ADuM1246ARZ-RL7 [ADI]

Micropower, Dual-Channel Digital Isolators;
ADuM1246ARZ-RL7
型号: ADuM1246ARZ-RL7
厂家: ADI    ADI
描述:

Micropower, Dual-Channel Digital Isolators

文件: 总24页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, Dual-Channel Digital Isolators  
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Ultralow power operation  
3.3 V operation  
1
2
3
20  
19  
18  
V
V
DD2  
DD1  
ADuM124x  
GND  
GND  
NIC  
1
2
5.6 µA per channel quiescent current, refresh enabled  
0.3 µA per channel quiescent current, refresh disabled  
148 µA/Mbps per channel typical dynamic current  
2.5 V operation  
3.1 µA per channel quiescent current, refresh enabled  
0.1 µA per channel quiescent current, refresh disabled  
116 µA/Mbps per channel typical dynamic current  
Small, 20-lead SSOP package and small 8-lead SOIC package  
Bidirectional communication  
Up to 2 Mbps data rate nonreturn to zero (NRZ)  
High temperature operation: 125°C  
High common-mode transient immunity: >25 kV/µs  
Safety and Regulatory Approvals  
NIC  
NIC  
4
5
17  
16  
NIC  
V
/V  
ENCODE  
ENCODE  
DECODE  
DECODE  
V
V
/V  
IA OA  
OA IA  
6
7
15  
14  
13  
12  
11  
V
IB  
OB  
EN  
EN  
2
1
8
NIC  
NIC  
NIC  
NIC  
GND  
9
10  
GND  
1
2
Figure 1. 20-Lead SSOP Package Functional Block Diagram  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
ADuM124x  
ENCODE  
DD2  
V
/V  
DECODE  
DECODE  
/V  
IA OA  
OA IA  
OB  
V
IB  
ENCODE  
UL 1577 component recognition program (pending)  
3750 V rms for 1 minute per UL 1577 (20-lead SSOP)  
3000 V rms for 1 minute per UL 1577 (8-lead SOIC)  
CSA Component Acceptance Notice 5A (pending)  
VDE certificate of conformity (pending)  
GND  
GND  
1
2
Figure 2. 8-Lead SOIC Package Functional Block Diagram  
The ADuM1240/ADuM1241/ADuM1245/ADuM1246 are  
packaged in either a 20-lead SSOP for 3.75 kV reinforced  
isolation or an 8-lead SOIC for 3 kV basic isolation. The devices  
meet regulatory requirements, such as UL and CSA standards.  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
V
V
IORM = 849 V peak (20-lead SSOP)  
IORM = 560 V peak (8-lead SOIC)  
In addition to the space saving package options, the ADuM1240/  
ADuM1241/ADuM1245/ADuM1246 operate with supplies as  
low as 2.25 V. All models provide low, pulse width distortion at  
<8 ns. In addition, every model has an input glitch filter to  
protect against extraneous noise disturbances.  
1000  
APPLICATIONS  
General-purpose, low power, multichannel isolation  
1 MHz low power serial peripheral interface (SPI)  
4 mA to 20 mA loop process control  
GENERAL DESCRIPTION  
The ADuM1240/ADuM1241/ADuM1245/ADuM12461 are  
micropower, 2-channel, digital isolators based on the Analog  
Devices, Inc., iCoupler® technology. Combining high speed,  
complementary metal oxide semiconductor (CMOS) and  
monolithic air core transformer technologies, these isolation  
components provide outstanding performance characteristics  
superior to the alternatives, such as optocoupler devices.  
The 20-lead SSOP version of the ADuM1240/ADuM1241/  
ADuM1245/ADuM1246 allows control of the internal refresh  
functions. As shown in Figure 3, in standard operating mode,  
when ENx = 0 (internal refresh enabled), the current per channel is  
less than 10 µA.  
100  
10  
EN = 0  
x
EN = 1  
x
1
0.1  
0.1  
1
10  
100  
1000  
10000  
DATA RATE (kbps)  
When ENx = 1 (internal refresh disabled), the current per  
channel drops to less than 1 µA.  
Figure 3. Typical Total Supply Current (IDD1 + IDD2) per Channel (VDDx = 3.3 V)  
as a Function of Data Rate  
1 Protected by U.S. Patents 5,952,849, 6,873,065, 7,075,329, 6,262,600. Other patents pending.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ..................................................... 10  
Continuous Working Voltage ................................................... 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions......................... 11  
Truth Tables................................................................................. 13  
Typical Performance Characteristics ........................................... 14  
Applications Information .............................................................. 17  
PCB Layout ................................................................................. 17  
Propagation Delay Related Parameters ................................... 17  
DC Correctness and Low Power Operation........................... 17  
Magnetic Field Immunity ......................................................... 18  
Power Consumption .................................................................. 19  
Insulation Lifetime..................................................................... 19  
Packaging and Ordering Information ......................................... 20  
Outline Dimensions................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—3.3 V Operation ............................ 3  
Electrical Characteristics—2.5 V Operation ............................ 4  
Electrical Characteristics—VDD1 = 3.3 V, VDD2 = 2.5 V  
Operation....................................................................................... 6  
Electrical Characteristics—VDD1 = 2.5 V, VDD2 = 3.3 V  
Operation....................................................................................... 6  
Package Characteristics ............................................................... 7  
Regulatory Information............................................................... 7  
Insulation and Safety Related Specifications ............................ 8  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Insulation Characteristics............................................................ 8  
Recommended Operating Conditions ...................................... 9  
REVISION HISTORY  
3/14—Rev. 0 to Rev. A  
Changes to Table 19 ....................................................................... 11  
Added Figure 7 ............................................................................... 12  
Changes to Table 20 ....................................................................... 12  
Changes to Table 22 and Table 23....................................................... 13  
Changes to PCB Layout Section............................................................. 17  
Added Figure 28......................................................................................... 17  
Changes to Recommended Input Voltage for Low Power  
Operation Section........................................................................... 18  
Added Figure 35, Outline Dimensions........................................ 20  
Changes to Ordering Guide.......................................................... 21  
Added 8-lead SOIC Package .............................................Universal  
Changes to Features Section, General Description Section, and  
Figure 3 .............................................................................................. 1  
Deleted Product Highlights Section............................................... 1  
Added Figure 2; Renumbered Sequentially .................................. 1  
Changes to Table 12.......................................................................... 7  
