BF514F [ADI]

Blackfin Embedded Processor; Blackfin嵌入式处理器
BF514F
型号: BF514F
厂家: ADI    ADI
描述:

Blackfin Embedded Processor
Blackfin嵌入式处理器

文件: 总68页 (文件大小:2494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin  
Embedded Processor  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
FEATURES  
PERIPHERALS  
Up to 400 MHz high performance Blackfin processor  
Two 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,  
40-bit shifter  
RISC-like register and instruction model for ease of  
programming and compiler-friendly support  
Advanced debug, trace, and performance monitoring  
Wide range of operating voltages. See Operating Conditions  
on Page 20  
IEEE 802.3-compliant 10/100 Ethernet MAC with IEEE 1588  
support (ADSP-BF518/ADSP-BF518F only)  
Parallel peripheral interface (PPI), supporting ITU-R 656  
video data formats  
2 dual-channel, full-duplex synchronous serial ports  
(SPORTs), supporting 8 stereo I2S channels  
12 peripheral DMAs, 2 mastered by the Ethernet MAC  
2 memory-to-memory DMAs with external request lines  
Event handler with 56 interrupt inputs  
2 serial peripheral interfaces (SPI)  
Qualified for Automotive Applications. See Automotive  
Products on Page 65  
168-ball CSP_BGA or 176-lead LQFP with exposed pad  
Removable storage interface (RSI) controller for MMC, SD,  
SDIO, and CE-ATA  
2 UARTs with IrDA support  
MEMORY  
116K bytes of on-chip memory  
2-wire interface (TWI) controller  
External memory controller with glueless support for SDRAM  
and asynchronous 8-bit and 16-bit memories  
Optional 4M bit SPI flash with boot option  
Flexible booting options from internal SPI flash, OTP  
memory, external SPI/parallel memories, or from SPI/UART  
host devices  
Code security with Lockbox secure technology  
One-time-programmable (OTP) memory  
Memory management unit providing memory protection  
Eight 32-bit timers/counters with PWM support  
3-phase 16-bit center-based PWM unit  
32-bit general-purpose counter  
Real-time clock (RTC) and watchdog timer  
32-bit core timer  
40 general-purpose I/Os (GPIOs)  
Debug/JTAG interface  
On-chip PLL capable of frequency multiplication  
RTC  
OTP  
WATCHDOG TIMER  
PERIPHERAL  
ACCESS BUS  
COUNTER  
3-PHASE PWM  
TIMER7–0  
TWI  
JTAG TEST AND EMULATION  
INTERRUPT  
CONTROLLER  
B
SPORT1-0  
PORTS  
RSI (SDIO)  
PPI  
L1  
L1  
DATA  
DMA  
CONTROLLER  
INSTRUCTION  
MEMORY  
MEMORY  
UART1–0  
EMAC  
SPI1  
DMA  
EXTERNAL  
BUS  
16  
EXTERNAL ACCESS BUS  
DMA CORE BUS  
BOOT  
ROM  
EXTERNAL PORT  
FLASH, SDRAM CONTROL  
SPI0  
4 Mbit SPI Flash  
(See Table 1)  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2011 Analog Devices, Inc. All rights reserved.  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
TABLE OF CONTENTS  
Features ................................................................. 1  
Memory ................................................................ 1  
Peripherals ............................................................. 1  
Revision History ...................................................... 2  
General Description ................................................. 3  
Portable Low Power Architecture ............................. 3  
System Integration ................................................ 3  
Blackfin Processor Core .......................................... 3  
Memory Architecture ............................................ 5  
Event Handling .................................................... 6  
DMA Controllers .................................................. 7  
Processor Peripherals ............................................. 7  
Dynamic Power Management ................................ 11  
Voltage Regulation Interface .................................. 13  
Clock Signals ..................................................... 13  
Booting Modes ................................................... 14  
Instruction Set Description ................................... 15  
Development Tools ............................................. 15  
Related Signal Chains ........................................... 16  
Lockbox Secure Technology Disclaimer .................... 16  
Signal Descriptions ................................................. 17  
Specifications ........................................................ 20  
Operating Conditions ........................................... 20  
Electrical Characteristics ....................................... 22  
Flash Memory Characteristics ................................ 24  
Absolute Maximum Ratings ................................... 25  
Package Information ............................................ 26  
ESD Sensitivity ................................................... 26  
Timing Specifications ........................................... 27  
Output Drive Currents ......................................... 50  
Test Conditions .................................................. 52  
Thermal Characteristics ........................................ 56  
176-Lead LQFP Lead Assignment ............................... 57  
168-Ball CSP_BGA Ball Assignment ........................... 60  
Outline Dimensions ................................................ 63  
Surface-Mount Design .......................................... 64  
Automotive Products .............................................. 65  
Ordering Guide ..................................................... 65  
Designing an Emulator-Compatible  
Processor Board (Target) ................................... 16  
Related Documents ............................................. 16  
REVISION HISTORY  
1/11—Rev. A to Rev. B  
Revised tWL, tWH and tOH specification in RSI Controller Timing  
(High Speed Mode) ................................................. 36  
Revised tMDCIH and tMDCOH specifications in 10/100 Ethernet  
MAC Controller Timing: MII Station Management ........ 48  
This data sheet release coincides with the release of the revised  
ADSP-BF51x Blackfin Processor Hardware Reference. All  
redundant information has been removed.  
Revised several specifications in Operating Conditions ... 20  
Revised fVCO specification in Phase-Locked Loop Operating  
Conditions ........................................................... 21  
Corrected dimensions in 168-Ball Chip Scale Package Ball Grid  
Array [CSP_BGA] (BC-168-1) ................................... 64  
Revised several specifications in Electrical Characteristics 22  
Added additional fCKIN specification for automotive models in  
Clock and Reset Timing .......................................... 27  
Changed the parameter VDDMEM to VDDEXT in Asynchronous  
Memory Read Cycle Timing ..................................... 29  
SDRAM Interface Timing ........................................ 31  
Parallel Peripheral Interface Timing ........................... 33  
Serial Ports ........................................................... 37  
Revised tHFSPE specification in Parallel Peripheral Interface Tim-  
ing ..................................................................... 33  
Revised tHFSPE specification and added the tPSUD specification in  
Parallel Peripheral Interface Timing ........................... 33  
Revised the tWL and tWH specifications in  
RSI Controller Timing ............................................ 35  
Rev. B  
|
Page 2 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
GENERAL DESCRIPTION  
The ADSP-BF512/ADSP-BF512F, ADSP-BF514/ADSP-  
BF514F, ADSP-BF516/ADSP-BF516F, ADSP-BF518/ADSP-  
BF518F processors are members of the Blackfin® family of prod-  
ucts, incorporating the Analog Devices/Intel Micro Signal  
Architecture (MSA). Blackfin processors combine a dual-MAC  
state-of-the-art signal processing engine, the advantages of a  
clean, orthogonal RISC-like microprocessor instruction set, and  
single-instruction, multiple-data (SIMD) multimedia capabili-  
ties into a single instruction-set architecture.  
PORTABLE LOW POWER ARCHITECTURE  
Blackfin processors provide world-class power management  
and performance. They are produced with a low power and low  
voltage design methodology and feature on-chip dynamic  
power management, which is the ability to vary both the voltage  
and frequency of operation to significantly lower overall power  
consumption. This capability can result in a substantial reduc-  
tion in power consumption, compared with just varying the  
frequency of operation. This allows longer battery life for  
portable appliances.  
The processors are completely code compatible with other  
Blackfin processors.  
SYSTEM INTEGRATION  
Table 1. Processor Comparison  
The ADSP-BF51x processors are highly integrated system-on-a-  
chip solutions for the next generation of embedded network  
connected applications. By combining industry-standard inter-  
faces with a high performance signal processing core, cost-  
effective applications can be developed quickly, without the  
need for costly external components. The system peripherals  
include an IEEE-compliant 802.3 10/100 Ethernet MAC with  
IEEE-1588 support (ADSP-BF518/ADSP-BF518F only), an RSI  
controller, a TWI controller, two UART ports, two SPI ports,  
two serial ports (SPORTs), nine general-purpose 32-bit timers  
(eight with PWM capability), 3-phase PWM for motor control,  
a real-time clock, a watchdog timer, and a parallel peripheral  
interface (PPI).  
Feature  
IEEE-1588  
Ethernet MAC  
RSI  
TWI  
SPORTs  
UARTs  
SPIs  
GP Timers  
Watchdog Timers  
RTC  
1
2
2
2
8
1
1
1
1
3
1
2
2
2
8
1
1
1
1
1
3
1
1
2
2
2
8
1
1
1
1
3
1
1
2
2
2
8
1
1
1
1
1
3
1
1
1
2
2
2
8
1
1
1
1
3
1
1
1
2
2
2
8
1
1
1
1
1
3
1
1
1
1
2
2
2
8
1
1
1
1
3
1
1
1
1
2
2
2
8
1
1
1
1
1
3
BLACKFIN PROCESSOR CORE  
As shown in Figure 1, the Blackfin processor core contains two  
16-bit multipliers, two 40-bit accumulators, two 40-bit ALUs,  
four video ALUs, and a 40-bit shifter. The computation units  
process 8-, 16-, or 32-bit data from the register file.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation  
are supported.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and pop-  
ulation count, modulo 232 multiply, divide primitives, saturation  
and rounding, and sign/exponent detection. The set of video  
instructions include byte alignment and packing operations,  
16-bit and 8-bit adds with clipping, 8-bit average operations,  
and 8-bit subtract/absolute value/accumulate (SAA) operations.  
The compare/select and vector search instructions are also  
provided.  
PPI  
Internal 4 Mbit SPI flash  
Rotary Counter  
3-Phase PWM Pairs  
GPIOs  
40 40 40 40 40 40 40 40  
L1 Instruction SRAM  
L1 Instruction  
SRAM/Cache  
32K  
16K  
L1 Data SRAM  
L1 Data SRAM/Cache  
L1 Scratchpad  
32K  
32K  
4K  
32K  
L3 Boot ROM  
Maximum Speed Grade  
Package Options  
400 MHz  
176-Lead LQFP with Exposed Pad  
168-Ball CSP_BGA  
By integrating a rich set of industry-leading system peripherals  
and memory, Blackfin processors are the platform of choice for  
next-generation applications that require RISC-like program-  
mability, multimedia support, and leading-edge signal  
processing in one integrated package.  
Rev. B  
|
Page 3 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
ADDRESS ARITHMETIC UNIT  
SP  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
FP  
P5  
P4  
P3  
P2  
P1  
P0  
DAG1  
DAG0  
DA1  
DA0  
32  
32  
32  
PREG  
32  
RAB  
SD  
LD1  
LD0  
32  
32  
32  
ASTAT  
32  
32  
SEQUENCER  
ALIGN  
R7.H  
R7.L  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.L  
R0.L  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATA ARITHMETIC UNIT  
Figure 1. Blackfin Processor Core  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). If the second ALU is used,  
quad 16-bit operations are possible.  
The 40-bit shifter can perform shifts and rotates and is used to  
support normalization, field extract, and field deposit  
instructions.  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The memory manage-  
ment unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
The architecture provides three modes of operation: user mode,  
supervisor mode, and emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while supervisor mode has  
unrestricted access to the system and core resources.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero-over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
The address arithmetic unit provides two addresses for simulta-  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit index, modify,  
length, and base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C-style indexed stack  
manipulation).  
Rev. B  
|
Page 4 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
instruction can be issued in parallel with two 16-bit instruc-  
tions, allowing the programmer to use many of the core  
resources in a single instruction cycle.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
The on-chip L1 memory system is the highest-performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the external bus interface unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 132M bytes of  
physical memory.  
The memory DMA controller provides high bandwidth data-  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external  
memory spaces.  
MEMORY ARCHITECTURE  
The ADSP-BF51x processors view memory as a single unified  
4G byte address space, using 32-bit addresses. All resources,  
including internal memory, external memory, and I/O control  
registers, occupy separate sections of this common address  
space. The memory portions of this address space are arranged  
in a hierarchical structure to provide a good cost/performance  
balance of some very fast, low-latency on-chip memory as cache  
or SRAM, and larger, lower-cost and performance off-chip  
memory systems. The memory map for both internal and exter-  
nal memory space is shown in Figure 2.  
Internal (On-Chip) Memory  
The ADSP-BF51x processors have three blocks of on-chip  
memory that provide high bandwidth access to the core.  
The first block is the L1 instruction memory, consisting of  
48K bytes SRAM, of which 16K bytes can be configured as a  
four-way set-associative cache. This memory is accessed at full  
processor speed.  
The second on-chip memory block is the L1 data memory, con-  
sisting of up to two banks of up to 32K bytes each. Each memory  
bank is configurable, offering both cache and SRAM functional-  
ity. This memory block is accessed at full processor speed.  
0xFFFF FFFF  
CORE MMR REGISTERS (2M BYTES)  
0xFFE0 0000  
SYSTEM MMR REGISTERS (2M BYTES)  
The third memory block is a 4K byte scratchpad SRAM which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM and cannot be configured as cache memory.  
0xFFC0 0000  
RESERVED  
0xFFB0 1000  
SCRATCHPAD SRAM (4K BYTES)  
0xFFB0 0000  
RESERVED  
0xFFA1 4000  
External (Off-Chip) Memory  
INSTRUCTION BANK C SRAM/CACHE (16K BYTES)  
External memory is accessed via the EBIU. This 16-bit interface  
provides a glueless connection to a bank of synchronous DRAM  
(SDRAM) as well as up to four banks of asynchronous memory  
devices including flash, EPROM, ROM, SRAM, and memory  
mapped I/O devices.  
The SDRAM controller can be programmed to interface to up  
to 128M bytes of SDRAM. A separate row can be open for each  
SDRAM internal bank, and the SDRAM controller supports up  
to four internal SDRAM banks, improving overall performance.  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
1M byte segment regardless of the size of the devices used, so  
that these banks are only contiguous if each is fully populated  
with 1M byte of memory.  
0xFFA1 0000  
RESERVED  
0xFFA0 8000  
INSTRUCTION BANK B SRAM (16K BYTES)  
0xFFA0 4000  
INSTRUCTION BANK A SRAM (16K BYTES)  
0xFFA0 0000  
RESERVED  
0xFF90 8000  
DATA BANK B SRAM / CACHE (16K BYTES)  
0xFF90 4000  
DATA BANK B SRAM (16K BYTES)  
0xFF90 0000  
RESERVED  
0xFF80 8000  
DATA BANK A SRAM / CACHE (16K BYTES)  
0xFF80 4000  
DATA BANK A SRAM (16K BYTES)  
0xFF80 0000  
RESERVED  
0xEF00 8000  
BOOT ROM (32K BYTES)  
0xEF00 0000  
RESERVED  
0x2040 0000  
ASYNC MEMORY BANK 3 (1M BYTES)  
Flash Memory  
0x2030 0000  
ASYNC MEMORY BANK 2 (1M BYTES)  
0x2020 0000  
The ADSP-BF512F/ADSP-BF514F/ADSP-BF516F/  
ADSP-BF518F processors contain a SPI flash memory within  
the package of the processor and connected to SPI0.  
ASYNC MEMORY BANK 1 (1M BYTES)  
0x2010 0000  
ASYNC MEMORY BANK 0 (1M BYTES)  
0x2000 0000  
The SPI flash memory has a 4M bit capacity and 1.8V (nominal)  
operating voltage. The program/erase endurance is 100,000  
cycles per block, and this memory has greater than 100 years of  
data retention capability. Also included are support for software  
write protection and for fast erase and byte-program.  
RESERVED  
0x08 00 0000  
SDRAM MEMORY (16M BYTES  
-128M BYTES)  
0x0000 0000  
Figure 2. ADSP-BF51x Internal/External Memory Map  
Rev. B  
|
Page 5 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
The processors internally connect to the flash memory die with  
the SPI0SCK, SPI0SEL4 or PH8, SPI0MOSI, and SPI0MISO sig-  
nals similar to an external SPI flash. To further provide a secure  
processing environment, these internally connected signals are  
not exposed outside of the package. For this reason, program-  
ming the ADSP-BF51xF flash memory is performed by running  
code on the processor andcannot be programmed from external  
signals. Data transfers between the SPI flash and the processor  
cannot be probed externally. The flash memory has the follow-  
ing additional features  
• Serial Interface Architecture—SPI compatible with Mode 0  
and Mode 3  
• Superior Reliability—Endurance of 100,000 cycles and  
greater than 100 years data retention  
Booting from ROM  
The processors contain a small on-chip boot kernel, which con-  
figures the appropriate peripheral for booting. If the processors  
are configured to boot from boot ROM memory space, the pro-  
cessor starts executing from the on-chip boot ROM. For more  
information, see Booting Modes on Page 14.  
EVENT HANDLING  
The event controller handles all asynchronous and synchronous  
events to the processor. The processors provide event handling  
that supports both nesting and prioritization. Nesting allows  
multiple event service routines to be active simultaneously.  
Prioritization ensures that servicing of a higher priority event  
takes precedence over servicing of a lower priority event. The  
controller provides support for five different types of events:  
• Emulation—An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor through the JTAG interface.  
• Flexible Erase Capability—Uniform 4K Byte sectors and  
uniform 32 and 64K Byte overlay blocks  
• Fast Erase and Byte-Program—Chip-erase time = 125 ms  
(typical), Sector-/Block-Erase Time = 62 ms (typical) Byte-  
Program Time = 50 μS (typical)  
• Reset—This event resets the processor.  
• Nonmaskable Interrupt (NMI)—The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
• Exceptions—Events that occur synchronously to program  
flow; that is, the exception is taken before the instruction is  
allowed to complete. Conditions such as data alignment  
violations and undefined instructions cause exceptions.  
• Auto Address Increment (AAI) Programming—Decreases  
total chip programming time over byte-program  
operations  
• End-of-Write Detection—Software polling the BUSY bit in  
status register, busy status readout on SO pin  
• Software Write Protection—Write protection through  
block-protection bits in status register  
One-Time Programmable Memory  
• Interrupts—Events that occur asynchronously to program  
flow. They are caused by input signals, timers, and other  
peripherals, as well as by an explicit software instruction.  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
The event controller consists of two stages, the core event con-  
troller (CEC) and the system interrupt controller (SIC). The  
core event controller works with the system interrupt controller  
to prioritize and control all system events. Conceptually, inter-  
rupts from the peripherals enter into the SIC, and are then  
routed directly into the general-purpose interrupts of the CEC.  
