ADV7324KSTZ [ADI]

Multiformat 216 MHz Video Encoder with Six NSV 14-Bit DACs; 多格式216 MHz的视频编码器与六NSV 14位DAC
ADV7324KSTZ
型号: ADV7324KSTZ
厂家: ADI    ADI
描述:

Multiformat 216 MHz Video Encoder with Six NSV 14-Bit DACs
多格式216 MHz的视频编码器与六NSV 14位DAC

编码器
文件: 总92页 (文件大小:1008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat 216 MHz  
Video Encoder with Six NSV® 14-Bit DACs  
ADV7324  
Programmable DAC gain control  
Sync outputs in all modes  
FEATURES  
High definition (HD) input formats  
16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb  
Fully compliant with:  
SMPTE 274M (1080i, 1080p @ 74.25 MHz)  
SMPTE 296M (720p)  
SMPTE 240M (1035i)  
RGB in 3-bit × 10-bit 4:4:4 input format  
HDTV RGB supported:  
On-board voltage reference  
Six 14-bit NSV (noise shaped video) precision video DACs  
2-wire serial I2C® interface, open-drain configuration  
Dual I/O supply 2.5 V/3.3 V operation  
Analog and digital supply 2.5 V  
On-board PLL  
64-lead LQFP package  
Lead (Pb) free product  
RGB, RGBHV  
APPLICATIONS  
Other HD formats using async  
timing mode  
Enhanced definition (ED) input formats  
8-/10-, 16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb  
SMPTE 293M (525p)  
BTA T-1004 EDTV2 (525p)  
EVD (enhanced versatile disk) players  
High-end SD/PS DVD recorders/players  
SD/PS/HDTV display devices  
SD/HDTV set top boxes  
Professional video systems  
ITU-R BT.1358 (625p/525p)  
ITU-R BT.1362 (625p/525p)  
RGB in 3-bit × 10-bit 4:4:4 input format  
Standard definition (SD) input formats  
CCIR-656 4:2:2 8-/10-bit or 16-/20-bit parallel input  
HD output formats  
YPrPb HDTV (EIA 770.3)  
RGB, RGBHV  
CGMS-A (720p/1080i)  
ED output formats  
Macrovision Rev 1.2 (525p/625p)  
CGMS-A (525p/625p)  
YPrPb progressive scan (PS) (EIA-770.1, EIA-770.2)  
RGB, RGBHV  
SD output formats  
Composite NTSC M/N  
SD  
ADV7324  
CONTROL BLOCK  
COLOR CONTROL  
BRIGHTNESS  
DNR  
14-BIT  
DAC  
GAMMA  
PROGRAMMABLE  
FILTERS  
14-BIT  
DAC  
O
V
E
R
S
A
M
P
L
SD TEST PATTERN  
D
E
M
U
X
14-BIT  
DAC  
Y9–Y0  
C9–C0  
S9–S0  
PROGRAMMABLE  
RGB MATRIX  
14-BIT  
DAC  
I
N
G
HD  
14-BIT  
DAC  
CONTROL BLOCK  
HD TEST PATTERN  
14-BIT  
DAC  
COLOR CONTROL  
ADAPTIVE FILTER CTRL  
SHARPNESS FILTER  
HSYNC  
VSYNC  
BLANK  
TIMING  
GENERATOR  
2
I C  
INTERFACE  
CLKIN_A  
CLKIN_B  
PLL  
Composite PAL M/N/B/D/G/H/I, PAL-60  
SMPTE 170M NTSC-compatible composite video  
ITU-R BT.470 PAL-compatible composite video  
S-video (Y/C)  
Figure 1. Simplified Functional Block Diagram  
GENERAL DESCRIPTION  
The ADV®7324 is a high speed, digital-to-analog encoder on a  
single monolithic chip. It includes six high speed NSV video  
DACs with TTL-compatible inputs. It has separate 8-/10-,  
16-/20-, and 24-/30-bit input ports that accept data in high  
definition (HD) and/or standard definition (SD) video format.  
For all standards, external horizontal, vertical, and blanking  
signals, or EAV/SAV timing codes, control the insertion of  
appropriate synchronization signals into the digital data stream  
and, therefore, the output signal.  
EuroScart RGB  
Component YPrPb (Betacam, MII, SMPTE/EBU N10)  
Macrovision Rev 7.1.L1  
CGMS/WSS  
Closed captioning  
GENERAL FEATURES  
Simultaneous SD/HD or PS/SD inputs and outputs  
Oversampling up to 216 MHz  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADV7324  
TABLE OF CONTENTS  
Specifications..................................................................................... 6  
Gamma Correction.................................................................... 53  
HD Sharpness Filter and Adaptive Filter Controls................ 55  
Dynamic Specifications ............................................................... 7  
Timing Specifications .................................................................. 8  
Timing Diagrams.............................................................................. 9  
Absolute Maximum Ratings.......................................................... 16  
Thermal Characteristics ............................................................ 16  
ESD Caution................................................................................ 16  
Pin Configuration and Function Descriptions........................... 17  
Typical Performance Characteristics ........................................... 19  
MPU Port Description................................................................... 23  
Register Access................................................................................ 25  
Register Programming............................................................... 25  
Subaddress Registers (SR7 to SR0)........................................... 25  
Input Configuration ....................................................................... 38  
SD Only........................................................................................ 38  
PS Only or HDTV Only ............................................................ 38  
Simultaneous SD/PS or SD/HDTV.......................................... 38  
PS at 27 MHz (Dual Edge) or 54 MHz.................................... 39  
Features ............................................................................................ 41  
Output Configuration................................................................ 41  
HD Async Timing Mode........................................................... 42  
HD Timing Reset........................................................................ 43  
HD Sharpness Filter and Adaptive Filter  
Application Examples ................................................................ 56  
SD Digital Noise Reduction...................................................... 57  
Coring Gain Border ................................................................... 58  
Coring Gain Data....................................................................... 58  
DNR Threshold .......................................................................... 58  
Border Area................................................................................. 58  
Block Size Control...................................................................... 58  
DNR Input Select Control......................................................... 58  
DNR Mode Control ................................................................... 59  
Block Offset Control.................................................................. 59  
SD Active Video Edge................................................................ 59  
SAV/EAV Step-Edge Control ................................................... 59  
Hsync/Vsync Output Control .................................................. 61  
Board Design and Layout.............................................................. 62  
DAC Termination and Layout Considerations ...................... 62  
Video Output Buffer and Optional Output Filter.................. 62  
PCB Board Layout...................................................................... 63  
Appendix 1—Copy Generation Management System .............. 65  
PS CGMS..................................................................................... 65  
HD CGMS................................................................................... 65  
SD CGMS .................................................................................... 65  
CGMS Functionality.................................................................. 65  
Appendix 2—SD Wide-Screen Signaling.................................... 68  
Appendix 3—SD Closed Captioning........................................... 70  
Appendix 4—Test Patterns............................................................ 71  
Appendix 5—SD Timing Modes.................................................. 74  
SD Real-Time Control, Subcarrier Reset, and  
Timing Reset ............................................................................... 43  
Reset Sequence............................................................................ 45  
SD VCR FF/RW Sync................................................................. 45  
Vertical Blanking Interval ......................................................... 46  
Subcarrier Frequency Registers................................................ 46  
Square Pixel Timing Mode........................................................ 47  
Filters............................................................................................ 48  
Color Controls and RGB Matrix .............................................. 49  
Programmable DAC Gain Control .......................................... 53  
Mode 0 (CCIR-656)—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0) ........................... 74  
Mode 0 (CCIR-656)—Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1) ........................... 75  
Rev. 0 | Page 2 of 92  
ADV7324  
Mode 1—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 1 0) ............................77  
Appendix 6—HD Timing ..............................................................82  
Appendix 7—Video Output Levels...............................................83  
HD YPrPb Output Levels ..........................................................83  
RGB Output Levels .....................................................................84  
YPrPb Levels—SMPTE/EBU N10............................................85  
Appendix 8—Video Standards......................................................87  
Outline Dimensions........................................................................89  
Ordering Guide ...........................................................................89  
Mode 1—Master Option  
(Timing Register 0 TR0 = X X X X X 0 1 1) ............................78  
Mode 2— Slave Option  
(Timing Register 0 TR0 = X X X X X 1 0 0) ............................79  
Mode 2—Master Option  
(Timing Register 0 TR0 = X X X X X 1 0 1) ............................80  
Mode 3—Master/Slave Option  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
.......................................................................................................81  
REVISION HISTORY  
11/04—Revision 0: Initial Version  
Rev. 0 | Page 3 of 92  
ADV7324  
Table 1. Standards Directly Supported1  
DETAILED FEATURES  
Frame  
Clock  
Input  
(MHz)  
HD programmable features (720p/1080i/1035i)  
2× oversampling (148.5 MHz)  
Internal test pattern generator  
Color hatch, black bar, flat field/frame  
Fully programmable YCrCb to RGB matrix  
Gamma correction  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS-A (720p/1080i)  
ED programmable features (525p/625p)  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Color hatch, black bar, flat frame  
Individual Y and PrPb output delay  
Gamma correction  
Interlace/ Rate  
Resolution  
PS  
(Hz)  
Standard  
720 × 480  
I
I
I
29.97  
27  
ITU-R  
BT.656  
720 × 576  
720 × 480  
25  
27  
ITU-R  
BT.656  
29.97  
24.54  
NTSC  
Square  
Pixel  
720 × 576  
720 × 483  
I
25  
29.5  
27  
PAL Square  
Pixel  
SMPTE  
293M  
P
59.94  
720 × 483  
720 × 483  
P
P
59.94  
59.94  
27  
27  
BTA T-1004  
ITU-R  
BT.1358  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
Macrovision Rev 1.2 (525p/625p)  
CGMS-A (525p/625p)  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
P
P
P
I
50  
27  
27  
27  
ITU-R  
BT.1358  
ITU-R  
BT.1362  
ITU-R  
BT.1362  
SMPTE  
240M  
59.94  
50  
SD programmable features  
30  
29.97  
60, 50,  
30, 25, 24  
74.25  
74.1758  
74.25  
16× oversampling (216 MHz)  
Internal test pattern generator  
Color bars, black bar  
1280 × 720  
P
SMPTE  
296M  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
23.97,  
59.94,  
29.97  
74.1758  
1920 × 1080  
1920 × 1080  
I
30, 25  
29.97  
30, 25, 24 74.25  
23.98,  
29.97  
74.25  
74.1758  
SMPTE  
274M  
Gamma correction  
Digital noise reduction (DNR)  
Multiple chroma and luma filters  
Luma-SSAF™ filter with programmable gain/attenuation  
PrPb SSAF™  
P
SMPTE  
274M  
74.1758  
Separate pedestal control on component and  
composite/S-video output  
1 Other standards are supported in async timing mode.  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1  
CGMS/WSS  
Closed captioning  
Rev. 0 | Page 4 of 92  
ADV7324  
HD PIXEL  
INPUT  
SHARPNESS  
AND  
Y
CR  
CB  
Y COLOR  
CR COLOR  
CB COLOR  
DE-  
TEST  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
4:2:2  
TO  
4:4:4  
INTER-  
LEAVE  
ADAPTIVE  
FILTER  
PS 8×  
PATTERN  
HDTV 2×  
CLKIN_B  
CONTROL  
P_HSYNC  
P_VSYNC  
P_BLANK  
TIMING  
GENERATOR  
CLOCK  
CONTROL  
AND PLL  
U
V
UV SSAF  
S_HSYNC  
S_VSYNC  
S_BLANK  
RGB  
TIMING  
GENERATOR  
MATRIX  
SD 16×  
CLKIN_A  
CB  
CR  
Y
DE-  
INTER-  
LEAVE  
LUMA  
AND  
F
TEST  
PATTERN  
DNR  
GAMMA  
COLOR  
CONTROL  
SYNC  
INSERTION  
SC  
2× OVER-  
SAMPLING  
CGMS  
WSS  
MODU-  
LATION  
CHROMA  
FILTERS  
SD PIXEL  
INPUT  
Figure 2. Detailed Functional Block Diagram  
TERMINOLOGY  
HDTV: high definition television video, conforming to  
SMPTE 274M, or SMPTE 296M and SMPTE 240M.  
SD: standard definition video, conforming to  
ITU-R BT.601/ITU-R BT.656.  
YCrCb SD, PS, or HD component: digital video.  
YPrPb SD, PS, or HD component: analog video.  
HD: high definition video, i.e., 720p/1080i/1035i.  
EDTV: enhanced definition television (525p/625p).  
PS: progressive scan video, conforming to SMPTE 293M,  
ITU-R BT.1358, BTA T-1004 EDTV2, or ITU-R BT.13621362.  
Rev. 0 | Page 5 of 92  
ADV7324  
SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 150 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity,2 +ve  
Differential Nonlinearity,2 −ve  
DIGITAL OUTPUTS  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Three-State Leakage Current  
Three-State Output Capacitance  
DIGITAL AND CONTROL INPUTS  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current  
Input Capacitance, CIN  
ANALOG OUTPUTS  
14  
Bits  
LSB  
LSB  
LSB  
2.0  
1.0  
3.0  
0.4 [0.4]3  
V
V
µA  
pF  
ISINK = 3.2 mA  
ISOURCE = 400 µA  
VIN = 0.4 V, 2.4 V  
2.4 [2.0]3  
1.0  
2
2
V
V
µA  
pF  
0.8  
10  
2
VIN = 2.4 V  
Full-Scale Output Current  
Output Current Range  
DAC-to-DAC Matching  
Output Compliance Range, VOC  
Output Capacitance, COUT  
VOLTAGE REFERENCE  
Internal Reference Range, VREF  
External Reference Range, VREF  
VREF Current4  
4.1  
4.1  
4.33  
4.33  
1.0  
1.0  
7
4.6  
4.6  
mA  
mA  
%
V
pF  
0
1.4  
1.15  
1.15  
1.235  
1.235  
10  
1.3  
1.3  
V
V
µA  
POWER REQUIREMENTS  
Normal Power Mode  
5
IDD  
137  
78  
73  
140  
1.0  
37  
mA  
mA  
mA  
mA  
mA  
mA  
SD only (16×)  
PS only (8×)  
HDTV only (2×)  
SD (16×, 10-bit) + PS (8×, 20-bit)  
1906  
45  
IDD_IO  
7, 8  
IAA  
Sleep Mode  
IDD  
80  
µA  
IAA  
7
µA  
IDD_IO  
250  
0.01  
µA  
POWER SUPPLY REJECTION RATIO  
%/%  
1 Oversampling disabled. Static DAC performance improves with increased oversampling ratios.  
2 DNL measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for −ve DNL, the  
actual step value lies below the ideal step value.  
3 For values in brackets, VDD_IO = 2.375 V to 2.75 V.  
4 External current required to overdrive internal VREF  
.
5 IDD, the circuit current, is the continuous current required to drive the digital core.  
6 Guaranteed maximum by characterization.  
7 All DACs on.  
8 IAA is the total current required to supply all DACs, including the VREF circuitry and the PLL circuitry.  
Rev. 0 | Page 6 of 92  
 
 
 
 
 
 
 
 
 
ADV7324  
DYNAMIC SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 150 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
PS MODE  
Luma Bandwidth  
Chroma Bandwidth  
SNR  
12.5  
5.8  
65.6  
72  
MHz  
MHz  
dB  
Luma ramp unweighted  
Flat field full bandwidth  
dB  
HDTV MODE  
Luma Bandwidth  
Chroma Bandwidth  
SD MODE  
30  
13.75  
MHz  
MHz  
Hue Accuracy  
0.44  
0.20  
0.84  
−0.2  
0
97.5  
0
0.1  
Degrees  
%
%
Degrees  
%
%
ns  
%
dB  
dB  
%
Degrees  
dB  
dB  
Color Saturation Accuracy  
Chroma Nonlinear Gain  
Chroma Nonlinear Phase  
Chroma/Luma Intermodulation  
Chroma/Luma Gain Inequality  
Chroma/Luma Delay Inequality  
Luminance Nonlinearity  
Chroma AM Noise  
Chroma PM Noise  
Referenced to 40 IRE  
84  
75.3  
0.09  
0.12  
63.5  
77.7  
Differential Gain  
Differential Phase  
SNR  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
Rev. 0 | Page 7 of 92  
ADV7324  
TIMING SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 150 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 4.  
Parameter  
Min Typ Max Unit  
Test Conditions  
MPU PORT1  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
0.6  
1.3  
0.6  
µs  
First clock generated after this period relevant for  
repeated start condition  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
100  
µs  
ns  
ns  
ns  
µs  
ns  
300  
300  
0.6  
100  
Low Time  
RESET  
ANALOG OUTPUTS  
Analog Output Delay2  
Output Skew  
7
1
ns  
ns  
CLOCK CONTROL AND PIXEL PORT3  
fCLK  
fCLK  
29.5 MHz  
MHz  
SD PAL square pixel mode  
PS/HD async mode  
81  
Clock High Time, t9  
Clock Low Time, t10  
40  
40  
2.0  
2.0  
% of one clock cycle  
% of one clock cycle  
ns  
ns  
1
Data Setup Time, t11  
1
Data Hold Time, t12  
SD Output Access Time, t13  
SD Output Hold Time, t14  
HD Output Access Time, t13  
HD Output Hold Time, t14  
PIPELINE DELAY4  
15  
14  
ns  
ns  
ns  
ns  
5.0  
5.0  
63  
76  
35  
41  
36  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
SD (2×, 16×)  
SD component mode (16×)  
PS (1×)  
PS (8×)  
HD (2×, 1×)  
1 Guaranteed by characterization.  
2 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of DAC output full-scale transition.  
3
P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC S_BLANK  
Data: C[9:0]; Y[9:0], S[9:0]; Control:  
4 SD, PS = 27 MHz, HD = 74.25 MHz.  
,
,
,
,
,
.
Rev. 0 | Page 8 of 92  
 
 
 