Changes to Table 13.......................................................................... 8  
Added Table 14; Renumbered Sequentially .................................. 8  
Changed Case Temperature to Ambient Temperature,  
Figure 4 Caption ............................................................................... 9  
Added Figure 5................................................................................ 11  
12/13—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range of 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
180  
Mbps  
ns  
ps/°C  
ns  
ns  
ns  
Within pulse width distortion (PWD) limit  
50% input to 50% output  
Propagation Delay  
Change vs. Temperature  
Minimum Pulse Width  
Pulse Width Distortion  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
80  
200  
PW  
PWD  
tPSK  
500  
Within PWD limit  
|tPLH − tPHL|  
8
10  
tPSKCD  
tPSKOD  
10  
15  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst case difference in tPHL and tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM1240/ADuM1245  
2 Mbps, no load  
IDD1  
IDD2  
IDD1  
IDD2  
366  
246  
306  
306  
600  
375  
450  
450  
µA  
µA  
µA  
µA  
ADuM1241/ADuM1246  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
1
VIH  
VIL  
0.7 VDDx  
V
V
1
Logic Low  
0.3 VDDx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDx1 − 0.1  
VDDx1 − 0.4  
3.3  
3.1  
0.0  
0.2  
V
V
V
V
IOUTx = −20 µA, VIx = VIxH  
IOUTx = −4 mA, VIx = VIxH  
IOUTx = 20 µA, VIx = VIxL  
IOUTx = 4 mA, VIx = VIxL  
Logic Low  
0.1  
0.4  
+1  
1
Input Current per Channel  
Input Switching Thresholds  
Positive Threshold Voltage  
Negative Going Threshold  
Input Hysteresis  
Undervoltage Lockout, VDD1 or VDD2  
Supply Current per Channel  
Quiescent Current  
−1  
+0.01  
µA  
0 V ≤ VIx ≤ VDDx  
VT+  
VT−  
ΔVT  
UVLO  
1.8  
1.2  
0.6  
1.5  
V
V
V
V
Input Supply  
Output Supply  
Input (Refresh Off)  
Output (Refresh Off)  
IDDI (Q)  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
4.8  
0.8  
0.12  
0.13  
10  
6
µA  
µA  
µA  
µA  
ENX low  
ENX low  
ENX high  
ENX high  
Rev. A | Page 3 of 24  
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
Parameter  
Dynamic Supply Current  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input  
Output  
IDDI (D)  
IDDO (D)  
88  
60  
µA/Mbps  
µA/Mbps  
AC SPECIFICATIONS  
Output Rise Time/Fall Time  
Common-Mode Transient Immunity2  
tR/tF  
|CM|  
2
40  
ns  
kV/µs  
10% to 90%  
VIx = VDDx1, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Refresh Rate  
fr  
14  
kbps  
1 VDDx = VDD1 or VDD2  
.
2 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 VDDx. The common-mode voltage slew rates apply to both rising and  
falling common-mode voltage edges.  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum and maximum specifications apply over the entire  
recommended operation range of 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
180  
Mbps  
ns  
ps/°C  
ns  
ns  
ns  
Within PWD limit  
50% input to 50% output  
Propagation Delay  
Change vs. Temperature  
Pulse Width Distortion  
Minimum Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
112  
280  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
|
500  
Within PWD limit  
tPSKCD  
tPSKOD  
10  
30  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 5.  
Parameter  
Symbol  
Unit  
Test Conditions/Comments  
Min  
Typ  
Max  
SUPPLY CURRENT  
ADuM1240/ADuM1245  
2 Mbps, no load  
IDD1  
IDD2  
IDD1  
IDD2  
312  
168  
240  
240  
400  
250  
375  
375  
µA  
µA  
µA  
µA  
ADuM1241/ADuM1246  
Rev. A | Page 4 of 24  
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
1
VIH  
VIL  
0.7 VDDx  
V
V
1
Logic Low  
0.3 VDDx  
Output Voltages  
Logic High  
VOH  
VOL  
II  
VDDx1 − 0.1  
VDDx1 − 0.4  
2.5  
2.35  
0.0  
0.1  
+0.01  
V
V
V
V
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low  
0.1  
0.4  
+1  
1
Input Current per Channel  
Input Switching Thresholds  
Positive Threshold Voltage  
Negative Going Threshold  
Input Hysteresis  
Undervoltage Lockout, VDD1 or VDD2  
Supply Current per Channel  
Quiescent Current  
−1  
µA  
0 V ≤ VIx ≤ VDDx  
VT+  
VT−  
ΔVT  
UVLO  
1.5  
1.0  
0.5  
1.5  
V
V
V
V
Input Supply  
Output Supply  
Input (Refresh Off)  
Output (Refresh Off)  
Dynamic Supply Current  
Input  
IDDI (Q)  
IDDO (Q)  
IDDI (Q)  
IDDO (Q)  
2.6  
0.5  
0.05  
0.05  
3.75  
3.75  
µA  
µA  
µA  
µA  
ENX low  
ENX low  
ENX high  
ENX high  
IDDI (D)  
IDDO (D)  
76  
41  
µA/Mbps  
µA/Mbps  
Output  
AC SPECIFICATIONS  
Output Rise Time/Fall Time  
Common-Mode Transient Immunity2  
tR/tF  
|CM|  
2
40  
ns  
kV/µs  
10% to 90%  
VIx = VDDx1, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Refresh Rate  
fr  
14  
kbps  
1 VDDx = VDD1 or VDD2  
.
2 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 VDDx. The common-mode voltage slew rates apply to both rising and  
falling common-mode voltage edges.  
Rev. A | Page 5 of 24  
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
ELECTRICAL CHARACTERISTICS—VDD1 = 3.3 V, VDD2 = 2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.3 V, and VDD2 = 2.5 V. Minimum and maximum specifications apply over the entire  
recommended operation range of 3.0 V ≤ VDD1 ≤ 3.6 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
For dc specifications and ac specifications, see Table 3 for parameters related to Side 1 operation, and see Table 6 for parameters related to  
Side 2 operation.  
Table 7.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
Mbps  
Within PWD limit  
Propagation Delay  
Side 1 to Side 2  
Side 2 to Side 1  
Change vs. Temperature  
Pulse Width Distortion  
Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
tPHL, tPLH  
tPHL, tPLH  
84  
120  
280  
180  
180  
ns  
ns  
ps/°C  
ns  
ns  
50% input to 50% output  
50% input to 50% output  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
|
500  
Within PWD limit  
ns  
tPSKCD  
tPSKOD  
10  
60  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Table 8.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
ADuM1240/ADuM1245  
2 Mbps, no load  
IDD1  
IDD2  
IDD1  
IDD2  
366  
168  
306  
240  
500  
375  
400  
375  
µA  
µA  
µA  
µA  
ADuM1241/ADuM1246  
ELECTRICAL CHARACTERISTICS—VDD1 = 2.5 V, VDD2 = 3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 2.5 V, and VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire  
recommended operation range of 2.25 V ≤ VDD1 ≤ 2.75 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
For dc specifications and ac specifications, see Table 6 for parameters related to Side 1 operation, and see Table 3 for parameters related to  
Side 2 operation.  
Table 9.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Data Rate  
2
Mbps  
Within PWD limit  
Propagation Delay  
Side 1 to Side 2  
Side 2 to Side 1  
tPHL, tPLH  
tPHL, tPLH  
120  
84  
180  
180  
ns  
ns  
50% input to 50% output  
50% input to 50% output  
Change vs. Temperature  
Pulse Width Distortion  
Pulse Width  
Propagation Delay Skew1  
Channel Matching  
Codirectional  
200  
ps/°C  
ns  
ns  
PWD  
PW  
tPSK  
12  
10  
|tPLH − tPHL  
Within PWD limit  
|
500  
ns  
tPSKCD  
tPSKOD  
10  
60  
ns  
ns  
Opposing Direction  
1 tPSK is the magnitude of the worst case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
Rev. A | Page 6 of 24  
 