The processors have 64K bits of one-time programmable non-  
volatile memory that can be programmed by the developer only  
once. It includes the array and logic to support read access and  
programming. Additionally, its pages can be write protected.  
The OTP memory allows both public and private data to be  
stored on-chip. In addition to storing public and private key  
data for applications requiring security, OTP allows developers  
to store completely user-definable data such as customer ID,  
product ID, and MAC address. Therefore, generic parts can be  
supplied which are then programmed and protected by the  
developer within this non-volatile memory.  
I/O Memory Space  
The processors do not define a separate I/O space. All resources  
are mapped through the flat 32-bit address space. On-chip I/O  
devices have their control registers mapped into memory-  
mapped registers (MMRs) at addresses near the top of the  
4G byte address space. These are separated into two smaller  
blocks, one which contains the control MMRs for all core func-  
tions, and the other which contains the registers needed for  
setup and control of the on-chip peripherals outside of the core.  
The MMRs are accessible only in supervisor mode and appear  
as reserved space to on-chip peripherals.  
Core Event Controller (CEC)  
The CEC supports nine general-purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general-purpose interrupts, the two lowest priority  
interrupts (IVG15–14) are recommended to be reserved for  
software interrupt handlers, leaving seven prioritized interrupt  
inputs to support the peripherals of the processors. The inputs  
to the CEC, identifies their names in the event vector table  
(EVT), and lists their priorities are described in the  
ADSP-BF51x Blackfin Processor Hardware Reference Manual  
“System Interrupts” chapter.  
Rev. B  
|
Page 6 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
cessor intervention. Memory DMA transfers can be controlled  
by a very flexible descriptor-based methodology or by a stan-  
dard register-based autobuffer mechanism.  
System Interrupt Controller (SIC)  
The system interrupt controller provides the mapping and rout-  
ing of events from the many peripheral interrupt sources to the  
prioritized general-purpose interrupt inputs of the CEC.  
Although the processors provide a default mapping, the user  
can alter the mappings and priorities of interrupt events by  
writing the appropriate values into the interrupt assignment  
registers (SIC_IARx). See the ADSP-BF51x Blackfin Processor  
Hardware Reference Manual “System Interrupts” chapter for the  
inputs into the SIC and the default mappings into the CEC.  
The SIC allows further control of event processing by providing  
three pairs of 32-bit interrupt control and status registers. Each  
register contains a bit corresponding to each of the peripheral  
interrupt events. For more information, see the ADSP-BF51x  
Blackfin Processor Hardware Reference Manual “System Inter-  
rupts” chapter.  
The processors also have an external DMA controller capability  
via dual external DMA request signals when used in conjunc-  
tion with the external bus interface unit (EBIU). This  
functionality can be used when a high speed interface is  
required for external FIFOs and high bandwidth communica-  
tions peripherals. It allows control of the number of data  
transfers for memory DMA. The number of transfers per edge is  
programmable. This feature can be programmed to allow mem-  
ory DMA to have an increased priority on the external bus  
relative to the core.  
PROCESSOR PERIPHERALS  
The ADSP-BF51x processors contain a rich set of peripherals  
connected to the core via several high bandwidth buses, provid-  
ing flexibility in system configuration as well as excellent overall  
system performance (see Figure 1 on Page 4). The processors  
contain dedicated network communication modules and high  
speed serial and parallel ports, an interrupt controller for flexi-  
ble management of interrupts from the on-chip peripherals or  
external sources, and power management control functions to  
tailor the performance and power characteristics of the proces-  
sor and system to many application scenarios.  
All of the peripherals, except for the general-purpose I/O, rotary  
counter, TWI, three-phase PWM, real-time clock, and timers,  
are supported by a flexible DMA structure. There are also sepa-  
rate memory DMA channels dedicated to data transfers  
between the processor's various memory spaces, including  
external SDRAM and asynchronous memory. Multiple on-chip  
buses provide enough bandwidth to keep the processor core  
running along with activity on all of the on-chip and external  
peripherals.  
DMA CONTROLLERS  
The ADSP-BF51x processors have multiple independent DMA  
channels that support automated data transfers with minimal  
overhead for the processor core. DMA transfers can occur  
between the processor's internal memories and any of its DMA-  
capable peripherals. Additionally, DMA transfers can be accom-  
plished between any of the DMA-capable peripherals and  
external devices connected to the external memory interfaces,  
including the SDRAM controller and the asynchronous mem-  
ory controller. DMA-capable peripherals include the Ethernet  
MAC, RSI, SPORTs, SPIs, UARTs, and PPI. Each individual  
DMA-capable peripheral has at least one dedicated DMA  
channel.  
The processors’ DMA controller supports both one-dimen-  
sional (1-D) and two-dimensional (2-D) DMA transfers. DMA  
transfer initialization can be implemented from registers or  
from sets of parameters called descriptor blocks.  
Real-Time Clock  
The 2-D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be de-  
interleaved on the fly.  
Examples of DMA types supported by the DMA controller  
include:  
• A single, linear buffer that stops upon completion  
• A circular, auto-refreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page  
In addition to the dedicated peripheral DMA channels, there are  
two memory DMA channels that transfer data between the vari-  
ous memories of the processor system. This enables transfers of  
blocks of data between any of the memories—including external  
SDRAM, ROM, SRAM, and flash memory—with minimal pro-  
The real-time clock (RTC) provides a robust set of digital watch  
features, including current time, stopwatch, and alarm. The  
RTC is clocked by a 32.768 kHz crystal external to the proces-  
sors. The RTC peripheral has a dedicated power supply so that it  
can remain powered up and clocked even when the rest of the  
processor is in a low power state. The RTC provides several pro-  
grammable interrupt options, including interrupt per second,  
minute, hour, or day clock ticks, interrupt on programmable  
stopwatch countdown, or interrupt at a programmed alarm  
time.  
The 32.768 kHz input clock frequency is divided down to a 1 Hz  
signal by a prescaler. The counter function of the timer consists  
of four counters: a 60-second counter, a 60-minute counter, a  
24-hour counter, and an 32,768-day counter.  
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. There are two alarms: The first alarm is  
for a time of day. The second alarm is for a day and time of  
that day.  
Rev. B  
|
Page 7 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
The stopwatch function counts down from a programmed  
value, with one-second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
Like the other peripherals, the RTC can wake up the processor  
from sleep mode upon generation of any RTC wakeup event.  
Additionally, an RTC wakeup event can wake up the processor  
from deep sleep mode or cause a transition from the hibernate  
state.  
mechanism for measuring pulse widths and periods of external  
events. These timers can be synchronized to an external clock  
input to the several other associated PF signals, an external  
clock input to the PPI_CLK input signal, or to the internal  
SCLK.  
The timer units can be used in conjunction with the two UARTs  
to measure the width of the pulses in the data stream to provide  
a software auto-baud detect function for the respective serial  
channels.  
Connect RTC signals RTXI and RTXO with external compo-  
nents as shown in Figure 3.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
RTXI  
RTXO  
In addition to the eight general-purpose programmable timers,  
a ninth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generation of operating system periodic interrupts.  
R1  
X1  
C1  
C2  
3-Phase PWM  
The processors integrate a flexible and programmable 3-phase  
PWM waveform generator that can be programmed to generate  
the required switching patterns to drive a 3-phase voltage  
source inverter for ac induction (ACIM) or permanent magnet  
synchronous (PMSM) motor control. In addition, the PWM  
block contains special functions that considerably simplify the  
generation of the required PWM switching patterns for control  
of the electronically commutated motor (ECM) or brushless dc  
motor (BDCM). Software can enable a special mode for  
switched reluctance motors (SRM).  
SUGGESTED COMPONENTS:  
X1 = ECLIPTEK EC38J (THROUGH-HOLE PACKAGE) OR  
EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE)  
C1 = 22 pF  
C2 = 22 pF  
R1 = 10 M  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.  
Figure 3. External Components for RTC  
Features of the 3-phase PWM generation unit are:  
• 16-bit center-based PWM generation unit  
• Programmable PWM pulse width  
• Single/double update modes  
• Programmable dead time and switching frequency  
• Twos-complement implementation which permits smooth  
transition to full ON and full OFF states  
• Possibility to synchronize the PWM generation to an exter-  
nal synchronization  
• Special provisions for BDCM operation (crossover and  
output enable functions)  
• Wide variety of special switched reluctance (SR) operating  
modes  
Watchdog Timer  
The ADSP-BF51x processors include a 32-bit timer that can be  
used to implement a software watchdog function. A software  
watchdog can improve system availability by forcing the proces-  
sor to a known state through generation of a hardware reset,  
nonmaskable interrupt (NMI), or general-purpose interrupt, if  
the timer expires before being reset by software. The program-  
mer initializes the count value of the timer, enables the  
appropriate interrupt, then enables the timer. Thereafter, the  
software must reload the counter before it counts to zero from  
the programmed value. This protects the system from remain-  
ing in an unknown state where software, which would normally  
reset the timer, has stopped running due to an external noise  
condition or software error.  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the processor peripherals. After a reset,  
software can determine if the watchdog was the source of the  
hardware reset by interrogating a status bit in the watchdog  
timer control register.  
• Output polarity and clock gating control  
• Dedicated asynchronous PWM shutdown signal  
General-Purpose (GP) Counter  
A 32-bit GP counter is provided that can sense 2-bit quadrature  
or binary codes as typically emitted by industrial drives or man-  
ual thumb wheels. The counter can also operate in general-  
purpose up/down count modes. Then, count direction is either  
controlled by a level-sensitive input signal or by two edge  
detectors.  
The timer is clocked by the system clock (SCLK) at a maximum  
frequency of fSCLK  
.
Timers  
There are nine general-purpose programmable timer units in  
the ADSP-BF51x processors. Eight timers have an external sig-  
nal that can be configured either as a pulse width modulator  
(PWM) or timer output, as an input to clock the timer, or as a  
Rev. B  
|
Page 8 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
A third input can provide flexible zero marker support and can  
alternatively be used to input the push-button signal of thumb  
wheels. All three signals have a programmable debouncing  
circuit.  
An internal signal forwarded to the GP timer unit enables one  
timer to measure the intervals between count events. Boundary  
registers enable auto-zero operation or simple system warning  
by interrupts when programmable count values are exceeded.  
bit can be transferred to interrupt only addressed nodes in  
multi-drop bus (MDB) systems. A frame is terminates by one,  
one and a half, two or two and a half stop bits.  
The UART ports support automatic hardware flow control  
through the Clear To Send (CTS) input and Request To Send  
(RTS) output with programmable assertion FIFO levels.  
To help support the Local Interconnect Network (LIN) proto-  
cols, a special command causes the transmitter to queue a break  
command of programmable bit length into the transmit buffer.  
Similarly, the number of stop bits can be extended by a pro-  
grammable inter-frame space.  
The capabilities of the UARTs are further extended with sup-  
port for the Infrared Data Association (IrDA®) serial infrared  
physical layer link specification (SIR) protocol.  
Serial Ports  
The ADSP-BF51x processors incorporate two dual-channel syn-  
chronous serial ports (SPORT0 and SPORT1) for serial and  
multiprocessor communications. The SPORTs support the fol-  
lowing features:  
Serial port data can be automatically transferred to and from  
on-chip memory/external memory via dedicated DMA chan-  
nels. Each of the serial ports can work in conjunction with  
another serial port to provide TDM support. In this configura-  
tion, one SPORT provides two transmit signals while the other  
SPORT provides the two receive signals. The frame sync and  
clock are shared.  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode  
• I2S mode  
2-Wire Interface (TWI)  
The processors include a TWI module for providing a simple  
exchange method of control data between multiple devices. The  
TWI is compatible with the widely used I2C® bus standard. The  
TWI module offers the capabilities of simultaneous master and  
slave operation, support for both 7-bit addressing and multime-  
dia data arbitration. The TWI interface utilizes two signals for  
transferring clock (SCL) and data (SDA) and supports the pro-  
tocol at speeds up to 400k bits/sec. The TWI interface signals  
are compatible with 5 V logic levels.  
Additionally, the processor’s TWI module is fully compatible  
with serial camera control bus (SCCB) functionality for easier  
control of various CMOS camera sensor devices.  
• Packed I2S mode  
• Left-justified mode  
Removable Storage Interface (RSI)  
Serial Peripheral Interface (SPI) Ports  
The RSI controller, available on the ADSP-BF514, ADSP-  
BF516, ADSP-BF518, and ADSP-BF518F acts as the host inter-  
face for multi-media cards (MMC), secure digital memory cards  
(SD Card), secure digital input/output cards (SDIO), and CE-  
ATA hard disk drives. The following list describes the main fea-  
tures of the RSI controller.  
• Support for a single MMC, SD memory, SDIO card or CE-  
ATA hard disk drive  
• Support for 1-bit and 4-bit SD modes  
• Support for 1-bit, 4-bit and 8-bit MMC modes  
• Support for 4-bit and 8-bit CE-ATA hard disk drives  
• A ten-signal external interface with clock, command, and  
up to eight data lines  
• Card detection using one of the data signals  
• Card interface clock generation from SCLK  
• SDIO interrupt and read wait features  
• CE-ATA command completion signal recognition and  
disable  
The processors have two SPI-compatible ports (SPI0 and SPI1)  
that enable the processor to communicate with multiple SPI-  
compatible devices.  
The SPI interface uses three signals for transferring data: two  
data signals (master output-slave input–MOSI, and master  
input-slave output–MISO) and a clock signal (serial  
clock–SCK). An SPI chip select input signal (SPIxSS) lets other  
SPI devices select the processor, and multiple SPI chip select  
output signals let the processor select other SPI devices. The SPI  
select signals are reconfigured general-purpose I/O signals.  
Using these signals, the SPI port provides a full-duplex, syn-  
chronous serial interface, which supports both master/slave  
modes and multimaster environments.  
The SPI port baud rate and clock phase/polarities are program-  
mable, and it has an integrated DMA channel, configurable to  
support transmit or receive data streams. The SPI’s DMA chan-  
nel can only service unidirectional accesses at any given time.  
UART Ports  
The processors provide two full-duplex universal asynchronous  
receiver/transmitter (UART) ports, which are fully compatible  
with PC-standard UARTs. Each UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. A UART port includes support for five to eight data bits,  
and none, even, or odd parity. Optionally, an additional address  
Rev. B  
|
Page 9 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
• Programmable receive address filters, including a 64-bin  
address hash table for multicast and/or unicast frames, and  
programmable filter modes for broadcast, multicast, uni-  
cast, control, and damaged frames  
• Advanced power management supporting unattended  
transfer of receive and transmit frames and status to/from  
external memory via DMA during low power sleep mode  
• System wakeup from sleep operating mode upon magic  
packet or any of four user-definable wakeup frame filters  
• Support for 802.3Q tagged VLAN frames  
10/100 Ethernet MAC  
The ADSP-BF516/ADSP-BF516F and ADSP-  
BF518/ADSPBF518F processors offer the capability to directly  
connect to a network by way of an embedded fast Ethernet  
media access controller (MAC) that supports both 10-BaseT  
(10M bits/sec) and 100-BaseT (100M bits/sec) operation. The  
10/100 Ethernet MAC peripheral on the processor is fully com-  
pliant to the IEEE 802.3-2002 standard and it provides  
programmable features designed to minimize supervision, bus  
use, or message processing by the rest of the processor system.  
Some standard features are:  
• Support of MII and RMII protocols for external PHYs  
• Full duplex and half duplex modes  
• Programmable MDC clock rate and preamble suppression  
• In RMII operation, seven unused signals may be config-  
ured as GPIO signals for other purposes  
• Data framing and encapsulation: generation and detection  
of preamble, length padding, and FCS  
• Media access management (in half-duplex operation): col-  
lision and contention handling, including control of  
retransmission of collision frames and of back-off timing  
• Flow control (in full-duplex operation): generation and  
detection of pause frames  
• Station management: generation of MDC/MDIO frames  
for read-write access to PHY registers  
IEEE 1588 Support  
The IEEE 1588 standard is a precision clock synchronization  
protocol for networked measurement and control systems. The  
ADSP-BF518/ADSP-BF518F processors include hardware sup-  
port for IEEE 1588 with an integrated precision time protocol  
synchronization engine (PTP_TSYNC). This engine provides  
hardware assisted time stamping to improve the accuracy of  
clock synchronization between PTP nodes. The main features of  
the PTP_SYNC engine are:  
• Support for both IEEE 1588-2002 and IEEE 1588-2008 pro-  
tocol standards  
• Operating range for active and sleep operating modes, see  
Table 43 on Page 45 and Table 44 on Page 46  
• Hardware assisted time stamping capable of up to 12.5 ns  
resolution  
• Lock adjustment  
• Programmable PTM message support  
• Dedicated interrupts  
• Programmable alarm  
• Internal loopback from transmit to receive  
Some advanced features are:  
• Buffered crystal output to external PHY for support of a  
single crystal system  
• Automatic checksum computation of IP header and IP  
payload fields of Rx frames  
• Independent 32-bit descriptor-driven receive and transmit  
DMA channels  
• Multiple input clock sources (SCLK, MII clock, external  
clock)  
• Frame status delivery to memory through DMA, including  
frame completion semaphores for efficient buffer queue  
management in software  
• Programmable pulse per second (PPS) output  
• Auxiliary snapshot to time stamp external events  
Ports  
• Tx DMA support for separate descriptors for MAC header  
and payload to eliminate buffer copy operations  
Because of the rich set of peripherals, the processors group the  
many peripheral signals to four ports—port F, port G, port H,  
and port J. Most of the associated pins/balls are shared by multi-  
ple signals. The ports function as multiplexer controls.  
