DATA REGISTER 1–0 (CCD15–CCD0)  
(Subaddress [SR4–SR0] = 0B–0AH)  
These 8-bit-wide registers are used to set up the closed captioning  
data bytes on odd fields. Figure 37 shows how the high and low  
bytes are set up in the registers.  
HSYNC to Pixel Data Adjust (TR17–TR16)  
This enables the HSYNC to be adjusted with respect to the  
pixel data. This allows the Cr and Cb components to be  
swapped. This adjustment is available in both master and slave  
timing modes.  
CCD15  
CCD14 CCD13 CCD12 CCD11 CCD10  
CCD9  
CCD8  
BYTE 1  
MODE REGISTER 2 MR2 (MR27–MR20)  
(Address [SR4–SR0] = 0DH)  
Mode Register 2 is an 8-bit-wide register.  
CCD7  
CCD6  
CCD5  
CCD4  
CCD3  
CCD2  
CCD1  
CCD0  
BYTE 0  
Figure 39 shows the various operations under the control of Mode  
Register 2. This register can be read from as well as written to.  
Figure 37. Closed Captioning Data Register  
TIMING REGISTER 1 (TR17–TR10)  
(ADDRESS [SR4–SR0] = 0CH)  
Timing Register 1 is an 8-Bit-Wide Register  
MR2 BIT DESCRIPTION  
Square Pixel Control (MR20)  
This bit is used to set up square pixel mode. This is available in  
slave mode only. For NTSC, a 24.5454 MHz clock must be  
supplied. For PAL, a 29.5 MHz clock must be supplied.  
Figure 38 shows the various operations under the control of  
Timing Register 1. This register can be read from as well as  
written to. This register can be used to adjust the width and  
position of the master mode timing signals.  
TR11  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR10  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
HSYNC WIDTH  
HSYNC TO PIXEL  
DATA ADJUST  
HSYNC TO  
FIELD/VSYNC DELAY  
T
TR11 TR10  
A
TR17 TR16  
T
0
0
1
1
0
1
0
1
1 x T  
4 x T  
TR13 TR12  
B
PCLK  
PCLK  
T
TR15 TR14  
C
0
0
1
1
0
1
0
1
0 x T  
1 x T  
2 x T  
3 x T  
0
0
1
1
0
1
0
1
0 x T  
4 x T  
8 x T  
PCLK  
PCLK  
PCLK  
PCLK  
x
x
0
1
T
T
B
16 x T  
PCLK  
128 x T  
PCLK  
PCLK  
PCLK  
+ 32s  
B
PCLK  
16 x T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 x T  
4 x T  
PCLK  
PCLK  
16 x T  
PCLK  
128 x T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
TA  
TB  
HSYNC  
TC  
FIELD/VSYNC  
Figure 38. Timing Register 1  
REV. C  
–25–  
ADV7175A/ADV7176A  
MR21  
MR27  
MR26  
MR25  
MR24  
MR23  
MR22  
MR20  
CHROMINANCE  
CONTROL  
RGB/YUV  
CONTROL  
GENLOCK SELECTION  
MR22 MR21  
MR24  
MR26  
x
0
0
1
DISABLE GENLOCK  
ENABLE SUBCARRIER  
RESET PIN  
0
1
RGB OUTPUT  
YUV OUTPUT  
0
1
ENABLE COLOR  
DISABLE COLOR  
1
1
ENABLE RTC PIN  
LOWER POWER  
MODE  
BURST  
CONTROL  
ACTIVE VIDEO LINE WIDTH  
CONTROL  
SQUARE PIXEL  
CONTROL  
MR27  
MR25  
MR23  
MR20  
0
1
DISABLE  
ENABLE  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
DISABLE  
ENABLE  
0
1
720 PIXELS  
710/702 PIXELS  
Figure 39. Mode Register 2  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCO7 PCO6 PCO5 PCO4 PCO3 PCO2 PCO1 PCO0  
Genlock Selection (MR22–MR21)  
These bits control the genlock feature of the ADV7175A/  
ADV7176A. Setting MR21 to a Logic 1configures the  
SCRESET/RTC pin as an input. Setting MR22 to Logic Level  
0configures the SCRESET/RTC pin as a subcarrier reset  
input, therefore, the subcarrier will reset to Field 0, following a  
low-to-high transition on the SCRESET/RTC pin. Setting  
MR22 to Logic Level 1configures the SCRESET/RTC pin as  
a real-time control input.  
FIELD 1/3  
FIELD 1/3  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCE7 PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
FIELD 2/4  
FIELD 2/4  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9 PCE8  
Active Video Line Width Control (MR23)  
This bit switches between two active video line durations. A  
zero selects CCIR.REC601 (720 pixels PAL/NTSC) and a one  
selects ITU-R.BT.470 analogstandard for active video dura-  
tion (710 pixels NTSC 702 pixels PAL).  
Figure 40. Pedestal Control Registers  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXO7 TXO6 TXO5 TXO4 TXO3 TXO2 TXO1 TXO0  
FIELD 1/3  
FIELD 1/3  
Chrominance Control (MR24)  
This bit enables the color information to be switched on and off  
the video output.  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXO15 TXO14 TXO13 TXO12 TXO11 TXO10 TXO9 TXO8  
Burst Control (MR25)  
This bit enables the burst information to be switched on and off  
the video output.  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXE7 TXE6 TXE5 TXE4 TXE3 TXE2 TXE1 TXE0  
FIELD 2/4  
FIELD 2/4  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXE15 TXE14 TXE13 TXE12 TXE11 TXE10 TXE9 TXE8  
RGB/YUV Control (MR26)  
This bit enables the output from the RGB DACs to be set to  
YUV output video standard. Bit MR06 of Mode Register 0  
must be set to Logic Level 1before MR26 is set.  
Figure 41. Teletext Control Registers  
Lower Power Mode (MR27)  
This bit enables the lower power mode of the ADV7175A/  
ADV7176A. This will reduce the DAC current by 50%.  