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Table 10.  
Parameter  
Symbol  
Unit  
Test Conditions/Comments  
Min  
Typ  
Max  
SUPPLY CURRENT  
ADuM1240/ADuM1245  
2 Mbps, no load  
IDD1  
IDD2  
IDD1  
IDD2  
306  
248  
240  
306  
500  
375  
375  
450  
µA  
µA  
µA  
µA  
ADuM1241/ADuM1246  
PACKAGE CHARACTERISTICS  
Table 11.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2
4.0  
85  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance θJA  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
Approvals of the ADuM1240/ADuM1241/ADuM1245/ADuM1246 by the organizations listed in Table 12 are pending. See Table 18 and  
the Absolute Maximum Ratings section for recommended maximum working voltages for specific cross isolation waveforms and  
insulation levels.  
Table 12.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
Recognized under 1577 component  
recognition program1  
Approved under CSA Component Acceptance Notice 5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10): 2006-122  
Single protection, 8-lead SOIC package, 8-lead SOIC package, basic insulation per CSA 60950-1-03  
3000 V rms isolation voltage  
8-lead SOIC package, reinforced  
and IEC 60950-1, 400 V rms (565 V peak) maximum working insulation, 560 VPEAK  
voltage  
Single protection, 20-lead SSOP package, 20-lead SSOP package, basic insulation per CSA 60950-1-03 20-lead SSOP package, reinforced  
3750 V rms isolation voltage  
and IEC 60950-1, 530 V rms (700 V peak) maximum working insulation, 849 VPEAK  
voltage  
20-lead SSOP package, reinforced insulation per CSA  
60950-1-03 and IEC 60950-1, 265 V rms (374 V peak)  
maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL1577, each ADuM1240/ADuM1241/ADuM1245/ADuM1246 is proof tested by applying an insulation test voltage ≥3000 V rms for 1 second  
(current leakage detection limit = 5 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM1240/ADuM1241/ADuM1245/ADuM1246 is proof tested by applying an insulation test voltage ≥1050 V peak for  
1 second (partial discharge detection limit = 5 pC). The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.  
Rev. A | Page 7 of 24  
 