• Convenient frame alignment modes support even 32-bit  
alignment of encapsulated receive or transmit IP packet  
data in memory after the 14-byte MAC header  
• Programmable Ethernet event interrupt supports any com-  
bination of:  
General-Purpose I/O (GPIO)  
The ADSP-BF51x processors have 40 bidirectional, general-  
purpose I/O (GPIO) signals allocated across three separate  
GPIO modules—PORTFIO, PORTGIO, and PORTHIO, associ-  
ated with Port F, Port G, and Port H, respectively. Each  
GPIO-capable signal shares functionality with other peripherals  
via a multiplexing scheme; however, the GPIO functionality is  
the default state of the device upon power-up. Neither GPIO  
output nor input drivers are active by default. Each general-pur-  
pose port signal can be individually controlled by manipulation  
of the port control, status, and interrupt registers.  
• Selected receive or transmit frame status conditions  
• PHY interrupt condition  
• Wakeup frame detected  
• Selected MAC management counter(s) at half-full  
• DMA descriptor error  
• 47 MAC management statistics counters with selectable  
clear-on-read behavior and programmable interrupts on  
half maximum value  
Rev. B  
| Page 10 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Parallel Peripheral Interface (PPI)  
Code Security with Lockbox Secure Technology  
The ADSP-BF51x processors provide a parallel peripheral inter-  
face (PPI) that can connect directly to parallel analog-to-digital  
and digital-to-analog converters, ITU-R-601/656 video encod-  
ers and decoders, and other general-purpose peripherals. The  
PPI consists of a dedicated input clock signal, up to three frame  
synchronization signals, and up to 16 data signals.  
In ITU-R-656 modes, the PPI receives and parses a data stream  
of 8-bit or 10-bit data elements. On-chip decode of embedded  
preamble control and synchronization information  
is supported.  
A security system consisting of a blend of hardware and soft-  
ware provides customers with a flexible and rich set of code  
security features with Lockbox® secure technology. Key features  
include:  
• OTP memory  
• Unique chip ID  
• Code authentication  
• Secure mode of operation  
The security scheme is based upon the concept of authentica-  
tion of digital signatures using standards-based algorithms and  
provides a secure processing environment in which to execute  
code and protect assets.  
Three distinct ITU-R-656 modes are supported:  
• Active video only mode—The PPI does not read in any  
data between the End of Active Video (EAV) and Start of  
Active Video (SAV) preamble symbols, or any data present  
during the vertical blanking intervals. In this mode, the  
control byte sequences are not stored to memory; they are  
filtered by the PPI.  
• Vertical blanking only mode—The PPI only transfers verti-  
cal blanking interval (VBI) data, as well as horizontal  
blanking information and control byte sequences on  
VBI lines.  
DYNAMIC POWER MANAGEMENT  
The ADSP-BF51x processors provide four operating modes,  
each with a different performance/power profile. In addition,  
dynamic power management provides the control functions to  
dynamically alter the processor core supply voltage, further  
reducing power dissipation. When configured for a 0 V core  
supply voltage, the processor enters the hibernate state. Control  
of clocking to each of the processor peripherals also reduces  
power consumption. See Table 2 for a summary of the power  
settings for each mode.  
• Entire field mode—The entire incoming bitstream is read  
in through the PPI. This includes active video, control pre-  
amble sequences, and ancillary data that may be embedded  
in horizontal and vertical blanking intervals.  
Table 2. Power Settings  
Though not explicitly supported, ITU-R-656 output functional-  
ity can be achieved by setting up the entire frame structure  
(including active video, blanking, and control information) in  
memory and streaming the data out the PPI in a frame sync-less  
mode. The processor’s 2-D DMA features facilitate this transfer  
by allowing the static frame buffer (blanking and control codes)  
to be placed in memory once, and simply updating the active  
video information on a per-frame basis.  
The general-purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications. The  
modes are divided into four main categories, each allowing up  
to 16 bits of data transfer per PPI_CLK cycle:  
• Data receive with internally generated frame syncs  
• Data receive with externally generated frame syncs  
• Data transmit with internally generated frame syncs  
• Data transmit with externally generated frame syncs  
These modes support ADC/DAC connections, as well as video  
communication with hardware signalling. Many of the modes  
support more than one level of frame synchronization. If  
desired, a programmable delay can be inserted between asser-  
tion of a frame sync and reception/transmission of data.  
Core  
Clock  
System  
Clock  
PLL  
Core  
Mode/State PLL  
Bypassed (CCLK) (SCLK) Power  
Full On  
Active  
Enabled No  
Enabled Enabled On  
Enabled/ Yes  
Enabled Enabled On  
Disabled  
Enabled  
Sleep  
Disabled Enabled On  
Disabled Disabled On  
Disabled Disabled Off  
Deep Sleep Disabled —  
Hibernate Disabled —  
Full-On Operating Mode—Maximum Performance  
In the full-on mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the power-up default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
Active Operating Mode—Moderate Power Savings  
In the active mode, the PLL is enabled but bypassed. Because the  
PLL is bypassed, the processor’s core clock (CCLK) and system  
clock (SCLK) run at the input clock (CLKIN) frequency. In this  
mode, the CLKIN to CCLK multiplier ratio can be changed,  
although the changes are not realized until the full-on mode is  
entered. DMA access is available to appropriately configured  
L1 memories.  
Rev. B  
| Page 11 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
In the active mode, it is possible to disable the PLL through the  
PLL control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before transitioning to the full-on or sleep modes.  
SDRAM. The SCKELOW bit in the VR_CTL register controls  
whether or not SDRAM operates in self-refresh mode, which  
allows it to retain its content while the processor is in hiberna-  
tion and through the subsequent reset sequence.  
Sleep Operating Mode—High Dynamic Power Savings  
Power Savings  
The sleep mode reduces dynamic power dissipation by disabling  
the clock to the processor core (CCLK). The PLL and system  
clock (SCLK), however, continue to operate in this mode. Typi-  
cally an external event or RTC activity wakes up the processor.  
When in the sleep mode, asserting wakeup causes the processor  
to sense the value of the BYPASS bit in the PLL control register  
(PLL_CTL). If BYPASS is disabled, the processor transitions to  
the full on mode. If BYPASS is enabled, the processor transi-  
tions to the active mode.  
As shown in Table 3, the processors support up to six different  
power domains, which maximizes flexibility while maintaining  
compliance with industry standards and conventions. By isolat-  
ing the internal logic of the processor into its own power  
domain, separate from the RTC and other I/O, the processor  
can take advantage of dynamic power management without  
affecting the RTC or other I/O devices. There are no sequencing  
requirements for the various power domains, but all domains  
must be powered according to the appropriate Specifications  
table for processor Operating Conditions; even if the fea-  
ture/peripheral is not used.  
System DMA access to L1 memory is not supported in  
sleep mode.  
Deep Sleep Operating Mode—Maximum Dynamic Power  
Savings  
Table 3. Power Domains  
The deep sleep mode maximizes dynamic power savings by dis-  
abling the clocks to the processor core (CCLK) and to all  
synchronous peripherals (SCLK). Asynchronous peripherals,  
such as the RTC, may still be running but cannot access internal  
resources or external memory. This powered-down mode can  
only be exited by assertion of the reset interrupt (RESET) or by  
an asynchronous interrupt generated by the RTC. When in deep  
sleep mode, an RTC asynchronous interrupt causes the proces-  
sor to transition to the Active mode. Assertion of RESET while  
in deep sleep mode causes the processor to transition to the full  
on mode.  
Power Domain  
VDD Range  
VDDINT  
All internal logic, except RTC, Memory, OTP  
RTC internal logic and crystal I/O  
Memory logic  
VDDRTC  
VDDMEM  
VDDOTP  
VDDFLASH  
VDDEXT  
OTP logic  
Optional internal flash  
All other I/O  
The dynamic power management feature of the processor  
allows both the processor’s input voltage (VDDINT) and clock fre-  
quency (fCCLK) to be dynamically controlled.  
Hibernate State—Maximum Static Power Savings  
The hibernate state maximizes static power savings by disabling  
the voltage and clocks to the processor core (CCLK) and system  
blocks (SCLK). Any critical information stored internally (for  
example memory contents, register contents) must be written to  
a non-volatile storage device prior to removing power if the  
processor state is to be preserved. Writing b#00 to the FREQ bits  
in the VR_CTL register also causes the EXT_WAKE signal to  
transition low, which can be used to signal an external voltage  
regulator to shut down.  
The power dissipated by a processor is largely a function of its  
clock frequency and the square of the operating voltage. For  
example, reducing the clock frequency by 25% results in a 25%  
reduction in dynamic power dissipation, while reducing the  
voltage by 25% reduces dynamic power dissipation by more  
than 40%. Further, these power savings are additive, in that if  
the clock frequency and supply voltage are both reduced, the  
power savings can be dramatic, as shown in the following  
equations.  
Since VDDEXT is still supplied in this mode, all of the external sig-  
nals three-state, unless otherwise specified. This allows other  
devices that may be connected to the processor to still have  
power applied without drawing unwanted current.  
The Ethernet module can signal an external regulator to wake  
up using the EXT_WAKE signal. If PF15 does not connect as a  
PHYINT signal to an external PHY device, it can be pulled low  
by any other device to wake the processor up. The processor can  
also be woken up by a real-time clock wakeup event or by assert-  
ing the RESET pin. All hibernate wakeup events initiate the  
hardware reset sequence. Individual sources are enabled by the  
VR_CTL register. The EXT_WAKE signal is provided to indi-  
cate the occurrence of wakeup events.  
Power Savings Factor  
2
fCCLKRED  
-------------------------  
fCCLKNOM  
VDDINTRED  
-------------------------------  
VDDINTNOM  
TRED  
--------------  
TNOM  
=
×
×
% Power Savings = (1 Power Savings Factor) × 100%  
where the variables in the equations are:  
f
f
CCLKNOM is the nominal core clock frequency  
CCLKRED is the reduced core clock frequency  
V
V
DDINTNOM is the nominal internal supply voltage  
DDINTRED is the reduced internal supply voltage  
With the exception of the VR_CTL and the RTC registers, all  
internal registers and memories lose their content in the hiber-  
nate state. State variables may be held in external SRAM or  
Rev. B  
| Page 12 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
TNOM is the duration running at fCCLKNOM  
BLACKFIN  
TRED is the duration running at fCCLKRED  
CLKOUT  
TO PLL CIRCUITRY  
VOLTAGE REGULATION INTERFACE  
EN  
EN  
The ADSP-BF51x processors require an external voltage regula-  
tor to power the VDDINT domain. To reduce standby power  
consumption in the hibernate state, the external voltage regula-  
tor can be signaled through EXT_WAKE to remove power from  
the processor core. The EXT_WAKE signal is high-true for  
power-up and may be connected directly to the low-true shut  
down input of many common regulators.  
The Power Good (PG) input signal allows the processor to start  
only after the internal voltage has reached a chosen level. In this  
way, the startup time of the external regulator is detected after  
hibernation. For a complete description of the PG functionality,  
refer to the ADSP-BF51x Blackfin Processor Hardware Reference.  
CLKBUF  
560  
XTAL  
CLKIN  
18 pF *  
330 *  
FOR OVERTONE  
OPERATION ONLY:  
18 pF *  
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING  
ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY. FOR  
FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE  
OF 18 pF SHOULD BE TREATED AS A MAXIMUM, AND THE SUGGESTED  
RESISTOR VALUE SHOULD BE REDUCED TO 0 .  
CLOCK SIGNALS  
The ADSP-BF51x processors can be clocked by an external crys-  
tal, a sine wave input, or a buffered, shaped clock derived from  
an external clock oscillator.  
If an external clock is used, it should be a TTL compatible signal  
and must not be halted, changed, or operated below the speci-  
fied frequency during normal operation. This signal is  
connected to the processor CLKIN signal. When an external  
clock is used, the XTAL pin/ball must be left unconnected.  
Figure 4. External Crystal Connections  
25 MHz or 50 MHz crystal may be applied directly to the pro-  
cessor. The 25 MHz or 50 MHz output of CLKBUF can then be  
connected to an external Ethernet MII or RMII PHY device.  
The Blackfin core runs at a different clock rate than the on-chip  
peripherals. As shown in Figure 5, the core clock (CCLK) and  
system peripheral clock (SCLK) are derived from the input  
clock (CLKIN) signal. An on-chip PLL is capable of multiplying  
the CLKIN signal by a programmable 5× to 64× multiplication  
factor (bounded by specified minimum and maximum VCO  
frequencies). The default multiplier is 6×, but it can be modified  
by a software instruction sequence.  
On-the-fly frequency changes can be done simply by writing to  
the PLL_DIV register. The maximum allowed CCLK and SCLK  
rates depend on the applied voltages VDDINT, VDDEXT, and  
VDDMEM, and the VCO is always permitted to run up to the fre-  
quency specified by the part’s speed grade. The CLKOUT signal  
reflects the SCLK frequency to the off-chip world. It belongs to  
the SDRAM interface, but it functions as a reference signal in  
other timing specifications as well. While active by default, it  
can be disabled using the EBIU_SDGCTL and EBIU_AMGCTL  
registers.  
Alternatively, because the processor includes an on-chip oscilla-  
tor circuit, an external crystal may be used. For fundamental  
frequency operation, use the circuit shown in Figure 4. A paral-  
lel-resonant, fundamental frequency, microprocessor-grade  
crystal is connected across the CLKIN and XTAL pins/balls. The  
on-chip resistance between the CLKIN pin/ball and the XTAL  
pin/ball is in the 500 kΩ range. Further parallel resistors are typ-  
ically not recommended. The two capacitors and the series  
resistor shown in Figure 4 fine tune phase and amplitude of the  
sine frequency.  
The capacitor and resistor values shown in Figure 4 are typical  
values only. The capacitor values are dependent upon the crystal  
manufacturers’ load capacitance recommendations and the PCB  
physical layout. The resistor value depends on the drive level  
specified by the crystal manufacturer. The user should verify the  
customized values based on careful investigations on multiple  
devices over temperature range.  
A third-overtone crystal can be used for frequencies above 25  
MHz. The circuit is then modified to ensure crystal operation  
only at the third overtone, by adding a tuned inductor circuit as  
shown in Figure 4. A design procedure for third-overtone oper-  
ation is discussed in detail in application note (EE-168) Using  
Third Overtone Crystals with the ADSP-218x DSP on the Analog  
Devices website (www.analog.com)—use site search on  
“EE-168.”  
“FINE” ADJUSTMENT  
REQUIRES PLL SEQUENCING  
“COARSE” ADJUSTMENT  
ON-THE-FLY  
CCLK  
SCLK  
÷ 1, 2, 4, 8  
÷ 1 to 15  
PLL  
5to 64ꢁ  
CLKIN  
VCO  
The CLKBUF signal is an output signal, which is a buffered ver-  
sion of the input clock. This signal is particularly useful in  
Ethernet applications to limit the number of required clock  
sources in the system. In this type of application, a single  
Figure 5. Frequency Modification Methods  
Rev. B  
|
Page 13 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
into the SSEL fields define a divide ratio between the PLL output  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 4 illustrates typical system clock ratios.  
Note that the divisor ratio must be chosen to limit the system  
clock frequency to its maximum of fSCLK. The SSEL value can be  
changed dynamically without any PLL lock latencies by writing  
the appropriate values to the PLL divisor register (PLL_DIV).  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 5. This programmable core clock capability is useful for  
fast core frequency modifications.  
bits of the reset configuration register, sampled during power-  
on resets and software-initiated resets, implement the modes  
shown in Table 6.  
Table 6. Booting Modes  
BMODE2–0 Description  
000  
001  
010  
011  
100  
101  
110  
111  
Idle - No boot  
Boot from 8- or 16-bit external flash memory  
Boot from internal SPI memory  
Boot from external SPI memory (EEPROM or flash)  
Boot from SPI0 host  
Boot from OTP memory  
Boot from SDRAM  
Boot from UART0 Host  
Table 5. Core Clock Ratios  
• Idle/no boot mode (BMODE = 0x0)—In this mode, the  
processor goes into idle. The idle boot mode helps recover  
from illegal operating modes, such as when the user has  
mis configured the OTP memory.  
• Boot from 8-bit or 16-bit external flash memory  
(BMODE = 0x1)—In this mode, the boot kernel loads the  
first block header from address 0x2000 0000 and—depend-  
ing on instructions containing in the header—the boot  
kernel performs 8-bit or 16-bit boot or starts program exe-  
cution at the address provided by the header. By default, all  
configuration settings are set for the slowest device possible  
(3-cycle hold time, 15-cycle R/W access times, 4-cycle  
setup).  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
CSEL1–0  
VCO/CCLK  
VCO  
300  
300  
400  
200  
CCLK  
300  
150  
100  
25  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
Table 4. Example System Clock Ratios  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
The ARDY is not enabled by default, but it can be enabled  
by OTP programming. Similarly, all interface behavior and  
timings can be customized by OTP programming. This  
includes activation of burst-mode or page-mode operation.  
In this mode, all signals belonging to the asynchronous  
interface are enabled at the port muxing level.  
• Boot from internal SPI memory (BMODE = 0x2)—The  
processor uses the internal PH8 GPIO signal to load code  
previously loaded to the 4 Mbit internal SPI flash con-  
nected to SPI0. Only available on the ADSP-BF512F/  
ADSP-BF514F/ADSP-BF516F/ADSP-BF518F.  
SSEL3–0  
VCO/SCLK  
VCO  
100  
300  
400  
SCLK  
50  
0010  
2:1  
0110  
6:1  
50  
1010  
10:1  
40  
The maximum CCLK frequency not only depends on the part's  
speed grade (see Page 65), it also depends on the applied VDDINT  
voltage. See Table 9 for details. The maximal system clock rate  
(SCLK) depends on the chip package and the applied VDDINT  
,
VDDEXT, and VDDMEM voltages (see Table 11 on Page 21).  
• Boot from external SPI EEPROM or flash  
BOOTING MODES  
(BMODE = 0x3)—8-bit, 16-bit, 24-bit or 32-bit address-  
able devices are supported. The processor uses the PG15  
GPIO signal (at SPI0SEL2) to select a single SPI  
EEPROM/flash device connected to the SPI0 interface;  
then submits a read command and successive address bytes  
(0x00) until a valid 8-, 16-, 24-, or 32-bit addressable device  
is detected. Pull-up resistors are required on the SSEL and  
MISO signals. By default, a value of 0x85 is written to the  
SPI0_BAUD register.  