 
ADV7324  
TIMING DIAGRAMS  
CLKIN_A  
t9  
t
10  
t12  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cr0  
t11  
Cr4  
Cb0  
Cb4  
Cb2  
Cr2  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 3. HD Only 4:2:2 Input Mode (Input Mode 010); PS Only 4:2:2 Input Mode (Input Mode 001)  
CLKIN_A  
t9  
t12  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb1  
t11  
Cb2  
Cr2  
Cb3  
Cb4  
Cb5  
Cb0  
Cr1  
Cr3  
Cr4  
Cr5  
S9–S0  
Cr0  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 4. HD Only 4:4:4 Input Mode (Input Mode 010); PS Only 4:4:4 Input Mode (Input Mode 001)  
Rev. 0 | Page 9 of 92  
ADV7324  
CLKIN_A  
t9  
t12  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
G0  
B0  
G1  
B1  
G2  
G3  
B3  
G4  
B4  
G5  
B5  
B2  
R2  
t11  
R1  
S9–S0  
R0  
R3  
R4  
R5  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 5. HD RGB 4:4:4 Input Mode (Input Mode 010)  
CLKIN_B*  
t
9
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Yxxx  
Y9–Y0  
Cb0  
t12  
Y0  
Cr0  
Y1  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B MUST BE USED IN THIS PS MODE  
HSYNC VSYNC  
/
Figure 6. PS 4:2:2 10-Bit Interleaved at 27 MHz  
Input Mode (Input Mode 100)  
CLKIN_A  
t10  
t9  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Cb0  
Y1  
Y0  
Cr0  
Yxxx  
Y9–Y0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
HSYNC VSYNC  
Input Mode (Input Mode 111)  
Figure 7. PS 4:2:2 10-Bit Interleaved at 54 MHz  
/
Rev. 0 | Page 10 of 92  
ADV7324  
CLKIN_B*  
Y9–Y0  
t9  
t10  
3FF  
t
00  
00  
XY  
t12  
Cb0  
Y0  
Cr0  
Y1  
12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B USED IN THIS PS ONLY MODE  
Figure 8. PS Only 4:2:2 10-Bit Interleaved at 27 MHz EAV/SAV Input Mode (Input Mode 100)  
CLKIN_A  
t10  
t9  
Y9–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Y1  
Cr0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
NOTE: Y0, Cb0 SEQUENCE AS PER SUBADDRESS 0x01, BIT 1  
Figure 9. PS Only 4:2:2 10-Bit Interleaved at 54 MHz EAV/SAV Input Mode (Input Mode 111)  
CLKIN_B  
t12  
t10  
t9  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
HD INPUT  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y3  
Y4  
Y5  
Y2  
Cr0  
Cr4  
Cb0  
Cb2  
Cr2  
Cb4  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 10. HD 4:2:2 and SD 10-Bit Simultaneous Input Mode (Input Mode 101: SD Oversampled) (Input Mode 110: HD Oversampled)  
Rev. 0 | Page 11 of 92  
ADV7324  
CLKIN_B  
t12  
t10  
t9  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y3  
Y4  
Y5  
Y2  
Cr0  
Cr4  
Cb0  
Cb2  
Cr2  
Cb4  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 11. PS 4:2:2 and SD 10-Bit Simultaneous Input Mode (Input Mode 011)  
CLKIN_B  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Crxxx  
Yxxx  
Cr0  
Y1  
t12  
Y9–Y0  
Cb0  
t12  
Y0  
t11  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 12. PS 10-Bit and SD 10-Bit Simultaneous Input Mode (Input Mode 100)  
Rev. 0 | Page 12 of 92  
ADV7324  
CLKIN_A  
t9  
t
10  
t12  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S9–S0/Y9–Y0*  
Cb0  
Cr0  
t11  
Cb4  
t13  
Cr4  
Cb2  
Cr2  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01, BIT 7  
Figure 13. 10-/8-Bit SD Only Pixel Input Mode (Input Mode 000)  
CLKIN_A  
t9  
t10  
t12  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S9–S0/Y9–Y0*  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Cb0  
Cr0  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01, BIT 7  
Figure 14. 20-/16-Bit SD Only Pixel Input Mode (Input Mode 000)  
Rev. 0 | Page 13 of 92  
ADV7324  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y9–Y0  
Y2  
Y3  
Y0  
Y1  
Cb0 Cr0 Cr1 Cb1  
C9–C0  
b
a AND b AS PER RELEVANT STANDARD.  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE TIMING SPECIFICATIONS  
SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRILEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
Figure 15. HD 4:2:2 Input Timing Diagram  
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Cr  
Y
Y9–Y0  
Cb  
Y
b
a = 32 CLOCK CYCLES FOR 525p  
a = 24 CLOCK CYCLES FOR 625p  
AS RECOMMENDED BY STANDARD  
b(MIN) = 244 CLOCK CYCLES FOR 525p  
b(MIN) = 264 CLOCK CYCLES FOR 625p  
Figure 16. PS 4:2:2 10-Bit Interleaved Input Timing Diagram  
Rev. 0 | Page 14 of 92  
ADV7324  
S_HSYNC  
S_VSYNC  
PAL = 24 CLOCK CYCLES  
NTSC = 32 CLOCK CYCLES  
S_BLANK  
Cr  
Y
S9–S0/Y9–Y0*  
Cb  
Y
PAL = 264 CLOCK CYCLES  
NTSC = 244 CLOCK CYCLES  
*SELECTED BY ADDRESS 0x01, BIT 7  
Figure 17. SD Timing Input for Timing Mode 1  
t3  
t5  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t2  
t7  
t8  
Figure 18. MPU Port Timing Diagram  
Rev. 0 | Page 15 of 92  
ADV7324  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter1  
Value  
VAA to AGND  
VDD to DGND  
−0.3 V to +3.0 V  
−0.3 V to +3.0 V  
−0.3 V to +4.6 V  
−0.3 V to VDD_IO +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
VDD_IO to GND_IO  
Digital Input Voltage to DGND  
VAA to VDD  
AGND to DGND  
DGND to GND_IO  
AGND to GND_IO  
THERMAL CHARACTERISTICS  
Ambient Operating Temperature (TA) 0°C to 70°C  
Storage Temperature (TS)  
Infrared Reflow Soldering (20 s)  
–65°C to +150°C  
260°C  
θJC = 11°C/W  
θJA = 47°C/W  
1 Analog output short circuit to any power supply or common can be of  
an indefinite duration.  
The ADV7324 is a Pb-free, environmentally friendly product. It is  
manufactured using the most up-to-date materials and processes.  
The coating on the leads of each device is 100% pure Sn electro-  
plate. The device is suitable for Pb-free applications and is able  
to withstand surface-mount soldering up to 255°C ( 5°C).  
In addition, it is backward-compatible with conventional SnPb  
soldering processes. This means that the electroplated Sn coating  
can be soldered with Sn/Pb solder pastes at conventional reflow  
temperatures of 220°C to 235°C.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. 0 | Page 16 of 92  
 
ADV7324  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
S_BLANK  
DD_IO  
PIN 1  
2
3
Y0  
R
SET1  
REF  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
V
4
COMP1  
DAC A  
DAC B  
DAC C  
5
6
ADV7324  
TOP VIEW  
(Not to Scale)  
7
8
V
AA  
9
AGND  
DAC D  
DAC E  
DAC F  
COMP2  
10  
11  
12  
13  
14  
15  
16  
V
DD  
DGND  
Y8  
Y9  
C0  
R
SET2  
C1  
EXT_LF  
RESET  
C2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 19. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
11, 57  
40  
32  
63  
Mnemonic  
Input/Output Description  
DGND  
AGND  
CLKIN_A  
CLKIN_B  
G
G
I
Digital Ground.  
Analog Ground.  
Pixel Clock Input for HD Only (74.25 MHz), PS Only (27 MHz), and SD Only (27 MHz).  
I
Pixel Clock Input. Requires a 27 MHz reference clock for PS mode or a 74.25 MHz  
(74.1758 MHz) reference clock in HDTV mode. This clock is only used in dual modes.  
45, 36  
44  
43  
42  
39  
COMP1, 2  
DAC A  
DAC B  
DAC C  
DAC D  
O
O
O
O
O
Compensation Pin for DACs. Connect 0.1 µF capacitor from COMP pin to VAA.  
CVBS/Green/Y/Y Analog Output.  
Chroma/Blue/U/Pb Analog Output.  
Luma/Red/V/Pr Analog Output.  
In SD Only Mode: CVBS/Green/Y Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Y/Green [HD] Analog Output.  
38  
37  
DAC E  
DAC F  
O
O
In SD Only Mode: Luma/Blue/U Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Pr/Red Analog Output.  
In SD Only Mode: Chroma/Red/V Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Pb/Blue [HD] Analog Output.  
23  
24  
25  
48  
49  
50  
P_HSYNC  
P_VSYNC  
P_BLANK  
S_BLANK  
S_VSYNC  
S_HSYNC  
Y9 to Y0  
I
Video Horizontal Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Vertical Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for SD Only.  
I
I
I/O  
I/O  
I/O  
I
Video Vertical Sync Control Signal for SD Only.  
Video Horizontal Sync Control Signal for SD Only.  
13,12,  
9 to 2  
SD or PS/HDTV Input Port for Y Data. Input port for interleaved PS data. The LSB is set up on  
Pin Y0. For 8-bit data input, LSB is set up on Y2.  
30 to 26,  
18 to 14  
62 to 58,  
55 to 51  
C9 to C0  
S9 to S0  
I
I
PS/HDTV Input Port 4:4:4 Input Mode. This port is used for the Cb[Blue/U] data. The LSB is set  
up on Pin C0. For 8-bit data input, LSB is set up on C2.  
SD or PS/HDTV Input Port for Cr[Red/V] Data in 4:4:4 Input Mode. LSB is set up on Pin S0. For  
8-bit data input, LSB is set up on S2.  
Rev. 0 | Page 17 of 92  
ADV7324  
Pin No.  
Mnemonic  
Input/Output Description  
33  
RESET  
I
This input resets the on-chip timing generator and sets the ADV7324 to its default register  
setting. RESET is an active low signal.  
47, 35  
RSET1, RSET2  
I
A 3040 Ω resistor must be connected from this pin to AGND and is used to control the  
amplitudes of the DAC outputs.  
22  
21  
20  
SCLK  
SDA  
ALSB  
I
I2C Port Serial Interface Clock Input.  
I2C Port Serial Data Input/Output.  
I/O  
I
TTL Address Input. This signal sets up the LSB of the I2C address. When this pin is tied low, the  
I2C filter is activated, which reduces noise on the I2C interface.  
1
VDD_IO  
VDD  
VAA  
P
P
P
Power Supply for Digital Inputs and Outputs.  
Digital Power Supply.  
Analog Power Supply.  
10, 56  
41  
46  
34  
31  
19  
VREF  
I/O  
Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
External Loop Filter for the Internal PLL.  
Multifunctional Input. Real-time control (RTC) input, timing reset input, subcarrier reset input.  
This input pin must be tied high (VDD_IO) for the ADV7324 to interface over the I2C port.  
Digital Input/Output Ground.  
EXT_LF  
RTC_SCR_TR  
I2C  
I
I
I
64  
GND_IO  
Rev. 0 | Page 18 of 92  
ADV7324  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y PASS BAND IN PS OVERSAMPLING MODE  
PS Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
1.0  
0.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 20. PS—UV 8× Oversampling Filter (Linear)  
Figure 23. PS—Y 8× Oversampling Filter (Pass Band)  
PS Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
Pr/Pb RESPONSE IN HDTV OVERSAMPLING MODE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 21. PS—UV 8× Oversampling Filter (SSAF)  
Figure 24. HDTV—UV 2× Oversampling Filter  
Y RESPONSE IN PS OVERSAMPLING MODE  
Y RESPONSE IN HDTV OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 22. PS—Y 8× Oversampling Filter  
Figure 25. HDTV—Y 2× Oversampling Filter  
Rev. 0 | Page 19 of 92  
ADV7324  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. Luma NTSC Low-Pass Filter  
Figure 29. Luma PAL Notch Filter  
Y RESPONSE IN SD OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–70  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 27. Luma PAL Low-Pass Filter  
Figure 30. Y—16× Oversampling Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Luma SSAF Filter up to 12 MHz  
Figure 28. Luma NTSC Notch Filter  
Rev. 0 | Page 20 of 92  
ADV7324  
4
2
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–2  
–4  
–6  
–8  
–10  
–12  
0
1
2
3
4
6
7
0
2
4
6
8
10  
12  
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. Luma SSAF Filter—Programmable Responses  
Figure 35. Luma CIF Low-Pass Filter  
5
4
3
2
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
0
2
4
6
8
10  
12  
5
6
7
0
1
2
3
4
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Luma SSAF Filter—Programmable Gain  
Figure 36. Luma QCIF Low-Pass Filter  
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Luma SSAF Filter—Programmable Attenuation  
Figure 37. Chroma 3.0 MHz Low-Pass Filter  
Rev. 0 | Page 21 of 92  
 
 
 
 
ADV7324  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
0
10  
12  
2
4
6
8
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. Chroma 2.0 MHz Low-Pass Filter  
Figure 41. Chroma 0.65 MHz Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. Chroma 1.3 MHz Low-Pass Filter  
Figure 42. Chroma CIF Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
0
10  
12  
2
4
6
8
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Chroma 1.0 MHz Low-Pass Filter  
Figure 43. Chroma QCIF Low-Pass Filter  
Rev. 0 | Page 22 of 92  
ADV7324  
MPU PORT DESCRIPTION  
The ADV7324 supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. This port  
operates in an open-drain configuration. Two inputs, serial data  
(SDA) and serial clock (SCL), carry information between any  
device connected to the bus and the ADV7324. Each slave  
device is recognized by a unique address. The ADV7324 has  
four possible slave addresses for both read and write operations.  
These are unique addresses for each device and are illustrated in  
Figure 44. The LSB sets either a read or write operation. Logic 1  
corresponds to a read operation, while Logic 0 corresponds to a  
write operation. A1 is enabled by setting the ALSB pin of the  
ADV7324 to Logic 0 or Logic 1. When ALSB is set to 1, there is  
greater input bandwidth on the I2C lines, which allows high  
speed data transfers on this bus. When ALSB is set to 0, there is  
reduced input bandwidth on the I2C lines, which means that  
pulses of less than 50 ns will not pass into the I2C internal  
controller. This mode is recommended for noisy systems.  
The ADV7324 acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
address plus the R/ bit. It interprets the first byte as the device  
W
address and the second byte as the starting subaddress. There is  
a subaddress auto-increment facility. This allows data to be  
written to or read from registers in ascending subaddress  
sequence, starting at any valid subaddress. A data transfer is  
always terminated by a stop condition. The user can also access  
any unique subaddress register on a one-by-one basis without  
updating all of the registers.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause the  
device to immediately jump to the idle condition. During a  
given SCL high period, the user should only issue a start  
condition, a stop condition, or a stop condition followed by a  
start condition. If an invalid subaddress is issued by the user,  
the ADV7324 does not issue an acknowledge and returns to the  
idle condition. If the user utilizes the auto-increment method of  
addressing the encoder and exceeds the highest subaddress, the  
following actions are taken:  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB PIN  
READ/WRITE  
CONTROL  
In read mode, the highest subaddress register contents are  
output until the master device issues a no acknowledge. This  
indicates the end of a read. A no acknowledge condition is  
when the SDA line is not pulled low on the ninth pulse.  
0
1
WRITE  
READ  
Figure 44. ADV7324 Slave Address = 0xD4  
In write mode, the data for the invalid byte is not loaded into  
any subaddress register, a no acknowledge is issued by the  
ADV7324, and the part returns to the idle condition.  
To control the various devices on the bus, the following  
protocol must be followed. First, the master initiates a data  
transfer by establishing a start condition, defined by a high-to-  
low transition on SDA while SCL remains high. This indicates  
that an address/data stream will follow. All peripherals respond  
to the start condition and shift the next eight bits (7-bit address  
Before writing to the subcarrier frequency registers, it is required  
to reset ADV7324 at least once after power-up.  
The four subcarrier frequency registers must be updated,  
starting with Subcarrier Frequency Register 0 and ending with  
Subcarrier Frequency Register 3. The subcarrier frequency will  
only update after the last subcarrier frequency register byte has  
been received by the ADV7324.  
+ R/ bit). The bits are transferred from MSB down to LSB.  
W
The peripheral that recognizes the transmitted address  
responds by pulling the data line low during the ninth clock  
pulse. This is known as an acknowledge bit. All other devices  
withdraw from the bus at this point and maintain an idle  
condition. The idle condition is where the device monitors the  
SDA and SCL lines, waiting for the start condition and the  
Figure 45 illustrates an example of data transfer for a write  
sequence and the start and stop conditions. Figure 46 shows bus  
write and read sequences.  
correct transmitted address. The R/ bit determines the  
W
direction of the data.  
Logic 0 on the LSB of the first byte means that the master will  
write information to the peripheral. Logic 1 on the LSB of the  
first byte means that the master will read information from the  
peripheral.  
Rev. 0 | Page 23 of 92  
 