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 13.  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
(8-Lead SOIC)  
Rated Dielectric Insulation Voltage  
(20-Lead SSOP)  
Minimum External Tracking and Air Gap,  
8-Lead SOIC (Creepage and Clearance)  
Minimum Clearance in the Plane of the  
Printed Circuit Board, 8-Lead SOIC (PCB  
Clearance)  
3000  
3750  
4
V rms  
1 minute duration  
V rms  
1 minute duration  
L(I02)  
L(I01)  
mm min Measured from input terminals to output terminals,  
shortest distance path along package body  
mm min Measured from input terminals to output terminals, shortest  
distance through air, line of sight, in the PCB mounting plane  
4.5  
Minimum Clearance in the Plane of the  
Printed Circuit Board, 20-Lead SSOP  
(PCB Clearance)  
Minimum Clearance in the Plane of the  
Printed Circuit Board, 20-Lead SSOP  
(PCB Clearance)  
L(I01)  
L(I02)  
5.1  
5.1  
mm min Measured from input terminals to output terminals,  
shortest distance path along package body  
mm min Measured from input terminals to output terminals, shortest  
distance through air, line of sight, in the PCB mounting plane  
Minimum Internal Gap (Internal  
Clearance)  
0.017 mm min Insulation distance through insulation  
Tracking Resistance (Comparative  
Tracking Index)  
Isolation Group  
CTI  
>400  
II  
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marked on packages denotes DIN V VDE V 0884-10 approval.  
Table 14. 8-Lead SOIC (R-8)  
Parameter  
Symbol Test Conditions/Comments  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
560  
1050  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test,  
ini = tm = one second, partial discharge < 5 pC  
t
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
Vpd(m)  
Vpd(m)  
VIORM × 1.5 = Vpd(m), tini = 60 seconds, tm = 10 seconds,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 seconds, tm = 10 seconds,  
partial discharge < 5 pC  
840  
672  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
3500  
4000  
VPEAK  
VPEAK  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 4)  
Case Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
1.64  
>109  
°C  
W
VIO = 500 V  
Rev. A | Page 8 of 24  
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Table 15. 20-Lead SSOP (RS-20)  
Parameter  
Symbol Test Conditions/Comments  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
849  
1592  
VPEAK  
VPEAK  
VIORM × 1.875 = Vpd(m), 100% production test,  
tini = tm = one second, partial discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
Vpd(m)  
Vpd(m)  
VIORM × 1.5 = Vpd(m), tini =60 seconds,  
tm = 10 seconds, partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 seconds,  
tm = 10 seconds, partial discharge < 5 pC  
1273  
1018  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2 and  
Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
VIOTM  
VIOSM  
5335  
6000  
VPEAK  
VPEAK  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
Safety Limiting Values  
Maximum value allowed in the event of a  
failure (see Figure 4)  
Case Temperature  
Side 1 IDD1 Current  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
2.5  
>109  
°C  
W
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RECOMMENDED OPERATING CONDITIONS  
Table 16.  
Parameter  
Symbol  
Min Max Unit  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
TA  
−40 +125 °C  
VDD1, VDD2 2.25 3.6  
1.0  
V
ms  
1 See the DC Correctness and Low Power Operation section for more  
information.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependent on Safety Limiting Values with  
Ambient Temperature per DIN V VDE V 0884-10  
Rev. A | Page 9 of 24  
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 17.  
CONTINUOUS WORKING VOLTAGE  
Table 18. Maximum Continuous Working Voltage1  
Parameter  
Max Unit  
Constraint  
Parameter  
Rating  
AC Voltage  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
−65°C to +150°C  
−40°C to +125°C  
Bipolar Waveform  
565  
V peak 50-year minimum  
lifetime  
Unipolar Waveform 1131 V peak 50-year minimum  
lifetime  
Supply Voltages (VDD1, VDD2  
Input Voltages (VIA, VIB )  
Output Voltages (VOA, VOB)  
)
−0.5 V to +5 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDD2 + 0.5 V  
DC Voltage  
1131 V peak 50-year minimum  
lifetime  
Average Output Current per Pin1  
Side 1 (IO1)  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
−10 mA to +10 mA  
Side 2 (IO2)  
Common-Mode Transients2  
−10 mA to +10 mA  
−100 kV/μs to +100 kV/μs  
ESD CAUTION  
1 See Figure 4 for maximum rated current values for various temperatures.  
2 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause  
latch-up or permanent damage.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 10 of 24  
 
 
 