• Boot from SPI0 host device (BMODE = 0x4)—The proces-  
sor operates in SPI slave mode and is configured to receive  
the bytes of the LDR file from an SPI host (master) agent.  
In the host, the HWAIT signal must be interrogated by the  
The processor has several mechanisms (listed in Table 6) for  
automatically loading internal and external memory after a  
reset. The boot mode is defined by three BMODE input bits  
dedicated to this purpose. There are two categories of boot  
modes. In master boot modes the processor actively loads data  
from parallel or serial memories. In slave boot modes the pro-  
cessor receives data from external host devices.  
The boot modes listed in Table 6 provide a number of mecha-  
nisms for automatically loading the processor’s internal and  
external memories after a reset. By default, all boot modes use  
the slowest meaningful configuration settings. Default settings  
can be altered via the initialization code feature at boot time or  
by proper OTP programming at pre-boot time. The BMODE  
Rev. B  
|
Page 14 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
host before every transmitted byte. A pull-up resistor is  
required on the SPI0SS input. A pull-down on the serial  
clock may improve signal quality and booting robustness.  
• Boot from OTP memory (BMODE = 0x5)—This provides  
a stand-alone booting method. The boot stream is loaded  
from on-chip OTP memory. By default the boot stream is  
expected to start from OTP page 0x40 on and can occupy  
all public OTP memory up to page 0xDF. This is 2560  
bytes. Since the start page is programmable the maximum  
size of the boot stream can be extended to 3072 bytes.  
• Boot from SDRAM (BMODE = 0x6)—This is a warm boot  
scenario, where the boot kernel starts booting from address  
0x0000 0010. The SDRAM is expected to contain a valid  
boot stream and the SDRAM controller must be configured  
by the OTP settings.  
• Boot from UART0 host (BMODE = 0x7)—Using an auto-  
baud handshake sequence, a boot-stream formatted  
program is downloaded by the host. The host selects a bit  
rate within the UART clocking capabilities.  
The boot ROM also features C-callable function entries that can  
be called by the user application at run time. This enables sec-  
ond-stage boot or boot management schemes to be  
implemented with ease.  
INSTRUCTION SET DESCRIPTION  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the pro-  
grammer to use many of the processor core resources in a single  
instruction. Coupled with many features more often seen on  
microcontrollers, this instruction set is very efficient when com-  
piling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core  
processor resources.  
When performing the autobaud, the UART expects a “@”  
(0x40) character (eight bits data, one start bit, one stop bit,  
no parity bit) on the RX0 signal to determine the bit rate.  
The UART then replies with an acknowledgement com-  
posed of 4 bytes (0xBF—the value of UART0_DLL and  
0x00—the value of UART0_DLH). The host can then  
download the boot stream. To hold off the host the Blackfin  
processor signals the host with the boot host wait  
(HWAIT) signal. Therefore, the host must monitor  
HWAIT before every transmitted byte.  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
• Seamlessly integrated DSP/MCU features are optimized for  
both 8-bit and 16-bit operations.  
• A multi-issue load/store modified-harvard architecture,  
which supports two 16-bit MACs or four 8-bit ALUs plus  
two load/store plus two pointer updates per cycle.  
• All registers, I/O, and memory are mapped into a unified  
4G byte memory space, providing a simplified program-  
ming model.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data-types; and separate user and  
supervisor stack pointers.  
• Code density enhancements, which include intermixing of  
16-bit and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded  
in 16 bits.  
For each of the boot modes, a 16-byte header is first read from  
an external memory device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Multiple memory blocks may be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the address stored in the EVT1 register.  
Prior to booting, the pre-boot routine interrogates the OTP  
memory. Individual boot modes can be customized or even dis-  
abled based on OTP programming. External hardware,  
especially booting hosts may watch the HWAIT signal to deter-  
mine when the pre-boot has finished and the boot kernel starts  
the boot process. By programming OTP memory, the user can  
instruct the preboot routine to also customize the PLL, the  
SDRAM Controller, and the Asynchronous Interface.  
The boot kernel differentiates between a regular hardware reset  
and a wakeup-from-hibernate event to speed up booting in the  
later case. Bits 6-4 in the system reset configuration (SYSCR)  
register can be used to bypass pre-boot routine and/or boot ker-  
nel in case of a software reset. They can also be used to simulate  
a wakeup-from-hibernate boot in the software reset case.  
The boot process can be further customized by “initialization  
code.” This is a piece of code that is loaded and executed prior to  
the regular application boot. Typically, this is used to configure  
the SDRAM controller or to speed up booting by managing  
PLL, clock frequencies, wait states, or serial bit rates.  
DEVELOPMENT TOOLS  
The ADSP-BF51x processors are supported with a complete set  
of CROSSCORE® software and hardware development tools,  
including Analog Devices emulators and VisualDSP++® devel-  
opment environment. The same emulator hardware that  
supports other Blackfin processors also fully emulates the  
ADSP-BF51x processors. For more information about develop-  
ment tools, visit www.analog.com.  
EZ-KIT Lite Evaluation Board  
For evaluation of the processors, use the EZ-KIT Lite® board  
being developed by Analog Devices. The board comes with on-  
chip emulation capabilities and is equipped to enable software  
development. Multiple daughter cards are available.  
Rev. B  
| Page 15 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
The Application Signal Chains page in the Circuits from the  
DESIGNING AN EMULATOR-COMPATIBLE  
PROCESSOR BOARD (TARGET)  
TM  
Lab site (http://www.analog.com/circuits) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
The Analog Devices family of emulators are tools that every sys-  
tem developer needs in order to test and debug hardware and  
software systems. Analog Devices has supplied an IEEE 1149.1  
JTAG Test Access Port (TAP) on each JTAG processor. The  
emulator uses the TAP to access the internal features of the pro-  
cessor, allowing the developer to load code, set breakpoints,  
observe variables, observe memory, and examine registers. The  
processor must be halted to send data and commands, but once  
an operation has been completed by the emulator, the processor  
system is set running at full speed with no impact on  
system timing.  
• Reference designs applying best practice design techniques  
LOCKBOX SECURE TECHNOLOGY DISCLAIMER  
Analog Devices products containing Lockbox Secure Technol-  
ogy are warranted by Analog Devices as detailed in the Analog  
Devices Standard Terms and Conditions of Sale. To our knowl-  
edge, the Lockbox Secure Technology, when used in accordance  
with the data sheet and hardware reference manual specifica-  
tions, provides a secure method of implementing code and data  
safeguards. However, Analog Devices does not guarantee that  
this technology provides absolute security. ACCORDINGLY,  
ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL  
EXPRESS AND IMPLIED WARRANTIES THAT THE LOCK-  
BOX SECURE TECHNOLOGY CANNOT BE BREACHED,  
COMPROMISED, OR OTHERWISE CIRCUMVENTED AND  
IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR  
ANY LOSS, DAMAGE, DESTRUCTION, OR RELEASE OF  
DATA, INFORMATION, PHYSICAL PROPERTY, OR INTEL-  
LECTUAL PROPERTY.  
To use these emulators, the target board must include a header  
that connects the processor’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see (EE-68) Analog Devices JTAG Emulation Technical  
Reference on the Analog Devices website (www.analog.com)—  
use site search on “EE-68.” This document is updated regularly  
to keep pace with improvements to emulator support.  
RELATED DOCUMENTS  
The following publications that describe the ADSP-BF512/  
ADSP-BF514/ADSP-BF516/ADSP-BF518 processors (and  
related processors) can be ordered from any Analog Devices  
sales office or accessed electronically on our website:  
Getting Started With Blackfin Processors  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F,  
BF518/BF518F Blackfin Processor Hardware Reference  
ADSP-BF53x/BF56x Blackfin Processor Programming  
Reference  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F,  
BF518/BF518F Blackfin Processor Anomaly List  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the "signal chain" entry in  
Wikipedia or the Glossary of EE Terms on the Analog Devices  
website.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
Rev. B  
| Page 16 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
SIGNAL DESCRIPTIONS  
The processors’ signal definitions are listed in Table 7. In order  
to maintain maximum function and reduce package size and  
signal count, some signals have dual, multiplexed functions. In  
cases where signal function is reconfigurable, the default state is  
shown in plain text, while the alternate function is shown in  
italics.  
All pins are three-stated during and immediately after reset,  
with the exception of the external memory interface, asynchro-  
nous and synchronous memory control, and the buffered XTAL  
output pin (CLKBUF). On the external memory interface, the  
control and address lines are driven high, with the exception of  
CLKOUT, which toggles at the system clock rate. During hiber-  
nate all outputs are three-stated unless otherwise noted in  
Table 7.  
The SDA (serial data) and SCL (serial clock) pins/balls are open  
drain and therefore require a pullup resistor. Consult version  
2.1 of the I2C specification for the proper resistor value.  
It is strongly advised to use the available IBIS models to ensure  
that a given board design meets overshoot/undershoot and sig-  
nal integrity requirements. If no IBIS simulation is performed, it  
is strongly recommended to add series resistor terminations for  
all Driver Types A, C and D. The termination resistors should  
be placed near the processor to reduce transients and improve  
signal integrity. The resistance value, typically 33 Ω or 47 Ω,  
should be chosen to match the average board trace impedance.  
Additionally, adding a parallel termination to CLKOUT may  
prove useful in further enhancing signal integrity. Be sure to  
verify overshoot/undershoot and signal integrity specifications  
on actual hardware.  
All I/O signals have their input buffers disabled with the excep-  
tion of the signals noted in the data sheet that need pull-ups or  
pull downs if unused.  
Table 7. Signal Descriptions  
Driver  
Type1  
Signal Name  
EBIU  
Type Function  
ADDR19–1  
DATA15–0  
ABE1–0/SDQM1–0  
AMS1–0  
ARE  
O
I/O  
O
O
O
O
O
O
O
O
Address Bus  
Data Bus  
A
A
Byte Enable or Data Mask  
A
A
A
A
A
A
A
Asynchronous Memory Bank Selects (Require pull-ups if hibernate is used)  
Asynchronous Memory Read Enable  
Asynchronous Memory Write Enable  
SDRAM Row Address Strobe  
AWE  
SRAS  
SCAS  
SDRAM Column Address Strobe  
SWE  
SDRAM Write Enable  
SCKE  
SDRAM Clock Enable (Requires a pull-down if hibernate with SDRAM self-refresh A  
is used)  
CLKOUT  
O
O
O
SDRAM Clock Output  
SDRAM A10 Signal  
SDRAM Bank Select  
B
A
A
SA10  
SMS  
Port F: GPIO and Multiplexed Peripherals  
PF0/ETxD2/PPI D0/SPI1SEL2/TACLK6  
I/O  
GPIO/Ethernet MII Transmit D2/PPI Data 0/SPI1 Slave Select 2/Timer6 Alternate  
C
Clock  
PF1/ERxD2/PPI D1/PWM AH/TACLK7  
PF2/ETxD3/PPI D2/PWM AL  
I/O  
I/O  
I/O  
GPIO/Ethernet MII Receive D2/PPI Data 1/PWM AH Output/Timer7 Alternate Clock C  
GPIO/Ethernet Transmit D3/PPI Data 2/PWM AL Output  
C
C
PF3/ERxD3/PPI D3/PWM BH/TACLK0  
GPIO/Ethernet MII Data Receive D3/PPI Data 3/PWM BH Output/Timer0 Alternate  
Clock  
PF4/ERxCLK/PPI D4/PWM BL/TACLK1  
PF5/ERxDV/PPI D5/PWM CH/TACI0  
I/O  
I/O  
GPIO/Ethernet MII Receive Clock/PPI Data 4/PWM BL Out/Timer1 Alternate CLK  
C
C
GPIO/Ethernet MII Receive Data Valid/PPI Data 5/PWM CH Out  
/Timer0 Alternate Capture Input  
PF6/COL/PPI D6/PWM CL/TACI1  
PF7/SPI0SEL1/PPI D7/PWMSYNC  
I/O  
I/O  
GPIO/Ethernet MII Collision/PPI Data 6/PWM CL Out/Timer1 Alternate Capture Input C  
GPIO/SPI0 Slave Select 1/PPI Data 7/PWM Sync  
C
Rev. B  
| Page 17 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 7. Signal Descriptions  
Driver  
Type1  
Signal Name  
Type Function  
PF8/MDC/PPI D8/SPI1SEL4  
PF9/MDIO/PPI D9/TMR2  
PF10/ETxD0/PPI D10/TMR3  
PF11/ERxD0/PPI D11/PWM AH/TACI3  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet Management Channel Clock/PPI Data 8/SPI1 Slave Select 4  
C
C
C
C
GPIO/Ethernet Management Channel Serial Data/PPI Data 9/Timer 2  
GPIO/Ethernet MII or RMII Transmit D0/PPI Data 10/Timer 3  
GPIO/Ethernet MII Receive D0/PPI Data 11/PWM AH output  
/Timer3 Alternate Capture Input  
PF12/ETxD1/PPI D12/PWM AL  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet MII Transmit D1/PPI Data 12/PWM AL Output  
GPIO/Ethernet MII or RMII Receive D1/PPI Data 13/PWM BH Output  
GPIO/Ethernet MII Transmit Enable/PPI Data 14/PWM BL Out  
GPIO/Ethernet MII PHY Interrupt/PPI Data 15/Alternate PWM Sync  
C
C
C
C
PF13/ERxD1/PPI D13/PWM BH  
PF14/ETxEN/PPI D14/PWM BL  
PF152/RMII PHYINT/PPI D15/PWM_SYNCA  
Port G: GPIO and Multiplexed Peripherals  
PG0/MIICRS/RMIICRS/HWAIT 3/SPI1SEL3  
PG1/ERxER/DMAR1/PWM CH  
I/O  
I/O  
GPIO/Ethernet MII or RMII Carrier Sense or RMII Data Valid/HWAIT/SPI1 Slave Select3 C  
GPIO/Ethernet MII or RMII Receive Error/DMA Req 1/PWM CH Out  
GPIO/Ethernet MII or RMII Reference Clock/DMA Req 0/PWM CL Out  
C
C
PG2/MIITxCLK/RMIIREF_CLK/DMAR0/PWM CL I/O  
PG3/DR0PRI/RSI_DATA0/SPI0SEL5/TACLK3  
PG4/RSCLK0/RSI_DATA1/TMR5/TACI5  
PG5/RFS0/RSI_DATA2/PPICLK/TMRCLK  
PG6/TFS0/RSI_DATA3/TMR0/PPIFS1  
PG7/DT0PRI/RSI_CMD/TMR1/PPIFS2  
PG8/TSCLK0/RSI_CLK/TMR6/TACI6  
PG9/DT0SEC/UART0TX/TMR4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/SPORT0 Primary Rx Data/RSI Data 0/SPI0 Slave Select 5/Timer3 Alternate CLK C  
GPIO/SPORT0 Rx Clock/RSI Data 1/Timer 5/Timer5 Alternate Capture Input  
GPIO/SPORT0 Rx Frame Sync/RSI Data 2/PPI Clock/External Timer Reference  
GPIO/SPORT0 Tx Frame Sync/RSI Data 3/Timer0/PPI Frame Sync1  
GPIO/SPORT0 Tx Primary Data/RSI Command/Timer 1/PPI Frame Sync2  
GPIO/SPORT0 Tx Clock/RSI Clock/Timer 6/Timer6 Alternate Capture Input  
GPIO/SPORT0 Secondary Tx Data/UART0 Transmit/Timer 4  
D
C
C
C
D
C
C
C
PG10/DR0SEC/UART0RX/TACI4  
GPIO/SPORT0 Secondary Rx Data/UART0 Receive/Timer4 Alternate Capture Input  
PG11/SPI0SS/AMS2/SPI1SEL5/TACLK2  
GPIO/SPI0 Slave Device Select/Asynchronous Memory Bank Select 2/SPI1 Slave  
Select 5/Timer2 Alternate CLK  
PG12/SPI0SCK/PPICLK/TMRCLK/PTP_PPS  
PG13/SPI0MISO4/TMR0/PPIFS1/  
I/O  
I/O  
GPIO/SPI0 Clock/PPI Clock/External Timer Reference/PTP Pulse Per Second Out  
GPIO/SPI0 Master In Slave Out/Timer0/PPI Frame Sync1/PTP Clock Out  
D
C
PTP_CLKOUT  
PG14/SPI0MOSI/TMR1/PPIFS2/PWM TRIP  
/PTP_AUXIN  
I/O  
I/O  
GPIO/SPI0 Master Out Slave In/Timer 1/PPI Frame Sync2/PWM Trip/PTP Auxiliary  
Snapshot Trigger Input  
C
C
PG15/SPI0SEL2/PPIFS3/AMS3  
GPIO/SPI0 Slave Select 2/PPI Frame Sync3/Asynchronous Memory Bank Select 3  
Port H: GPIO and Multiplexed Peripherals  
PH0/DR1PRI/SPI1SS/RSI_DATA4  
PH1/RFS1/SPI1MISO/RSI_DATA5  
PH2/RSCLK1/SPI1SCK/RSI DATA6  
PH3/DT1PRI/SPI1MOSI/RSI DATA7  
PH4/TFS1/AOE/SPI0SEL3/CUD  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/SPORT1 Primary Rx Data/SPI1 Device Select/RSI Data 4  
GPIO/SPORT1 Rx Frame Sync/SPI1 Master In Slave Out/RSI Data 5  
GPIO/SPORT1 Rx Clock/SPI1 Clock/RSI Data 6  
C
C
D
C
C
GPIO/SPORT1 Primary Tx Data/SPI1 Master Out Slave In/RSI Data 7  
GPIO/SPORT1 Tx Frame Sync/Asynchronous Memory Output Enable/SPI0 Slave  
Select 3/Counter Up Direction  
PH5/TSCLK1/ARDY/PTP_EXT_CLKIN/CDG  
PH6/DT1SEC/UART1TX/SPI1SEL1/CZM  
PH7/DR1SEC/UART1RX/TMR7/TACI2  
I/O  
I/O  
I/O  
GPIO/SPORT1 Tx Clock/Asynchronous Memory Hardware Ready Control/  
External Clock for PTP TSYNC/Counter Down Gate  
D
C
C
GPIO/SPORT1 Secondary Tx Data/UART1 Transmit/SPI1 Slave Select 1  
/Counter Zero Marker  
GPIO/SPORT1 Secondary Rx Data/UART1 Receive/Timer 7/Timer2 Alternate Clock  
Input  
Rev. B  
| Page 18 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 7. Signal Descriptions  
Driver  
Type1  
Signal Name  
Port J  
Type Function  
PJ0:SCL  
I/O 5V TWI Serial Clock (This signal is an open-drain output and requires a pull-up  
resistor. Consult version 2.1 of the I2C specification for the proper resistor value.)  