 
ADV7324  
SDATA  
SCLOCK  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADRR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 45. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 46. Read and Write Sequences  
Rev. 0 | Page 24 of 92  
ADV7324  
REGISTER ACCESS  
The MPU can write to or read from all registers of the  
REGISTER PROGRAMMING  
ADV7324 except the subaddress registers, which are write only  
registers. The subaddress register selected determines which  
register the next read or write operation will access. All  
communication with the part through the bus starts with an  
access to the subaddress register. A read/write operation is then  
performed from/to the target address, which increments to the  
next address until a stop command is performed on the bus.  
The following tables describe the functionality of each register. All  
registers can be read from and written to, unless otherwise stated.  
SUBADDRESS REGISTERS (SR7 TO SR0)  
Each subaddress register is an 8-bit, write only register. After the  
encoders bus is accessed and a read or write operation is selected,  
the subaddress is set up. The subaddress register determines to  
or from which register the operation takes place.  
Table 7. Registers 0x00 to 0x01  
SR7–  
Reset Value  
SR0  
0x00  
Register  
Power  
Mode  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Sleep mode off.  
Sleep mode on.  
(Shaded)  
0xFC  
Sleep Mode. With this  
control enabled, the  
current consumption is  
reduced to µA level. All  
DACs and the internal  
PLL cct are disabled. I2C  
registers can be read from  
and written to in sleep  
mode.  
Register  
PLL and Oversampling  
Control. This control  
allows the internal PLL cct  
to be powered down and  
the oversampling to be  
switched off.  
0
1
PLL on.  
PLL off.  
DAC F: Power On/Off.  
0
1
DAC F off.  
DAC F on.  
DAC E off.  
DAC E on.  
DAC D off.  
DAC D on.  
DAC C off.  
DAC C on.  
DAC B off.  
DAC B on.  
DAC A off.  
DAC A on.  
Reserved.  
DAC E: Power On/Off.  
DAC D: Power On/Off.  
DAC C: Power On/Off.  
DAC B: Power On/Off.  
DAC A: Power On/Off.  
Reserved.  
0
1
0
1
0
1
0
1
0
1
0x01  
Mode  
0
Select  
Register  
Clock Edge.  
0
1
Cb clocked upon rising  
edge.  
Y clocked upon rising  
edge.  
Only for PS  
interleaved  
input at 27 MHz.  
Reserved.  
0
Clock Align.  
0
1
Must be set if the phase  
delay between the two  
input clocks is <9.25 ns  
or >27.75 ns.  
Only if two  
input clocks are  
used.  
Input Mode.  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SD input only.  
PS input only.  
HDTV input only.  
SD and PS (20-bit).  
SD and PS (10-bit).  
SD and HDTV  
0x38  
(SD oversampled).  
SD and HDTV  
(HDTV oversampled).  
PS only (at 54 MHz).  
1
1
1
1
0
1
Y/C/S Bus Swap.  
0
1
Allows data to be  
See Table 21.  
applied to data ports in  
various configurations  
(SD feature only).  
Rev. 0 | Page 25 of 92  
ADV7324  
Table 8. Registers 0x02 to 0x0F  
SR7–  
SR0  
0x02  
Register  
Mode Register 0  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0  
0
Register Setting  
Zero must be written to  
these bits.  
Reset Value  
0x20  
Test Pattern Black Bar  
0
1
Disabled.  
Enabled.  
0x11, Bit 2 must  
also be enabled.  
Manual RGB Matrix  
Adjust  
0
1
Disable manual RGB matrix  
adjust.  
Enable manual RGB matrix  
adjust.  
Sync on RGB1  
RGB/YPrPb Output  
SD Sync  
0
1
No sync.  
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No sync output.  
Output SD syncs on  
0
1
0
1
,
,
S_HSYNC S_VSYNC  
pins.  
S_BLANK  
No sync output.  
Output HD, ED, syncs on  
HD Sync  
0
1
,
.
S_HSYNC S_VSYNC  
0x03  
0x04  
RGB Matrix 0  
RGB Matrix 1  
x
x
x
x
LSB for GY.  
LSB for RV.  
0x03  
0xF0  
x
x
LSB for BU.  
x
x
LSB for GV.  
x
x
x
x
x
x
0
x
x
x
x
x
x
0
LSB for GU.  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
RGB Matrix 2  
RGB Matrix 3  
RGB Matrix 4  
RGB Matrix 5  
RGB Matrix 6  
DAC A, B, C  
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
Bit 9 to Bit 2 for GY.  
Bit 9 to Bit 2 for GU.  
Bit 9 to Bit 2 for GV.  
Bit 9 to Bit 2 for BU.  
Bit 9 to Bit 2 for RV.  
0%  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x00  
Positive Gain to DAC  
Output Voltage  
Output Level2  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
+0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
0
DAC Output Voltage  
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
−7.382%  
−7.364%  
−0.018%  
0%  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0x0B  
DAC D, E, F  
Output Level  
Positive Gain to DAC  
Output Voltage  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
+0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
0
DAC Output Voltage  
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
−7.382%  
−7.364%  
1
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
−0.018%  
0x0C3  
0x0D3  
0x0E  
0x00  
0x00  
0x00  
0x00  
0
Reserved  
Reserved  
0x0F  
1 For more detail, refer to Appendix 7.  
2 For more detail on the programmable output levels, refer to the Programmable DAC Gain Control section.  
3 The register setting value must be written after power-up/reset.  
Rev. 0 | Page 26 of 92  
 
 
 
ADV7324  
Table 9. Registers 0x10 to 0x11  
SR7–  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Note  
0x10  
HD Mode  
Register 1  
HD Output  
Standard  
0
0
EIA770.2 output  
0x00  
0
1
1
0
EIA770.1 output  
Output levels for  
full input range  
1
1
Reserved  
Input Sync  
Format  
0
1
,
,
HSYNC VSYNC  
BLANK  
EAV/SAV codes  
HD/ED Input  
Mode  
0
0
0
0
0
SMPTE 293M, ITU-  
BT. 1358  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
1
1
0
Async mode  
BTA-1004, ITU-  
BT. 1362  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
ITU-BT. 1358  
625p @  
50 Hz  
ITU-BT. 1362  
625p @  
50 Hz  
SMPTE 296M-1, -2  
SMPTE 296M-3  
SMPTE 296M-4, -5  
SMPTE 296M-6  
SMPTE 296M-7, -8  
SMPTE 240M  
720p @  
60/59.94 Hz  
720p @  
50 Hz  
720p @  
30/29.97 Hz  
720p @  
25 Hz  
720p @  
24/23.98 Hz  
1035i @  
60/59.94 Hz  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
SMPTE 274M-4, -5  
1080i @  
30/29.97 Hz  
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
SMPTE 274M-6  
SMPTE 274M-7, -8  
SMPTE 274M-9  
1080i @  
25 Hz  
1080p @  
30/29.97 Hz  
1080p @  
25 Hz  
SMPTE 274M-10, -11 1080p @  
24/23.98 Hz  
10010–11111  
Reserved  
0x11  
HD Mode  
Register 2  
HD Pixel Data  
Valid  
0
1
Pixel data valid off  
0x00  
Pixel data valid on  
Reserved  
0
HD Test Pattern  
Enable  
0
1
HD test pattern off  
HD test pattern on  
Hatch  
HD Test Pattern  
Hatch/Field  
0
1
Field/frame  
Disabled  
Enabled  
HD VBI Open  
0
1
HD Undershoot  
Limiter  
0
0
Disabled  
Only  
available in  
EDTV  
0
1
1
1
0
1
−11 IRE  
−6 IRE  
(525p/625p)  
−1.5 IRE  
Disabled  
Enabled  
HD Sharpness  
Filter  
0
1
Rev. 0 | Page 27 of 92  
ADV7324  
Table 10. Register 0x12  
SR7–  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0 clock cycles  
1 clock cycles  
2 clock cycles  
3 clock cycles  
4 clock cycles  
0 clock cycles  
1 clock cycle  
2 clock cycles  
3 clock cycles  
4 clock cycles  
Disabled  
0x12  
HD Mode  
Register 3  
HD Y Delay with Respect  
to Falling Edge of  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0x00  
HSYNC  
HD Color Delay with  
Respect to Falling Edge of  
HSYNC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
HD CGMS  
0
1
Enabled  
HD CGMS CRC  
0
1
Disabled  
Enabled  
Table 11. Registers 0x13 to 0x14  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Value  
0x13  
HD Mode  
Register 4  
HD Cr/Cb Sequence  
0
Cb after falling edge of  
.
0x4C  
HSYNC  
1
Cr after falling edge of  
.
HSYNC  
Reserved  
0
0 must be written to this bit.  
8-bit input.  
10-bit input.  
Disabled.  
HD Input Format  
0
1
Sinc Filter on DAC D, E, F  
0
1
Enabled.  
Reserved  
0
0 must be written to this bit.  
Disabled.  
HD Chroma SSAF  
0
1
Enabled.  
HD Chroma Input  
HD Double Buffering  
HD Timing Reset  
0
1
4:4:4  
4:2:2  
0
1
Disabled.  
Enabled.  
0x14  
HD Mode  
Register 5  
x
A low-high-low transition  
resets the internal HD timing  
counters.  
0x00  
HD Hsync Generation1  
HD Vsync Generation1  
HD Blank Polarity  
0
1
Refer to the  
Output Control section.  
/
HSYNC VSYNC  
0
1
0
1
active high.  
active low.  
BLANK  
BLANK  
HD Macrovision for 525p  
and 625p  
0
1
Macrovision disabled.  
Macrovision enabled.  
Reserved  
0
0 must be written to these bits.  
0 = field input.  
HD  
/Field Input  
VSYNC  
0
1
1 =  
input.  
VSYNC  
Horizontal/Vertical  
Counters2  
0
1
Update field/line counter.  
Field/line counter free running.  
1 Used in conjunction with HD SYNC in Register 0x02, Bit 7, set to 1.  
2 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the standard selected. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
Rev. 0 | Page 28 of 92  
 
 
ADV7324  
Table 12. Register 0x15  
SR7–  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x15  
HD Mode  
Register 6  
Reserved  
0
0 must be written to this bit.  
0x00  
HD RGB Input  
0
1
Disabled.  
Enabled.  
HD Sync on PrPb  
HD Color DAC Swap  
0
1
Disabled.  
Enabled.  
0
1
DAC E = Pb; DAC F = Pr.  
DAC E = Pr; DAC F = Pb.  
Gamma Curve A.  
Gamma Curve B.  
Disabled.  
HD Gamma Curve A  
HD Gamma Curve B  
HD Gamma Curve Enable  
0
1
0
1
Enabled.  
HD Adaptive Filter Mode  
HD Adaptive Filter Enable  
0
1
Mode A.  
Mode B.  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 29 of 92  
ADV7324  
Table 13. Registers 0x16 to 0x37  
SR7–  
Register  
Setting  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x16  
0x17  
HD Y Level1  
HD Cr Level1  
HD Cb Level1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y level value  
Cr level value  
0xA0  
0x80  
0x18  
x
x
x
x
x
x
x
x
Cb level value  
0x80  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HD Sharpness  
Filter Gain  
HD Sharpness Filter Gain Value A  
0
0
0
0
Gain A = 0  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
1
0
0
0
Gain A = −8  
1
1
1
1
Gain A = −1  
HD Sharpness Filter Gain Value B  
0
0
0
0
0
1
Gain B = 0  
0
0
Gain B = +1  
0
1
1
1
Gain B = +7  
1
0
0
0
Gain B = −8  
1
1
1
1
Gain B = −1  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
HD CGMS Data 0  
HD CGMS Data 1  
HD CGMS Data 2  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD CGMS Data Bits  
0
0
0
0
C19  
C11  
C3  
x
C18  
C10  
C2  
x
C17  
C9  
C1  
x
C16  
C8  
C0  
x
CGMS 19 to 16  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
HD CGMS Data Bits  
C15  
C7  
x
C14  
C6  
x
C13  
C5  
x
C12  
C4  
x
CGMS 15 to 8  
HD CGMS Data Bits  
CGMS 7 to 0  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1 For use with internal test pattern only.  
Rev. 0 | Page 30 of 92  
 
ADV7324  
Table 14. Registers 0x38 to 0x3D  
SR7–  
Register  
Setting  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x38  
HD Adaptive Filter  
Gain 1  
HD Adaptive Filter  
Gain 1, Value A  
0
0
0
0
Gain A = 0  
0x00  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
HD Adaptive Filter  
Gain 1, Value B  
0
0
0
0
0
0
0
1
Gain B = +1  
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
0x39  
HD Adaptive Filter  
Gain 2  
HD Adaptive Filter  
Gain 2, Value A  
0
0
0
0
0x00  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
HD Adaptive Filter  
Gain 2, Value B  
0
0
0
0
0
0
0
1
Gain B = +1  
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
0x3A  
HD Adaptive Filter  
Gain 3  
HD Adaptive Filter  
Gain 3, Value A  
0
0
0
0
0x00  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
HD Adaptive Filter  
Gain 3 Value B  
0
0
0
0
0
0
0
1
Gain B = +1  
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Threshold A  
0x3B  
0x3C  
0x3D  
HD Adaptive Filter  
Threshold A  
HD Adaptive Filter  
Threshold A  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
HD Adaptive Filter  
Threshold B  
HD Adaptive Filter  
Threshold B  
x
x
x
x
x
x
x
x
Threshold B  
Threshold C  
HD Adaptive Filter  
Threshold C  
HD Adaptive Filter  
Threshold C  
Rev. 0 | Page 31 of 92  
ADV7324  
Table 15. Registers 0x3E to 0x43  
SR7–  
Reset  
Value  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x3E  
0x3F  
0x40  
Reserved  
SD Mode Register 0  
SD Standard  
0
0
1
1
0
1
0
1
NTSC.  
PAL B, D, G, H, I.  
PAL M.  
PAL N.  
SD Luma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC.  
LPF PAL.  
Notch NTSC.  
Notch PAL.  
SSAF luma.  
Luma CIF.  
Luma QCIF.  
Reserved.  
1.3 MHz.  
0.65 MHz.  
1.0 MHz.  
2.0 MHz.  
SD Chroma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved.  
Chroma CIF.  
Chroma QCIF.  
3.0 MHz.  
0x41  
0x42  
Reserved  
SD PrPb SSAF  
0x00  
0x08  
SD Mode Register 1  
0
1
Disabled.  
Enabled.  
SD DAC Output 1  
SD DAC Output 2  
0
1
Refer to the Output  
Configuration section.  
0
1
Refer to the Output  
Configuration section.  
SD Pedestal  
0
1
Disabled.  
Enabled.  
SD Square Pixel  
SD VCR FF/RW Sync  
SD Pixel Data Valid  
0
1
Disabled.  
Enabled.  
Disabled.  
Enabled.  
Disabled.  
Enabled.  
0
1
0
1
SD SAV/EAV Step  
Edge Control  
0
1
Disabled.  
Enabled.  
0x43  
SD Mode Register 2  
SD Pedestal YPrPb  
Output  
SD Output Levels Y  
0
1
No pedestal on YUV.  
7.5 IRE pedestal on YUV.  
Y = 700 mV/300 mV.  
Y = 714 mV/286 mV.  
700 mV p-p (PAL);  
1000 mV p-p (NTSC).  
700 mV p-p.  
0x00  
0
1
SD Output Levels PrPb  
0
0
0
1
1
1
0
1
1000 mV p-p.  
648 mV p-p.  
SD VBI Open  
0
1
Disabled.  
Enabled.  
SD CC Field Control  
0
0
1
1
0
1
0
1
CC disabled.  
CC on odd field only.  
CC on even field only.  
CC on both fields.  
Reserved.  
Reserved  
0
Rev. 0 | Page 32 of 92  
ADV7324  
Table 16. Registers 0x44 to 0x49  
SR7–  
Reset  
Value  
0x00  
SR0  
Register  
SD Mode  
Register 3  
Bit Description  
SD -3H  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Disabled.  
0x44  
VSYNC  
= 2.5 lines (PAL),  
VSYNC  
= 3 lines (NTSC).  
VSYNC  
SD RTC/TR/SCR  
0
0
1
1
0
1
0
1
Genlock disabled.  
Subcarrier Reset.  
Timing Reset.  
RTC enabled.  
720 pixels.  
710 (NTSC)/702 (PAL).  
Chroma enabled.  
Chroma disabled.  
Enabled.  
SD Active Video Length  
SD Chroma  
0
1
0
1
SD Burst  
0
1
Disabled.  
SD Color Bars  
SD DAC Swap  
0
1
Disabled.  
Enabled.  
DAC A = luma, DAC B = chroma.  
DAC A = chroma, DAC B = luma.  
0
1
0x45  
0x46  
Reserved  
SD Mode  
Register 4  
0x00  
0x01  
NTSC Color Subcarrier  
Adjust (Falling Edge of  
HS to Start of Color  
Burst)1  
0
0
1
0
1
0
5.17 μs.  
5.31 μs (default).  
5.59 μs (must be set for  
Macrovision compliance).  
Reserved.  
Disabled.  
Enabled.  
1
1
0
1
0x47  
SD Mode  
Register 5  
SD PrPb Scale  
SD Y Scale  
0x00  
0
1
Disabled.  
Enabled.  
SD Hue Adjust  
SD Brightness  
SD Luma SSAF Gain  
0
1
Disabled.  
Enabled.  
Disabled.  
Enabled.  
Disabled.  
Enabled.  
0
1
0
1
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit.  
0 must be written to this bit.  
0 must be written to this bit.  
0
0
0x48  
SD Mode  
Register 6  
Reserved  
Reserved  
SD Double Buffering  
0
0x00  
0
0 must be written to this bit.  
Disabled.  
Enabled.  
0
1
SD Input Format  
0
0
1
1
0
1
0
1
8-bit input.  
16-bit input.  
10-bit input.  
20-bit input.  
Disabled.  
SD Digital Noise  
Reduction  
0
1
Enabled.  
SD Gamma Control  
0
1
Disabled.  
Enabled.  
SD Gamma Curve  
0
1
Gamma Curve A.  
Gamma Curve B.  
Disabled.  
−11 IRE.  
−6 IRE.  
0x49  
SD Mode  
Register 7  
SD Undershoot Limiter  
0
0
1
1
0
1
0
1
0x00  
−1.5 IRE.  
Reserved  
SD Black Burst Output on  
DAC Luma  
0
0 must be written to this bit.  
Disabled.  
Enabled.  
0
1
SD Chroma Delay  
0
0
1
1
0
1
0
1
Disabled.  
4 clock cycles.  
8 clock cycles.  
Reserved.  
Reserved  
Reserved  
0
0 must be written to this bit.  
0 must be written to this bit.  
0
1 NTSC color bar adjust should be set to 10 b for Macrovision compliance.  
Rev. 0 | Page 33 of 92  
ADV7324  
Table 17. Registers 0x4A to 0x58  
SR7–  
Reset  
Value  
0x08  
SR0  
0x4A  
Register  
SD Timing  
Register 0  
Bit Description  
SD Slave/Master  
Mode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Slave mode.  
Master mode.  
Mode 0.  
Mode 1.  
Mode 2.  
SD Timing Mode  
0
0
1
1
0
1
0
1
Mode 3.  
SD BLANK Input  
SD Luma Delay  
0
1
Enabled.  
Disabled.  
No delay.  
2 clock cycles.  
4 clock cycles.  
6 clock cycles.  
−40 IRE.  
0
0
1
1
0
1
0
1
SD Min. Luma  
Value  
SD Timing Reset  
0
1
0
−7.5 IRE.  
x
0
0
0
0
0
0
0
0
A low-high-low transition resets  
the internal SD timing counters.  
Ta = 1 clock cycle.  
0x4B  
SD Timing  
Register 1  
SD  
Width  
0x00  
HSYNC  
0
1
1
1
0
1
Ta = 4 clock cycles.  
Ta = 16 clock cycles.  
Ta = 128 clock cycles.  
Tb = 0 clock cycle.  
Tb = 4 clock cycles.  
Tb = 8 clock cycles.  
Tb = 18 clock cycles.  
Tc = Tb.  
SD  
VSYNC  
to  
Delay  
0
0
1
1
0
1
0
1
HSYNC  
SD  
to  
HSYNC VSYNC  
x
x
0
1
Tc = Tb + 32 µs.  
Rising Edge Delay  
(Mode 1 Only)  
Width  
0
0
1
1
0
1
0
1
1 clock cycle.  
4 clock cycles.  
16 clock cycles.  
128 clock cycles.  
0 clock cycles.  
1 clock cycle.  
2 clock cycles.  
3 clock cycles.  
Subcarrier Frequency Bit 7 to Bit 0.  
VSYNC  
(Mode 2 Only)  
to Pixel  
Data Adjust  
0
0
1
1
x
0
1
0
1
x
HSYNC  
0x1E1  
0x7C  
0xF0  
0x21  
0x00  
0x00  
0x4C  
SD FSC Register 01  
x
x
x
x
x
x
0x4D  
0x4E  
0x4F  
0x50  
0x51  
SD FSC Register 1  
SD FSC Register 2  
SD FSC Register 3  
SD FSC Phase  
SD Closed  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency Bit 15 to Bit 8.  
Subcarrier Frequency Bit 23 to Bit 16.  
Subcarrier Frequency Bit 31 to Bit 24.  
Subcarrier Phase Bit 9 to Bit 2.  
Extended Data Bit 7 to Bit 0.  
Extended Data on  
Even Fields  
Captioning  
0x52  
0x53  
0x54  
0x55  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Pedestal  
Register 0  
Extended Data on  
Even Fields  
Data on Odd Fields  
x
x
x
x
x
x
x
x
Extended Data Bit 15 to Bit 8.  
Data Bit 7 to Bit 0.  
0x00  
0x00  
0x00  
0x00  
x
x
x
x
x
x
x
x
Data on Odd Fields  
x
x
x
x
x
x
x
x
Data Bit 15 to Bit 8.  
Pedestal on Odd  
Fields  
17  
16  
15  
14  
13  
12  
11  
10  
Setting any of these bits to 1  
disables pedestal on the line num-  
ber indicated by the bit settings.  
0x56  
0x57  
0x58  
SD Pedestal  
Register 1  
SD Pedestal  
Register 2  
SD Pedestal  
Register 3  
Pedestal on Odd  
Fields  
Pedestal on Even  
Fields  
Pedestal on Even  
Fields  
25  
17  
25  
24  
16  
24  
23  
15  
23  
22  
14  
22  
21  
13  
21  
20  
12  
20  
19  
11  
19  
18  
10  
18  
0x00  
0x00  
0x00  
1 For precise NTSC Fsc, this register should be programmed to 0x1F.  
LINE 1  
LINE 313  
LINE 314  
HSYNC  
T
a
T
c
T
b
VSYNC  
Figure 47. Timing Register 1 in PAL Mode  
Rev. 0 | Page 34 of 92  
 