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
20 V  
DD2  
DD1  
GND  
19 GND  
18 NIC  
17 NIC  
1
2
NIC  
NIC  
ADuM1240/  
ADuM1245  
V
V
16  
15  
V
V
IA  
IB  
OA  
TOP VIEW  
OB  
(Not to Scale)  
EN  
14 EN  
2
1
NIC  
NIC  
13 NIC  
12 NIC  
11 GND  
V
1
2
3
4
8
7
6
5
V
V
V
DD1  
DD2  
OA  
OB  
ADuM1240/  
ADuM1245  
V
IA  
IB  
GND 10  
1
2
V
TOP VIEW  
(Not to Scale)  
GND  
GND  
2
1
NIC = NOT INTERNALLY CONNECTED.  
Figure 5. ADuM1240/ADuM1245 8-Lead SOIC (R-8) Pin Configuration  
Figure 6. ADuM1240/ADuM1245 20-Lead SSOP (RS-20) Pin Configuration  
Table 19. ADuM1240/ADuM1245 8-Lead SOIC (R-8) and 20-Lead SSOP (RS-20) Pin Function Descriptions1  
8-Lead  
SOIC  
20-Lead  
SSOP  
Pin No.  
Pin No.2  
Mnemonic Description  
1
1
VDD1  
Supply Voltage for Isolator Side 1 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the range  
of 0.01 µF to 0.1 µF between VDD1 and GND1.  
N/A  
2
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and  
connecting both to GND1 is recommended.  
N/A  
N/A  
2
3
N/A  
3
4
5
6
7
NIC  
NIC  
VIA  
VIB  
EN1  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Logic Input A.  
Logic Input B.  
Refresh and Watchdog Enable 1. In the 20-lead SSOP package, connecting Pin 7 to GND1 enables  
the input/output refresh and watchdog functionality for Side 1, supporting standard iCoupler  
operation. Tying Pin 7 to VDD1 disables the refresh and watchdog functionality for the lowest power  
operation. See the DC Correctness and Low Power Operation section for a description of this mode.  
EN1 and EN2 must be set to the same logic state.  
N/A  
N/A  
4
8
9
10  
NIC  
NIC  
GND1  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Ground 1. Ground reference for Isolator Side 1. In the 20-lead SSOP package, Pin 2 and Pin 10 are  
internally connected, and connecting both to GND1 is recommended.  
5
11  
GND2  
Ground 2. Ground reference for Isolator Side 2. In the 20-lead SSOP package, Pin 11 and Pin 19 are  
internally connected, and connecting both to GND2 is recommended.  
N/A  
N/A  
N/A  
12  
13  
14  
NIC  
NIC  
EN2  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Refresh and Watchdog Enable 2. In the 20-lead SSOP package, connecting Pin 14 to GND2 enables  
the input/output refresh and watchdog functionality for Side 2, supporting standard iCoupler  
operation. Tying Pin 14 to VDD2 disables the refresh and watchdog functionality for lowest power  
operation. See the DC Correctness and Low Power Operation section for a description of this mode.  
EN1 and EN2 must be set to the same logic state.  
6
7
N/A  
N/A  
N/A  
15  
16  
17  
18  
19  
VOB  
VOA  
NIC  
NIC  
GND2  
Logic Output B.  
Logic Output A.  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Ground 2. Ground reference for Isolator Side 2. In the 20-lead SSOP package, Pin 11 and Pin 19 are  
internally connected, and connecting both to GND2 is recommended.  
8
20  
VDD2  
Supply Voltage for Isolator Side 2 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the range  
of 0.01 µF to 0.1 µF between VDD2 and GND2.  
1 Reference AN-1109 for specific layout guidelines.  
2 N/A = not applicable.  
Rev. A | Page 11 of 24  
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
V
1
2
3
4
5
6
7
8
9
20 V  
DD2  
DD1  
GND  
19 GND  
18 NIC  
17 NIC  
1
2
NIC  
NIC  
ADuM1241/  
ADuM1246  
V
16  
15  
V
V
OA  
IA  
V
TOP VIEW  
IB  
OB  
(Not to Scale)  
EN  
14 EN  
2
1
NIC  
13 NIC  
12 NIC  
11 GND  
V
1
2
3
4
8
7
6
5
V
V
V
DD1  
DD2  
IA  
ADuM1241/  
ADuM1246  
NIC  
V
OA  
GND 10  
V
1
2
IB  
TOP VIEW  
OB  
(Not to Scale)  
GND  
GND  
2
1
NIC = NOT INTERNALLY CONNECTED.  
Figure 8. ADuM1241/ADuM1246 20-Lead SSOP (RS-20) Pin Configuration  
Figure 7. ADuM1241/ADuM1246 8-Lead SOIC (R-8) Pin Configuration  
Table 20. ADuM1241/ADuM1246 8-Lead SOIC (R-8) and 20-Lead SSOP (RS-20) Pin Function Descriptions1  
8-Lead  
SOIC  
20-Lead  
SSOP  
Pin No.  
Pin No.2  
Mnemonic Description  
1
1
VDD1  
Supply Voltage for Isolator Side 1 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the range  
of 0.01 µF to 0.1 µF between VDD1 and GND1.  
N/A  
2
GND1  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 10 are internally connected, and  
connecting both to GND1 is recommended.  
N/A  
N/A  
2
3
N/A  
3
4
5
6
7
NIC  
NIC  
VOA  
VIB  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Logic Output A.  
Logic Input B.  
EN1  
Refresh and Watchdog Enable 1. In the 20-lead SSOP package, connecting Pin 7 to GND1 enables  
the input/output refresh and watchdog functionality for Side 1, supporting standard iCoupler  
operation. Tying Pin 7 to VDD1 disables the refresh and watchdog functionality for the lowest power  
operation. See the DC Correctness and Low Power Operation section for a description of this mode.  
EN1 and EN2 must be set to the same logic state.  
N/A  
N/A  
4
8
9
10  
NIC  
NIC  
GND1  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Ground 1. Ground reference for Isolator Side 1. In the 20-lead SSOP package, Pin 2 and Pin 10 are  
internally connected, and connecting both to GND1 is recommended.  
5
11  
GND2  
Ground 2. Ground reference for Isolator Side 2. In the 20-lead SSOP package, Pin 11 and Pin 19 are  
internally connected, and connecting both to GND2 is recommended.  
N/A  
N/A  
N/A  
12  
13  
14  
NIC  
NIC  
EN2  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Refresh and Watchdog Enable 2. In the 20-lead SSOP package, connecting Pin 14 to GND2 enables  
the input/output refresh and watchdog functionality for Side 2, supporting standard iCoupler  
operation. Tying Pin 14 to VDD2 disables the refresh and watchdog functionality for lowest power  
operation. See the DC Correctness and Low Power Operation section for a description of this mode.  
EN1 and EN2 must be set to the same logic state.  
6
7
N/A  
N/A  
N/A  
15  
16  
17  
18  
19  
VOB  
VIA  
NIC  
NIC  
GND2  
Logic Output B.  
Logic Input A.  
Not Internally Connected. Leave this pin floating.  
Not Internally Connected. Leave this pin floating.  
Ground 2. Ground reference for Isolator Side 2. In the 20-lead SSOP package, Pin 11 and Pin 19 are  
internally connected, and connecting both to GND2 is recommended.  
8
20  
VDD2  
Supply Voltage for Isolator Side 2 (2.25 V to 3.6 V). Connect a ceramic bypass capacitor in the range  
of 0.01 µF to 0.1 µF between VDD2 and GND2.  
1 Reference AN-1109 for specific layout guidelines.  
2 N/A = not applicable.  
Rev. A | Page 12 of 24  
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
TRUTH TABLES  
Table 22 provides the truth table (positive logic) for the  
ADuM1240 and the ADuM1241, and Table 23 provides the  
truth table (positive logic) for the ADuM1245 and the  
ADuM1246. For a description of the abbreviations used in the  
truth tables, see Table 21.  
Table 21. Truth Table Abbreviations  
Letter  
Description  
H
L
High level  
Low level  
X
Rising data transition  
Falling data transition  
Irrelevant  
QO  
Z
Level of VOX prior to levels being established  
High impedance  
Table 22. ADuM1240/ADuM1241 Truth Table (Positive Logic)1, 2, 3  
ENx  
State  
VIx Input VDDI State  
VDDO State  
Powered  
Powered  
VOx Output Description  
H
L
Powered  
Powered  
L
L
L
H
L
Normal operation; data is high and refresh is enabled.  
Normal operation; data is low and refresh is enabled.  
X
Unpowered Powered  
H
Input unpowered. Outputs are in the default high state. Outputs return to  
the input state within 150 µs of VDDI power restoration. See the pin function  
descriptions (Table 19 and Table 20) for details.  
X
Unpowered Powered  
H
QO  
Input unpowered. Outputs are static at the level that was last sent from  
the input or at the power-up level. See the pin function descriptions (Table 19  
and Table 20) for details.  
X
Powered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
H
X
H
L
Z
Output is high after propagation delay, refresh is disabled.  
Output is low after propagation delay, refresh is disabled.  
Output unpowered. Output pins are in high impedance state. Outputs  
return to the input state within 150 µs of VDDO power restoration. See the  
pin function descriptions (Table 19 and Table 20) for details.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D).  
2 VDDI refers to the power supply on the input side of a given channel (A, B, C, or D).  
3 VDDO refers to the power supply on the output side of a given channel (A, B, C, or D).  
Table 23. ADuM1245/ADuM1246 Truth Table (Positive Logic)1, 2, 3  
VIx Input  
VDDI State  
Powered  
Powered  
VDDO State  
Powered  
Powered  
ENx State  
VOx Output  
Description  
H
L
X
L
L
L
H
L
L
Normal operation; data is high and refresh is enabled.  
Normal operation; data is low and refresh is enabled.  
Input unpowered. Outputs are in the default low state. Outputs  
return to the input state within 150 µs of VDDI power restoration. See  
the pin function descriptions (Table 19 and Table 20) for details.  
Unpowered Powered  
X
Unpowered Powered  
H
QO  
Input unpowered. Outputs are static at the level that was last sent  
from the input or at the power-up level. See the pin function  
descriptions (Table 19 and Table 20) for details.  
X
Powered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
H
X
H
L
Z
Output is high, refresh is disabled.  
Output is low, refresh is disabled.  
Output unpowered. Output pins are in high impedance state.  
Outputs return to input state within 150 µs of VDDO power restoration.  
See the pin function descriptions (Table 19 and Table 20) for details.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D).  
2 VDDI refers to the power supply on the input side of a given channel (A, B, C, or D).  
3 VDDO refers to the power supply on the output side of a given channel (A, B, C, or D).  
Rev. A | Page 13 of 24  
 