MODE REGISTER 3 MR3 (MR37–MR30)  
(Address [SR4–SR0] = 12H)  
Mode Register 3 is an 8-bit-wide register.  
Figure 42 shows the various operations under the control of  
Mode Register 3.  
NTSC PEDESTAL/PAL TELETEXT CONTROL  
REGISTERS 3–0 (PCE15–0, PCO15–0)/ (TXE15–0, TXO15–0)  
(Subaddress [SR4–SR0] = 11–0EH)  
MR3 BIT DESCRIPTION  
These 8-bit-wide registers are used to set up the NTSC pedes-  
tal/PAL teletext on a line-by-line basis in the vertical blanking  
interval for both odd and even fields. Figures 40 and 41 show  
the four control registers. A Logic 1in any of the bits of these  
registers has the effect of turning the pedestal OFF on the  
equivalent line when used in NTSC. A Logic 1in any of the  
bits of these registers has the effect of turning teletext ON the  
equivalent line when used in PAL.  
Revision Code (MR30)  
This bit is read only and indicates the revision of the device.  
VBI Pass-Through (MR31)  
This bit determines whether or not data in the vertical blanking  
interval (VBI) is output to the analog outputs or blanked. VBI  
Pass-Through is available in all timing modes except Slave 0.  
Also when both VBI Pass-Through and BLANK input control  
(TR03) are enabled, TR03 takes priority.  
Reserved (MR33–MR32)  
These bits are reserved.  
Teletext Enable (MR34)  
This bit must be set to 1to enable teletext data insertion on  
the TTX pin.  
–26–  
REV. C  
ADV7175A/ADV7176A  
DAC Output Switching (MR37)  
This bit is used to switch the DAC outputs from SCART to a  
EUROSCART configuration. A complete table of all DAC  
output configurations is shown below.  
Input Default Color (MR36)  
This bit determines the default output color from the DACs for  
zero input data (or disconnected). A Logical 0means that the  
color corresponding to 00000000 will be displayed. A Logical 1”  
forces the output color to black for 00000000 input video data.  
Table I. DAC Output Configuration Matrix  
DAC A DAC B DAC C  
CVBS  
MR06  
MR26  
MR37  
DAC D  
Simultaneous Output  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CVBS  
Y
C
Y
CVBS  
Y
CVBS  
G
CVBS  
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
RGB and Composite  
RGB and Composite  
YUV and Composite  
YUV and Composite  
CVBS  
CVBS  
CVBS  
B
C
C
C
R
R
V
V
CVBS  
Y
CVBS  
G
B
U
U
CVBS  
Y
Y
CVBS  
NOTE  
CVBS: Composite Video Baseband Signal  
Each DAC can be individually powered ON or OFF with the following control bits  
(0= ON, 1= OFF):  
MR13 - DAC C  
MR14 - DAC D  
MR15 - DAC B  
MR16 - DAC A  
Y:  
C:  
U:  
V:  
R:  
G:  
B:  
Luminance Component Signal (For YUV or Y/C Mode)  
Chrominance Signal (For Y/C Mode)  
Chrominance Component Signal (For YUV Mode)  
Chrominance Component Signal (For YUV Mode)  
RED Component Video (For RGB Mode)  
GREEN Component Video (For RGB Mode)  
BLUE Component Video (For RGB Mode)  
MR31  
MR36  
MR35  
MR34  
MR33  
MR32  
MR30  
MR30  
MR37  
RESERVED  
MR35 = 0  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
REV CODE  
(READ ONLY)  
INPUT DEFAULT COLOR  
MR36  
TELETEXT ENABLE  
VBI PASSTHROUGH  
MR31  
MR34  
0
1
INPUT COLOR  
BLACK  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
DAC OUTPUT  
SWITCHING  
MR37  
DAC A  
DAC B  
DAC C  
DAC D  
0
1
COMPOSITE  
GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V COMPOSITE  
Figure 42. Mode Register 3  
TTXREQ Falling Edge Control (TC03–TC00)  
TTXREQ CONTROL REGISTER TC07 (TC07–TC00)  
(Address [SR4–SR0] = 24H)  
Teletext Control Register is an 8-bit-wide register.  
These bits control the position of the falling edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cycles. This controls the active window for teletext  
data. Increasing this value reduces the amount of teletext bits  
below the default of 360. If bits TC03TC00 are unchanged  
when bits TC07TC04 are changed, the falling edge of TTXREQ  
will track that of the rising edge (i.e., the time between the fall-  
ing and rising edge remains constant)see Figure 48.  
TTXREQ Rising Edge Control (TC07–TC04)  
These bits control the position of the rising edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cyclessee Figure 48.  
TC06  
TC05  
TC04  
TC03  
TC02  
TC01  
TC00  
TC07  
TTXREQ RISING EDGE CONTROL  
TC07 TC06 TC05 TC04  
TTXREQ FALLING EDGE CONTROL  
TC03 TC02 TC01 TC00  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
Figure 43. Teletext Control Register  
–27–  
REV. C  
ADV7175A/ADV7176A  
APPENDIX 1  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
The ADV7175A/ADV7176A is a highly integrated circuit contain-  
ing both precision analog and high speed digital circuitry. It has  
been designed to minimize interference effects on the integrity  
of the analog circuitry by the high speed digital circuitry. It is  
imperative that these same design and layout techniques be  
applied to the system level design so that high speed, accurate  