ADV7324  
Table 18. Registers 0x59 to 0x64  
SR7–  
Reset  
Value  
0x00  
SR0  
Register  
Bit Description  
SD CGMS Data  
SD CGMS CRC  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
19  
Bit 2  
18  
Bit 1  
17  
Bit 0  
16  
Register Setting  
CGMS Data Bit C19 to Bit C16  
Disabled  
Enabled  
0x59  
SD CGMS/WSS 0  
0
1
SD CGMS on Odd  
Fields  
0
1
Disabled  
Enabled  
SD CGMS on Even  
Fields  
0
1
Disabled  
Enabled  
SD WSS  
0
1
Disabled  
Enabled  
0x5A  
SD CGMS/WSS 1  
SD CGMS/WSS Data  
13  
5
12  
4
11  
3
10  
2
9
8
CGMS Data Bit C13 to Bit C8,  
or WSS Data Bit C13 to Bit C8  
CGMS Data Bit C15 to Bit C14  
CGMS/WSS Data Bit C7 to  
Bit C0  
0x00  
15  
7
14  
6
0x00  
0x00  
0x5B  
0x5C  
SD CGMS/WSS 2  
SD LSB Register  
SD CGMS/WSS Data  
1
x
0
x
SD LSB for Y Scale  
Value  
SD Y Scale Bit 1 to Bit 0  
SD LSB for Cb Scale  
Value  
SD LSB for Cr Scale  
Value  
x
x
SD Cb Scale Bit 1 to Bit 0  
SD Cr Scale Bit 1 to Bit 0  
x
x
SD LSB for FSC Phase  
SD Y Scale Value  
x
x
x
x
Subcarrier Phase Bit 1 to Bit 0  
SD Y Scale Bit 7 to Bit 2  
0x5D  
0x5E  
0x5F  
SD Y Scale  
Register  
SD Cb Scale  
Register  
SD Cr Scale  
Register  
SD Hue Register  
SD Brightness/  
WSS  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
SD Cb Scale Value  
SD Cr Scale Value  
x
x
x
x
x
SD Cb Scale Bit 7 to Bit 2  
SD Cr Scale Bit 7 to Bit 2  
0x60  
0x61  
SD Hue Adjust Value  
SD Brightness Value  
SD Blank WSS Data  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SD Hue Adjust Bit 7 to Bit 0  
SD Brightness Bit 6 to Bit 0  
Disabled  
Enabled  
−4 dB  
0 dB  
+4 dB  
No gain  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
No gain  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
0
0x00  
0x00  
Line 23  
0
1
0
0
0
0x62  
0x63  
SD Luma SSAF  
SD DNR 0  
SD Luma SSAF  
Gain/Attenuation  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
0x00  
Coring Gain Border  
0x00  
In DNR  
mode,  
the  
values in  
brackets  
apply.  
Coring Gain Data  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0x64  
SD DNR 1  
DNR Threshold  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0x00  
1
62  
63  
Border Area  
0
1
2 pixels  
4 pixels  
Block Size Control  
0
1
8 pixels  
16 pixels  
Rev. 0 | Page 35 of 92  
ADV7324  
Table 19. Registers 0x65 to 0x7C  
SR7–  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x65  
SD DNR 2  
DNR Input Select  
0
0
0
1
0
1
1
0
1
0
1
0
Filter A  
0x00  
Filter B  
Filter C  
Filter D  
DNR Mode  
0
1
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DNR mode  
DNR sharpness mode  
DNR Block Offset  
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0 pixel offset  
1 pixel offset  
14 pixel offset  
15 pixel offset  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Brightness Value  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
SD Brightness  
Detect  
Read only  
0x7B  
Field Count  
Register  
Field Count  
Reserved  
x
x
x
Read only  
Reserved  
Reserved  
Reserved  
Read only  
Reserved  
0x8x  
0
Reserved  
0
Reserved  
0
Revision Code  
Reserved  
1
0
0x7C  
0x00  
Rev. 0 | Page 36 of 92  
ADV7324  
Table 20. Registers 0x7D to 0x91  
SR7-  
Reset  
Value  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
Reserved  
Reserved  
Reserved  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bit  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Bit 1 to Bit 7 must be 0.  
Rev. 0 | Page 37 of 92  
ADV7324  
INPUT CONFIGURATION  
When 10-bit input data is applied, the following bits must be set  
to 1:  
PS ONLY OR HDTV ONLY  
Address[0x01]: Input Mode = 001 or 010, Respectively  
Address 0x13, Bit 2 (HD 10-bit enable)  
Address 0x48, Bit 4 (SD 10-bit enable)  
YCrCb PS, HDTV, or any other HD YCrCb data can be input in  
4:2:2 or 4:4:4. In 4:2:2 input format, the Y data is input on Pin Y9  
to Pin Y0, and the CrCb data is input on Pin C9 to Pin C0. In  
4:4:4 input mode, Y data is input on Pin Y9 to Pin Y0, Cb data is  
input on Pin C9 to Pin C0, and Cr data is input on Pin S9 to  
Pin S0. If the YCrCb data does not conform to SMPTE 293M  
(525p), ITU-R BT.1358M (625p), SMPTE 274M (1080i),  
SMPTE 296M (720p), SMPTE 240M (1035i), or BTA-T1004/1362,  
the async timing mode must be used. RGB data can only be  
input in 4:4:4 format in PS or HDTV input modes when HD RGB  
input is enabled. G data is input on Pin Y9 to Pin Y0, R data is  
input on Pin S9 to Pin S0, and B data is input on Pin C9 to Pin C0.  
The clock signal must be input on Pin CLKIN_A.  
Note that the ADV7324 defaults to simultaneous SD and PS  
upon power-up (Address[0x01]: Input Mode = 011).  
SD ONLY  
Address[0x01]: Input Mode = 000  
In 8-/10-bit input mode, multiplexed data is input on Pin S9 to  
Pin S0 (or Pin Y9 to Pin Y0, depending on Register Address 0x01,  
Bit 7), with S0 being the LSB in 10-bit input mode (see Table 21).  
Input standards supported are ITU-R BT.601/656. In 16-/20-bit  
input mode, the Y pixel data is input on Pin S9 to Pin S2, and  
CrCb data is input on Pin Y9 to Pin Y2 (see Table 21).  
MPEG2  
DECODER  
16-/20-Bit Mode Operation  
ADV7324  
27MHz  
When Register 0x01, Bit 7 = 0, CrCb data is input on the Y bus,  
and Y data is input on the S bus. When Register 0x01, Bit 7 = 1,  
CrCb data is input on the C bus, and Y data is input on Y bus.  
YCrCb  
CLKIN_A  
10  
10  
10  
Cb  
Cr  
Y
C[9:0]  
S[9:0]  
Y[9:0]  
INTERLACED TO  
PS  
The 27 MHz clock input must be input on Pin CLKIN_A. Input  
sync signals are input on the  
,
, and  
S_VSYNC S_HSYNC  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
pins.  
S_BLANK  
Figure 49. PS Input Mode  
Table 21. SD 8-/10-Bit and 16-/20-Bit Configurations  
Configuration  
SIMULTANEOUS SD/PS OR SD/HDTV  
Parameter  
8-/10-Bit Mode 16-/20-Bit Mode  
Register 0x01, Bit 7 = 0  
Y Bus  
S Bus  
C Bus  
Address[0x01]: Input Mode 011 (SD 10-Bit, PS 20-Bit), Input  
Mode 101 (SD and HD, SD Oversampled), or Input Mode  
110 (SD and HD, HD Oversampled)  
CrCb  
Y
656/601, YCrCb  
656/601, YCrCb  
YCrCb PS and HD data must be input in 4:2:2 format. In 4:2:2  
input format, the HD Y data is input on Pin Y9 to Pin Y0, and  
the HD CrCb data is input on Pin C9 to Pin C0. If PS 4:2:2 data is  
inter-leaved onto a single 10-bit bus, Pin Y9 to Pin Y0 are used  
for the input port. The input data is input at 27 MHz, with the  
data being clocked upon the rising and falling edges of the input  
clock. The input mode register at Address 0x01 is set accordingly.  
If the YCrCb data does not conform to SMPTE 293M (525p),  
ITU-R BT.1358M (625p), SMPTE 274M (1080i), SMPTE 296M  
(720p), SMPTE 240M (1035i), or BTA-T1004, the async timing  
mode must be used.  
Register 0x01, Bit 7 = 1  
Y Bus  
S Bus  
C Bus  
Y
CrCb  
ADV7324  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
MPEG2  
DECODER  
27MHz  
10  
CLKIN_A  
The 8- or 10-bit SD data must be compliant with ITU-R  
BT.601/656 in 4:2:2 format. SD data is input on Pin S9 to Pin S0,  
with S0 being the LSB. Using 8-bit input format, the data is  
input on Pin S9 to Pin S2. The clock input for SD must be input  
on CLKIN_A, and the clock input for HD must be input on  
CLKIN_B. Synchronization signals are optional. SD syncs are  
YCrCb  
S[9:0] OR Y[9:0]*  
*SELECTED BY ADDRESS 0x01, BIT 7  
Figure 48. SD Only Input Mode  
Rev. 0 | Page 38 of 92  
 
ADV7324  
S_BLANK  
.
, and  
P_HSYNC  
input on Pin  
HD syncs are input on Pin  
, Pin  
, and Pin  
, Pin  
S_VSYNC  
S_HSYNC  
PS AT 27 MHZ (DUAL EDGE)  
OR 54 MHZ  
P_VSYNC  
Pin  
.
P_BLANK  
Address[0x01]: Input Mode 100 or 111, Respectively  
ADV7324  
YCrCb PS data can be input at 27 MHz or 54 MHz. The input  
data is interleaved onto a single 8-/10-bit bus and is input on  
Pin Y9 to Pin Y0. When a 27 MHz clock is supplied, the data is  
clocked upon the rising and falling edges of the input clock, and  
the clock edge bit [Address 0x01, Bit 1] must be set accordingly.  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
MPEG2  
DECODER  
27MHz  
10  
CLKIN_A  
S[9:0]  
YCrCb  
Table 22 provides an overview of all possible input configurations.  
Figure 53, Figure 54, and Figure 55 show the possible conditions:  
Cb data on the rising edge, and Y data on the rising edge.  
CrCb  
Y
10  
10  
C[9:0]  
Y[9:0]  
INTERLACED TO  
PS  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
CLKIN_B  
27MHz  
CLKIN_B  
Y9–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Figure 50. Simultaneous SD and PS Input  
CLOCK EDGE ADDRESS 0x00, BIT 1, SHOULD BE SET TO 0 IN THIS CASE.  
ADV7324  
Figure 53. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
S_VSYNC,  
S_HSYNC,  
3
S_BLANK  
SDTV  
DECODER  
27MHz  
CLKIN_B  
CLKIN_A  
YCrCb 10  
S[9:0]  
Y9–Y0  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
HDTV  
DECODER  
CrCb 10  
C[9:0]  
Y[9:0]  
1080i  
OR  
Y
10  
3
CLOCK EDGE ADDRESS 0x00, BIT 1, SHOULD BE SET TO 1 IN THIS CASE.  
720p  
OR  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
1035i  
Figure 54. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
74.25MHz  
CLKIN_B  
CLKIN_B  
Figure 51. Simultaneous SD and HD Input  
PIXEL INPUT  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
DATA  
In simultaneous SD/HD input mode, if the two clock phases  
differ by less than 9.25 ns or by more than 27.75 ns, the clock  
align bit [Address 0x01, Bit 3] must be set accordingly. If the  
application uses the same clock source for both SD and PS, the  
clock align bit must be set because the phase difference between  
both inputs is less than 9.25 ns.  
WITH A 54MHz CLOCK, THE DATA IS LATCHED ON EVERY RISING EDGE.  
Figure 55. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
MPEG2  
DECODER  
CLKIN_A  
CLKIN_B  
ADV7324  
27MHz OR 54MHz  
YCrCb  
CLKIN_A  
t
t
< 9.25ns OR  
> 27.75ns  
DELAY  
DELAY  
INTERLACED  
TO PS  
YCrCb  
10  
Y[9:0]  
Figure 52. Clock Phase with Two Input Clocks  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
Figure 56. 10-Bit PS at 27 MHz or 54 MHz  
Rev. 0 | Page 39 of 92  
 
 
 
ADV7324  
Table 22. Input Configurations  
Input Format  
Total Bits  
Input Video Input Pins  
Subaddress Register Setting  
ITU-R BT.656 (See Table 21)  
8
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:4:4  
YCrCb  
S9 to S2 (MSB = S9) 0x01  
0x00  
0x48  
S9 to S0 (MSB = S9) 0x01  
0x48  
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x48  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x48  
Y9 to Y2 (MSB = Y9) 0x01  
0x48  
Y9 to Y0 (MSB = Y9) 0x01  
0x48  
Y9 to Y2 (MSB = Y9) 0x01  
0x13  
Y9 to Y0 (MSB = Y9) 0x01  
0x13  
Y9 to Y2 (MSB = Y9) 0x01  
0x13  
Y9 to Y0 (MSB = Y9) 0x01  
0x13  
0x00  
0x00  
0x10  
0x00  
0x08  
0x00  
0x18  
0x80  
0x00  
0x80  
0x10  
0x10  
0x40  
0x10  
0x44  
0x70  
0x40  
0x70  
0x44  
0x10  
0x40  
0x10  
0x44  
0x10  
0x00  
10  
YCrCb  
16  
Y
CrCb  
Y
CrCb  
YCrCb  
20  
8
10  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
PS Only  
8 (27 MHz clock)  
10 (27 MHz clock)  
8 (54 MHz clock)  
10 (54 MHz clock)  
16  
20  
24  
Y
CrCb  
Y
CrCb  
Y
Cb  
Cr  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9)  
30  
4:4:4  
Y
Cb  
Cr  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9)  
0x10  
0x04  
HDTV Only  
16  
20  
24  
4:2:2  
4:2:2  
4:4:4  
Y
CrCb  
Y
CrCb  
Y
Cb  
Cr  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9)  
0x20  
0x40  
0x20  
0x44  
0x20  
0x00  
30  
24  
30  
4:4:4  
4:4:4  
4:4:4  
Y
Cb  
Cr  
G
B
R
G
B
R
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9)  
0x20  
0x04  
HD RGB  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9) 0x15  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9) 0x15  
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x13  
0x48  
0x10 or 0x20  
0x00  
0x02  
0x10 or 0x20  
0x04  
0x02  
0x40  
0x40  
ITU-R BT.656 and PS  
8 (SD)  
8 (PS)  
4:2:2  
4:2:2  
YCrCb  
YCrCb  
0x00  
ITU-R BT.656 and PS  
10 (SD)  
10 (PS)  
4:2:2  
4:2:2  
YCrCb  
YCrCb  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x13  
0x48  
0x40  
0x44  
0x10  
ITU-R BT.656 and PS or HDTV  
ITU-R BT.656 and PS or HDTV  
8
16  
4:2:2  
4:2:2  
YCrCb  
Y
CrCb  
YCrCb  
Y
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x13  
C9 to C2 (MSB = C9) 0x48  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x13  
C9 to C0 (MSB = C9) 0x48  
0x30, 0x50, or 0x60  
0x40  
0x00  
0x30, 0x50, or 0x60  
0x44  
0x10  
10  
20  
4:2:2  
4:2:2  
CrCb  
Rev. 0 | Page 40 of 92  
ADV7324  
FEATURES  
OUTPUT CONFIGURATION  
Table 23, Table 24, and Table 25 demonstrate what output signals are assigned to the DACs when the control bits are set accordingly.  
Table 23. Output Configuration in SD Only Mode  
RGB/YUV Output  
0x02, Bit 5  
SD DAC Output 1  
0x42, Bit 2  
SD DAC Output 2  
0x42, Bit 1  
DAC A  
CVBS  
G
DAC B  
Luma  
B
Luma  
B
Luma  
U
Luma  
U
DAC C  
DAC D  
G
CVBS  
CVBS  
G
DAC E  
B
Luma  
B
Luma  
U
Luma  
U
DAC F  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Chroma  
R
Chroma  
R
Chroma  
V
Chroma  
V
R
Chroma  
R
Chroma  
V
Chroma  
V
Chroma  
G
CVBS  
CVBS  
Y
Y
CVBS  
CVBS  
Y
Y
CVBS  
Luma  
Luma/Chroma Swap 0x44, Bit 7  
0
1
Table as above  
Table as above, but with all luma/chroma instances swapped  
Table 24. Output Configuration in HD Only or PS Only Mode  
Input  
Format  
RGB Input 0x15,  
Bit 1  
RGB/YPrPb Output  
0x02, Bit 5  
Color Swap 0x15,  
Bit 3  
DAC A DAC B DAC C DAC D DAC E  
DAC F  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
RGB 4:4:4  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
G
G
Y
B
R
Pb  
Pr  
B
R
B
Pr  
Pb  
R
Y
G
G
Y
R
B
Pb  
Pr  
B
R
B
Pr  
Pb  
R
B
R
Y
G
G
G
G
RGB 4:4:4  
RGB 4:4:4  
RGB 4:4:4  
R
B
Table 25. Output Configuration in Simultaneous SD/PS or SD/HD Mode  
RGB/YPrPb Output  
0x02, Bit 5  
HD/PS Color Swap  
0x15, Bit 3  
Input Formats  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
ITU-R.BT656 and HD/PS  
YCrCb in 4:2:2  
ITU-R.BT656 and HD/PS  
YCrCb in 4:2:2  
ITU-R.BT656 and HD/PS  
YCrCb in 4:2:2  
ITU-R.BT656 and HD/PS  
YCrCb in 4:2:2  
0
0
1
1
0
1
0
1
CVBS  
Luma  
Luma  
Luma  
Luma  
Chroma  
Chroma  
Chroma  
Chroma  
G
B
R
CVBS  
CVBS  
CVBS  
G
Y
Y
R
B
Pb  
Pr  
Pr  
Pb  
Rev. 0 | Page 41 of 92  
 