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
350  
140  
120  
100  
80  
300  
15  
4
2
0
10  
250  
5
0
0
20  
40  
0
20  
40  
200  
150  
100  
50  
60  
40  
20  
V
INPUT CURRENT  
V
OUTPUT CURRENT  
DDx  
DDx  
0
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 9. Current Consumption per Input vs. Data Rate for 2.5 V,  
ENx = Low Operation  
Figure 12. Current Consumption per Output vs. Data Rate for 3.3 V,  
ENx = Low Operation  
90  
80  
160  
140  
1.0  
4
2
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0.5  
0
0
5
10  
0
20  
40  
V
INPUT CURRENT  
V
OUTPUT CURRENT  
DDx  
DDx  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 10. Current Consumption per Output vs. Data Rate for 2.5 V,  
ENx = Low Operation  
Figure 13. Current Consumption per Input vs. Data Rate for 2.5 V,  
ENx = High Operation  
90  
400  
80  
350  
15  
1.0  
10  
70  
300  
0.5  
5
60  
0
0
250  
200  
150  
100  
50  
0
20  
40  
0
5
10  
50  
40  
30  
20  
10  
0
V
OUTPUT CURRENT  
V
INPUT CURRENT  
DDx  
DDx  
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
Figure 11. Current Consumption per Input vs. Data Rate for 3.3 V,  
ENx = Low Operation  
Figure 14. Current Consumption per Output vs. Data Rate for 2.5 V,  
ENx = High Operation  
Rev. A | Page 14 of 24  
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
200  
300  
FALLING  
RISING  
180  
1.0  
250  
200  
150  
100  
50  
160  
0.5  
140  
0
0
5
10  
120  
100  
80  
60  
40  
20  
0
V
INPUT CURRENT  
DDx  
0
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
DATA INPUT VOLTAGE (V)  
Figure 15. Current Consumption per Input vs. Data Rate for VDDx = 3.3 V,  
ENx = High Operation  
Figure 18. IDDx Current per Input vs. Data Input Voltage for VDDx = 2.5 V  
140  
10  
9
1.0  
120  
8
0.5  
100  
7
0
0
5
10  
6
80  
60  
40  
20  
0
5
4
3
2
1
OUTPUT  
V
OUTPUT CURRENT  
DDx  
INPUT  
0
–40  
0
500  
1000  
DATA RATE (kbps)  
1500  
2000  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
Figure 16. Current Consumption per Output vs. Data Rate for VDDx = 3.3 V,  
ENx = High Operation  
Figure 19. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 2.5 V, Data Rate = 100 kbps  
600  
10  
9
FALLING  
RISING  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
OUTPUT  
INPUT  
0
–40  
0
1
2
3
4
–20  
0
20  
40  
60  
80  
100  
120  
140  
DATA INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDx = 3.3 V, Data Rate = 100 kbps  
Figure 17. Typical IDDx Current per Input vs. Data Input Voltage for  
DDx = 3.3 V  
V
Rev. A | Page 15 of 24  
 