E
E
PJ1:SDA  
I/O 5V TWI Serial Data (This signal is an open-drain output and requires a pull-up  
resistor. Consult version 2.1 of the I2C specification for the proper resistor value.)  
Real Time Clock  
RTXI  
I
RTC Crystal Input (This ball should be pulled low when not used.)  
RTC Crystal Output (Does not three-state during hibernate)  
RTXO  
O
JTAG Port  
TCK  
I
JTAG Clock  
TDO  
O
I
JTAG Serial Data Out  
C
C
C
TDI  
JTAG Serial Data In  
TMS  
I
JTAG Mode Select  
TRST  
I
JTAG Reset (This signal should be pulled low if the JTAG port is not used.)  
Emulation Output  
EMU  
O
Clock  
CLKIN  
I
Clock/Crystal Input  
XTAL  
O
O
Crystal Output (If CLKBUF is enabled, does not three-state during hibernate)  
Buffered XTAL Output (If enabled, does not three-state during hibernate)  
CLKBUF  
Mode Controls  
RESET  
I
I
I
Reset  
NMI  
Non-maskable Interrupt (This signal should be pulled high when not used.)  
Boot Mode Strap 2-0  
BMODE2-0  
Voltage Regulation Interface  
PG  
I
Power Good (This signal should be pulled low when not used.)  
Wake up Indication (Does not three-state during hibernate)  
ALL SUPPLIES MUST BE POWERED See Operating Conditions on Page 20.  
I/O Power Supply  
EXT_WAKE  
Power Supplies  
VDDEXT  
O
C
P
P
P
P
P
P
P
G
VDDINT  
Internal Power Supply  
VDDRTC  
Real Time Clock Power Supply  
VDDFLASH  
VDDMEM  
VPPOTP  
Internal SPI Flash Power Supply  
MEM Power Supply  
OTP Programming Voltage  
VDDOTP  
OTP Power Supply  
GND  
Ground for All Supplies  
1 See Output Drive Currents on Page 50 for more information about each driver type.  
2 When driven low, the PF15 signal can be used to wake up the processor from the hibernate state, either in normal GPIO mode or in Ethernet mode as PHYINT. If the pin/ball  
is used for wake up, enable the feature with the PHYWE bit in the VR_CTL register, and pull-up the signal with a resistor.  
3 Boot host wait is a GPIO signal toggled by the boot kernel. The mandatory external pull-up/pull-down resistor defines the signal polarity.  
4 A pull-up resistor is required for the boot from external SPI EEPROM or flash (BMODE = 0x3).  
Rev. B  
| Page 19 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
SPECIFICATIONS  
Note that component specifications are subject to change  
without notice.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Industrial Models  
Min  
1.14  
1.10  
1.33  
1.7  
Nominal  
Max  
1.47  
1.47  
1.47  
1.9  
Unit  
V
VDDINT Internal Supply Voltage  
Internal Supply Voltage  
Internal Supply Voltage  
Commercial Models  
V
Automotive Models  
V
1, 2  
VDDEXT External Supply Voltage  
1.8 V I/O, Nonautomotive Models  
2.5 V I/O, Nonautomotive Models  
3.3 V I/O, All Models  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
V
External Supply Voltage  
External Supply Voltage  
2.25  
3.0  
2.75  
3.6  
V
V
3
VDDMEM MEM Supply Voltage  
1.8 V I/O, Nonautomotive Models  
2.5 V I/O, Nonautomotive Models  
3.3 V I/O, All Models  
1.7  
1.9  
V
MEM Supply Voltage  
MEM Supply Voltage  
2.25  
3.0  
2.75  
3.6  
V
V
4
VDDRTC RTC Power Supply Voltage  
2.25  
1.7  
3.6  
V
4
VDDFLASH Internal SPI Flash Supply  
1.8  
2.5  
1.9  
V
Voltage  
VDDOTP OTP Supply Voltage  
VPPOTP OTP Programming Voltage  
For Reads1  
2.25  
2.75  
V
2.25  
2.5  
7.0  
2.75  
7.1  
V
For Writes5  
6.9  
V
VIH  
High Level Input Voltage6, 7  
High Level Input Voltage6, 7  
High Level Input Voltage6, 7  
High Level Input Voltage  
Low Level Input Voltage6, 7  
Low Level Input Voltage6, 7  
Low Level Input Voltage6, 7  
Low Level Input Voltage  
Junction Temperature  
VDDEXT/VDDMEM = 1.90 V  
VDDEXT/VDDMEM = 2.75 V  
VDDEXT/VDDMEM = 3.6 V  
1.2  
V
1.7  
V
2
V
8
VIHTWI  
VIL  
VDDEXT = 1.90 V/2.75 V/3.6 V  
VDDEXT/VDDMEM = 1.7 V  
0.7 x VBUSTWI  
VBUSTWI  
0.6  
V
V
VDDEXT/VDDMEM = 2.25 V  
VDDEXT/VDDMEM = 3.0 V  
0.7  
V
0.8  
V
9
VILTWI  
VDDEXT = Minimum  
0.3 x VBUSTWI  
+95  
V
168-Ball CSP_BGA @ TAMBIENT = 0°C to +70°C  
0
°C  
°C  
°C  
°C  
Junction Temperature  
168-Ball CSP_BGA @ TAMBIENT = –40°C to +85°C –40  
+105  
Junction Temperature  
176-Lead LQFP @ TAMBIENT = 0°C to +70°C  
176-Lead LQFP @ TAMBIENT = –40°C to +85°C  
0
+95  
Junction Temperature  
–40  
+105  
1 Must remain powered (even if the associated function is not used).  
2 VDDEXT is the supply to the GPIO.  
3 Pins/balls that use VDDMEM are DATA15–0, ADDR19–1, ABE1–0, ARE, AWE, AMS1–0, SA10, SWE, SCAS, CLKOUT, SRAS, SMS, SCKE. These pins/balls are not tolerant  
to voltages higher than VDDMEM. When using any of the asynchronous memory signals AMS3–2, ARDY, or AOE VDDMEM and VDDEXT must be shorted externally.  
4 If not used, power with VDDEXT  
.
5 The VPPOTP voltage for writes must only be applied when programming OTP memory. There is a finite amount of cumulative time that this voltage may be applied (dependent  
on voltage and junction temperature) over the lifetime of the part.  
6 Bidirectional pins/balls (PF15–0, PG15–0, PH7–0) and input pins/balls (RTXI, TCK, TDI, TMS, TRST, CLKIN, RESET, NMI, and BMODE2–0) of the ADSP-BF51x are  
3.3 V tolerant (always accept up to 3.6 V maximum VIH). Voltage compliance (on outputs, VOH) is limited by the VDDEXT supply voltage.  
7 Parameter value applies to all input and bidirectional pins/balls except SDA and SCL.  
8 The VIHTWI min and max value vary with the selection in the TWI_DT field of the NONGPIO_DRIVE register. See VBUSTWI min and max values in Table 8.  
9 SDA and SCL are pulled up to VBUSTWI. See Table 8.  
Rev. B  
| Page 20 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 8 shows settings for TWI_DT in the NONGPIO_DRIVE  
register. Set this register prior to using the TWI port.  
Table 8. TWI_DT Field Selections and VDDEXT/VBUSTWI  
TWI_DT  
000 (default)  
001  
010  
011  
100  
101  
110  
111 (reserved)  
VDDEXT Nominal  
VBUSTWI Minimum  
2.97  
1.7  
2.97  
2.97  
4.5  
2.25  
2.25  
VBUSTWI Nominal  
VBUSTWI Maximum  
Unit  
V
V
V
V
V
V
V
3.3  
1.8  
2.5  
1.8  
3.3  
1.8  
2.5  
3.3  
1.8  
3.3  
3.3  
5
2.5  
2.5  
3.63  
1.98  
3.63  
3.63  
5.5  
2.75  
2.75  
Clock Related Operating Conditions  
Table 9 describes the timing requirements for the processor  
clocks. Take care in selecting MSEL, SSEL, and CSEL ratios so as  
not to exceed the maximum core clock and system clock.  
Table 10 describes phase-locked loop operating conditions.  
Table 9. Core Clock (CCLK) Requirements  
Nominal  
Voltage Setting  
Parameter  
fCCLK  
Maximum  
400  
Unit  
Core Clock Frequency (VDDINT =1.33 V Minimum, All Models)  
1.400 V  
MHz  
MHz  
MHz  
MHz  
Core Clock Frequency (VDDINT =1.23 V Minimum, Industrial/Commercial Models)  
Core Clock Frequency (VDDINT = 1.14 V Minimum, Industrial Models Only)  
Core Clock Frequency (VDDINT = 1.10 V Minimum, Commercial Models Only)  
1.300 V  
300  
1.200 V  
200  
1.150 V  
200  
Table 10. Phase-Locked Loop Operating Conditions  
Parameter  
Min  
Max  
Unit  
fVCO  
Voltage Controlled Oscillator (VCO) Frequency  
(Commercial/Industrial Models)  
72  
84  
Instruction Rate1  
MHz  
Voltage Controlled Oscillator (VCO) Frequency  
(Automotive Models)  
Instruction Rate1  
MHz  
1 For more information, see Ordering Guide on Page 65.  
Table 11. SCLK Conditions  
VDDEXT/VDDMEM  
1.8 V Nominal  
V
DDEXT/VDDMEM  
2.5 V or 3.3 V Nominal  
Parameter1  
Max  
Max  
Unit  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT ≥ 1.230 V  
80  
100  
MHz  
Minimum)  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT < 1.230 V)  
80  
80  
MHz  
1 fSCLK must be less than or equal to fCCLK and is subject to additional restrictions for SDRAM interface operation. See Table 28 on Page 31.  
Rev. B  
| Page 21 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Typical  
Max  
Unit  
VOH  
High Level Output Voltage  
High Level Output Voltage  
High Level Output Voltage  
Low Level Output Voltage  
VDDEXT /VDDMEM = 1.7 V,  
1.35  
V
I
OH = –0.5 mA  
VDDEXT /VDDMEM = 2.25 V,  
IOH = –0.5 mA  
2
V
V
V
VDDEXT /VDDMEM = 3.0 V,  
IOH = –0.5 mA  
2.4  
VOL  
VDDEXT /VDDMEM  
=
0.4  
10  
1.7/2.25/3.0 V,  
IOL = 2.0 mA  
1
IIH  
High Level Input Current  
Low Level Input Current  
VDDEXT /VDDMEM =3.6 V,  
VIN = 3.6 V  
μA  
1
IIL  
VDDEXT /VDDMEM =3.6 V, VIN = 0 V  
10  
75  
10  
μA  
μA  
μA  
2
IIHP  
High Level Input Current JTAG VDDEXT = 3.6 V, VIN = 3.6 V  
3
IOZH  
Three-State Leakage Current VDDEXT /VDDMEM= 3.6 V,  
VIN = 3.6 V  
4
IOZHTWI  
Three-State Leakage Current VDDEXT =3.0 V, VIN = 5.5 V  
10  
10  
8
μA  
μA  
pF  
3
IOZL  
Three-State Leakage Current VDDEXT /VDDMEM= 3.6 V, VIN = 0 V  
5, 6  
CIN  
Input Capacitance  
fIN = 1 MHz, TAMBIENT = 25°C,  
VIN = 2.5 V  
5
4, 6  
CINTWI  
Input Capacitance  
fIN = 1 MHz, TAMBIENT = 25°C,  
VIN = 2.5 V  
15  
pF  
7
IDDDEEPSLEEP  
VDDINT Current in Deep Sleep  
Mode  
VDDINT = 1.3 V, fCCLK = 0 MHz,  
fSCLK = 0 MHz, TJ = 25°C,  
ASF = 0.00  
2.1  
mA  
IDDSLEEP  
IDD-IDLE  
VDDINT Current in Sleep Mode VDDINT = 1.3 V, fSCLK = 25 MHz,  
TJ = 25°C  
5.5  
12  
mA  
mA  
VDDINT Current in Idle  
VDDINT = 1.3 V, fCCLK = 50 MHz,  
fSCLK = 25 MHz, TJ = 25°C,  
ASF = 0.41  
IDD-TYP  
VDDINT Current  
VDDINT = 1.3 V, fCCLK = 300 MHz,  
fSCLK = 25 MHz, TJ = 25°C,  
ASF = 1.00  
77  
mA  
mA  
ꢀA  
IDD-TYP  
VDDINT Current  
VDDINT = 1.4 V, fCCLK = 400 MHz,  
fSCLK = 25 MHz, TJ = 25°C,  
ASF = 1.00  
108  
40  
8
IDDHIBERNATE  
Hibernate State Current  
VDDEXT =VDDMEM =VDDRTC = 3.30  
VVDDOTP =VPPOTP =2.5 V,  
TJ = 25°C, CLKIN = 0 MHz @ TJ  
= 25°C  
IDDRTC  
VDDRTC Current  
VDDRTC = 3.3 V, TJ = 25°C  
20  
ꢀA  
8, 9  
IDDSLEEP  
VDDINT Current in Sleep Mode fCCLK = 0 MHz, fSCLK > 0 MHz  
Table 13 +  
mA10  
(0.20 × VDDINT × fSCLK  
)
8, 10  
IDDDEEPSLEEP  
VDDINT Current in Deep Sleep  
Mode  
fCCLK = 0 MHz, fSCLK = 0 MHz  
Table 13  
mA  
Rev. B  
|
Page 22 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Parameter  
Test Conditions  
Min  
Typical  
Max  
Unit  
10, 11  
IDDINT  
VDDINT Current  
fCCLK> 0 MHz, fSCLK 0 MHz  
Table 13 +  
mA  
(Table 14 × ASF) +  
(0.20 × VDDINT × fSCLK  
)
IDDFLASH1  
IDDFLASH2  
IDDFLASH3  
IDDOTP  
Flash Memory Supply Current 1  
—Asynchronous Read  
10  
4
6
mA  
ꢀA  
Flash Memory Supply Current 2  
—Standby  
12  
16  
Flash Memory Supply Current 3  
—Program and Erase  
11  
2
mA  
mA  
mA  
ꢀA  
VDDOTP Current  
VDDOTP Current  
VPPOTP Current  
VPPOTP Current  
VDDOTP = 2.5 V, TJ = 25°C,  
OTP Memory Read  
IDDOTP  
VDDOTP = 2.5 V, TJ = 25°C,  
OTP Memory Write  
2
IPPOTP  
VPPOTP = 2.5 V, TJ = 25°C,  
OTP Memory Read  
100  
3
IPPOTP  
VPPOTP = Table 19 V, TJ = 25°C,  
OTP Memory Write  
mA  
1 Applies to input balls.  
2 Applies to JTAG input balls (TCK, TDI, TMS, TRST).  
3 Applies to three-statable balls.  
4 Applies to bidirectional balls SCL and SDA.  
5 Applies to all signal balls, except SCL and SDA.  
6 Guaranteed, but not tested.  
7 See the ADSP-BF51x Blackfin Processor Hardware Reference Manual for definition of sleep, deep sleep, and hibernate operating modes.  
8 Includes current on VDDEXT, VDDMEM, VDDOTP, and VPPOTP supplies. Clock inputs are tied high or low.  
9 Guaranteed maximum specifications.  
10Unit for VDDINT is V (Volts). Unit for fSCLK is MHz.  
11See Table 12 for the list of IDDINT power vectors covered.  
The ASF is combined with the CCLK Frequency and VDDINT  
dependent data in Table 14 to calculate this part. The second  
part is due to transistor switching in the system clock (SCLK)  
domain, which is included in the IDDINT specification equation.  
Total Power Dissipation  
Total power dissipation has two components:  
1. Static, including leakage current  
2. Dynamic, due to transistor switching characteristics  
Table 12. Activity Scaling Factors (ASF)1  
Many operating conditions can also affect power dissipation,  
including temperature, voltage, operating frequency, and pro-  
cessor activity. Electrical Characteristics on Page 22 shows the  
current dissipation for internal circuitry (VDDINT). IDDDEEPSLEEP  
specifies static power dissipation as a function of voltage  
(VDDINT) and temperature (see Table 13), and IDDINT specifies the  
total power specification for the listed test conditions, including  
the dynamic component as a function of voltage (VDDINT) and  
frequency (Table 14).  
IDDINT Power Vector  
IDD-PEAK  
Activity Scaling Factor (ASF)  
1.29  
1.25  
1.00  
0.85  
0.70  
0.41  
IDD-HIGH  
IDD-TYP  
IDD-APP  
IDD-NOP  
IDD-IDLE  
There are two parts to the dynamic component. The first part is  
due to transistor switching in the core clock (CCLK) domain.  
This part is subject to an Activity Scaling Factor (ASF) which  
represents application code running on the processor core and  
L1 memories (Table 12).  
1 See Estimating Power for ASDP-BF534/BF536/BF537 Blackfin Processors  
(EE-297). The power vector information also applies to the ADSP-BF51x  
processors.  
Rev. B  
| Page 23 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 13. Static Current—IDD-DEEPSLEEP (mA)  
1
Voltage (VDDINT  
)
TJ (°C)1  
–40  
–20  
0
1.10 V  
0.9  
1.15 V  
1.0  
1.20 V  
1.0  
1.25 V  
1.1  
1.30 V  
1.1  
1.35 V  
1.2  
1.40 V  
1.3  
1.45 V  
1.7  
1.50 V  
1.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.6  
1.7  
1.9  
2.0  
1.2  
1.3  
1.4  
1.6  
1.8  
2.0  
2.2  
2.3  
2.5  
25  
1.8  
1.9  
2.1  
2.3  
2.5  
2.8  
3.1  
3.3  
3.7  
40  
2.4  
2.6  
2.8  
3.0  
3.3  
3.7  
4.0  
4.4  
4.9  
55  
3.3  
3.5  
3.8  
4.3  
4.6  
5.0  
5.5  
6.1  
6.7  
70  
4.6  
5.0  
5.4  
6.0  
6.4  
7.0  
7.7  
8.4  
9.2  
85  
6.5  
7.1  
7.7  
8.3  
9.1  
9.9  
10.8  
15.0  
16.6  
11.8  
16.1  
18.0  
12.8  
17.5  
19.4  
100  
9.2  
10.0  
10.8  
11.7  
12.7  
13.7  
15.3  
105  
10.3  
11.1  
12.1  
13.1  
14.2  
1 Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 20.  