 
 
ADV7324  
In async mode, the PLL must be turned off [Subaddress 0x00,  
Bit 1 = 1]. Register 0x10 should be programmed to 0x01.  
HD ASYNC TIMING MODE  
[Subaddress 0x10, Bits 3 and 2]  
Figure 57 and Figure 58 show examples of how to program the  
ADV7324 to accept an HD standard other than SMPTE 293M,  
SMPTE 274M, SMPTE 296M, or ITU-R BT.1358.  
For any input data that does not conform to the standards  
selectable in input mode (Subaddress 0x10), asynchronous  
timing mode can be used to interface to the ADV7324. Timing  
control signals for  
programmed by the user. Macrovision and programmable  
oversampling rates are not available in async timing mode.  
,
, and  
must be  
HSYNC VSYNC  
BLANK  
Follow the specifications in Table 26 when programming the  
control signals in async timing mode. For standards that do not  
require a trisync level,  
must be tied low at all times.  
P_BLANK  
Table 26. Async Timing Mode Truth Table  
P_HSYNC P_VSYNC P_BLANK1  
Reference  
Reference in Figure 57 and Figure 58  
0
0 or 1  
0 or 1  
0
50% point of falling edge of trilevel horizontal sync signal  
25% point of rising edge of trilevel horizontal sync signal  
50% point of falling edge of trilevel horizontal sync signal  
50% start of active video  
a
b
c
1 0  
0
0 1  
0 or 1  
0 or 1  
0 or 1  
0 1  
1
1
d
e
0 1  
1 0  
50% end of active video  
1 When async timing mode is enabled,  
, Pin 25, becomes an active high input.  
is set to active low using Address 0x10, Bit 6.  
P_BLANK  
P_BLANK  
CLK  
P_HSYNC  
PROGRAMMABLE  
INPUT TIMING  
P_VSYNC  
P_BLANK  
SET ADDRESS 0x14,  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG  
OUTPUT  
81  
66  
66  
243  
1920  
a
b
c
d
e
Figure 57. Async Timing Mode—Programming Input Control Signals for SMPTE 295M Compatibility  
CLK  
P_HSYNC  
0
P_VSYNC  
1
P_BLANK  
SET ADDRESS 0x14  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG OUTPUT  
a
b
c
d
e
Figure 58. Async Timing Mode—Programming Input Control Signals for Bilevel Sync Signal  
Rev. 0 | Page 42 of 92  
 
 
 
ADV7324  
b. In subcarrier phase reset, a low-to-high transition on  
the RTC_SCR_TR pin (Pin 31) resets the subcarrier  
phase to 0 on the field following the subcarrier phase  
reset when the SD RTC/TR/SCR control bits at  
Address 0x44 are set to 01.  
HD TIMING RESET  
A timing reset is achieved by toggling the HD timing reset control  
bit [Subaddress 0x14, Bit 0] from 0 to 1. In this state, the horizontal  
and vertical counters remain reset. When this bit is set back to 0,  
the internal counters resume counting.  
This reset signal must be held high for a minimum of  
one clock cycle.  
The minimum time the pin must be held high is one clock  
cycle; otherwise, this reset signal might not be recognized. This  
timing reset applies to the HD timing counters only.  
Because the field counter is not reset, it is  
recommended that the reset signal is applied in Field 7  
(PAL) or Field 3 (NTSC). The reset of the phase will  
then occur on the next field, i.e., Field 1, lined up  
correctly with the internal counters. The field count  
register at Address 0x7B can be used to identify the  
number of active fields.  
SD REAL-TIME CONTROL, SUBCARRIER RESET,  
AND TIMING RESET  
[Subaddress 0x44, Bit 2 and Bit 1]  
Together with the RTC_SCR_TR pin and SD Mode Register 3  
[Address 0x44, Bit 1 and Bit 2], the ADV7324 can be used in  
(a) timing reset mode, (b) subcarrier phase reset mode, or  
(c) RTC mode.  
c. In RTC mode, the ADV7324 can be used to lock to an  
external video source. The real-time control mode  
allows the ADV7324 to automatically alter the  
subcarrier frequency to compensate for line length  
variations. When the part is connected to a device,  
such as an ADV7402A video decoder (see Figure 61),  
that outputs a digital data stream in RTC format, it  
automatically changes to the compensated subcarrier  
frequency on a line-by-line basis. This digital data  
stream is 67 bits wide, and the subcarrier is contained  
in Bit 0 to Bit 21. Each bit is two clock cycles long.  
Write 0x00 into all four subcarrier frequency registers  
when this mode is used.  
a. A timing reset is achieved after a low-to-high  
transition on the RTC_SCR_TR pin (Pin 31). In this  
state, the horizontal and vertical counters remain  
reset. Upon releasing this pin (set to low), the internal  
counters resume counting, starting with Field 1, and  
the subcarrier phase is reset.  
The minimum time the pin must be held high is one  
clock cycle; otherwise, this reset signal might not be  
recognized. This timing reset applies to the SD timing  
counters only.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 59. Timing Reset Timing Diagram  
Rev. 0 | Page 43 of 92  
ADV7324  
DISPLAY  
310  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
313  
320  
NO F RESET APPLIED  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 60. Subcarrier Reset Timing Diagram  
ADV7324  
CLKIN_A  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
LCC1  
RTC_SCR_TR  
GLL  
COMPOSITE  
ADV7402A  
VIDEO  
1
VIDEO  
P19–P10  
5
Y9–Y0/S9–S0  
DECODER  
4 BITS  
RESERVED  
14 BITS  
H/L TRANSITION  
COUNT START  
LOW  
SEQUENCE RESET  
SUBCARRIER  
PHASE  
3
4
BIT  
BIT  
RESERVED  
2
PLL INCREMENT  
128  
F
SC  
13  
0
21  
19  
0
RTC  
6768  
TIME SLOT 01  
14  
VALID INVALID  
SAMPLE SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
NOTES  
1
FOR EXAMPLE, VCR OR CABLE.  
2
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7324 F DDS REGISTER IS F PLL INCREMENTS BITS 21:0 PLUS BITS 0:9  
SC  
SC SC  
OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS  
OF THE ADV7324.  
3
4
5
SEQUENCE BIT PAL: 0 = LINE NORMAL, 1 = LINE INVERTED; NTSC: 0 = NO CHANGE.  
RESET ADV7324 DDS.  
SELECTED BY REGISTER ADDRESS 0x01, BIT 7.  
Figure 61. RTC Timing and Connections  
Rev. 0 | Page 44 of 92  
ADV7324  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields are reached; in rewind mode, this sync  
signal usually occurs after the total number of lines/fields are  
reached. Conventionally, this means that the output video will  
have corrupted field signals, because one signal is generated by  
the incoming video and another is generated when the internal  
lines/field counters reach the end of a field.  
RESET SEQUENCE  
A reset is activated with a high-to-low transition on the  
pin (Pin 33) according to the timing specifications, and the  
ADV7324 reverts to the default output configuration. Figure 62  
RESET  
illustrates the  
timing sequence.  
RESET  
SD VCR FF/RW SYNC  
[Subaddress 0x42, Bit 5]  
When the VCR FF/RW sync control is enabled, the line/field  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit [Subaddress 0x42,  
Bit 5] can be used for nonstandard input video, i.e., in fast  
forward or rewind modes.  
counters are updated according to the incoming  
signal,  
VSYNC  
and the analog output matches the incoming  
signal.  
VSYNC  
This control is available in all slave timing modes except Slave  
Mode 0.  
RESET  
DACs  
XXXXXX  
A, B, C  
OFF  
VALID VIDEO  
DIGITAL TIMING SIGNALS SUPPRESSED  
TIMING ACTIVE  
DIGITAL TIMING  
XXXXXX  
PIXEL DATA  
VALID  
RESET  
Figure 62.  
Timing Sequence  
Rev. 0 | Page 45 of 92  
 
ADV7324  
VERTICAL BLANKING INTERVAL  
SUBCARRIER FREQUENCY REGISTERS  
The ADV7324 accepts input data that contains VBI data (such  
as CGMS, WSS, VITS) in SD and HD modes.  
[Subaddresses 0x4C to 0x4F]  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using the equation  
For the SMPTE 293M (525p) standard, VBI data can be  
inserted on Line 13 to Line 42 of each frame, or on Line 6 to  
Line 43 for the ITU-R BT.1358 (625p) standard.  
Subcarrier Frequency Register =  
Number of subcarrier periods in one video line  
× 232  
This data can be present on Line 10 to Line 20 for SD NTSC  
and on Line 7 to Line 22 for PAL.  
Number of 27 MHz clock cycles in one video line  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode  
If VBI is disabled [Address 0x11, Bit 4 for HD; Address 0x43,  
Bit 4 for SD], VBI data is not present at the output, and the  
entire VBI is blanked. These control bits are valid in all master  
and slave modes.  
227.5  
1716  
Subcarrier Register Value =  
×
32 = 569408543  
2  
In Slave Mode 0, if VBI is enabled, the blanking bit in the  
EAV/SAV code is overwritten. It is possible to use VBI in this  
timing mode as well.  
where:  
Subcarrier Register Value = 0x21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
In Slave Mode 1 or 2, the  
control bit [Address 0x4A,  
BLANK  
Bit 3] must be enabled to allow VBI data to pass through the  
ADV7324. Otherwise, the ADV7324 automatically blanks the  
VBI to standard.  
See the MPU Port Description section for more details on  
accessing the subcarrier frequency registers.  
If CGMS is enabled and VBI is disabled, the CGMS data will  
nevertheless be available at the output.  
Programming the FSC  
See Appendix 1—Copy Generation Management System.  
The subcarrier register value is divided into four FSC registers, as  
shown above. To load the value into the encoder, users must  
write to the FSC registers in sequence, starting with FSC0. The  
value is not loaded until the FSC4 write is complete.  
Note that the ADV7324 power-up value for FSC0 is 0x1E. For  
precise NTSC FSC, write 0x1F to this register.  
Rev. 0 | Page 46 of 92  
ADV7324  
SQUARE PIXEL TIMING MODE  
[Address 0x42, Bit 4]  
In square pixel mode, the following timing diagrams apply.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
C
b
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 63. EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PAL = 44 CLOCK CYCLES  
NTSC = 44 CLOCK CYCLES  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 308 CLOCK CYCLES  
NTSC = 236 CLOCK CYCLES  
Figure 64. Active Pixel Timing  
Rev. 0 | Page 47 of 92  
ADV7324  
EXTENDED UV FILTER MODE  
FILTERS  
0
–10  
–20  
–30  
–40  
–50  
–60  
Table 27 shows an overview of the programmable filters  
available on the ADV7324.  
Table 27. Selectable Filters  
Filter  
Subaddress  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x42  
0x13  
0x13  
0x13  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD UV SSAF  
HD Chroma Input  
HD Sinc Filter  
Figure 65. UV SSAF Filter  
If this filter is disabled, one of the chroma filters shown in  
Table 28 can be selected and used for the CVBS or luma/  
chroma signal.  
Table 28. Internal Filter Specifications  
Pass-Band  
3 dB Bandwidth2  
(MHz)  
Filter  
Ripple1 (dB)  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
0.16  
0.1  
0.09  
0.1  
0.04  
0.127  
4.24  
4.81  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
HD Chroma SSAF  
SD Internal Filter Response  
[Subaddress 0x40 [7:2]; Subaddress 0x42, Bit 0]  
Luma CIF  
3.02  
The Y filter supports several frequency responses, including two  
low-pass responses, two notch responses, an extended SSAF  
response with or without gain boost attenuation, a CIF  
response, and a QCIF response. The UV filter supports several  
different frequency responses, including six low-pass responses,  
a CIF response, and a QCIF response, as shown in Figure 35  
and Figure 36.  
Luma QCIF  
Monotonic  
Monotonic  
Monotonic  
0.09  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
Chroma QCIF  
If SD SSAF gain is enabled, there are 12 response options in the  
range −4 dB to +4 dB [Subaddress 0x47, Bit 4]. Choose the  
desired response by programming the correct value via the I2C  
[Subaddress 0x62]. The variation of frequency responses are  
shown in Figure 32 and Figure 33.  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band. The pass band is defined to have 0 Hz to fc (Hz) frequency limits  
for a low-pass filter, and 0 Hz to f1 (Hz) and f2 (Hz) to infinity for a notch filter,  
where fc, f1, and f2 are the −3 dB points.  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
In addition to the chroma filters listed in Table 27, the  
ADV7324 contains an SSAF filter specifically designed for the  
color difference component outputs, U and V. This filter has a  
cutoff frequency of about 2.7 MHz and a gain of –40 dB at  
3.8 MHz, as shown in Figure 65. This filter can be controlled  
with Address 0x42, Bit 0.  
Rev. 0 | Page 48 of 92  
 
 
 
 
ADV7324  
Table 29 shows sample color values that can be programmed  
into the color registers when the output standard selection is  
set to EIA 770.2.  
PS/HD Sinc Filter  
[Subaddress 0x13, Bit 3]  
0.5  
Table 29. Sample Color Values for EIA 770.2  
Output Standard Selection  
0.4  
0.3  
Sample Color  
Y Value  
235 (EB)  
16 (10)  
81 (51)  
145 (91)  
41 (29)  
210 (D2)  
170 (AA)  
106 (6A)  
Cr Value  
128 (80)  
128 (80)  
240 (F0)  
34 (22)  
110 (6E)  
146 (92)  
16 (10)  
Cb Value  
128 (80)  
128 (80)  
90 (5A)  
54 (36)  
240 (F0)  
16 (10)  
0.2  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
166 (A6)  
202 (CA)  
Magenta  
222 (DE)  
0
5
10  
15  
20  
25  
30  
RGB Matrix  
FREQUENCY (MHz)  
[Subaddresses 0x03 to 0x09]  
Figure 66. HD Sinc Filter Enabled  
The internal RGB matrix automatically performs all YCrCb to  
RGB scaling according to the input standard programmed in  
the device, as selected by input mode Register 0x01 [6:4]. Table 30  
shows the options available in this matrix.  
0.5  
0.4  
0.3  
Note that it is not possible to do a color space conversion from  
RGB-in to YPrPb-out. Also, it is not possible to input SD RGB.  
0.2  
0.1  
Table 30. Matrix Conversion Options  
0
HDTV/SD/PS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
Reg. 0x15, Bit 1  
(RGB IN/YCrCb IN,  
PS/HD Only)  
Reg. 0x02,Bit 5  
Input Output (YUV/RGB OUT)  
YCrCb YPrPb  
YCrCb RGB  
1
0
0
0
0
1
0
5
10  
15  
20  
25  
30  
RGB  
RGB  
FREQUENCY (MHz)  
Figure 67. HD Sinc Filter Disabled  
Manual RGB Matrix Adjust Feature  
COLOR CONTROLS AND RGB MATRIX  
Normally, there is no need to enable this feature in Register 0x02,  
Bit 3, because the RGB matrix automatically performs color  
space conversion depending on the input mode chosen (SD/PS,  
HD) and the polarity of RGB/YPrPb output in Register 0x02,  
Bit 5 (see Table 30). For this reason, the manual RGB matrix  
adjust feature is disabled by default. However, For HDTV  
YCrCb-to-RGB conversion, the RGB matrix must be enabled to  
invoke the correct coefficients for this color space. The  
coefficients do not need to be adjusted.  
HD Y Level, HD Cr Level, HD Cb Level  
[Subaddresses 0x16 to 0x18]  
Three 8-bit registers at Address 0x16, Address 0x17, and  
Address 0x18 are used to program the output color of the  
internal HD test pattern generator, be it the lines of the cross  
hatch pattern or the uniform field test pattern. They are not  
functional as color controls for external pixel data input. For  
this purpose, the RGB matrix is used.  
The manual RGB matrix adjust feature provides custom  
coefficient manipulation and is used in PS and HD modes only.  
The values for Y and the color difference signals used to obtain  
white, black, and saturated primary and complementary colors  
conform to the ITU-R BT.601-4 standard.  
Rev. 0 | Page 49 of 92  
 