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
120  
100  
80  
60  
40  
20  
0
10  
OUTPUT  
INPUT  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
TRANSMITTER V  
(V)  
DDx  
Figure 21. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDX = 2.5 V, Data Rate = 1000 kbps  
Figure 24. Typical Glitch Filter Operation Threshold  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
60  
40  
20  
V
V
= 2.5V  
10  
DDx  
DDx  
OUTPUT  
= 3.3V  
INPUT  
0
–40  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Typical Input and Output Supply Current per Channel vs.  
Temperature for VDDX = 3.3 V, Data Rate = 1000 kbps  
Figure 25. Typical Refresh Period vs. Temperature for  
3.3 V and 2.5 V Operation  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
V
V
= 2.5V  
= 3.3V  
DDx  
DDx  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
DDx  
Figure 23. Typical Propagation Delay vs. Temperature for  
DDx = 3.3 V or VDDx = 2.5 V  
Figure 26. Typical Refresh Period vs. VDDx Voltage  
V
Rev. A | Page 16 of 24  
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
APPLICATIONS INFORMATION  
Channel to channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
component of the ADuM1240/ADuM1241/ADuM1245/  
ADuM1246.  
PCB LAYOUT  
The ADuM1240/ADuM1241/ADuM1245/ADuM1246 digital  
isolators require no external interface circuitry for the logic  
interfaces. Power supply bypassing is strongly recommended at  
both the input and output supply pins: VDD1 and VDD2 (see  
Figure 27). Maintain the capacitor value between 0.01 µF and  
0.1 µF and for best results, ensure that the total lead length  
between both ends of the capacitor and the input power supply  
does not exceed 20 mm.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM1240/  
ADuM1241/ADuM1245/ADuM1246 components operating  
under the same conditions.  
DC CORRECTNESS AND LOW POWER OPERATION  
With proper PCB design choices, these digital isolators readily  
meet CISPR 22 Class A (and FCC Class A) emissions standards,  
as well as the more stringent CISPR 22 Class B (and FCC Class B)  
standards in an unshielded environment. Refer to AN-1109 for  
PCB related electromagnetic interference (EMI) mitigation  
techniques, including board layout and stack up issues.  
Standard Operating Mode  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder using the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. When  
refresh and watchdog functions are enabled, by pulling EN1 and  
EN2 low, in the absence of logic transitions at the input for more  
than ~140 µs, a periodic set of refresh pulses, indicative of the  
correct input state, is sent to ensure dc correctness at the output. If  
the decoder receives no internal pulses of more than approximately  
200 µs, the device assumes that the input side is unpowered or  
nonfunctional, in which case, the isolator watchdog circuit  
forces the output to a default state. The default state is either high,  
as in the ADuM1240 and ADuM1241 versions, or low, as in the  
ADuM1245 and ADuM1246 versions.  
V
V
DD2  
DD1  
GND  
NIC  
NIC  
GND  
NIC  
NIC  
1
2
V
V
V
V
V
V
IA/ OA  
OA/ IA  
IB  
OB  
EN  
1
EN  
2
NIC  
NIC  
NIC  
NIC  
GND  
GND  
1
2
NIC = NOT INTERNALLY CONNECTED.  
Figure 27. Recommended PCB Layout, 20-Lead SSOP (RS-20)  
V
V
V
V
DD2  
DD1  
Low Power Operating Mode  
V
V
V
IA/ OA  
OA/ IA  
OB  
V
IB  
For the lowest power consumption, disable the refresh and  
watchdog functions of the ADuM1240/ADuM1241/ADuM1245/  
ADuM1246 by pulling EN1 and EN2 to logic high. These control  
pins must be set to the same value on each side of the component  
for proper operation.  
GND  
1
GND  
2
Figure 28. Recommended PCB Layout, 8-Lead SOIC (R-8)  
For applications involving high common-mode transients, it is  
important to minimize board coupling across the isolation barrier.  
Furthermore, design the board layout so that any coupling that  
does occur equally affects all pins on a given component side.  
Failure to ensure this equal capacitive coupling of pins can  
cause voltage differentials between pins exceeding the absolute  
maximum ratings of the device, thereby leading to latch-up or  
permanent damage.  
In this mode, the current consumption of the chip drops to the  
microampere range. However, be careful when using this mode,  
because dc correctness is no longer guaranteed at startup. For  
example, if the following sequence of events occurs:  
1. Power is applied to Side 1.  
2. A high level is asserted on the VIA input.  
3. Power is applied to Side 2.  
PROPAGATION DELAY RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input to  
output propagation delay time for a high to low transition may  
differ from the propagation delay time of a low to high transition.  
The high on VIA is not automatically transferred to the Side 2  
V
OA, and there can be a level mismatch that is not corrected until a  
transition occurs at VIA. When power is stable on each side, and a  
transition occurs on the input of the channel, the input and output  
state of that channel is correctly matched. This contingency can  
be resolved in several ways, such as sending dummy data, or  
toggling refresh on for a short period to force synchronization after  
turn on.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 29. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values, and an indication of how  
accurately the timing of the input signal is preserved.  
Rev. A | Page 17 of 24  
 
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
1000  
100  
10  
Recommended Input Voltage for Low Power Operation  
The ADuM1240/ADuM1241/ADuM1245/ADuM1246  
implement Schmitt trigger input buffers so that the devices  
operate cleanly in low data rate, or in noisy environments.  
Schmitt triggers allow a small amount of shoot through current  
when their input voltage is not approximate to either VDDx or  
GNDx levels. Shoot through is possible because the two  
transistors are both slightly on when input voltages are in the  
middle of the supply range. For many digital devices, this  
leakage is not a large portion of the total supply current and  
may not be noticed; however, in the ultralow power  
1
0.1  
0.01  
ADuM1240/ADuM1241/ADuM1245/ADuM1246, this leakage  
can be larger than the total operating current of the device and  
must not be ignored.  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 30. Maximum Allowable External Magnetic Flux Density  
To achieve optimum power consumption with the ADuM1240/  
ADuM1241/ADuM1245/ADuM1246, always drive the inputs as  
near to VDDx or GNDx levels as possible. Figure 17 and Figure 18  
illustrate the shoot through leakage of an input; therefore,  
whereas the logic thresholds of the input are standard CMOS  
levels, optimum power performance is achieved when the input  
logic levels are driven within 0.5 V of either VDDx or GNDx levels.  
For example, at a magnetic field frequency of 1 MHz, the maxi-  
mum allowable magnetic field of 0.5 kgauss induces a voltage of  
0.25 V at the receiving coil. This is about 50% of the sensing  
threshold and does not cause a faulty output transition. If such  
an event occurs, with the worst case polarity, during a transmitted  
pulse, it would reduce the received pulse from >1.0 V to 0.75 V.  
This is still higher than the 0.5 V sensing threshold of the decoder.  
MAGNETIC FIELD IMMUNITY  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances away from the ADuM1240  
transformers. Figure 31 expresses these allowable current magni-  
tudes as a function of frequency for selected distances. The  
ADuM1240 is very insensitive to external fields. Only extremely  
large, high frequency currents, very close to the component,  
could potentially be a concern. For the 1 MHz example noted,  
the user would have to place a 1.2 kA current 5 mm away from  
the ADuM1240 to affect component operation.  
1000  
The limitation on the magnetic field immunity of the device is  
set by the condition in which, induced voltage in the transformer  
receiving coil is sufficiently large, to either falsely set or reset the  
decoder. The following analysis defines such conditions. The  
ADuM1240 is examined in a 3 V operating condition, because it  
represents the typical mode of operation for these products.  
The pulses at the transformer output have an amplitude greater  
than 1.5 V. The decoder has a sensing threshold of about 1.0 V,  
therefore establishing a 0.5 V margin in which induced voltages  
are tolerated. The voltage induced across the receiving coil is  
given by  
DISTANCE = 1m  
100  
10  
2
V = (−dβ/dt)∑πrn ; n = 1, 2, …, N  
where:  
β is the magnetic flux density.  
DISTANCE = 100mm  
1
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
DISTANCE = 5mm  
0.1  
Given the geometry of the receiving coil in the ADuM1240, and  
an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 30.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 31. Maximum Allowable Current for  
Various Currents to ADuM1240 Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by PCB traces could induce  
sufficiently large error voltages to trigger the thresholds of  
succeeding circuitry. Avoid PCB structures that form loops.  
Rev. A | Page 18 of 24  
 