performance is achieved. The Recommended Analog Circuit  
Layoutshows the analog interface between the device and  
monitor.  
to reduce the lead inductance. Best performance is obtained  
with 0.1 µF ceramic capacitor decoupling. Each group of VAA  
pins on the ADV7175A/ADV7176A must have at least one 0.1 µF  
decoupling capacitor to GND. These capacitors should be  
placed as close to the device as possible.  
It is important to note that while the ADV7175A/ADV7176A  
contains circuitry to reject power supply noise, this rejection  
decreases with frequency. If a high frequency switching power  
supply is used, the designer should pay close attention to reduc-  
ing power supply noise and consider using a three terminal voltage  
regulator for supplying power to the analog power plane.  
The layout should be optimized for lowest noise on the ADV7175A/  
ADV7176A power and ground lines by shielding the digital  
inputs and providing good decoupling. The lead length between  
groups of VAA and GND pins should by minimized to minimize  
inductive ringing.  
Digital Signal Interconnect  
The digital inputs to the ADV7175A/ADV7176A should be  
isolated as much as possible from the analog outputs and other  
analog circuitry. Also, these input signals should not overlay the  
analog power plane.  
Ground Planes  
The ground plane should encompass all ADV7175A/ADV7176A  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7175A/ADV7176A, the analog out-  
put traces, and all the digital signal traces leading up to the  
ADV7175A/ADV7176A. The ground plane is the boards  
common ground plane.  
Due to the high clock rates involved, long clock lines to  
the ADV7175A/ADV7176A should be avoided to reduce  
noise pickup.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not the  
analog power plane.  
Power Planes  
The ADV7175A/ADV7176A and any associated analog circuitry  
should have its own power plane, referred to as the analog  
power plane (VAA). This power plane should be connected to  
the regular PCB power plane (VCC) at a single point through a  
ferrite bead. This bead should be located within three inches of  
the ADV7175A/ADV7176A.  
Analog Signal Interconnect  
The ADV7175A/ADV7176A should be located as close to the  
output connectors as possible to minimize noise pickup and  
reflections due to impedance mismatch.  
The video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power  
supply rejection.  
The metallization gap separating device power plane and  
board power plane should be as narrow as possible to mini-  
mize the obstruction to the flow of heat from the device into  
the general board.  
Digital inputs, especially pixel data inputs and clocking signals,  
should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
The PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7175A/ADV7176A power pins and voltage  
reference circuitry.  
For best performance, the outputs should each have a 75 Ω  
load resistor connected to GND. These resistors should be  
placed as close as possible to the ADV7175A/ADV7176A as to  
minimize reflections.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane unless they can be  
arranged so that the plane-to-plane noise is common-mode.  
The ADV7175A/ADV7176A should have no inputs left float-  
ing. Any inputs that are not required should be tied to ground.  
Supply Decoupling  
For optimum performance, bypass capacitors should be installed  
using the shortest leads possible, consistent with reliable operation,  
–28–  
REV. C  
ADV7175A/ADV7176A  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1F  
0.01F  
L1  
(FERRITE BEAD)  
5V (V  
AA  
)
5V  
(V  
5V (V  
AA  
)
5V (V )  
AA  
)
1, 11, 20, 28, 30  
33F  
10F  
CC  
0.1F  
GND  
0.1F  
V
AA  
COMP  
25  
33  
27  
DAC D  
V
REF  
75⍀  
75⍀  
75⍀  
75⍀  
ADV7175A  
ADV7176A  
3842,  
29, 1214  
26  
DAC C  
5V (V  
AA  
)
P15P0  
S VIDEO  
4k⍀  
35  
DAC B 31  
SCRESET/RTC  
RESET  
100nF  
15 HSYNC  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED”  
FIELD/VSYNC  
16  
17  
22  
5V (V  
)
32  
DAC A  
CC  
5V (V  
CC  
)
5V (V  
CC  
)
BLANK  
RESET  
TTX  
100k⍀  
5k⍀  
5k⍀  
TTX  
TTX REQ  
100⍀  
100⍀  
37  
36  
44  
SCLOCK 23  
SDATA 24  
MPU BUS  
TTX REQ  
CLOCK  
100k⍀  
34  
R
SET  
5V (V  
AA  
)
ALSB  
18  
GND  
150⍀  
TELETEXT PULL-UP AND  
PULL-DOWN RESISTORS  
SHOULD ONLY BE USED  
IF THESE PINS ARE NOT  
CONNECTED  
10k⍀  
10, 19, 21  
29, 43  
27MHz CLOCK  
(SAME CLOCK AS USED BY  
MPEG2 DECODER)  
Figure 44. Recommended Analog Circuit Layout  
The circuit below can be used to generate a 13.5 MHz waveform using the 27 MHz clock and the HSYNC pulse. This waveform  
is guaranteed to produce the 13.5 MHz clock in synchronization with the 27 MHz clock. This 13.5 MHz clock can be used if  
the 13.5 MHz clock is required by the MPEG decoder. This will guarantee that the Cr and Cb pixel information is input to the  