 
ADV7324  
When the manual RGB matrix adjust feature is enabled, the  
default values in Registers 0x05 to 0x09 are correct for HDTV  
color space only. The color components are converted  
according to the 1080i and 720p standards (SMPTE 274M,  
SMPTE 296M):  
If RGB output is selected, the RGB matrix scaler uses the  
following equations:  
G = GY × Y + GU × Pb + GV × Pr  
B = GY × Y + BU × Pb  
R = Y + 1.575Pr  
R = GY × Y + RV × Pr  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
If YPrPb output is selected, the following equations are used:  
Y = GY × Y  
U = BU × Pb  
V = RV × Pr  
This is reflected in the preprogrammed values GY = 0x13B,  
GU = 0x3B, GV = 0x93, BU = 0x248, and RV = 0x1F0.  
If the RGB matrix is enabled and another input standard (such  
as SD or PS) is used, the scale values for GY, GU, GV, BU, and  
RV must be adjusted according to this input standard color  
space. The user should consider that the color component  
conversion might use different scale values. For example,  
SMPTE 293M uses the following equations for conversion:  
Upon power-up, the RGB matrix is programmed with the  
default values listed in Table 31.  
Table 31. RGB Matrix Default Values  
Address  
Default  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
R = Y + 1.402Pr  
G = Y – 0.714Pr – 0.344Pb  
B = Y + 1.773Pb  
The manual RGB matrix adjust feature can be used to control  
the HD output levels in cases where the video output does not  
conform to the standard due to altering the DAC output stages  
such as termination resistors. The programmable RGB matrix is  
used for external HD/PS data and is not functional when internal  
test patterns are enabled. To adjust Registers 0x05 to 0x09, the  
manual RGB matrix adjust must be enabled [Register 0x02,  
Bit 3 = 1].  
When the manual RGB matrix adjust feature is not enabled, the  
ADV7324 automatically scales YCrCb inputs to all standards  
supported by this part, as selected by the input mode,  
Register 0x01 [6:4].  
SD Luma and Color Control  
[Subaddresses 0x5C, 0x5D, 0x5E, 0x5F]  
Programming the RGB Matrix  
SD Y Scale, SD Cr Scale, and SD Cb Scale are three 10-bit-wide  
control registers that scale the Y, Cb, and Cr output levels.  
If custom manipulation of coefficients is required, enable the  
RGB matrix in Address 0x02, Bit 3, set the output to RGB  
[Address 0x02, Bit 5], and disable sync on PrPb (default)  
[Address 0x15, Bit 2]. Enabling sync on RGB is optional  
[Address 0x02, Bit 4].  
Each of these registers represents the value required to scale the  
Cb or Cr level from 0.0 to 2.0 and the Y level from 0.0 to 1.5 of  
its initial level. The value of these 10 bits is calculated using the  
following equation:  
GY at Address 0x03 and Address 0x05 controls the green signal  
output levels. BU at Address 0x04 and Address 0x08 controls  
the blue signal output levels, and RV at Address 0x04 and  
Address 0x09 controls the red signal output levels. To control  
YPrPb output levels, enable the YUV output [Address 0x02, Bit 5].  
In this case, GY [Address 0x05; Address 0x03, Bit 0 and Bit 1] is  
used for the Y output, RV [Address 0x09; Address 0x04, Bit 0  
and Bit 1] is used for the Pr output, and BU [Address 0x08;  
Address 0x04, Bit 2 and Bit 3] is used for the Pb output.  
Y, Cr, or Cb Scalar Value = Scale Factor × 512  
For example,  
Scale Factor = 1.18  
Y, Cb, or Cr Scale Value = 1.18 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 665 (rounded to the nearest  
integer)  
Y, Cb, or Cr Scale Value = 1010 0110 01b  
Rev. 0 | Page 50 of 92  
 
ADV7324  
Address 0x5C, SD LSB Register = 0x15  
Address 0x5D, SD Y Scale Register = 0xA6  
Address 0x5E, SD Cb Scale Register = 0xA6  
Address 0x5F, SD Cr Scale Register = 0xA6  
SD Brightness Control  
[Subaddress 0x61]  
The brightness is controlled by adding a programmable setup  
level onto the scaled Y data. This brightness level may be added  
onto the scaled Y data. For NTSC with pedestal, the setup can  
vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and  
for PAL, the setup can vary from −7.5 IRE to +15 IRE.  
Note that this feature affects all interlaced output signals, i.e.,  
CVBS, Y-C, YPrPb, and RGB.  
SD Hue Adjust Value  
[Subaddress 0x60]  
The brightness control register is an 8-bit register. Seven bits of  
this 8-bit register are used to control the brightness level, which  
can be a positive or negative value.  
The hue adjust value is used to adjust the hue on the composite  
and chroma outputs.  
For example,  
These eight bits represent the value required to vary the hue of  
the video data, i.e., the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV7324 provides a range of  
22.5° increments of 0.17578125°. For normal operation (zero  
adjustment), this register is set to 0x80. Values 0xFF and 0x00  
represent the upper and lower limits, respectively, of attainable  
adjustment.  
1. To add +20 IRE brightness level to an NTSC signal with  
pedestal, write 0x28 to Address 0x61, SD brightness.  
0x[SD Brightness Value] =  
0x[IRE Value × 2.015631] =  
0x[20 × 2.015631] = 0x[40.31262] = 0x28  
Hue Adjust (°) = 0.17578125° (HCRd − 128) for positive hue  
adjust value.  
2. To add –7 IRE brightness level to a PAL signal, write 0x72 to  
Address 0x61, SD brightness.  
For example, to adjust the hue by +4°, write 0x97 to the hue  
adjust value register:  
[IRE Value| × 2.075631  
[7 × 2.015631] = [14.109417] = 0001110b  
4
+ 128 = 105d = 0x97  
[0001110] into twos complement = [1110010]b = 0x72  
Table 32. Brightness Control Values1  
0.17578125  
where the sum is rounded to the nearest integer.  
Setup Level in  
NTSC with  
Pedestal  
Setup Level in  
NTSC without  
Pedestal  
Setup  
Level in  
PAL  
SD  
Brightness  
To adjust the hue by −4°, write 0x69 to the hue adjust value  
register:  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
4  
+ 128 = 105d = 0x69  
0.17578125  
–7.5 IRE  
–7.5 IRE  
where the sum is rounded to the nearest integer.  
1 Values in the range of 0x3F to 0x44 might result in an invalid output  
signal.  
Rev. 0 | Page 51 of 92  
ADV7324  
Double buffering can be activated on the following HD  
registers: HD Gamma Curve A, HD Gamma Curve B, and HD  
CGMS registers.  
SD Brightness Detect  
[Subaddress 0x7A]  
The ADV7324 allows monitoring the brightness level of the  
incoming video data. Brightness detect is a read-only register.  
Double buffering can be activated on the following SD registers:  
SD Gamma Curve A, SD Gamma Curve B, SD Y scale, SD U  
scale, SD V scale, SD brightness, SD closed captioning, and SD  
Macrovision (Bits 5 to 0).  
Double Buffering  
[Subaddress 0x13, Bit 7; Subaddress 0x48, Bit 2]  
Double-buffered registers are updated once per field upon the  
falling edge of the Vsync signal. Double buffering improves the  
overall performance, because modifications to register settings  
will not be made during active video, but take effect upon the  
start of the active video.  
NTSC WITHOUT PEDESTAL  
100 IRE  
+7.5 IRE  
–7.5 IRE  
0 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 68. Examples of Brightness Control Values  
Rev. 0 | Page 52 of 92  
ADV7324  
Table 33. DAC Gain Control  
PROGRAMMABLE DAC GAIN CONTROL  
DAC  
Current  
(mA)  
DAC A, DAC B, and DAC C are controlled by Register 0A.  
Reg. 0x0A or  
0x0B  
% Gain  
+7.5000%  
+7.3820%  
+7.3640%  
...  
Note  
DAC D, DAC E, and DAC F are controlled by Register 0B.  
0100 0000 (0x40)  
0011 1111 (0x3F)  
0011 1110 (0x3E)  
...  
4.658  
4.653  
4.648  
...  
The I2C control registers will adjust the output signal gain up or  
down from its absolute level.  
CASE A  
...  
...  
...  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESSES 0x0A, 0x0B  
0000 0010 (0x02)  
0000 0001 (0x01)  
0000 0000 (0x00)  
4.43  
4.38  
4.33  
+0.0360%  
+0.0180%  
+0.0000%  
700mV  
(I2C Reset Value,  
Nominal)  
1111 1111 (0xFF)  
1111 1110 (0xFE)  
...  
...  
4.25  
4.23  
...  
−0.0180%  
−0.0360%  
...  
...  
...  
1100 0010 (0xC2) 4.018  
1100 0001 (0xC1) 4.013  
1100 0000 (0xC0) 4.008  
−7.3640%  
−7.3820%  
−7.5000%  
300mV  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESSES 0x0A, 0x0B  
700mV  
GAMMA CORRECTION  
[Subaddresses 0x24 to 0x37 for HD,  
Subaddresses 0x66 to 0x79 for SD]  
Gamma correction is available for SD and HD video. For each  
standard, there are twenty 8-bit-wide registers. They are used to  
program Gamma Correction Curve A and Gamma Correction  
Curve B. HD Gamma Curve A is programmed at Address 0x24  
to Address 0x2D, and HD Gamma Curve B is programmed at  
Address 0x2E to Address 0x37. SD Gamma Curve A is  
300mV  
Figure 69. Programmable DAC Gain—Positive and Negative Gain  
programmed at Address 0x66 to Address 0x6F, and SD Gamma  
Curve B is programmed at Address 0x70 to Address 0x79.  
In Case A, the video output signal is gained. The absolute level  
of the sync tip and blanking level both increase with respect to  
the reference video output signal. The overall gain of the signal  
is increased from the reference signal.  
Generally gamma correction is applied to compensate for the  
nonlinear relationship between signal input and brightness level  
output (as perceived on the CRT). It can also be applied  
wherever nonlinear processing is used.  
In Case B, the video output signal is reduced. The absolute level  
of the sync tip and blanking level both decrease with respect to  
the reference video output signal. The overall gain of the signal  
is reduced from the reference signal.  
Gamma correction uses the function  
γ
SignalOUT  
=
(
SignalIN  
)
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC tune feature can change this output  
current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
where γ = gamma power factor.  
Gamma correction is performed on the luma data only. The  
user may choose either of two curves: Curve A or Curve B. At  
any one time, only one of these curves can be used.  
The reset value of the vid_out_ctrl registers is 0x00; therefore,  
nominal DAC current is output. Table 33 is an example of how  
the output current of the DACs varies for a nominal 4.33 mA  
output current.  
The response of the curve is programmed at 10 predefined  
locations. By changing the values at these locations, the gamma  
curve can be modified. Between these points, linear interpolation  
is used to generate intermediate values. If the curve has a total  
length of 256 points, the 10 locations are at 24, 32, 48, 64, 80, 96,  
128, 160, 192, and 224. Locations 0, 16, 240, and 255 are fixed  
and cannot be changed.  
Rev. 0 | Page 53 of 92  
 
ADV7324  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
For lengths of 16 to 240 points, the gamma correction curve is  
calculated as follows:  
300  
250  
y = xγ  
SIGNAL OUTPUT  
0.5  
where:  
200  
150  
100  
y = gamma corrected output.  
x = linear input signal.  
γ = gamma power factor.  
To program the gamma correction registers, calculate the seven  
values for y using the following formula:  
SIGNAL INPUT  
50  
0
x(n16)  
yn =  
γ ×(240 16) + 16  
(240 16)  
0
50  
100  
150  
LOCATION  
200  
250  
where:  
(n − 16) = value for x along x-axis at points n.  
Figure 70. Signal Input (Ramp) and Signal Output for Gamma 0.5  
x
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224.  
yn = value for y along the y-axis, which must be written into the  
gamma correction register.  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
VARIOUS GAMMA VALUES  
300  
250  
For example,  
0.3  
y24 = [(8/224)0.5 × 224] + 16 = 58  
y32 = [(16/224)0.5 × 224] + 16 = 76  
y48 = [(32/224)0.5 × 224] + 16 = 101  
y64 = [(48/224)0.5 × 224] + 16 = 120  
y80 = [(64/224)0.5 × 224] + 16 = 136  
y96 = [(80/224)0.5 × 224] + 16 = 150  
200  
0.5  
150  
1.5  
100  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
y
y
y
y
128 = [(112/224)0.5 × 224] + 16 = 174  
160 = [(144/224)0.5 × 224] + 16 = 195  
192 = [(176/224)0.5 × 224] + 16 = 214  
224 = [(208/224)0.5 × 224] + 16 = 232  
Figure 71. Signal Input (Ramp) and Selectable Output Curves  
where the sum of each equation is rounded to the nearest  
integer.  
The gamma curves in Figure 70 and Figure 71 are only examples;  
any user-defined curve is acceptable in the range of 16 to 240.  
Rev. 0 | Page 54 of 92  
 
 
ADV7324  
The derivative of the incoming signal is compared to the three  
programmable threshold values: HD Adaptive Filter Threshold A,  
HD Adaptive Filter Threshold B, and HD Adaptive Filter  
Threshold C. The recommended threshold range is 16 to 235,  
but any value between 0 and 255 can be used.  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
[Subaddresses 0x20, 0x38 to 0x3D]  
There are three filter modes available on the ADV7324: a  
sharpness filter mode and two adaptive filter modes.  
The edges can then be attenuated with the settings in HD  
Adaptive Filter Gain 1, HD Adaptive Filter Gain 2, HD Adaptive  
Filter Gain 3 registers, and HD sharpness filter gain register.  
HD Sharpness Filter Mode  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 72, the HD sharpness filter must be enabled,  
and the HD adaptive filter enable must be disabled.  
According to the settings of the HD adaptive filter mode  
control, there are two adaptive filter modes available:  
To select one of the 256 individual responses, the corresponding  
gain values, which range from –8 to +7, for each filter must be  
programmed into the HD sharpness filter gain register at  
Address 0x20.  
Mode A is used when adaptive filter mode is set to 0. In  
this case, Filter B (LPF) will be used in the adaptive filter  
block. Also, only the programmed values for Gain B in the  
HD sharpness filter gain and HD Adaptive Filter Gain 1,  
HD Adaptive Filter Gain 2, and HD Adaptive Filter Gain 3  
are applied when needed. The Gain A values are fixed and  
cannot be changed.  
HD Adaptive Filter Mode  
The HD Adaptive Filter Threshold A, HD Adaptive Filter  
Threshold B, and HD Adaptive Filter Threshold C registers; the  
HD Adaptive Filter Gain 1, HD Adaptive Filter Gain 2, and HD  
Adaptive Filter Gain 3 registers; and the HD sharpness gain  
register are used in adaptive filter mode. To activate the  
adaptive filter control, the HD sharpness filter and the HD  
adaptive filter must be enabled.  
Mode B is used when adaptive filter mode is set to 1. In  
this mode, a cascade of Filter A and Filter B is used.  
Settings for Gain A and Gain B in the HD sharpness filter  
gain and HD Adaptive Filter Gain 1, HD Adaptive Filter  
Gain 2, and HD Adaptive Filter Gain 3 become active  
when needed.  
SHARPNESS AND ADAPTIVE FILTERS CONTROL BLOCK  
1.5  
1.5  
1.4  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH K = 3 AND K = 7  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain K  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain K )  
B
)
A
A
B
Figure 72. Sharpness and Adaptive Filters Control Block  
Rev. 0 | Page 55 of 92  
 
ADV7324  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
HD Sharpness Filter Application  
The HD sharpness filter can be used to enhance or attenuate the  
Y video output signal. The register settings listed in Table 34  
were used to achieve the results shown in Figure 73. Input data  
was generated by an external signal source.  
Table 34. Sharpness Control  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
Register Setting  
Reference1  
0xFC  
0x10  
0x20  
0x00  
0x81  
0x00  
0x08  
0x04  
a
b
c
d
e
f
0x40  
0x80  
0x22  
1 See Figure 73.  
d
e
a
b
R2  
R4  
1
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00  
µ
s
CH1  
ALL FIELDS  
CH1 500mV  
M 4.00  
µ
s
CH1  
ALL FIELDS  
500mV 4.00  
µ
s
1 9.99978ms  
REF A  
500mV 4.00  
µ
s
1 9.99978ms  
Figure 73. HD Sharpness Filter Control with Different Gain Settings for HD Sharpness Filter Gain Values  
Rev. 0 | Page 56 of 92  
 
 
ADV7324  
When changing the adaptive filter mode to Mode B  
Adaptive Filter Control Application  
[Address 0x15, Bit 6], the output shown in Figure 76 can be  
obtained from the input signal shown in Figure 74.  
Figure 74 and Figure 75 show how a typical signal is processed  
by the adaptive filter control block in Mode A.  
Figure 76. Output Signal with Adaptive Filter Control (Mode B)  
Figure 74. Input Signal to Adaptive Filter Control  
SD DIGITAL NOISE REDUCTION  
[Subaddresses 0x63, 0x64, 0x65]  
DNR is applied to the Y data only. A filter block selects the high  
frequency, low amplitude components of the incoming signal  
(DNR input select). The absolute value of the filter output is  
compared to a programmable threshold value (DNR threshold  
control). There are two DNR modes available: DNR mode and  
DNR sharpness mode.  
In DNR mode, if the absolute value of the filter output is less  
than the threshold, it is assumed to be noise. A programmable  
amount (coring gain border, coring gain data) of this noise  
signal will be subtracted from the original signal. Likewise, in  
DNR sharpness mode, if the absolute value of the filter output is  
less than the programmed threshold, it is assumed to be noise.  
If the level exceeds the threshold and is identified as a valid  
signal, a fraction of the signal (coring gain border, coring gain  
data) will be added to the original signal to boost high  
Figure 75. Output Signal with Adaptive Filter Control (Mode A)  
The register settings in Table 35 were used to obtain the results  
shown in Figure 75, i.e., to remove the ringing on the Y signal.  
Input data was generated by an external signal source.  
Table 35. Register Settings for Figure 75  
frequency components and sharpen the video image.  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x15  
0x20  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
Register Setting  
0xFC  
0x38  
0x20  
0x00  
0x81  
0x80  
0x00  
0xAC  
0x9A  
0x88  
0x28  
0x3F  
In MPEG systems, it is common to process the video  
information in blocks of 8 pixels × 8 pixels for MPEG2 systems,  
or 16 pixels × 16 pixels for MPEG1 systems (block size control).  
DNR can be applied to the resulting block transition areas that  
are known to contain noise. Generally, the block transition area  
contains two pixels. It is possible to define this area to contain  
four pixels (border area).  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset.  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
0x64  
Rev. 0 | Page 57 of 92  
 
 
 