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
approved working voltages. In many cases, the approved working  
voltage is higher than 50-year service life voltage. Operation at  
these high working voltages can lead to shortened insulation  
life, in some cases.  
POWER CONSUMPTION  
The supply current with refresh enabled at a given channel of  
the ADuM1240/ADuM1241/ADuM1245/ADuM1246 isolators,  
is a function of the supply voltage, the data rate of the channel,  
and the output load of the channel.  
The insulation lifetime of the ADuM1240/ADuM1241/  
ADuM1245/ADuM1246 depends on the voltage waveform type  
imposed across the isolation barrier. The iCoupler insulation  
structure degrades at different rates, depending on whether the  
waveform is bipolar ac, unipolar ac, or dc. Figure 19, Figure 20,  
and Figure 21 illustrate these different isolation voltage waveforms.  
For each input channel, the supply current is given by  
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI (D) × (2f fr) + IDDI (Q)  
For each output channel, the supply current is given by  
DDO = IDDO (Q) f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime, under the ac bipolar condition,  
determines the Analog Devices recommended maximum  
working voltage.  
I
I
where:  
DDI (D) and IDDO (D) are the input and output dynamic supply  
currents per channel (mA/Mbps).  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower. This allows operation at higher  
working voltages, while still achieving a 50-year service life. The  
working voltages listed in Table 18 can be applied while maintain-  
ing the 50-year minimum lifetime, provided the voltages conform  
to either the unipolar ac or dc voltage case. Treat any cross-  
insulation voltage waveform that does not conform to Figure 33  
or Figure 34 as a bipolar ac waveform, and limit its peak voltage  
to the 50-year lifetime voltage value listed in Table 18.  
I
CL is the output load capacitance (pF).  
VDDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz); it is half the input  
data rate, expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps) = 1/Tr (µs).  
I
DDI (Q) and IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
Note that the voltage presented in Figure 33 is shown as  
sinusoidal for illustration purposes only. It represents any  
voltage waveform varying between 0 V and some limiting value.  
The limiting value can be positive or negative, but the voltage  
must not cross 0 V.  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
V
DD1 and VDD2 are calculated and totaled. Figure 9 through  
Figure 16 show per channel supply currents as a function of  
data rate for an unloaded output condition.  
RATED PEAK VOLTAGE  
INSULATION LIFETIME  
0V  
All insulation structures eventually degrade, when subjected to  
voltage stress for a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the  
Figure 32. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
ADuM1240/ADuM1241/ADuM1245/ADuM1246.  
Figure 33. Unipolar AC Waveform  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
RATED PEAK VOLTAGE  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in Table 18  
summarize the peak voltage for 50 years of service life for a  
bipolar ac operating condition, and the maximum CSA/VDE  
0V  
Figure 34. DC Waveform  
Rev. A | Page 19 of 24  
 
 
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 36. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
Rev. A | Page 20 of 24  
 
 
Data Sheet  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
ORDERING GUIDE  
No.  
of Inputs,  
VDD1 Side  
No.  
of Inputs,  
VDD2 Side  
Maximum  
Data Rate  
(Mbps)  
Maximum  
Propagation  
Delay, 3.3 V  
Output  
Default  
State  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model1, 2  
ADuM1240ARZ  
2
2
2
2
1
1
1
1
2
2
2
2
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
180  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
20-Lead SSOP  
20-Lead SSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
20-Lead SSOP  
20-Lead SSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
20-Lead SSOP  
20-Lead SSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
20-Lead SSOP  
20-Lead SSOP  
R-8  
R-8  
RS-20  
RS-20  
R-8  
ADuM1240ARZ-RL7  
ADuM1240ARSZ  
ADuM1240ARSZ-RL7  
ADuM1241ARZ  
ADuM1241ARZ-RL7  
ADuM1241ARSZ  
ADuM1241ARSZ-RL7  
ADuM1245ARZ  
ADuM1245ARZ-RL7  
ADuM1245ARSZ  
ADuM1245ARSZ-RL7  
ADuM1246ARZ  
ADuM1246ARZ-RL7  
ADuM1246ARSZ  
ADuM1246ARSZ-RL7  
R-8  
RS-20  
RS-20  
R-8  
R-8  
RS-20  
RS-20  
R-8  
R-8  
RS-20  
RS-20  
1 Z = RoHS Compliant Part.  
2 Tape and reel is available. The addition of the -RL7 suffix indicates that the product is shipped on 7” tape and reel.  
Rev. A | Page 21 of 24  
 
 
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
NOTES  
Data Sheet  
Rev. A | Page 22 of 24  
Data Sheet  
NOTES  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Rev. A | Page 23 of 24  
ADuM1240/ADuM1241/ADuM1245/ADuM1246  
NOTES  
Data Sheet  
©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11925-0-4/14(A)  
www.analog.com/ADuM1240/ADuM1241/ADuM1245/ADuM1246  
Rev. A | Page 24 of 24  

相关型号:

ADUM1250

Hot Swappable Dual I2C Isolators
ADI

ADUM1250ARZ

Hot Swappable Dual I2C Isolators
ADI

ADUM1250ARZ-RL7

Hot Swappable Dual I2C Isolators
ADI

ADuM1250SRZ

Hot Swappable, Dual I2C Isolators
ADI

ADuM1250SRZ-RL7

Hot Swappable, Dual I2C Isolators
ADI

ADUM1250WSRZ

Hot Swappable, Dual I2C Isolators
ADI

ADuM1250WSRZ-RL7

Hot Swappable, Dual I2C Isolators
ADI

ADUM1250_15

Hot Swappable, Dual IC Isolators
ADI

ADUM1250_VD

Hot Swappable, Dual I2C Isolators
ADI

ADUM1251

Hot Swappable Dual I2C Isolators
ADI

ADUM1251ARZ

Hot Swappable Dual I2C Isolators
ADI

ADUM1251ARZ-RL7

Hot Swappable Dual I2C Isolators
ADI