ADV7175A/ADV7176A in the correct sequence.  
D
Q
13.5MHz  
D
Q
CLOCK  
CK  
CK  
HSYNC  
Figure 45. Circuit to Generate 13.5 MHz  
REV. C  
–29–  
ADV7175A/ADV7176A  
APPENDIX 2  
CLOSED CAPTIONING  
The ADV7175A/ADV7176A supports closed captioning, conforming to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the blanked active line time of Line 21 of the odd fields and Line 284  
of even fields.  
Closed captioning consists of a 7-cycle sinusoidal burst that is frequency and phase locked to the caption data. After the clock run-in  
signal, the blanking level is held for two data bits and is followed by a Logic Level 1start bit. 16 bits of data follow the start bit.  
These consist of two 8-bit bytes, seven data bits and one odd parity bit. The data for these bytes is stored in closed captioning Data  
Registers 0 and 1.  
The ADV7175A/ADV7176A also supports the extended closed captioning operation, which is active during even fields, and is  
encoded on scan Line 284. The data for this operation is stored in closed captioning extended Data Registers 0 and 1.  
All clock run-in signals and timing to support closed captioning on Lines 21 and 284 are generated automatically by the ADV7175A/  
ADV7176A. All pixels inputs are ignored during Lines 21 and 284.  
FCC Code of Federal Regulations (CFR) 47 Section 15.119 and EIA608 describe the closed captioning information for Lines  
21 and 284.  
The ADV7175A/ADV7176A uses a single buffering method. This means that the closed captioning buffer is only one byte deep,  
therefore there will be no frame delay in outputting the closed captioning data unlike other 2-byte deep buffering systems. The data  
must be loaded at least one line before (Line 20 or Line 283) it is outputted on Line 21 and Line 284. A typical implementation of  
this method is to use VSYNC to interrupt a microprocessor, which will in turn load the new data (two bytes) every field. If no new  
data is required for transmission you must insert zeros in both the data registers; this is called NULLING. It is also important to load  
control codes,all of which are double bytes on Line 21, or a TV will not recognize them. If you have a message like Hello World”  
which has an odd number of characters, it is important to pad it out to an even number to get end of caption2-byte control code to  
land in the same field.  
10.5 ؎ 0.25s  
12.91s  
7 CYCLES  
OF 0.5035 MHz  
(CLOCKRUN-IN)  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
S
T
A
R
T
P
A
R
I
T
Y
D0D6  
D0D6  
50 IRE  
40 IRE  
BYTE 1  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003s  
33.764s  
27.382s  
Figure 46. Closed Captioning Waveform (NTSC)  
–30–  
REV. C  
ADV7175A/ADV7176A  
APPENDIX 3  
TELETEXT INSERTION  
Time TPD time needed by the ADV7175A/ADV7176A to interpolate input data on TTX and insert it onto the CVBS or Y outputs,  
such that it appears TSYNTTXOUT = 10.2 µs after the leading edge of the horizontal signal. Time TTXDEL is the pipeline delay time by  
the source that is gated by the TTXREQ signal in order to deliver TTX data.  
With the programmability that is offered with TTXREQ signal on the Rising/Falling edges, the TTX data is always inserted at the  
correct position of 10.2 µs after the leading edge of Horizontal Sync pulse, which enables a source interface with variable pipeline  
delays.  
The width of the TTXREQ signal must always be maintained so it allows the insertion of 360 (to comply with the Teletext Standard  
PALWST) teletext bits at a text data rate of 6.9375 Mbits/s; this is achieved by setting TC03TC00 to zero. The insertion  
window is not open if the Teletext Enable bit (MR34) is set to zero.  
Teletext Protocol  
The relationship between the TTX bit clock (6.9375 MHz) and the system CLOCK (27 MHz) for 50 Hz is given as follows:  
27 MHz  
= 6.75 MHz  
4
6
6.9375 × 10  
6.75 × 106  
= 1.027777  
Thus 37 TTX bits correspond to 144 clocks (27 MHz) and each bit has a width of almost four clock cycles. The ADV7175A/ADV7176A  
uses an internal sequencer and variable phase interpolation filter to minimize the phase jitter and thus generate a bandlimited signal  
which can be outputted on the CVBS and Y outputs.  
At the TTX input the bit duration scheme repeats after every 37 TTX bits or 144 clock cycles. The protocol requires that TTX bits  
10, 19, 28, 37 are carried by three clock cycles, all other bits by four clock cycles. After 37 TTX bits, the next bits with three clock  
cycles are 47, 56, 65 and 74. This scheme holds for all following cycles of 37 TTX bits, until all 360 TTX bits are completed. All  
teletext lines are implemented in the same way. Individual control of teletext lines are controlled by Teletext Setup Registers.  
45 BYTES (360 BITS) PAL  
ADDRESS & DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 47. Teletext VBI Line  