 
ADV7324  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is  
added to the original signal.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
APPLY DATA  
APPLY BORDER  
CORING GAIN CORING GAIN  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
O X X X X X X O O X X X X X X O  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
FILTER  
SUBTRACT SIGNAL  
IN THRESHOLD  
RANGE FROM  
OUTPUT  
O X X X X X X O O X X X X X X O  
Y DATA  
INPUT  
< THRESHOLD?  
ORIGINAL SIGNAL  
DNR27 – DNR24 = 0x01 O X X X X X X O O X X X X X X O  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
Figure 78. DNR Offset Control  
DNR THRESHOLD  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
[Address 0x64, Bit 5 to Bit 0]  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
BORDER AREA  
INPUT FILTER  
BLOCK  
[Address 0x64, Bit 6]  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
OUTPUT  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
Y DATA  
INPUT  
> THRESHOLD?  
+
FILTER OUTPUT  
< THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
720 × 485 PIXELS  
2-PIXEL  
BORDER  
(NTSC)  
Figure 77. DNR Block Diagram  
DATA  
CORING GAIN BORDER  
[Address 0x63, Bit 3 to Bit 0]  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output, which lies below the set threshold range. The result is  
then subtracted from the original signal.  
8 × 8 PIXEL BLOCK  
8 × 8 PIXEL BLOCK  
Figure 79. DNR Border Area  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is  
added to the original signal.  
BLOCK SIZE CONTROL  
[Address 0x64, Bit 7]  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16-pixel × 16-pixel data block, and Logic 0 defines an  
8-pixel × 8-pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
CORING GAIN DATA  
[Address 0x63, Bit 7 to Bit 4]  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output, which lies below the set threshold  
range. The result is then subtracted from the original signal.  
DNR INPUT SELECT CONTROL  
[Address 0x65, Bit 2 to Bit 0]  
Three bits are assigned to select the filter, which is applied to the  
incoming Y data. The signal that lies in the pass band of the  
selected filter will be DNR processed. Figure 80 shows the filter  
responses selectable with this control.  
Rev. 0 | Page 58 of 92  
ADV7324  
not noise. The overall effect is that the signal will be boosted  
(similar to using an extended SSAF filter).  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FILTER D  
FILTER C  
BLOCK OFFSET CONTROL  
[Address 0x65, Bit 7 to Bit 4]  
Four bits are assigned to this control, which allows a maximum  
shift of 15 pixels in a data block. Consider the fixed coring gain  
positions. The block offset shifts the data in steps of one pixel  
such that the border coring gain factors can be applied at the  
same position regardless of variations in input timing of the data.  
FILTER B  
FILTER A  
SD ACTIVE VIDEO EDGE  
1
2
3
4
5
6
0
FREQUENCY (Hz)  
[Subaddress 0x42, Bit 7]  
Figure 80. DNR Input Select  
When the active video edge feature is enabled, the first three  
pixels and the last three pixels of the active video on the luma  
channel are scaled so that maximum transitions on these pixels  
are not possible. The scaling factors are ×1/8, ×1/2, and ×7/8.  
All other active video passes through unprocessed.  
DNR MODE CONTROL  
[Address 0x65, Bit 4]  
This bit is used to select the DNR mode. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
SAV/EAV STEP-EDGE CONTROL  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
The ADV7324 has the capability of controlling fast rising and  
falling signals at the start and end of active video to minimize  
ringing.  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
An algorithm monitors SAV and EAV and determines when the  
edges are rising or falling too fast. The result is reduced ringing  
at the start and end of active video for fast transitions.  
Subaddress 0x42, Bit 7 = 1, enables this feature.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
original signal, since this data is assumed to be valid data and  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 81. Example of Active Video Edge Functionality  
Rev. 0 | Page 59 of 92  
ADV7324  
VOLTS  
0.5  
IRE:FLT  
100  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 82. Address 0x42, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
0
–2  
2
4
6
8
10  
12  
Figure 83. Address 0x42, Bit 7 = 1  
Rev. 0 | Page 60 of 92  
ADV7324  
HSYNC/VSYNC OUTPUT CONTROL  
The ADV7324 has the ability to accept either embedded time codes in the input data or external Hsync and Vsync signals on  
/
, outputting the respective signals on the  
and  
pins.  
P_HSYNC P_VSYNC  
P_HSYNC  
P_VSYNC  
Table 36. Hsync Output Control1  
HD/ED  
Sync Output  
Enable  
SD  
HD/ED2  
Slave Mode  
(0x10, Bit 2)  
Sync Output  
Enable  
(0x02, Bit 6)  
I2C_Hsync_gen_sel  
(0x14, Bit 1)  
Signal on S_HSYNC Pin  
(0x02, Bit 7)  
Duration  
x
x
0
0
0
1
x
x
Tristate  
Pipelined SD Hsync  
See Appendix 5—SD  
Timing Modes  
External Hsync &  
Vsync /Field  
Mode  
1
x
0
External pipelined  
HD/ED Hsync  
As per Hsync timing  
EAV/SAV Mode  
1
1
x
x
0
1
Pipelined HD/ED Hsync based  
on AV Code H bit  
Pipelined HD/ED Hsync based  
on horizontal counter  
Same as line blanking  
interval  
Same as embedded  
Hsync  
x
______________________________  
1 In all HD/ED standards where there is an Hsync o/p, the start of the Hsync pulse is aligned with the falling edge of the embedded Hsync in the output video.  
2 ED = enhanced definition.  
Table 37. Vsync Output Control1  
HD/ED  
Sync Output  
SD  
HD/ED2  
Sync Output  
Signal on  
S_VSYNC Pin  
Slave Mode  
(0x10, Bit 2)  
Enable  
(0x02, Bit 7)  
Enable  
(0x02, Bit 6)  
I2C_Vsync_gen_sel  
(0x14, Bit 2)  
Video Standard  
Duration  
x
x
0
0
0
1
x
x
x
Tristate  
Pipelined SD  
Vsync/ field  
-
Interlaced  
See Appendix 5—  
SD Timing Modes  
External Hysnc  
& Vsync/Field  
Mode  
EAV/SAV Mode  
EAV/SAV Mode  
x
1
1
1
1
x
x
x
x
0
0
0
1
x
External pipelined As per external  
HD/ED Vsync or  
field signal  
Vsync or field signal  
All HD interlace  
standards  
External pipelined Field  
field signal based  
on AV Code F bit  
All HD/ED  
progressive  
standards  
Pipelined Vsync  
based on AV  
Code V bit  
Vertical blanking  
interval  
All HD/ED stan-  
External pipelined Aligned with  
dards except 525p HD/ED Vsync  
based on vertical  
serration lines  
counter  
x
1
x
1
525p  
External pipelined Vertical blanking  
HD/ED Vsync  
based on vertical  
counter  
interval  
1 In all HD/ED standards where there is an Hsync o/p, the start of the Hsync pulse is aligned with the falling edge of the embedded Hsync in the output video.  
2 ED = enhanced definition = progressive scan 525p or 625p.  
Rev. 0 | Page 61 of 92  
 
ADV7324  
BOARD DESIGN AND LAYOUT  
DAC TERMINATION AND LAYOUT  
CONSIDERATIONS  
CIRCUIT FREQUENCY RESPONSE  
MAGNITUDE (dB)  
0
0
–5  
16n  
14n  
12n  
10n  
8n  
–30  
The ADV7324 contains an on-board voltage reference. The  
ADV7324 can be used with an external VREF (AD1580).  
–60  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–90  
PHASE (Degrees)  
The RSET resistors are connected between the RSET pins and  
AGND and are used to control the full-scale output current  
and, therefore, the DAC voltage output levels. For full-scale  
output, RSET must have a value of 3040 Ω. The RSET values should  
not be changed. RLOAD has a value of 150 Ω for half-scale output.  
–120  
–150  
–180  
–210  
–240  
6n  
GROUP DELAY (Seconds)  
4n  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
2n  
0
1M  
10M  
100M  
Output buffering on all six DACs is necessary to drive output  
devices, such as SD or HD monitors. Analog Devices, Inc.,  
produces a range of suitable op amps for this application, e.g.,  
the AD8061. More information on line-driver buffering circuits  
is given in the relevant op amps’ data sheets.  
FREQUENCY (Hz)  
Figure 85. Filter Plot for Output Filter for SD, 16× Oversampling  
3.3µH  
DAC OUTPUT  
3
4
BNC OUTPUT  
22pF  
22pF  
300Ω  
1
An optional analog reconstruction low-pass filter (LPF) may be  
required as an anti-imaging filter if the ADV7324 is connected  
to a device that requires this filtering.  
75Ω  
300Ω  
1.8kΩ  
600Ω  
The filter specifications vary with the application.  
Figure 86. Example of Output Filter for PS, 8× Oversampling  
Table 38. External Filter Requirements  
Cutoff  
Frequency  
Application Oversampling (MHz)  
Attenuation  
–50 dB @  
(MHz)  
DAC OUTPUT  
3
4
470nH 220nH  
75  
1
3
300Ω  
BNC OUTPUT  
SD  
SD  
PS  
PS  
HDTV  
HDTV  
2×  
16×  
1×  
8×  
1×  
2×  
>6.5  
>6.5  
>12.5  
>12.5  
>30  
20.5  
209.5  
14.5  
203.5  
44.25  
118.5  
75Ω  
1
33pF  
82pF  
4
500Ω  
500Ω  
>30  
Figure 87. Example of Output Filter for HDTV, 2× Oversampling  
Table 39. Possible Output Rates  
from the ADV7324  
2.2µH  
DAC OUTPUT  
300Ω  
3
4
BNC OUTPUT  
75Ω  
22pF  
300Ω  
1
Input Mode Address  
0x01, Bit 6 to Bit 4  
PLL Address  
0x00, Bit 1  
Output Rate  
(MHz)  
SD Only  
Off  
On  
Off  
On  
Off  
On  
27 (2×)  
216 (16×)  
27 (1×)  
216 (8×)  
74.25 (1×)  
148.5 (2×)  
1.8kΩ  
600Ω  
PS Only  
Figure 84. Example of Output Filter for SD, 16× Oversampling  
HDTV Only  
Rev. 0 | Page 62 of 92  
ADV7324  
CIRCUIT FREQUENCY RESPONSE  
198  
158  
118  
77.6  
37.6  
0
There should be separate analog and digital ground planes.  
0
–6  
20n  
18n  
16n  
14n  
12n  
10n  
Each power plane should encompass a digital power plane and  
an analog power plane. The analog power plane should contain  
the DACs and all associated circuitry, VREF circuitry. The digital  
power plane should contain all logic circuitry.  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
GROUP DELAY (Seconds)  
MAGNITUDE (dB)  
The analog and digital power planes should be individually  
connected to the common power plane at a single point  
through a suitable filtering device, such as a ferrite bead.  
–42.4  
8n  
–82.4  
6n  
–122  
–162  
–202  
4n  
2n  
0
DAC output traces on a PCB should be treated as transmission  
lines. It is recommended that the DACs be placed as close as  
possible to the output connector, with the analog output traces  
being as short as possible (less than 3 inches). The DAC termi-  
nation resistors should be placed as close as possible to the DAC  
outputs and should overlay the PCB’s ground plane. As well as  
minimizing reflections, short analog output traces reduce noise  
pickup from neighboring digital circuitry.  
PHASE (Degrees)  
10M  
1M  
100M  
FREQUENCY (Hz)  
1G  
Figure 88. Filter Plot for Output Filter for PS, 8× Oversampling  
CIRCUIT FREQUENCY RESPONSE  
480  
360  
240  
120  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
18n  
15n  
12n  
9n  
To avoid crosstalk between the DAC outputs, it is recommended  
that as much space as possible is left between the tracks of the  
individual DAC output pins. The addition of ground tracks  
between outputs is also recommended.  
MAGNITUDE (dB)  
GROUP DELAY (Seconds)  
Supply Decoupling  
Noise on the analog power plane can be further reduced by the  
use of decoupling capacitors.  
6n  
Optimum performance is achieved by the use of 10 nF and  
0.1 µF ceramic capacitors. Each group of VAA, VDD, or VDD_IO  
pins should be individually decoupled to ground. This should  
be done by placing the capacitors as close as possible to the  
device with the capacitor leads as short as possible, thus  
minimizing lead inductance.  
PHASE (Degrees)  
–120  
3n  
–240  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 89. Filter Plot for Output Filter for HDTV, 2× Oversampling  
PCB BOARD LAYOUT  
A 1 µF tantalum capacitor is recommended across the VAA  
supply in addition to 10 nF ceramic. See the circuit layout in  
Figure 90.  
The ADV7324 is optimally designed for lowest noise  
performance of both radiated and conducted noise. To  
complement the excellent noise performance of the ADV7324,  
it is imperative that great care be given to the PC board layout.  
Digital Signal Interconnect  
The digital signal lines should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal lines should not overlay the analog power plane.  
The layout should be optimized for lowest noise on the  
ADV7324 power and ground lines. This can be achieved by  
shielding the digital inputs and providing good decoupling. The  
lead length between groups of VAA and AGND, VDD and DGND,  
and VDD_IO and GND_IO pins should be kept as short as  
possible to minimized inductive ringing.  
Due to the high clock rates, avoid long clock lines to the  
ADV7324 to minimize noise pickup.  
Any active pull-up termination resistors for the digital inputs  
should be connected to the digital power plane, not the analog  
power plane.  
It is recommended that a 4-layer, printed circuit board is used,  
with power and ground planes separating the layer of the signal  
carrying traces of the components and solder side layer. Com-  
ponent placement should be carefully considered to separate  
noisy circuits, such as crystal clocks, high speed logic circuitry,  
and analog circuitry.  
Analog Signal Interconnect  
Locate the ADV7324 as close as possible to the output  
connectors to minimize noise pickup and reflections due to  
impedance mismatch.  
Rev. 0 | Page 63 of 92  
ADV7324  
For optimum performance, each analog output should be  
source- and load-terminated, as shown in Figure 90. The  
termination resistors should be as close as possible to the  
ADV7324 to minimize reflections.  
For optimum performance, it is recommended that all  
decoupling and external components relating to the ADV7324  
are located on the same side of the PCB and as close as possible  
to the ADV7324. Unused inputs should be tied to ground.  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
V
V
V
AA  
+
V
V
10nF  
10nF  
1µF  
AA AA  
0.1  
µF  
0.1µF  
DD  
0.1  
0.1  
µ
µ
F
F
V
DD_IO  
10, 56  
V
V
AA  
DD_IO  
5kΩ  
45  
36  
41  
1
10nF  
1.1k  
COMP1, 2  
V
V
DD  
AA  
DD_IO  
2
19  
I C  
46  
44  
V
REF  
ADV7324  
RECOMMENDED EXTERNAL  
AD1580 FOR OPTIMUM  
PERFORMANCE  
100nF  
S0–S9  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
150  
150  
150  
150  
150  
150  
50  
49  
S_HSYNC  
S_VSYNC  
43  
42  
39  
38  
37  
48 S_BLANK  
C0–C9  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
Y0–Y9  
63  
23  
CLKIN_B  
P_HSYNC  
V
24 P_VSYNC  
25 P_BLANK  
AA  
+
4.7k  
V
V
DD_IO  
5k  
DD_IO  
33  
32  
RESET  
5kΩ  
100  
100  
2
I C BUS  
22  
21  
SCLK  
SDA  
4.7µF  
CLKIN_A  
V
AA  
820pF  
34  
EXT_LF  
V
DD_IO  
20  
35  
ALSB  
5k  
R
SET2  
680Ω  
3.9nF  
SELECTION HERE  
DETERMINES  
DEVICE ADDRESS  
3040Ω  
47  
R
SET1  
GND_ IO  
64  
AGND DGND  
40  
3040Ω  
11, 57  
ALL COMPONENTS IN DASHED BOXES MUST BE LOCATED ON THE SAME SIDE  
OF THE PCB AS THE ADV7324 AND AS CLOSE AS POSSIBLE TO THE ADV7324.  
Figure 90. ADV7324 Circuit Layout  
Rev. 0 | Page 64 of 92  
 
ADV7324  
APPENDIX 1—COPY GENERATION MANAGEMENT SYSTEM  
PS CGMS  
Data Registers 2 to 0  
SD CGMS  
Data Registers 2 to 0  
[Subaddresses 0x21, 0x22, 0x23]  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7324 supports the copy generation management  
system (CGMS), conforming to the EIAJ CPR-1204 and  
ARIB TR-B15 standards. CGMS data is transmitted on Line 20  
of the odd fields and Line 283 of the even fields. Bit C/W05 and  
Bit C/W06 control whether CGMS data is output on odd or  
even fields. CGMS data can only be transmitted when the  
ADV7324 is configured in NTSC mode. The CGMS data is  
20 bits long. The CGMS data is preceded by a reference pulse of  
the same amplitude and duration as a CGMS bit; see Figure 93.  
525p  
Using the vertical blanking interval 525p system, 525p CGMS  
conforms to the CGMS-A EIA-J CPR1204-1 (March 1998)  
transfer method of video identification information and to the  
IEC61880 (1998) 525p/60 video systems analog interface for the  
video and accompanying data.  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 41. The 525p CGMS data registers are at  
Address 0x21, Address 0x22, and Address 0x23.  
720p System  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
625p  
The 625p CGMS conforms to the IEC62375 (2004) 625p/50  
video system’s analog interface for the video and accompanying  
data using the vertical blanking interval.  
1080i System  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 43. The 625p CGMS data registers are at  
Address 0x22 and Address 0x23.  
CGMS FUNCTIONALITY  
If SD CGMS CRC [Address 0x59, Bit 4] or PS/HD CGMS CRC  
[Subaddress 0x12, Bit 7] is set to Logic 1, the last six bits, C19 to  
C14, which compose the 6-bit CRC check sequence, are  
automatically calculated on the ADV7324. This calculation is  
based on the lower 14 bits (C0 to C13) of the data in the data  
registers and output with the remaining 14 bits to form the  
complete 20 bits of the CGMS data. The calculation of the CRC  
sequence is based on the polynomial x6 + x + 1 with a preset  
value of 111111. If SD CGMS CRC [Address 0x59, Bit 4] and  
PS/HD CGMS CRC [Address 0x12, Bit 7] are set to Logic 0, all  
20 bits (C0 to C19) are output directly from the CGMS registers  
(CRC must be manually calculated by the user).  
HD CGMS  
[Address 0x12, Bit 6]  
The ADV7324 supports the copy generation management  
system (CGMS) in HDTV mode (720p and 1080i) in  
accordance with EIAJ CPR-1204-2.  
The HD CGMS data registers are found at Address 0x021,  
Address 0x22, and Address 0x23.  
Rev. 0 | Page 65 of 92  
ADV7324  
CRC SEQUENCE  
+700mV  
REF  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 91. PS 525p CGMS Waveform (Line 41)  
PEAK WHITE  
R = RUN-IN  
S = START CODE  
C0  
LSB  
C13  
MSB  
R
S
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
500mV ± 25mV  
SYNC LEVEL  
13.7µs  
5.5µs ± 0.125µs  
Figure 92. PS 625p CGMS-A Waveform (Line 43)  
+100 IRE  
CRC SEQUENCE  
REF  
+70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 93. SD CGMS Waveform  
Rev. 0 | Page 66 of 92  
ADV7324  
CRC SEQUENCE  
+700mV  
REF  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
17.2µs ± 160ns  
4T  
22T  
3.128µs ± 90ns  
T = 1/(fH × 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 94. HDTV 720p CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
70%  
±
10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T
± 30ns  
–300mV  
22.84  
µ
s
±
210ns  
4T  
22T  
4.15µs ± 60ns  
T = 1/(f  
×
2200/77) = 1.038  
µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 95. HDTV 1080i CGMS Waveform  
Rev. 0 | Page 67 of 92  
ADV7324  
APPENDIX 2—SD WIDE-SCREEN SIGNALING  
WSS data is preceded by a run-in sequence and a start code (see  
Figure 96). If SD WSS [Address 0x59, Bit 7] is set to Logic 1, it  
enables the WSS data to be transmitted on Line 23. The latter  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7324 supports wide screen signaling (WSS)  
conforming to the ETS 300 294 standard. WSS data is  
transmitted on Line 23. WSS data can be transmitted only when  
the device is configured in PAL mode. The WSS data is 14 bits  
long, and the function of each bit is shown in Table 40. The  
portion of Line 23 (42.5 s after the falling edge of  
available for the insertion of video. It is possible to blank the  
WSS portion of Line 23 with Subaddress 0x61, Bit 7.  
) is  
HSYNC  
500mV  
RUN-IN  
START  
ACTIVE  
VIDEO  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
SEQUENCE  
CODE  
11.0µs  
38.4µs  
42.5µs  
Figure 96. WSS Waveform Diagram  
Rev. 0 | Page 68 of 92  
 