Table 14. Dynamic Current in CCLK Domain (mA, with ASF = 1.0)1  
2
fCCLK  
Voltage (VDDINT)  
(MHz)2  
1.10 V  
N/A  
1.15 V  
N/A  
1.20 V  
N/A  
1.25 V  
N/A  
1.30 V  
93.4  
82.4  
71.4  
60.4  
49.4  
38.4  
27.4  
1.35 V  
97.7  
86.2  
74.7  
63.2  
51.7  
40.2  
28.7  
1.40 V  
102.1  
90.1  
1.45 V  
106.5  
94.0  
1.50 V  
111.0  
98.0  
400  
350  
300  
250  
200  
150  
100  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
64.8  
54.8  
44.7  
34.7  
24.7  
68.1  
57.5  
47.0  
36.5  
26.0  
78.1  
81.5  
85.0  
N/A  
N/A  
66.1  
69.0  
71.9  
40.2  
31.1  
22.0  
42.5  
32.9  
23.4  
54.1  
56.5  
58.9  
42.1  
44.0  
45.9  
30.1  
31.5  
33.0  
1 The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 22.  
2 Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 20.  
FLASH MEMORY CHARACTERISTICS  
Table 15. Reliability Characteristics  
Parameter  
Min  
100,000  
100  
Units  
Cycles  
Years  
Test Method  
JEDEC Standard A117  
JEDEC Standard A103  
NEND  
TDR  
Endurance  
Data Retention  
Table 16. AC Operating Characteristics  
Parameter  
Min  
Max  
25  
75  
Units  
MHz  
ms  
1
fCLK  
TSE  
Serial Clock Frequency  
Sector-Erase  
TBE  
TSCE  
TBP  
Block-Erase  
Chip-Erase  
Byte-Program  
75  
150  
60  
ms  
ms  
ꢀs  
2
1 Maximum clock frequency for Read instruction, 0x03, is 20 MHz.  
2 AAI-Word Program TBP maximum specification is also at 60 ꢀs maximum time.  
Rev. B  
| Page 24 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 19. Maximum OTP Memory Programming Time  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 17 may cause perma-  
nent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Temperature  
VPPOTP  
Voltage (V)  
25°C  
85°C  
110°C  
25 sec  
12 sec  
4.5 sec  
6.9  
7.0  
7.1  
6000 sec  
2400 sec  
1000 sec  
100 sec  
44 sec  
18 sec  
Table 17. Absolute Maximum Ratings  
Table 20 and Table 21 specify the maximum total source/sink  
(IOH/IOL) current for a group of pins. Permanent damage can  
occur if this value is exceeded. To understand this specification,  
if pins PF9, PF8, PF7, PF6, and PF5 from Group 1 in Table 21  
table were sourcing or sinking 2 mA each, the total current for  
those pins would be 10 mA. This would allow up to 70 mA total  
that could be sourced or sunk by the remaining pins in the  
group without damaging the device. Note that the VOH and VOL  
specifications have separate per-pin maximum current require-  
ments as shown in the Electrical Characteristics table.  
Parameter  
Rating  
Internal Supply Voltage (VDDINT  
)
0.3 V to +1.50 V  
0.3 V to +3.8 V  
External (I/O) Supply Voltage  
(VDDEXT/VDDMEM  
)
Input Voltage1, 2  
Input Voltage1, 3  
0.5 V to +3.6 V  
0.5 V to +5.5 V  
Output Voltage Swing  
–0.5 V to  
VDDEXT/VDDMEM +0.5 V  
IOH/IOL Current per Pin Group4  
Storage Temperature Range  
80 mA (max)  
65°C to +150°C  
+110°C  
Table 20. Total Current Pin Groups–VDDMEM Groups  
Group Pins in Group  
Junction Temperature While biased  
1
2
3
4
5
6
7
8
DATA15, DATA14, DATA13, DATA12, DATA11, DATA10  
DATA9, DATA8, DATA7, DATA6, DATA5, DATA4  
DATA3, DATA2, DATA1, DATA0, ADDR19, ADDR18  
ADDR17, ADDR16, ADDR15, ADDR14, ADDR13  
ADDR12, ADDR11, ADDR10, ADDR9, ADDR8, ADDR7  
ADDR6, ADDR5, ADDR4, ADDR3, ADDR2, ADDR1  
ABE1, ABE0, SA10, SWE, SCAS, SRAS  
1 Applies to 100% transient duty cycle. For other duty cycles see Table 18.  
2 Applies only when VDDEXT is within specifications. When VDDEXT is outside speci-  
fications, the range is VDDEXT 0.2.  
3 Applies to signals SCL, SDA.  
4 For more information, see the information preceding Table 20 and Table 21.  
Table 18. Maximum Duty Cycle for Input Transient Voltage1  
VIN Min (V)2  
–0.50  
VIN Max (V)2  
+3.80  
Maximum Duty Cycle3  
SMS, SCKE, AMS1, ARE, AWE, AMS0, CLKOUT  
100%  
40%  
25%  
15%  
10%  
Table 21. Total Current Pin Groups–VDDEXT Groups  
–0.70  
+4.00  
Group  
Pins in Group  
–0.80  
+4.10  
1
2
3
PF9, PF8, PF7, PF6, PF5, PF4, PF3, PF2  
PF1, PF0, PG15, PG14, PG13, PG12, PG11, PG10  
–0.90  
+4.20  
–1.00  
+4.30  
PG9, PG8, PG7, PG6, PG5, PG4, PG3, PG2, BMODE0,  
BMODE1, BMODE2  
1 Applies to all signal pins/balls with the exception of CLKIN, XTAL.  
2 The individual values cannot be combined for analysis of a single instance of  
overshoot or undershoot. The worst case observed value must fall within one of  
the voltages specified and the total duration of the overshoot or undershoot  
(exceeding the 100% case) must be less than or equal to the corresponding duty  
cycle.  
4
5
6
7
PG1, PG0, TDO, EMU, TDI, TCK, TRST, TMS  
RESET, NMI, CLKBUF  
PH7, PH6, PH5, PH4, PH3, PH2, PH1, PH0  
PF15, PF14, PF13, PF12, PF11, SDA, SCL, PF10  
3 Duty cycle refers to the percentage of time the signal exceeds the value for the  
100% case. The is equivalent to the measured duration of a single instance of  
overshoot or undershoot as a percentage of the period of occurrence.  
When programming OTP memory on the ADSP-BF51x proces-  
sor, the VPPOTP pin/ball must be set to the write value specified in  
the Operating Conditions on Page 20. There is a finite amount  
of cumulative time that the write voltage may be applied  
(dependent on voltage and junction temperature) to VPPOTP over  
the lifetime of the part. Therefore, maximum OTP memory pro-  
gramming time for the processor is shown in Table 19.  
Rev. B  
| Page 25 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
PACKAGE INFORMATION  
The information presented in Figure 6 and Table 22 provides  
details about the package branding for the processor. For a com-  
plete listing of product availability, see Ordering Guide on  
Page 65.  
a
ADSP-BF51x  
tppZccc  
vvvvvv.x n.n  
#yyww country_of_origin  
B
Figure 6. Product Information on Package  
Table 22. Package Brand Information  
Brand Key  
Field Description  
Product Name  
ADSP-BF51x  
t
Temperature Range  
Package Type  
pp  
Z
Lead Free Option  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
ccc  
vvvvvv.x  
n.n  
#
RoHS Compliance Designator  
Date Code  
yyww  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Rev. B  
| Page 26 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
TIMING SPECIFICATIONS  
Clock and Reset Timing  
Table 23 and Figure 7 describe clock and reset operations. Per  
the CCLK and SCLK timing specifications in Table 9 , Table 10,  
and Table 11 on Page 21, combinations of CLKIN and clock  
multipliers must not select core/peripheral clocks in excess of  
the processor’s speed grade.  
Table 23. Clock and Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
fCKIN  
CLKIN Frequency (Commercial/Industrial Models1, 2, 3, 4 12  
50  
50  
MHz  
MHz  
ns  
fCKIN  
CLKIN Frequency (Automotive Models)1, 2, 3, 4  
CLKIN Low Pulse1  
14  
tCKINL  
tCKINH  
tWRST  
10  
CLKIN High Pulse1  
10  
ns  
RESET Asserted Pulse Width Low5  
11 × tCKIN  
ns  
Switching Characteristic  
tBUFDLAY  
CLKIN to CLKBUF Delay  
11  
ns  
1 Applies to PLL bypass mode and PLL nonbypass mode.  
2 Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed fVCO, fCCLK, and fSCLK settings discussed in Table 9 through Table 11 on Page 21.  
3 The tCKIN period (see Figure 7) equals 1/fCKIN  
.
4 If the DF bit in the PLL_CTL register is set, the minimum fCKIN specification is 24 MHz for commercial/industrial models and 28 MHz for automotive models.  
5 Applies after power-up sequence is complete. See Table 24 and Figure 8 for power-up reset timing.  
tCKIN  
CLKIN  
tBUFDLAY  
tCKINL  
tCKINH  
tBUFDLAY  
CLKBUF  
tWRST  
RESET  
Figure 7. Clock and Reset Timing  
Table 24. Power-Up Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRST_IN_PWR RESET Deasserted after the VDDINT, VDDEXT, VDDRTC, VDDMEM, VDDOTP, and CLKIN Pins are  
Stable and Within Specification  
3500 × tCKIN  
ns  
Rev. B  
| Page 27 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
tRST_IN_PWR  
RESET  
CLKIN  
V
DD_SUPPLIES  
Figure 8. Power-Up Reset Timing  
an active Program or Erase operation aborts the operation and  
data of the targeted address range may be corrupted or lost due  
to the aborted erase or program operation. The device exits AAI  
Programming Mode in progress and places the SO pin in high  
impedance state.  
Flash Reset Timing  
Driving the RESET pin low resets the Flash device. Driving the  
RESET pin high puts the device in normal operating mode. The  
SO pin is in high impedance state while the device is in reset. A  
successful reset will reset the status register to its power-up state.  
See Table 25 for default power-up modes. A device reset during  
Table 25. RESET Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRECR  
tRECP  
fRECE  
Reset Recovery from Read  
Reset Recovery from Program  
Reset Recovery from Erase  
100  
10  
1
ns  
ꢀs  
ms  
SCK  
RST  
CE  
tRECR  
tRECP  
tRECE  
Figure 9. Flash Reset Timing  
Rev. B  
| Page 28 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Asynchronous Memory Read Cycle Timing  
Table 26. Asynchronous Memory Read Cycle Timing  
VDDMEM  
1.8V Nominal  
VDDMEM  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSDAT  
DATA15–0 Setup Before CLKOUT  
2.1  
1.2  
4
2.1  
0.8  
4
ns  
ns  
ns  
ns  
tHDAT  
tSARDY  
tHARDY  
DATA15–0 Hold After CLKOUT  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
0.2  
0.2  
Switching Characteristics  
tDO  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
6
6
ns  
ns  
tHO  
0.8  
0.8  
1 Output pins/balls include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
SETUP  
PROGRAMMED READ  
ACCESS 4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
HOLD  
2 CYCLES  
1 CYCLE  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ADDR19–1  
AOE  
ARE  
tDO  
tHO  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tHARDY  
tSDAT  
tHDAT  
DATA 15–0  
Figure 10. Asynchronous Memory Read Cycle Timing  
Rev. B  
| Page 29 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Asynchronous Memory Write Cycle Timing  
Table 27. Asynchronous Memory Write Cycle Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
Switching Characteristics  
ARDY Setup Before CLKOUT  
4
ns  
ns  
ARDY Hold After CLKOUT  
0.2  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6
6
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
0
tHO  
0.8  
1 Output pins/balls include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
PROGRAMMED  
WRITE  
ACCESS  
2 CYCLES  
ACCESS  
EXTEND HOLD  
1 CYCLE 1 CYCLE  
SETUP  
2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ADDR19–1  
tDO  
tHO  
AWE  
ARDY  
tSARDY  
tHARDY  
tENDAT  
tHARDY  
tDDAT  
tSARDY  
DATA 15–0  
Figure 11. Asynchronous Memory Write Cycle Timing  
Rev. B  
| Page 30 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
SDRAM Interface Timing  
Table 28. SDRAM Interface Timing  
VDDMEM  
1.8V Nominal  
VDDMEM  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
Data Setup Before CLKOUT  
Data Hold After CLKOUT  
1.5  
1.3  
1.5  
0.8  
ns  
ns  
Switching Characteristics  
tSCLK  
CLKOUT Period1  
12.5  
5
10  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
CLKOUT Width High  
CLKOUT Width Low  
5
4
Command, Address, Data Delay After CLKOUT2  
Command, Address, Data Hold After CLKOUT2  
Data Disable After CLKOUT  
5
4
5
1
1
5.5  
Data Enable After CLKOUT  
0
0
1 The tSCLK value is the inverse of the fSCLK specification discussed in Table 11 on Page 21. Package type and reduced supply voltages affect the best-case value listed here.  
2 Command pins/balls include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
tSCLK  
CLKOUT  
tSSDAT  
tHSDAT  
tSCLKL  
tSCLKH  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND,  
ADDRESS  
(OUT)  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 12. SDRAM Interface Timing  
Rev. B  
| Page 31 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
External DMA Request Timing  
Table 29 and Figure 13 describe the External DMA Request  
operations.  
Table 29. External DMA Request Timing1  
VDDMEM/VDDEXT  
1.8 V Nominal  
V
DDMEM/VDDEXT  
2.5 V/3.3 V Nominal  
Min Max  
Parameter  
Min  
Max  
Unit  
Timing PRequirements  
tDR  
DMARx Asserted to CLKOUT High Setup  
9
0
7.2  
ns  
ns  
ns  
ns  
tDH  
CLKOUT High to DMARx Deasserted Hold Time  
DMARx Active Pulse Width  
0
tDMARACT  
tSCLK + 1  
tSCLK + 1  
tDMARINACT  
DMARx Inactive Pulse Width  
1.75 × tSCLK  
1.75 × tSCLK  
1 Because the external DMA control pins are part of the VDDEXT power domain and the CLKOUT signal is part of the VDDMEM power domain, systems in which VDDEXT and  
V
DDMEM are NOT equal may require level shifting logic for correct operation.  
CLKOUT  
tDS  
tDH  
DMAR0/1  
(ACTIVE LOW)  
tDMARACT  
tDMARINACT  
DMAR0/1  
(ACTIVE HIGH)  
Figure 13. External DMA Request Timing  
Rev. B  
| Page 32 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Parallel Peripheral Interface Timing  
Table 30 and Figure 15 on Page 33, Figure 21 on Page 38, and  
Figure 24 on Page 40 describe parallel peripheral interface  
operations.  
Table 30. Parallel Peripheral Interface Timing  
VDDEXT  
1.8 V Nominal  
VDDEXT  
2.5 V/3.3 V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tPCLKW  
tPCLK  
Timing Requirements - GP Input and Frame Capture Modes  
PPI_CLK Width  
tSCLK – 1.5  
tSCLK – 1.5  
ns  
ns  
PPI_CLK Period  
2 × tSCLK – 1.5  
2 × tSCLK – 1.5  
tPSUD  
tSFSPE  
External Frame Sync Startup Delay1  
4 × tPCLK  
6.7  
4 × tPCLK  
6.7  
ns  
ns  
External Frame Sync Setup Before PPI_CLK  
(Nonsampling Edge for Rx, Sampling Edge for Tx)  
tHFSPE  
tSDRPE  
tHDRPE  
External Frame Sync Hold After PPI_CLK  
Receive Data Setup Before PPI_CLK  
Receive Data Hold After PPI_CLK  
1.75  
4.1  
2
1.75  
3.5  
ns  
ns  
ns  
1.6  
Switching Characteristics - GP Output and Frame Capture Modes  
tDFSPE  
tHOFSPE  
tDDTPE  
tHDTPE  
Internal Frame Sync Delay After PPI_CLK  
Internal Frame Sync Hold After PPI_CLK  
Transmit Data Delay After PPI_CLK  
Transmit Data Hold After PPI_CLK  
8
8
8
ns  
ns  
ns  
ns  
1.7  
2.3  
1.7  
1.9  
8.2  
1 The PPI port is fully enabled 4 PPI clock cycles after the PAB write to the PPI port enable bit. Only after the PPI port is fully enabled are external frame syncs and data words  
guaranteed to be received correctly by the PPI peripheral.  
PPI_CLK  
tPSUD  
PPI_FS1/2  
Figure 14. PPI with External Frame Sync Timing  
DATA SAMPLED /  
DATA SAMPLED /  
FRAME SYNC SAMPLED  
FRAME SYNC SAMPLED  
PPI_CLK  
tPCLKW  
tSFSPE  
tHFSPE  
tPCLK  
PPI_FS1/2  
PPI_DATA  
tSDRPE  
tHDRPE  
Figure 15. PPI GP Rx Mode with External Frame Sync Timing  
Rev. B  
| Page 33 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
DATA DRIVEN /  
FRAME SYNC SAMPLED  
PPI_CLK  
tSFSPE  
tHFSPE  
tPCLKW  
tPCLK  
PPI_FS1/2  
PPI_DATA  
tDDTPE  
tHDTPE  
Figure 16. PPI GP Tx Mode with External Frame Sync Timing  
FRAME SYNC  
DRIVEN  
DATA  
SAMPLED  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tPCLK  
tSDRPE  
tHDRPE  
Figure 17. PPI GP Rx Mode with Internal Frame Sync Timing  
FRAME SYNC  
DRIVEN  
DATA  
DRIVEN  
tPCLK  
DATA  
DRIVEN  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tDDTPE  
tHDTPE  
Figure 18. PPI GP Tx Mode with Internal Frame Sync Timing  
Rev. B  
| Page 34 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
RSI Controller Timing  
Table 31 and Figure 19 describe RSI controller timing. Table 32  
and Figure 20 describe RSI controller (high speed) timing.  