tSYNTTXOUT  
CVBS/Y  
tPD  
tPD  
HSYNC  
10.2s  
TTX  
DATA  
TTX  
DEL  
TTXREQ  
TTX  
ST  
PROGRAMMABLE PULSE EDGES  
tSYNTTXOUT = 10.2s  
tPD = PIPELINE DELAY THROUGH ADV7175A/ADV7176A  
TTX = TTXREQ TO TTX (PROGRAMMABLE RANGE = 4 BITS [015 CLOCK CYCLES])  
DEL  
Figure 48. Teletext Functionality Diagram  
–31–  
REV. C  
ADV7175A/ADV7176A  
APPENDIX 4  
NTSC WAVEFORMS (WITH PEDESTAL)  
1268.1mV  
1048.4mV  
130.8 IRE  
100 IRE  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
40 IRE  
Figure 49. NTSC Composite Video Levels  
1048.4mV  
100 IRE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
40 IRE  
Figure 50. NTSC Luma Video Levels  
PEAK CHROMA  
963.8mV  
629.7mV (p-p)  
286mV (p-p)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
650mV  
335.2mV  
0mV  
Figure 51. NTSC Chroma Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
720.8mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.5mV  
331.4mV  
SYNC LEVEL  
40 IRE  
45.9mV  
Figure 52. NTSC RGB Video Levels  
–32–  
REV. C  
ADV7175A/ADV7176A  
NTSC WAVEFORMS (WITHOUT PEDESTAL)  
130.8 IRE  
100 IRE  
1289.8mV  
1052.2mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
40 IRE  
Figure 53. NTSC Composite Video Levels  
1052.2mV  
100 IRE  
REF WHITE  
714.2mV  
338mV  
52.1mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
40 IRE  
Figure 54. NTSC Luma Video Levels  
PEAK CHROMA  
978mV  
650mV  
694.9mV (p-p)  
286mV (p-p)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
299.3mV  
0mV  
Figure 55. NTSC Chroma Video Levels  
100 IRE  
1052.2mV  
REF WHITE  
715.7mV  
BLANK/BLACK LEVEL 336.5mV  
51mV  
0 IRE  
SYNC LEVEL  
40 IRE  
Figure 56. NTSC RGB Video Levels  
REV. C  
–33–  
ADV7175A/ADV7176A  
PAL WAVEFORMS  
PEAK COMPOSITE  
REF WHITE  
1284.2mV  
1047.1mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 57. PAL Composite Video Levels  
REF WHITE  
1047mV  
696.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
350.7mV  
50.8mV  
Figure 58. PAL Luma Video Levels  
PEAK CHROMA  
989.7mV  
672mV (p-p)  
307mV (p-p)  
BLANK/BLACK LEVEL  
650mV  
PEAK CHROMA  
317.7mV  
0mV  
Figure 59. PAL Chroma Video Levels  
REF WHITE  
1050.2mV  
698.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
351.8mV  
51mV  
Figure 60. PAL RGB Video Levels  
–34–  
REV. C  
ADV7175A/ADV7176A  
UV WAVEFORMS  
505mV  
505mV  
423mV  
334mV  
BETACAM LEVEL  
171mV  
82mV  
BETACAM LEVEL  
0mV  
0mV  
0mV  
82mV  
0mV  
؊171mV  
423mV  
؊334mV  
505mV  
؊505mV  
Figure 61. NTSC 100% Color Bars No Pedestal U Levels  
Figure 64. NTSC 100% Color Bars No Pedestal V Levels  
467mV  
467mV  
391mV  
309mV  
BETACAM LEVEL  
76mV  
158mV  
BETACAM LEVEL  
0mV  
0mV  
76mV  
0mV  
0mV  
158mV  
391mV  
467mV  
309mV  
467mV  
Figure 65. NTSC 100% Color Bars with Pedestal V Levels  
Figure 62. NTSC 100% Color Bars with Pedestal U Levels  
350mV  
293mV  
350mV  
232mV  
SMPTE LEVEL  
57mV  
118mV  
0mV  
0mV  
SMPTE LEVEL  
57mV  
0mV  
0mV  
118mV  
293mV  
350mV  
232mV  
350mV  
Figure 66. PAL 100% Color Bars V Levels  
Figure 63. PAL 1005 Color Bars U Levels  
REV. C  
–35–  
ADV7175A/ADV7176A  
APPENDIX 5  
REGISTER VALUES  
The ADV7175A/ADV7176A registers can be set depending on  
the user standard required.  
Address  
Data  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
00Hex  
00Hex  
00Hex  
00Hex  
The following examples give the various register formats for  
several video standards.  
24Hex Teletext Request Control Register  
In each case the output is set to composite o/p with all DACs  
powered up and with the BLANK input control disabled. Addi-  
tionally, the burst and color information are enabled on the  
output and the internal color bar generator is switched off. In  
the examples shown, the timing mode is set to Mode 0 in slave  
format. TR02TR00 of the Timing Register 0 control the  
timing modes. For a detailed explanation of each bit in the  
command registers, please turn to the Register Programming  
section of the data sheet. TR07 should be toggled after setting  
up a new timing mode. Timing Register 1 provides additional  
control over the position and duration of the timing signals. In  
the examples, this register is programmed in default mode.  
PAL M (FSC = 3.57561149 MHz)  
Address  
00Hex Mode Register 0  
Data  
06Hex  
00Hex  
A3Hex  
EFHex  
E6Hex  
21Hex  
00Hex  
08Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
01Hex Mode Register 1  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex Timing Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex Timing Register 1  
NTSC (FSC = 3.5795454 MHz)  
Address  
Data  
00Hex Mode Register 0  
01Hex Mode Register 1  
04Hex  
00Hex  
16Hex  
7CHex  
F0Hex  
21Hex  
00Hex  
08Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
0DHex Mode Register 2  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex Timing Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex Timing Register 1  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