ADV7324  
Table 40. Function of WSS Bits  
Bit  
Description  
Bit 0 to Bit 2  
Bit 3  
Aspect ratio/format/position  
Odd parity check of Bit 0 to Bit 2  
B0  
0
1
0
1
0
1
0
1
B1  
0
0
1
1
0
0
1
1
B2  
0
0
0
0
1
1
1
1
B3  
1
0
0
1
0
1
1
0
Aspect Ratio  
4:3  
14:9  
14:9  
16:9  
16:9  
>16:9  
14:9  
Format  
Position  
N/A  
Center  
Top  
Center  
Top  
Center  
Center  
N/A  
Full format  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full format  
N/A  
16:9  
1
1
1
0
16:9  
B4  
0
1
Camera mode  
Film mode  
B5  
0
Standard coding  
1
Motion adaptive color plus  
B6  
0
No helper  
1
Modulated helper  
Reserved  
B7  
B8  
0
No teletext subtitles  
Teletext subtitles  
1
B9  
0
B10  
0
No open subtitles  
1
0
1
0
1
1
Subtitles in active image area  
Subtitles out of active image area  
Reserved  
B11  
0
1
No surround sound information  
Surround sound mode  
Reserved  
B12  
B13  
Reserved  
Rev. 0 | Page 69 of 92  
ADV7324  
APPENDIX 3—SD CLOSED CAPTIONING  
[Subaddresses 0x51 to 0x54]  
FCC Code of Federal Regulations (CFR) 47, section 15.119, and  
EIA608 describe the closed captioning information for Line 21  
and Line 284.  
The ADV7324 supports closed captioning conforming to the  
standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and  
Line 284 of the even fields.  
The ADV7324 uses a single-buffering method. This means that  
the closed captioning buffer is only 1 byte deep; therefore, there  
will be no frame delay in outputting the closed captioning data,  
unlike other 2-byte-deep buffering systems. The data must be  
loaded one line before it is output on Line 21 and Line 284. A  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency- and phase-locked to the caption data. After the  
clock run-in signal, the blanking level is held for two data bits  
and is followed by a Logic 1 start bit. Sixteen bits of data follow  
the start bit. These consist of two 8-bit bytes, seven data bits,  
and one odd parity bit. The data for these bytes is stored in the  
SD closed captioning registers [Address 0x53 to Address 0x54].  
typical implementation of this method is to use  
to inter-  
VSYNC  
rupt a microprocessor, which in turn will load the new data  
(2 bytes) in every field. If no new data is required for transmission,  
0s must be inserted in both data registers; this is called nulling.  
It is also important to load control codes, all of which are double  
bytes, on Line 21, or a TV will not recognize them. If there is a  
message such as “Hello World” that has an odd number of char-  
acters, it is important to add a blank character at the end so that  
the end-of-caption, 2-byte control code lands in the same field.  
The ADV7324 also supports the extended closed captioning  
operation, which is active during even fields and encoded on  
Line 284. The data for this operation is stored in the SD closed  
captioning registers [Address 0x51 to Address 0x52].  
All clock run-in signals and timing to support closed captioning  
on Line 21 and Line 284 are generated automatically by the  
ADV7324. All pixels inputs are ignored during Line 21 and  
Line 284 if closed captioning is enabled.  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 97. Closed Captioning Waveform (NTSC)  
Rev. 0 | Page 70 of 92  
ADV7324  
APPENDIX 4—TEST PATTERNS  
The ADV7324 can generate SD and HD test patterns.  
T
T
2
2
CH2 200mV  
M 10.0µs  
A CH2 1.20V  
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82600ms  
Figure 98. NTSC Color Bars  
Figure 101. PAL Black Bar  
(–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV, 18 mV, 23 mV)  
T
T
2
2
CH2 200mV  
M 10.0µs  
A CH2 1.21V  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82944ms  
Figure 102. 525p Hatch Pattern  
Figure 99. PAL Color Bars  
T
T
2
2
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
1.82380ms  
T
1.84208ms  
Figure 100. NTSC Black Bar  
(–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV,18 mV, 23 mV)  
Figure 103. 625p Hatch Pattern  
Rev. 0 | Page 71 of 92  
ADV7324  
T
T
2
2
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
CH2 100mV  
M 4.0µs  
CH2  
EVEN  
T
1.82872ms  
T
1.82936ms  
Figure 106. 525p Black Bar  
(−35 mV, 0 mV, 7 mV, 14 mV, 21 mV, 28 mV, 35 mV)  
Figure 104. 525p Field Pattern  
T
T
2
2
CH2 100mV  
M 4.0µs  
CH2  
EVEN  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
1.84176ms  
T
1.84176ms  
Figure 105. 625p Field Pattern  
Figure 107. 625p Black Bar  
(−35 mV, 0 mV, 7 mV, 14 mV, 21 mV, 28 mV, 5 mV)  
Rev. 0 | Page 72 of 92  
ADV7324  
The register settings in Table 41 are used to generate an SD  
NTSC CVBS output on DAC A, S-video on DACs B and C, and  
YPrPb on DACs D, E, and F. Upon power-up, the subcarrier  
registers are programmed with the appropriate values for  
NTSC. All other registers are set as normal/default.  
The register settings in Table 43 are used to generate a 525p  
hatch pattern on DAC D, E, and F. All other registers are set as  
normal/default.  
Table 43. 525p Test Pattern Register Writes  
Subaddress  
Register Setting  
Table 41. NTSC Test Pattern Register Writes  
0x00  
0xFC  
Subaddress  
Register Setting  
0x01  
0x10  
0x00  
0xFC  
0x10  
0x00  
0x40  
0x10  
0x11  
0x05  
0x42  
0x40  
0x16  
0xA0  
0x44  
0x4A  
0x40 (internal test pattern on)  
0x08  
0x17  
0x18  
0x80  
0x80  
For PAL CVBS output on DAC A, the same settings are used,  
except Subaddress 0x40 is programmed to 0x11 and the FSC  
registers are programmed as shown in Table 42.  
For 625p hatch pattern on DAC D, the same register settings are  
used, except Subaddress 0x10 = 0x18.  
Table 42. PAL FSC Register Writes  
Subaddress  
Description  
Register Setting  
0x4C  
0x4D  
0x4E  
0x4F  
FSC0  
FSC1  
FSC2  
FSC3  
0xCB  
0x8A  
0x09  
0x2A  
Note that when programming the FSC registers, the user must  
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full  
FSC value is only accepted after the FSC3 write is complete.  
Rev. 0 | Page 73 of 92  
 
 
 
ADV7324  
APPENDIX 5—SD TIMING MODES  
[Subaddress 0x4A]  
MODE 0 (CCIR-656)—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 0)  
The ADV7324 is controlled by the SAV (start active video) and  
EAV (end active video) time codes in the pixel data. All timing  
information is transmitted using a 4-byte synchronization pattern.  
A synchronization pattern is sent immediately before and after  
each line during active picture and retrace. If Pin  
,
S_VSYNC  
Pin  
, and Pin  
S_BLANK  
are not used, they should be  
S_HSYNC  
tied high during this mode. Blank output is available.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 108. SD Slave Mode 0  
Rev. 0 | Page 74 of 92  
ADV7324  
MODE 0 (CCIR-656)—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 1)  
The ADV7324 generates H, V, and F signals required for the  
SAV (start active video) and EAV (end active video) time codes  
in the CCIR656 standard. The H, V, and F bits are output on  
,
, and  
, respectively.  
S_HSYNC S_BLANK  
S_VSYNC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 109. SD Master Mode 0 (NTSC)  
Rev. 0 | Page 75 of 92  
ADV7324  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
334  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 110. SD Master Mode 0 (PAL)  
ANALOG  
VIDEO  
H
F
V
Figure 111. SD Master Mode 0 (Data Transitions)  
Rev. 0 | Page 76 of 92  
ADV7324  
MODE 1—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 0)  
In this mode, the ADV7324 accepts horizontal sync and  
odd/even field signals. When  
is low, a transition of the  
HSYNC  
field input indicates a new frame, i.e., vertical retrace. The  
signal is optional. When the input is disabled,  
BLANK  
ADV7324 automatically blanks all normally blank lines as per  
CCIR-624. , and FIELD are input on  
BLANK  
,
HSYNC BLANK  
,
, and  
, respectively.  
S_VSYNC  
S_HSYNC S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
4
5
7
9
10  
11  
1
2
6
8
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 112. SD Slave Mode 1 (NTSC)  
Rev. 0 | Page 77 of 92  
ADV7324  
MODE 1—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 1)  
In this mode, the ADV7324 can generate horizontal sync and  
odd/even field signals. When  
is low, a transition of the  
HSYNC  
field input indicates a new frame, i.e., vertical retrace. The  
signal is optional. When the input is disabled,  
BLANK  
BLANK  
ADV7324 automatically blanks all normally blank lines as per  
CCIR-624. Pixel data is latched on the rising clock edge  
following the timing signal transitions.  
,
, and  
HSYNC BLANK  
FIELD are output on  
respectively.  
,
, and  
,
S_VSYNC  
S_HSYNC S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 113. SD Slave Mode 1 (PAL)  
HSYNC  
FIELD  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 114. SD Timing Mode 1—Odd/Even Field Transitions Master/Slave  
Rev. 0 | Page 78 of 92  
ADV7324  
MODE 2— SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 0)  
In this mode, the ADV7324 accepts horizontal and vertical sync  
signals. A coincident low transition of both  
and  
HSYNC  
VSYNC  
inputs indicates the start of an odd field. A  
low  
VSYNC  
transition when  
is high indicates the start of an even  
HSYNC  
field. The  
signal is optional. When the  
input is  
BLANK  
BLANK  
disabled, ADV7324 automatically blanks all normally blank  
lines as per CCIR-624.  
,
, and  
are input  
VSYNC  
HSYNC BLANK  
S_HSYNC  
on  
,
, and  
, respectively.  
S_VSYNC  
S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
3
2
4
5
6
7
8
20  
21  
22  
10  
11  
9
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 115. SD Slave Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 116. SD Slave Mode 2 (PAL)  
Rev. 0 | Page 79 of 92  
ADV7324  
MODE 2—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7324 can generate horizontal and vertical  
sync signals. A coincident low transition of both  
and  
HSYNC  
inputs indicates the start of an odd field.  
VSYNC  
A
low transition when  
is high indicates the start  
VSYNC  
HSYNC  
of an even field. The  
signal is optional. When the  
BLANK  
input is disabled, the ADV7324 automatically blanks all normally  
blank lines as per CCIR-624. , and are  
BLANK  
,
HSYNC BLANK  
VSYNC  
, respectively.  
S_VSYNC  
output on  
,
, and  
S_HSYNC S_BLANK  
HSYNC  
VSYNC  
PAL = 12  
×
CLOCK/2  
CLOCK/2  
NTSC = 16  
×
BLANK  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132  
×
CLOCK/2  
CLOCK/2  
NTSC = 122  
×
Figure 117. SD Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 118. SD Timing Mode 2 Odd-to-Even Field Transition  
Rev. 0 | Page 80 of 92  
ADV7324  
MODE 3—MASTER/SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 1 0 OR X X X X X 1 1 1)  
In this mode, the ADV7324 accepts or generates horizontal  
sync and odd/even field signals. When  
is high, a  
HSYNC  
transition of the field input indicates a new frame, i.e., vertical  
retrace. The signal is optional. When the input  
BLANK  
BLANK  
is disabled, ADV7324 automatically blanks all normally blank  
lines as per CCIR-624.  
,
, and  
are  
HSYNC BLANK  
VSYNC  
output in master mode and input in slave mode on  
,
S_VSYNC  
, and  
, respectively.  
S_BLANK  
S_VSYNC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
4
3
20  
21  
22  
10  
11  
1
2
5
6
7
8
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 119. SD Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
Figure 120. SD Timing Mode 3 (PAL)  
Rev. 0 | Page 81 of 92  
ADV7324  
APPENDIX 6—HD TIMING  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124 1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
P_VSYNC  
P_HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
P_VSYNC  
P_HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 121. 1080i  
and  
Rev. 0 | Page 82 of 92  
ADV7324  
APPENDIX 7—VIDEO OUTPUT LEVELS  
HD YPrPb OUTPUT LEVELS  
EIA-770.2 STANDARD FOR Y  
EIA-770.3 STANDARD FOR Y  
INPUT CODE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3 STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2 STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
512  
64  
960  
600mV  
700mV  
512  
64  
700mV  
Figure 122. EIA 770.2 Standard Output Signals (525p/625p)  
Figure 124. EIA 770.3 Standard Output Signals (1080i/720p)  
EIA-770.1 STANDARD FOR Y  
Y OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
940  
700mV  
714mV  
64  
64  
300mV  
286mV  
Pr/Pb OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1 STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 123. EIA 770.1 Standard Output Signals (525p/625p)  
Figure 125. Output Levels for Full Input Selection  
Rev. 0 | Page 83 of 92  
ADV7324  
RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
700mV  
700mV  
525mV  
525mV  
300mV  
300mV  
700mV  
700mV  
525mV  
525mV  
300mV  
300mV  
Figure 126. PS RGB Output Levels  
Figure 128. SD RGB Output Levels—RGB Sync Disabled  
700mV  
700mV  
700mV  
525mV  
700mV  
700mV  
700mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
Figure 129. SD RGB Output Levels—RGB Sync Enabled  
Figure 127. PS RGB Output Levels—RGB Sync Enabled  
Rev. 0 | Page 84 of 92  
ADV7324  
YPrPb LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
Figure 130. Pb Levels (NTSC)  
Figure 133. Pr Levels (PAL)  
700mV  
700mV  
300mV  
Figure 131. Pb Levels (PAL)  
Figure 134. Y Levels (NTSC)  
700mV  
700mV  
300mV  
Figure 135. Y Levels (PAL)  
Figure 132. Pr Levels (NTSC)  
Rev. 0 | Page 85 of 92  
ADV7324  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
0
F1  
–50  
L608  
L76  
0
10  
20  
30  
40  
50  
60  
10  
20  
MICROSECONDS  
PRECISION MODE OFF  
30  
40  
50  
60  
MICROSECONDS  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
APL = 44.5%  
525 LINE NTSC  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SYNCHRONOUS SYNC = A  
FRAMES SELECTED 1, 2  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72µs  
SLOW CLAMP TO 0.00 AT 6.72µs  
Figure 136. NTSC Color Bars 75%  
Figure 139. PAL Color Bars 75%  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
20  
30  
40  
50  
60  
10  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC SOURCE  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
APL NEEDS SYNC SOURCE  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
Figure 137. NTSC Chroma  
Figure 140. PAL Chroma  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0
0.2  
0
0
0
–0.2  
F2  
L238  
L575  
20  
0
10  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
MICROSECONDS  
MICROSECONDS  
NO BUNCH SIGNAL  
APL NEEDS SYNC SOURCE  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
NOISE REDUCTION: 15.05dB  
APL = 44.3%  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
PRECISION MODE OFF  
PRECISION MODE OFF  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
Figure 141. PAL Luma  
Figure 138. NTSC Luma  
Rev. 0 | Page 86 of 92  
ADV7324  
APPENDIX 8—VIDEO STANDARDS  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 584–1123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 142. EAV/SAV Input Data Timing Diagram (SMPTE 274M)  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
INPUT PIXELS  
V
Y
V
Y
r
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 143. EAV/SAV Input Data Timing Diagram (SMPTE 293M)  
Rev. 0 | Page 87 of 92  
ADV7324  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 144. SMPTE 293M (525p)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624 625  
4
10  
11  
Figure 145. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
7
1
2
3
4
5
6
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 146. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1
2
5
6
7
8
21  
22  
1124  
1125  
3
4
20  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 147. SMPTE 274M (1080i)  
Rev. 0 | Page 88 of 92  
ADV7324  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
12.00 BSC  
SQ  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
PLANE  
17  
32  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCD  
Figure 148. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADV7324KSTZ1  
0°C to 70°C  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board  
ST-64-2  
EVAL-ADV7324EB  
1 Z = Pb-free part.  
Rev. 0 | Page 89 of 92  
 
ADV7324  
NOTES  
Rev. 0 | Page 90 of 92  
ADV7324  
NOTES  
Rev. 0 | Page 91 of 92  
ADV7324  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05220–0–11/04(0)  
Rev. 0 | Page 92 of 92  

相关型号:

ADV7330

Multiformat 11-Bit Triple DAC Video Encoder
ADI

ADV7330KST

Multiformat 11-Bit Triple DAC Video Encoder
ADI

ADV7340

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7340BSTZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7340EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341BSTZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7341EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

ADV7342

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7342BSTZ

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI

ADV7342BSTZ2

IC SERIAL INPUT LOADING, 11-BIT DAC, PQFP64, ROHS COMPLIANT, MS-026BCD, LQFP-64, Digital to Analog Converter
ADI

ADV7342_15

Multiformat Video Encoder Six, 11-Bit, 297 MHz DACs
ADI