Table 31. RSI Controller Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tISU  
tIH  
Input Setup Time  
Input Hold Time  
5.6  
2
ns  
ns  
Switching Characteristics  
1
fPP  
Clock Frequency Data Transfer Mode  
Clock Frequency Identification Mode  
Clock Low Time  
0
25  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
1002  
10  
10  
Clock High Time  
ns  
tTLH  
tTHL  
Clock Rise Time  
Clock Fall Time  
Output Delay Time During Data Transfer Mode  
Output Delay Time During Identification Mode  
10  
10  
14  
50  
ns  
ns  
ns  
ns  
tODLY  
tODLY  
1 tPP = 1/fPP  
2 Specification can be 0 kHz, which means to stop the clock. The given minimum frequency range is for cases where a continuous clock is required.  
VOH (MIN)  
tPP  
SD_CLK  
tTHL  
tTLH  
tISU  
tIH  
VOL (MAX)  
tWL  
tWH  
INPUT  
tODLY  
OUTPUT  
NOTES:  
1 INPUT INCLUDES SD_Dx AND SD_CMD SIGNALS.  
2 OUTPUT INCLUDES SD_Dx AND SD_CMD SIGNALS.  
Figure 19. RSI Controller Timing  
Rev. B  
| Page 35 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 32. RSI Controller Timing (High Speed Mode)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tISU  
tIH  
Input Setup Time  
Input Hold Time  
5.6  
2
ns  
ns  
Switching Characteristics  
1
fPP  
Clock Frequency Data Transfer Mode  
Clock Low Time  
Clock High Time  
0
7
7
50  
MHz  
ns  
ns  
tWL  
tWH  
tTLH  
tTHL  
tODLY  
tOH  
Clock Rise Time  
Clock Fall Time  
Output Delay Time During Data Transfer Mode  
Output Hold Time  
3
3
4
ns  
ns  
ns  
ns  
2.75  
1 tPP = 1/fPP  
VOH (MIN)  
tPP  
SD_CLK  
tTHL  
tTLH  
tISU  
tIH  
VOL (MAX)  
tWL  
tWH  
INPUT  
tODLY  
tOH  
OUTPUT  
NOTES:  
1 INPUT INCLUDES SD_Dx AND SD_CMD SIGNALS.  
2 OUTPUT INCLUDES SD_Dx AND SD_CMD SIGNALS.  
Figure 20. RSI Controller Timing (High Speed Mode)  
Rev. B  
| Page 36 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Serial Ports  
Table 33 through Table 36 on Page 40 and Figure 21 on Page 38  
through Figure 24 on Page 40 describe serial port operations.  
Table 33. Serial Ports—External Clock  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
TFSx/RFSx Setup Before TSCLKx/RSCLKx  
TFSx/RFSx Hold After TSCLKx/RSCLKx  
Receive Data Setup Before RSCLKx  
Receive Data Hold After RSCLKx  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
tHFSE  
3
3
tSDRE  
3
3
1
tHDRE  
tSCLKEW  
tSCLKE  
3.5  
7
3
TSCLKx/RSCLKx Width  
4.5  
TSCLKx/RSCLKx Period  
2 × tSCLK  
4 × tSCLKE  
2 × tSCLK  
4 × tSCLKE  
4 × tSCLKE  
2
tSUDTE  
Start-Up Delay From SPORT Enable To First External TFSx  
2
tSUDRE  
Start-Up Delay From SPORT Enable To First External RFSx 4 × tSCLKE  
Switching Characteristics  
3
tDFSE  
TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated  
TFSx/RFSx)  
10  
10  
10  
10  
ns  
ns  
3
tHOFSE  
TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated 0  
TFSx/RFSx)  
0
0
3
tDDTE  
Transmit Data Delay After TSCLKx  
ns  
ns  
3
tHDTE  
Transmit Data Hold After TSCLKx  
0
1 Referenced to sample edge.  
2 Verified in design but untested.  
3 Referenced to drive edge.  
Table 34. Serial Ports—Internal Clock  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
TFSx/RFSx Setup Before TSCLKx/RSCLKx  
11  
9.6  
ns  
ns  
ns  
ns  
1
1
tHFSI  
TFSx/RFSx Hold After TSCLKx/RSCLKx  
Receive Data Setup Before RSCLKx  
Receive Data Hold After RSCLKx  
–1.5  
11  
–1.5  
9.6  
tSDRI  
1
tHDRI  
–1.5  
–1.5  
Switching Characteristics  
2
tDFSI  
TFSx/RFSxDelayAfterTSCLKx/RSCLKx(InternallyGenerated  
TFSx/RFSx)  
3
3
3
3
ns  
ns  
2
tHOFSI  
TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated 2  
TFSx/RFSx)  
1  
2
tDDTI  
Transmit Data Delay After TSCLKx  
ns  
ns  
ns  
2
tHDTI  
Transmit Data Hold After TSCLKx  
1.8  
1.5  
tSCLKIW  
TSCLKx/RSCLKx Width  
10  
8
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Rev. B  
|
Page 37 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
tSCLKE  
tSCLKIW  
tSCLKEW  
RSCLKx  
RSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
RFSx  
RFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
RFSx  
RFSx  
(INPUT)  
(INPUT)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DRx  
DRx  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
SAMPLE EDGE  
tSCLKE  
tSCLKIW  
tSCLKEW  
TSCLKx  
TSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
TFSx  
TFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
TFSx  
TFSx  
(INPUT)  
(INPUT)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DTx  
DTx  
Figure 21. Serial Ports  
TSCLKx  
(INPUT)  
tSUDTE  
TFSx  
(INPUT)  
RSCLKx  
(INPUT)  
tSUDRE  
RFSx  
(INPUT)  
FIRST  
Figure 22. Serial Port Start Up with External Clock and Frame Sync  
Rev. B  
| Page 38 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 35. Serial Ports—Enable and Three-State1  
Parameter  
Min  
0
Max  
Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLKx  
ns  
ns  
ns  
ns  
Data Disable Delay from External TSCLKx  
Data Enable Delay from Internal TSCLKx  
Data Disable Delay from Internal TSCLKx  
tSCLK + 1  
tSCLK + 1  
–2.0  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
TSCLKx  
DTx  
tDTENE/I  
tDDTTE/I  
Figure 23. Enable and Three-State  
Rev. B  
| Page 39 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 36. External Late Frame Sync  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristics  
1, 2  
tDDTLFSE  
Data Delay from Late External TFSx or External RFSx with  
MCE = 1, MFD = 0  
12  
10  
ns  
ns  
1, 2  
tDTENLFSE  
Data Enable from Late FS or MCE = 1, MFD = 0  
0
0
1 MCE = 1, TFSx enable and TFSx valid follow tDDTENFS and tDDTLFSE  
.
2 If external RFSx/TFSx setup to RSCLKx/TSCLKx > tSCLKE/2 then tDDTTE/I and tDTENE/I apply, otherwise tDDTLFSE and tDTENLFS apply.  
EXTERNAL RFSx IN MULTI-CHANNEL MODE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
RSCLKx  
RFSx  
tDDTLFSE  
tDTENLFSE  
DTx  
1ST BIT  
LATE EXTERNAL TFSx  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
TSCLKx  
TFSx  
tDDTLFSE  
DTx  
1ST BIT  
Figure 24. External Late Frame Sync  
Rev. B  
| Page 40 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Serial Peripheral Interface (SPI) Port—Master Timing  
Table 37 and Figure 25 describe SPI port master operations.  
Table 37. Serial Peripheral Interface (SPI) Port—Master Timing  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid to SCK Edge (Data Input Setup)  
11.6  
–1.5  
9.6  
ns  
ns  
SCK Sampling Edge to Data Input Invalid  
–1.5  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLK  
SPISELx low to First SCK Edge  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
Serial Clock Period  
tHDSM  
Last SCK Edge to SPISELx High  
Sequential Transfer Delay  
2 × tSCLK 1.5  
2 × tSCLK1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
tSPITDM  
tDDSPIDM  
tHDSPIDM  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
6
6
–1  
–1  
SPIxSELy  
(OUTPUT)  
tSDSCIM  
tSPICLM  
tSPICHM  
tSPICLK  
tHDSM  
tSPITDM  
SPIxSCK  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
CPHA = 1  
tHSPIDM  
SPIxMISO  
(INPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHA = 0  
SPIxMISO  
(INPUT)  
Figure 25. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. B  
| Page 41 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Serial Peripheral Interface (SPI) Port—Slave Timing  
Table 38 and Figure 26 describe SPI port slave operations.  
Table 38. Serial Peripheral Interface (SPI) Port—Slave Timing  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
Serial Clock High Period  
2 × tSCLK –1.5  
2 × tSCLK –1.5  
4 × tSCLK –1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK –1.5  
1.6  
2 × tSCLK –1.5  
2 × tSCLK –1.5  
4 × tSCLK –1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK –1.5  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock Low Period  
Serial Clock Period  
Last SCK Edge to SPISS Not Asserted  
Sequential Transfer Delay  
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
SPISS Assertion to First SCK Edge  
Data Input Valid to SCK Edge (Data Input Setup)  
SCK Sampling Edge to Data Input Invalid  
2
1.6  
Switching Characteristics  
tDSOE  
SPISS Assertion to Data Out Active  
0
0
12  
11  
10  
0
0
10.3  
9
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPISS Deassertion to Data High Impedance  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
10  
0
0
SPIxSS  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
tSPICLK  
tHDS  
tSPITDS  
SPIxSCK  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
CPHA = 1  
tSSPID  
tHSPID  
SPIxMOSI  
(INPUT)  
tDSOE  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
tHSPID  
CPHA = 0  
tSSPID  
SPIxMOSI  
(INPUT)  
Figure 26. Serial Peripheral Interface (SPI) Port—Slave Timing  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing  
The UART ports receive and transmit operations are described  
in the ADSP-BF51x Hardware Reference Manual.  
Rev. B  
| Page 42 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
General-Purpose Port Timing  
Table 39 and Figure 27 describe general-purpose  
port operations.  
Table 39. General-Purpose Port Timing  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
tSCLK + 1  
0
Max  
Unit  
ns  
Timing Requirement  
tWFI  
Switching Characteristics  
tGPOD General-Purpose Port Signal Output Delay from CLKOUT Low 0  
General-Purpose Port Signal Input Pulse Width  
tSCLK + 1  
11  
8.5  
ns  
CLKOUT  
GPIO OUTPUT  
GPIO INPUT  
tGPOD  
tWFI  
Figure 27. General-Purpose Port Timing  
Timer Clock Timing  
Table 40 and Figure 28 describe timer clock timing.  
Table 40. Timer Clock Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tTODP  
Timer Output Update Delay After PPICLK High  
12  
ns  
PPI_CLK  
tTODP  
TMRx OUTPUT  
Figure 28. Timer Clock Timing  
Rev. B  
| Page 43 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Timer Cycle Timing  
Table 41 and Figure 29 describe timer expired operations. The  
input signal is asynchronous in “width capture mode” and  
“external clock mode” and has an absolute maximum input fre-  
quency of (fSCLK/2) MHz.  
Table 41. Timer Cycle Timing  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Characteristics  
1
tWL  
tWH  
Timer Pulse Width Input Low (Measured In SCLK Cycles)  
tSCLK  
tSCLK  
10  
tSCLK  
tSCLK  
7
ns  
ns  
ns  
ns  
1
Timer Pulse Width Input High (Measured In SCLK Cycles)  
Timer Input Setup Time Before CLKOUT Low  
Timer Input Hold Time After CLKOUT Low  
2
tTIS  
tTIH  
2
–2  
–2  
Switching Characteristics  
tHTO Timer Pulse Width Output (Measured In SCLK Cycles)  
tTOD Timer Output Update Delay After CLKOUT High  
tSCLK – 1.5  
(232–1)tSCLK  
6
tSCLK – 1  
(232–1)tSCLK  
6
ns  
ns  
1 The minimum pulse widths apply for TMRx signals in width capture and external clock modes. They also apply to the PF15 or PPI_CLK signals in PWM output mode.  
2 Either a valid setup and hold time or a valid pulse width is sufficient. There is no need to resynchronize programmable flag inputs.  
CLKOUT  
tTOD  
TMRx OUTPUT  
tTIS  
tTIH  
tHTO  
TMRx INPUT  
tWH,tWL  
Figure 29. Timer Cycle Timing  
Rev. B  
| Page 44 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Up/Down Counter/Rotary Encoder Timing  
Table 42. Up/Down Counter/Rotary Encoder Timing  
VDDEXT  
VDDEXT  
1.8V Nominal 2.5 V/3.3V Nominal  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tWCOUNT  
tCIS  
Up/Down Counter/Rotary Encoder Input Pulse Width  
tSCLK + 1  
tSCLK + 1  
ns  
ns  
ns  
Counter Input Setup Time Before CLKOUT Low1  
Counter Input Hold Time After CLKOUT Low1  
9
7
0
tCIH  
0
1 Either a valid setup and hold time or a valid pulse width is sufficient. There is no need to resynchronize counter inputs.  
CLKOUT  
tCIS  
tCIH  
CUD/CDG/CZM  
tWCOUNT  
Figure 30. Up/Down Counter/Rotary Encoder Timing  
10/100 Ethernet MAC Controller Timing  
Table 43 through Table 48 and Figure 31 through Figure 36  
describe the 10/100 Ethernet MAC Controller operations.  
Table 43. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter1  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tERXCLKF  
tERXCLKW  
tERXCLKIS  
tERXCLKIH  
ERxCLK Frequency (fSCLK = SCLK Frequency)  
None  
25 + 1%  
None  
25 + 1%  
MHz  
ns  
ERxCLK Width (tERxCLK = ERxCLK Period)  
tERxCLK x 40%  
7.5  
tERxCLK x 60%  
tERxCLK x 35%  
tERxCLK x 65%  
Rx Input Valid to ERxCLK Rising Edge (Data In Setup)  
7.5  
7.5  
ns  
ERxCLK Rising Edge to Rx Input Invalid (Data In Hold) 7.5  
ns  
1 MII inputs synchronous to ERxCLK are ERxD3–0, ERxDV, and ERxER.  
tERXCLK  
tERXCLKW  
ERx_CLK  
ERxD3–0  
ERxDV  
ERxER  
tERXCLKIS tERXCLKIH  
Figure 31. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
Rev. B  
| Page 45 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 44. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter1  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristics  
tETF  
ETxCLK Frequency (fSCLK = SCLK Frequency)  
None  
25 + 1%  
None  
25 + 1%  
MHz  
ns  
tETXCLKW  
tETXCLKOV  
tETXCLKOH  
ETxCLK Width (tETxCLK = ETxCLK Period)  
tETxCLK × 40% tETxCLK × 60%  
20  
tETxCLK × 35% tETxCLK × 65%  
ETxCLK Rising Edge to Tx Output Valid (Data Out Valid)  
ETxCLK Rising Edge to Tx Output Invalid (Data Out Hold) 0  
20  
ns  
0
ns  
1 MII outputs synchronous to ETxCLK are ETxD3–0.  
tETXCLK  
MIITxCLK  
tETXCLKW  
tETXCLKOH  
ETxD3–0  
ETxEN  
tETXCLKOV  
Figure 32. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
Table 45. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
VDDEXT  
1.8V Nominal  
VDDEXT  
2.5 V/3.3V Nominal  
Parameter1  
Min  
Max  
Min  
None  
Max  
Unit  
Timing Requirements  
tEREFCLKF  
tEREFCLKW  
tEREFCLKIS  
REF_CLK Frequency (fSCLK = SCLK Frequency)  
None  
50 + 1%  
50 + 1%  
MHz  
ns  
EREF_CLK Width (tEREFCLK = EREFCLK Period)  
tEREFCLK × 40% tEREFCLK × 60%  
4
tEREFCLK × 35% tEREFCLK × 65%  
4
Rx Input Valid to RMII REF_CLK Rising Edge (Data In  
Setup)  
ns  
tEREFCLKIH  
RMII REF_CLK Rising Edge to Rx Input Invalid (Data In 2  
Hold)  
2
ns  
1 RMII inputs synchronous to RMII REF_CLK are ERxD1–0, RMII CRS_DV, and ERxER.  
tREFCLK  
tREFCLKW  
RMII_REF_CLK  
ERxD1–0  
ERxDV  
ERxER  
tREFCLKIS tREFCLKIH  
Figure 33. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
Rev. B  
| Page 46 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 46. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
Parameter1  
Min  
Max  
Unit  
Switching Characteristics  
tEREFCLKOV  
tEREFCLKOH  
RMII REF_CLK Rising Edge to Tx Output Valid (Data Out Valid)  
RMII REF_CLK Rising Edge to Tx Output Invalid (Data Out Hold)  
8.1  
ns  
ns  
2
1 RMII outputs synchronous to RMII REF_CLK are ETxD1–0.  
tREFCLK  
RMII_REF_CLK  
tREFCLKOH  
ETxD1–0  
ETxEN  
tREFCLKOV  
Figure 34. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
Rev. B  
| Page 47 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 47. 10/100 Ethernet MAC Controller Timing: MII/RMII Asynchronous Signal  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tECOLH  
COL Pulse Width High1  
tETxCLK × 1.5  
tERxCLK × 1.5  
ns  
ns  
tECOLL  
COL Pulse Width Low1  
tETxCLK × 1.5  
tERxCLK × 1.5  
ns  
ns  
tECRSH  
tECRSL  
CRS Pulse Width High2  
CRS Pulse Width Low2  
tETxCLK × 1.5  
ns  
ns  
tETxCLK × 1.5  
1 MII/RMII asynchronous signals are COL, CRS. These signals are applicable in both MII and RMII modes. The asynchronous COL input is synchronized separately to both  
the ETxCLK and the ERxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of the slower of the two clocks.  