24Hex Teletext Request Control Register  
0DHex Mode Register 2  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
24Hex Teletext Request Control Register  
PAL B, D, G, H, I (FSC = 4.43361875 MHz)  
Address  
00Hex Mode Register 0  
01Hex Mode Register 1  
01 Hex  
00 Hex  
CBHex  
8A Hex  
09 Hex  
2AHex  
00 Hex  
08 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex Timing Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex Timing Register 1  
0DHex Mode Register 2  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
–36–  
REV. C  
ADV7175A/ADV7176A  
APPENDIX 6  
OPTIONAL OUTPUT FILTER  
If an output filter is required for the CVBS, Y, UV, Chroma and RGB outputs of the ADV7175A/ADV7176A, the following filter in  
Figure 67 can be used. Plots of the filter characteristics are shown in Figures 68. An output filter is not required if the outputs of the  
ADV7175A/ADV7176A are connected to an analog monitor or an analog TV; however, if the output signals are applied to a system  
where sampling is used (e.g., digital TV), a filter is required to prevent aliasing.  
L
L
L
1H  
2.7H  
0.68H  
0
16.7  
33.3  
50  
IN  
OUT  
C
C
C
56pF  
R
R
470pF  
330pF  
75⍀  
75⍀  
Figure 67. Output Filter  
66.7  
83.3  
100  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
Figure 68. Output Filter Plot  
REV. C  
–37–  
ADV7175A/ADV7176A  
APPENDIX 7  
OPTIONAL DAC BUFFERING  
For external buffering of the ADV7175A/ADV7176A DAC outputs, the configuration in Figure 69 is recommended. This configu-  
ration shows the DAC outputs running at half (18 mA) their full current (36 mA) capability. This will allow the ADV7175A/ADV7176A  
to dissipate less power, the analog current is reduced by 50% with a RSET of 300 and a RLOAD of 75 . This mode is recommended for  
3.3 volt operation as optimum performance is obtained from the DAC outputs at 18 mA with a VAA of 3.3 volts. This buffer also  
adds extra isolation on the video outputs, see buffer circuit in Figure 70. When calculating absolute output full current and voltage,  
use the following equation:  
VOUT = IOUT × RLOAD  
VREF × K  
(
)
IOUT  
=
RSET  
K = 4.2146 constant,VREF = 1.235 V  
V
AA  
ADV7175A/ADV7176A  
OUTPUT  
BUFFER  
V
REF  
DAC A  
75⍀  
75⍀  
75⍀  
75⍀  
OUTPUT  
BUFFER  
DAC B  
PIXEL  
PORT  
DIGITAL  
CORE  
OUTPUT  
BUFFER  
DAC C  
DAC D  
R
SET  
OUTPUT  
BUFFER  
300⍀  
Figure 69. Output DAC Buffering Configuration  
V
CC+  
OUTPUT TO  
TV/MONITOR  
AD8051  
INPUT/  
OPTIONAL  
FILTER O/P  
V
CC–  
Figure 70. Recommended Output DAC Buffer  
–38–  
REV. C  
ADV7175A/ADV7176A  
APPENDIX 8  
OUTPUT WAVEFORMS  
0.6  
0.4  
0.2  
0.0  
؊0.2  
L608  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 0.00 dB  
APL = 39.1%  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = SOURCE  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2 3 4  
Figure 71. 100/0/75/0 PAL Color Bars  
0.5  
0.0  
L575  
0.0  
10.0  
20.0  
30.0  
MICROSECONDS  
PRECISION MODE OFF  
SYNCHRONOUS  
40.0  
50.0  
60.0  
70.0  
APL NEEDS SYNC = SOURCE!  
625 LINE PAL  
SOUND-IN-SYNC OFF  
SYNC = A  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1  
Figure 72. 100/0/75/0 PAL Color Bars Luminance  
REV. C  
–39–  
ADV7175A/ADV7176A  
0.5  
0.0  
0.5  
L575  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NO BRUCH SIGNAL  
APL NEEDS SYNC = SOURCE!  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = A  
FRAMES SELECTED: 1  
Figure 73. 100/0/75/0 PAL Color Bars Chrominance  
100.0  
0.5  
50.0  
0.0  
0.0  
F1  
L76  
50.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
APL = 44.6%  
525 LINE NTSC  
PRECISION MODE OFF  
SYNCHRONOUS  
NO FILTERING  
SYNC = A  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 74. 100/7.5/75/7.5 NTSC Color Bars  
–40–  
REV. C  
ADV7175A/ADV7176A  
0.6  
0.4  
0.2  
50.0  
0.0  
0.0  
0.2  
F2  
L238  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.7%  
PRECISION MODE OFF  
525 LINE NTSC  
NO FILTERING  
SYNCHRONOUS  
SYNC = SOURCE  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 75. 100/7.5/75/7.5 NTSC Color Bars Chrominance  
0.4  
50.0  
0.2  
0.0  
0.2  
0.4  
50.0  
F1  
L76  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC = SOURCE!  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = B  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 76. 100/7.5/75/7.5 NTSC Color Bars Chrominance  
REV. C  
–41–  
ADV7175A/ADV7176A  
V
APL = 39.6%  
SYSTEM LINE L608  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
625 LINE PAL  
cy  
BURST FROM SOURCE  
DISPLAY +V & V  
R
g
M
g
75%  
100%  
YI  
b
U
yl  
B
G
Cy  
m
g
r
SOUND IN SYNC OFF  
Figure 77. PAL Vector Plot  
R-Y  
APL = 45.1%  
SYSTEM LINE L76F1  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
525 LINE NTSC  
cy  
I
BURST FROM SOURCE  
R
M
g
Q
YI  
b
100%  
B-Y  
75%  
B
G
Cy  
Q  
I  
SETUP 7.5%  
Figure 78. NTSC Vector Plot  
–42–  
REV. C  
ADV7175A/ADV7176A  
COLOR BAR (NTSC)  
FIELD = 2 LINE = 28  
LUMINANCE LEVEL (IRE)  
WFM -->  
FCC COLOR BAR  
0.4  
0.2  
0.2  
0.0  
0.2  
0.1  
0.2  
0.1  
30.0  
20.0  
10.0  
0.0  
10.0  
CHROMINANCE LEVEL (IRE)  
0.0  
0.2  
0.2  
0.3  
0.2  
0.3  
0.0  
0.0  
1.0  
0.0  
1.0  
CHROMINANCE PHASE (DEG)  
. . . . .  
0.1  
0.2  
0.2  
0.1  
0.3  
0.2  
- - - - -  
0.0  
1.0  
2.0  
GRAY  
YELLOW  
CYAN  
GREEN  
MAGENTA  
RED  
BLUE  
BLACK  
AVERAGE: 32 --> 32  
REFERENCE 75/7.5/75/7.5 COLOR BAR STANDARD  
Figure 79. NTSC Color Bar Measurement  
DGDP (NTSC)  
BLOCK MODE START F2 L64, STEP = 32, END = 192  
DIFFERENTIAL GAIN (%)  
WFM -->  
MOD 5 STEP  
MIN = 0.00 MAX = 0.11 p-p/MAX = 0.11  
0.00  
0.08  
0.07  
0.11 0.07  
0.05  
0.3  
0.2  
0.1  
0.0  
0.1  
DIFFERENTIAL PHASE (DEG)  
0.00 0.03  
MIN = 0.02 MAX = 0.14 p-p = 0.16  
0.14 0.10  
0.02  
0.10  
0.20  
0.15  
0.10  
0.05  
0.00  
0.05  
0.10  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
Figure 80. NTSC Differential Gain and Phase Measurement  
REV. C  
–43–  
ADV7175A/ADV7176A  
LUMINANCE NONLINEARITY (NTSC)  
WFM -->  
5 STEP  
FIELD = 2 LINE = 21  
LUMINANCE NONLINEARITY (%)  
p-p = 0.2  
99.9  
99.9  
100.0  
99.9  
99.8  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
99.8  
99.7  
99.6  
99.5  
99.4  
99.3  
99.2  
99.1  
99.0  
98.9  
98.8  
98.7  
98.6  
1ST  
2ND  
3RD  
4TH  
5TH  
Figure 81. NTSC Luminance Nonlinearity Measurement  
CHROMINANCE AM PM (NTSC)  
FULL FIELD (BOTH FIELDS)  
BANDWIDTH 100Hz TO 500kHz  
WFM -->  
APPROPRIATE  
AM NOISE  
68.4dB RMS  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
dB RMS  
PM NOISE  
64.4dB RMS  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
dB RMS  
(0dB = 714mV p-p WITH AGC FOR 100% CHROMINANCE LEVEL)  
Figure 82. NTSC AMPM Noise Measurement  
–44–  
REV. C  
ADV7175A/ADV7176A  
NOISE SPECTRUM (NTSC)  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 100kHz TO FULL  
WFM -->  
PEDESTAL  
NOISE LEVEL = 80.1 dB RMS  
5.0  
10.0  
15.0  
20.0  
25.0  
30.0  
35.0  
40.0  
45.0  
50.0  
55.0  
60.0  
65.0  
70.0  
75.0  
80.0  
85.0  
90.0  
95.0  
100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
MHz  
Figure 83. NTSC SNR Pedestal Measurement  
NOISE SPECTRUM (NTSC)  
WFM -->  
RAMP SIGNAL  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 10kHz TO FULL (TILT NULL)  
NOISE LEVEL = 61.7 dB RMS  
5.0  
10.0  
15.0  
20.0  
25.0  
30.0  
35.0  
40.0  
45.0  
50.0  
55.0  
60.0  
65.0  
70.0  
75.0  
80.0  
85.0  
90.0  
95.0  
100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
MHz  
Figure 84. NTSC SNR Ramp Measurement  
REV. C  
–45–  
ADV7175A/ADV7176A  
PARADE SMPTE/EBU PAL  
mV Y(A)  
mV  
250  
Pb(B)  
mV  
Pr(C)  
250  
700  
600  
200  
150  
100  
50  
200  
150  
100  
50  
500  
400  
300  
200  
0
0
100  
50  
50  
0
100  
150  
200  
250  
100  
150  
200  
250  
؊100  
؊200  
؊300  
Figure 85. PAL YUV Parade Plot  
VM700A DEV 3 WC TEMP = 90؇C V = 5.25V  
DD  
CHANNEL C SYSTEM DEFAULT  
10-APR-97 09:23:07  
LIGHTNING  
L183  
COLORBARS: 75% SMPTE/EBU (50Hz)  
Pk-WHITE (100%) 700.0mV SETUP 0.0% COLOR p-p 525.0mV  
AVERAGE 15 --> 32  
YI  
G
R
CY  
88.31  
0.28%  
M
B
274.82  
173.24  
0.19%  
88.36  
0.19%  
174.35  
0.65%  
260.51  
0.14%  
0.93%  
B-Y  
W
YI  
CY  
864.78  
0.88%  
462.80  
0.50%  
YI  
G
G
307.54  
0.21%  
CY  
M
216.12  
0.33%  
R
M
R
156.63  
0.22%  
B
B
61.00  
1.92%  
B
R
G
M
CY  
YI  
W
R-Y  
CY  
262.17  
0.13%  
G
B
YI  
M
R
218.70  
0.51%  
42.54  
0.69%  
41.32  
212.28  
3.43%  
252.74  
3.72%  
0.76%  
COLOR P-P: B-Y 532.33mV  
1.40%  
R-Y 514.90mV 1.92%  
DELAY: B-Y 6ns R-Y 6ns  
Pk-WHITE: 700.4mV (100%) SETUP 0.01%  
Figure 86. PAL YUV Lighting Plot  
–46–  
REV. C  
ADV7175A/ADV7176A  
COMPONENT NOISE  
LINE = 202  
AMPLITUDE (0dB = 700mV p-p)  
BANDWIDTH 10kHz TO 5.0MHz  
NOISE dB RMS  
0.0  
5.0  
10.0  
15.0  
20.0  
25.0  
30.0  
-->Y 82.1  
Pb 82.3  
Pr 83.3  
35.0  
40.0  
45.0  
50.0  
55.0  
60.0  
65.0  
70.0  
75.0  
80.0  
85.0  
90.0  
95.0  
100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
MHz  
Figure 87. PAL YUV SNR Plot  
COMPONENT MULTIBURST  
LINE = 202  
AMPLITUDE (0dB = 100% OF 688.1mV  
683.4mV  
0.05  
668.9mV  
(dB)  
0.04  
0.02  
0.68  
2.58  
8.05  
0.0  
5.0  
Y
10.0  
0.49  
0.99  
2.00  
3.99  
4.79  
5.79  
0.21  
0.23  
0.78  
2.59  
7.15  
0.0  
Pb 5.0  
10.0  
0.49  
0.25  
0.99  
0.25  
1.99  
2.39  
2.89  
0.77  
2.59  
7.13  
0.0  
Pr 5.0  
10.0  
0.49  
0.99  
1.99  
2.39  
2.89  
(MHz)  
Figure 88. PAL YUV Multiburst Response  
REV. C  
–47–  
ADV7175A/ADV7176A  
COMPONENT VECTOR SMPTE/EBU, 75%  
R
M
g
YI  
BK  
B
G
CY  
Figure 89. PAL YUV Vector Plot  
RGB PARADE SMPTE/EBU  
mV GREEN (A)  
mV  
BLUE (B)  
mV  
RED (C)  
700  
700  
600  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
20 --> 32  
Figure 90. PAL RGB Waveforms  
–48–  
REV. C  
ADV7175A/ADV7176A  
INDEX  
Contents  
Page No.  
Contents  
Page No.  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 1  
ADV7175A/ADV7176A SPECIFICATIONS . . . . . . . . . . . 2  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 9  
PACKAGE THERMAL PERFORMANCE . . . . . . . . . . . . . 9  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . 10  
DATA PATH DESCRIPTION . . . . . . . . . . . . . . . . . . . . 11  
INTERNAL FILTER RESPONSE . . . . . . . . . . . . . . . . . . 11  
COLOR BAR GENERATION . . . . . . . . . . . . . . . . . . . . . 13  
SQUARE PIXEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COLOR SIGNAL CONTROL . . . . . . . . . . . . . . . . . . . . . 13  
BURST SIGNAL CONTROL . . . . . . . . . . . . . . . . . . . . . 13  
NTSC PEDESTAL CONTROL . . . . . . . . . . . . . . . . . . . . 13  
PIXEL TIMING DESCRIPTION . . . . . . . . . . . . . . . . . . 13  
SUBCARRIER RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REAL TIME CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VIDEO TIMING DESCRIPTION . . . . . . . . . . . . . . . . . . 13  
Timing Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Timing Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timing Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Timing Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
OUTPUT VIDEO TIMING . . . . . . . . . . . . . . . . . . . . . . . 21  
POWER-ON RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MPU PORT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . 21  
REGISTER ACCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REGISTER PROGRAMMING . . . . . . . . . . . . . . . . . . . . 23  
MODE REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MR0 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 23  
MODE REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MR1 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 24  
SUBCARRIER FREQUENCY REGISTER . . . . . . . . . . . 24  
SUBCARRIER PHASE REGISTER . . . . . . . . . . . . . . . . . 24  
TIMING REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TR0 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 24  
CLOSED CAPTIONING EVEN FIELD . . . . . . . . . . . . . 25  
CLOSED CAPTIONING ODD FIELD . . . . . . . . . . . . . 25  
TIMING REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
TR1 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 25  
MODE REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MR2 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 25  
NTSC PEDESTAL/PAL TELETEXT CONTROL  
REGISTERS 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MODE REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MR3 BIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 26  
TTXREQ CONTROL REGISTER TC07 . . . . . . . . . . . . 27  
APPENDIX 1. BOARD DESIGN AND LAYOUT  
CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
APPENDIX 2. CLOSED CAPTIONING . . . . . . . . . . . . 30  
APPENDIX 3. TELETEXT INSERTION . . . . . . . . . . . 31  
APPENDIX 4. WAVEFORMS . . . . . . . . . . . . . . . . . . . . 32  
APPENDIX 5. REGISTER VALUES . . . . . . . . . . . . . . . 36  
APPENDIX 6. OPTIONAL OUTPUT FILTER . . . . . . . 37  
APPENDIX 7. OPTIONAL DAC BUFFERING . . . . . . 38  
APPENDIX 8. OUTPUT WAVEFORMS . . . . . . . . . . . . 39  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . 50  
REV. C  
–49–  
ADV7175A/ADV7176A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Plastic Quad Flatpack  
(S-44)  
0.548 (13.925)  
0.546 (13.875)  
0.096 (2.44)  
0.398 (10.11)  
MAX  
0.390 (9.91)  
0.037 (0.94)  
0.025 (0.64)  
8°  
0.8°  
33  
23  
34  
22  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.040 (1.02)  
0.032 (0.81)  
0.040 (1.02)  
0.032 (0.81)  
0.033 (0.84)  
0.029 (0.74)  
0.016 (0.41)  
0.012 (0.30)  
0.083 (2.11)  
0.077 (1.96)  
–50–  
REV. C  

相关型号:

ADV7176KS

Integrated Digital CCIR-601 YCrCb to PAL/NTSC Video Encoder
ADI

ADV7177

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7177KS

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7177KS-REEL

IC COLOR SIGNAL ENCODER, PQFP44, PLASTIC, MO-112-AA-1, MQFP-44, Color Signal Converter
ADI

ADV7177KSZ

IC COLOR SIGNAL ENCODER, PQFP44, LEAD FREE, PLASTIC, MO-112-AA-1, MQFP-44, Color Signal Converter
ADI

ADV7177KSZ-REEL

IC COLOR SIGNAL ENCODER, PQFP44, LEAD FREE, PLASTIC, MO-112-AA-1, MQFP-44, Color Signal Converter
ADI

ADV7177_15

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7178

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7178KS

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7178_15

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder
ADI

ADV7179

Chip Scale PAL/NTSC Video Encoder with Advanced Power Management
ADI

ADV7179BCP

Chip Scale PAL/NTSC Video Encoder with Advanced Power Management
ADI