2 The asynchronous CRS input is synchronized to the ETxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of ETxCLK.  
MIICRS, COL  
tECRSH  
tECOLH  
tECRSL  
tECOLL  
Figure 35. 10/100 Ethernet MAC Controller Timing: Asynchronous Signal  
Table 48. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Parameter1  
Min  
Max  
Unit  
Timing Requirements  
tMDIOS  
tMDCIH  
Switching Characteristics  
tMDCOV MDC Falling Edge to MDIO Output Valid  
tMDCOH MDC Falling Edge to MDIO Output Invalid (Hold)  
MDIO Input Valid to MDC Rising Edge (Setup)  
11.5  
0
ns  
ns  
MDC Rising Edge to MDIO Input Invalid (Hold)  
25  
ns  
ns  
–1.25  
1 MDC/MDIO is a 2-wire serial bidirectional port for controlling one or more external PHYs. MDC is an output clock whose minimum period is programmable as a multiple  
of the system clock SCLK. MDIO is a bidirectional data line.  
MDC (OUTPUT)  
tMDCOH  
MDIO (OUTPUT)  
tMDCOV  
MDIO (INPUT)  
tMDIOS  
tMDCIH  
Figure 36. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Rev. B  
| Page 48 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
JTAG Test And Emulation Port Timing  
Table 49 and Figure 37 describe JTAG port operations.  
Table 49. JTAG Port Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
20  
4
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
ns  
TDI, TMS Hold After TCK High  
4
ns  
1
tSSYS  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width2 (measured in TCK cycles)  
4
ns  
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
5
ns  
4
TCK  
10  
13  
ns  
ns  
3
tDSYS  
0
1 System Inputs = DATA15–0, SCL, SDA, TFS0, TSCLK0, RSCLK0, RFS0, DR0PRI, DR0SEC, PF15–0, PG15–0, PH7–0, MDIO, TD1, TMS, RESET, NMI, BMODE2–0.  
2 50 MHz Maximum  
3 System Outputs = DATA15–0, ADDR19–1, ABE1–0, ARE, AWE, AMS1–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, SCL, SDA, TSCLK0, TFS0, RFS0, RSCLK0,  
DT0PRI, DT0SEC, PF15–0, PG15–0, PH7–0, MDC, MDIO.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 37. JTAG Port Timing  
Rev. B  
| Page 49 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
OUTPUT DRIVE CURRENTS  
Figure 38 through Figure 52 show typical current-voltage char-  
acteristics for the output drivers of the ADSP-BF51xF  
processors.  
The curves represent the current drive capability of the output  
drivers. See Table 7 on Page 17 for information about which  
driver type corresponds to a particular ball.  
240  
200  
VDDEXT = 3.6V @ – 40  
°C  
VDDEXT = 3.6V @ – 40  
°C  
200  
160  
120  
80  
160  
120  
80  
VDDEXT = 3.3V @ 25  
°C  
VDDEXT = 3.3V @ 25  
°C  
VDDEXT = 3.0V @ 105°C  
VDDEXT = 3.0V @ 105°C  
V
OH  
V
OH  
40  
40  
0
0
–40  
–40  
–80  
–120  
–160  
–80  
V
OL  
V
OL  
–120  
–160  
–200  
–200  
–240  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 41. Driver Type B Current (3.3V VDDEXT/VDDMEM  
)
Figure 38. Driver Type A Current (3.3V VDDEXT/VDDMEM  
)
160  
120  
80  
160  
120  
VDDEXT = 2.75V @ – 40  
VDDEXT = 2.5V @ 25  
°C  
VDDEXT = 2.75V @ – 40  
VDDEXT = 2.5V @ 25  
°C  
°
C
°C  
V
DDEXT = 2.25V @ 105°C  
V
DDEXT = 2.25V @ 105°C  
80  
40  
40  
V
OH  
V
OH  
0
0
–40  
–80  
–40  
–80  
V
OL  
–120  
–160  
–200  
V
OL  
–120  
–160  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 42. Driver Type B Current (2.5V VDDEXT/VDDMEM  
)
Figure 39. Driver Type A Current (2.5V VDDEXT/VDDMEM  
)
80  
60  
80  
60  
VDDEXT = 1.9V @ – 40  
VDDEXT = 1.8V @ 25  
°C  
VDDEXT = 1.9V @ – 40  
VDDEXT = 1.8V @ 25  
°C  
°
C
°
C
VDDEXT = 1.7V @ 105°C  
VDDEXT = 1.7V @ 105°C  
40  
20  
40  
20  
V
OH  
V
OH  
0
0
–20  
–20  
–40  
–60  
V
V
OL  
OL  
–40  
–60  
–80  
–80  
–100  
0.5  
1.0  
1.5  
0.5  
1.0  
1.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 40. Driver Type A Current (1.8V VDDEXT/VDDMEM  
)
Figure 43. Driver Type B Current (1.8V VDDEXT/VDDMEM)  
Rev. B  
| Page 50 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
100  
80  
160  
VDDEXT = 3.6V @ – 40  
°
C
VDDEXT = 3.6V @ – 40  
°C  
120  
80  
40  
0
VDDEXT = 3.3V @ 25  
°C  
VDDEXT = 3.3V @ 25°C  
60  
40  
VDDEXT = 3.0V @ 105  
°
C
VDDEXT = 3.0V @ 105°C  
V
V
OH  
OH  
20  
0
–20  
–40  
–40  
–80  
V
OL  
–60  
–80  
V
OL  
–120  
–160  
–100  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 44. Driver Type C Current (3.3V VDDEXT/VDDMEM  
)
Figure 47. Driver Type D Current (3.3V VDDEXT/VDDMEM  
)
80  
120  
100  
VDDEXT = 2.75V @ – 40  
VDDEXT = 2.5V @ 25  
°C  
VDDEXT = 2.75V @ – 40  
VDDEXT = 2.5V @ 25  
°C  
°C  
60  
40  
20  
°C  
80  
60  
V
DDEXT = 2.25V @ 105°C  
VDDEXT = 2.25V @ 105°C  
40  
V
OH  
V
20  
OH  
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
V
V
OL  
OL  
–80  
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 45. Drive Type C Current (2.5V VDDEXT/VDDMEM  
)
Figure 48. Driver Type D Current (2.5V VDDEXT/VDDMEM  
)
40  
30  
60  
VDDEXT = 1.9V @ – 40  
VDDEXT = 1.8V @ 25  
°C  
VDDEXT = 1.9V @ – 40  
VDDEXT = 1.8V @ 25  
°C  
°
C
°
C
40  
20  
VDDEXT = 1.7V @ 105°C  
VDDEXT = 1.7V @ 105°C  
20  
10  
V
OH  
V
OH  
0
0
–20  
–40  
–60  
–10  
V
OL  
–20  
–30  
V
OL  
–40  
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
2
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 46. Driver Type C Current (1.8V VDDEXT/VDDMEM  
)
Figure 49. Driver Type D Current (1.8V VDDEXT/VDDMEM  
)
Rev. B  
| Page 51 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
TEST CONDITIONS  
60  
VDDEXT = 3.6V @ – 40  
°C  
50  
40  
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section. Figure 53  
shows the measurement point for ac measurements (except out-  
put enable/disable). The measurement point VMEAS is VDDEXT/2  
or VDDMEM/2 for VDDEXT/VDDMEM (nominal) = 1.8 V/2.5 V/3.3 V.  
VDDEXT = 3.3V @ 25  
°C  
VDDEXT = 3.0V @ 105°C  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
INPUT  
OR  
OUTPUT  
V
V
MEAS  
MEAS  
V
OL  
Figure 53. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Output Enable Time Measurement  
Figure 50. Driver Type E Current (3.3V VDDEXT/VDDMEM  
)
Output signals are considered to be enabled when they have  
made a transition from a high impedance state to the point  
when they start driving.  
The output enable time tENA is the interval from the point when  
a reference signal reaches a high or low voltage level to the point  
when the output starts driving as shown on the right side of  
Figure 54.  
40  
30  
VDDEXT = 2.75V @ – 40  
VDDEXT = 2.5V @ 25  
DDEXT = 2.25V @ 105°C  
°C  
°C  
V
20  
10  
0
–10  
–20  
–30  
–40  
V
OL  
REFERENCE  
SIGNAL  
tDIS_MEASURED  
tENA_MEASURED  
tDIS  
tENA  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
V
(MEASURED)  
OH  
SOURCE VOLTAGE (V)  
(MEASURED)  
V
(MEASURED)  
-
ΔV  
OH  
V
(HIGH)  
TRIP  
V
(LOW)  
OL  
V
OL  
(MEASURED) +  
ΔV  
TRIP  
Figure 51. Driver Type E Current (2.5V VDDEXT/VDDMEM  
)
V
OL  
V
(MEASURED)  
(MEASURED)  
tDECAY  
tTRIP  
20  
15  
VDDEXT = 1.9V @ – 40  
VDDEXT = 1.8V @ 25  
°C  
°
C
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE  
VDDEXT = 1.7V @ 105°C  
10  
5
Figure 54. Output Enable/Disable  
0
The time tENA_MEASURED is the interval from when the reference  
signal switches to when the output voltage reaches VTRIP(high)  
or VTRIP(low). For VDDEXT (nominal) = 1.8 V, VTRIP (high) is  
0.95 V, and VTRIP (low) is 0.85 V. For VDDEXT (nominal) = 2.5 V,  
–5  
V
OL  
–10  
–15  
V
TRIP (high) is 1.3 V and VTRIP (low) is 1.2 V. For VDDEXT (nomi-  
nal) = 3.3 V, VTRIP (high) is 1.7 V, and VTRIP (low) is 1.6 V. Time  
tTRIP is the interval from when the output starts driving to when  
the output reaches the VTRIP(high) or VTRIP(low) trip voltage.  
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Time tENA is calculated as shown in the equation:  
Figure 52. Driver Type E Current (1.8V VDDEXT/VDDMEM  
)
tENA = tENA_MEASURED tTRIP  
If multiple signals (such as the data bus) are enabled, the mea-  
surement value is that of the first signal to start driving.  
Rev. B  
| Page 52 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Output Disable Time Measurement  
TESTER PIN ELECTRONICS  
Output signals are considered to be disabled when they stop  
50  
V
driving, go into a high impedance state, and start to decay from  
LOAD  
T1  
DUT  
their output high or low voltage. The output disable time tDIS is  
OUTPUT  
45ꢀ  
the difference between tDIS_MEASURED and tDECAY as shown on the  
70ꢀ  
left side of Figure 54.  
tDIS = tDIS_MEASURED tDECAY  
ZO = 50ꢀꢂ(impedance)  
TD = 4.04 1.18 ns  
50ꢀ  
0.5pF  
4pF  
2pF  
The time for the voltage on the bus to decay by ΔV is dependent  
on the capacitive load CL and the load current IL. This decay  
400ꢀ  
time can be approximated by the equation:  
tDECAY = (CLΔV) ⁄ IL  
NOTES:  
The time tDECAY is calculated with test loads CL and IL and with  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
ΔV equal to 0.25 V for VDDEXT/VDDMEM (nominal) = 2.5 V/3.3 V  
and 0.15 V for VDDEXT/VDDMEM (nominal) = 1.8 V.  
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
The time tDIS_MEASURED is the interval from when the reference  
signal switches to when the output voltage decays ΔV from the  
measured output high or output low voltage.  
Figure 55. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose ΔV  
to be the difference between the ADSP-BF51x processor’s out-  
put voltage and the input threshold for the device requiring the  
hold time. CL is the total bus capacitance (per data line), and IL is  
the total leakage or three-state current (per data line). The hold  
time is tDECAY plus the various output disable times as specified  
in the Timing Specifications on Page 27 (for example tDSDAT for  
an SDRAM write cycle as shown in SDRAM Interface Timing  
on Page 31).  
12  
10  
tRISE  
8
tFALL  
6
4
2
Capacitive Loading  
tRISE = 1.8V @ 25°C  
Output delays and holds are based on standard capacitive loads  
of an average of 6 pF on all balls (see Figure 55). VLOAD is equal  
to (VDDEXT/VDDMEM)/2. The graphs of Figure 56 through  
Figure 67 show how output rise time varies with capacitance.  
The delay and hold specifications given should be derated by a  
factor derived from these figures. The graphs in these figures  
may not be linear outside the ranges shown.  
tFALL = 1.8V @ 25  
°C  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 56. Driver Type A Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (1.8V VDDEXT/VDDMEM  
)
Rev. B  
| Page 53 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
7
8
7
6
5
6
5
tRISE  
tRISE  
4
3
tFALL  
tFALL  
4
3
2
1
2
1
tRISE = 2.5V @ 25°C  
tRISE = 2.5V @ 25°C  
tFALL = 2.5V @ 25  
°C  
tFALL = 2.5V @ 25  
°C  
0
0
0
50  
100  
150  
200  
250  
250  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 60. Driver Type B Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (2.5V VDDEXT/VDDMEM  
Figure 57. Driver Type A Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (2.5V VDDEXT/VDDMEM  
)
)
6
6
5
4
5
4
tRISE  
tRISE  
tFALL  
tFALL  
3
2
1
3
2
1
tRISE = 3.3V @ 25°C  
tRISE = 3.3V @ 25°C  
tFALL = 3.3V @ 25  
°C  
tFALL = 3.3V @ 25  
°C  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 61. Driver Type B Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (3.3V VDDEXT/VDDMEM  
Figure 58. Driver Type A Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (3.3V VDDEXT/VDDMEM  
)
)
25  
9
8
tRISE  
20  
15  
10  
5
7
6
5
tRISE  
tFALL  
tFALL  
4
3
2
1
tRISE = 1.8V @ 25°C  
tRISE = 1.8V @ 25°C  
tFALL = 1.8V @ 25  
°C  
tFALL = 1.8V @ 25  
°C  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 62. Driver Type C Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (1.8V VDDEXT/VDDMEM  
Figure 59. Driver Type B Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (1.8V VDDEXT/VDDMEM  
)
)
Rev. B  
|
Page 54 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
16  
14  
10  
9
8
12  
10  
tRISE  
7
tRISE  
6
5
tFALL  
tFALL  
8
6
4
2
4
3
2
1
tRISE = 2.5V @ 25°C  
tRISE = 2.5V @ 25°C  
tFALL = 2.5V @ 25  
°C  
tFALL = 2.5V @ 25  
°C  
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 63. Driver Type C Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (2.5V VDDEXT/VDDMEM  
Figure 66. Driver Type D Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (2.5V VDDEXT/VDDMEM  
)
)
8
14  
7
6
5
4
12  
10  
8
tRISE  
tRISE  
tFALL  
tFALL  
3
6
2
1
4
2
tRISE = 3.3V @ 25°C  
tFALL = 3.3V @ 25  
°C  
tRISE = 3.3V @ 25°C  
0
tFALL = 3.3V @ 25  
°C  
0
50  
100  
150  
200  
250  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 67. Driver Type D Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (3.3V VDDEXT/VDDMEM  
Figure 64. Driver Type C Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (3.3V VDDEXT/VDDMEM  
)
)
14  
12  
10  
8
tRISE  
tFALL  
6
4
2
tRISE = 1.8V @ 25°C  
tFALL = 1.8V @ 25  
°C  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 65. Driver Type D Typical Rise and Fall Times (10%–90%) vs.  
Load Capacitance (1.8V VDDEXT/VDDMEM  
)
Rev. B  
|
Page 55 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 50. Thermal Characteristics for SQ-176-2 Package  
THERMAL CHARACTERISTICS  
To determine the junction temperature on the application  
printed circuit board use:  
Parameter Condition Typical Unit  
θJA  
0 Linear m/s Airflow  
17.4  
14.8  
14.0  
7.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJMA  
θJMA  
θJC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
TJ = TCASE + JT × PD)  
where:  
ΨJT  
ΨJT  
ΨJT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0.28  
0.39  
0.48  
TJ = Junction temperature (°C)  
T
CASE = Case temperature (°C) measured by customer at top  
center of package.  
Ψ
JT = From Table 51  
Table 51. Thermal Characteristics for BC-168-1 Package  
Parameter Condition Typical Unit  
PD = Power dissipation (see Total Power Dissipation on Page 23  
for the method to calculate PD)  
Values of θJA are provided for package comparison and printed  
circuit board design considerations. θJA can be used for a first  
order approximation of TJ by the equation:  
θJA  
0 Linear m/s Airflow  
30.5  
27.6  
26.3  
11.1  
0.20  
0.35  
0.45  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJMA  
θJMA  
θJC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
TJ = TA + JA × PD)  
ΨJT  
ΨJT  
ΨJT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
where:  
TA = Ambient temperature (°C)  
Values of θJC are provided for package comparison and printed  
circuit board design considerations when an external heat sink  
is required.  
Values of θJB are provided for package comparison and printed  
circuit board design considerations.  
In Table 51, airflow measurements comply with JEDEC stan-  
dards JESD51-2 and JESD51-6, and the junction-to-board  
measurement complies with JESD51-8. The junction-to-case  
measurement complies with MIL-STD-883 (Method 1012.1).  
All measurements use a 2S2P JEDEC test board.  
The LQFP_EP package requires thermal trace squares and ther-  
mal vias to an embedded ground plane in the PCB. The paddle  
must be connected to ground for proper operation to data sheet  
specifications. Refer to JEDEC standard JESD51-5 for more  
information.  
Rev. B  
| Page 56 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
176-LEAD LQFP LEAD ASSIGNMENT  
Table 52 lists the LQFP leads by lead number.  
Table 53 on Page 58 lists the LQFP by signal mnemonic.  
Table 52. 176-Lead LQFP Pin Assignment (Numerical by Lead Number)  
Lead No.  
1
2
3
4
5
6
7
8
Signal  
GND  
GND  
PF9  
PF8  
PF7  
Lead No.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Signal  
GND  
GND  
PG1  
PG0  
VDDEXT  
TDO  
EMU  
TDI  
Lead No.  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
GND  
GND  
A12  
A11  
A10  
A9  
VDDMEM  
A8  
Lead No.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
GND  
Signal  
GND  
GND  
PG  
VDDEXT  
GND  
VDDINT  
GND  
RTXO  
RTXI  
VDDRTC  
CLKIN  
XTAL  
VDDEXT  
RESET  
NMI  
VDDEXT  
GND  
CLKBUF  
GND  
VDDINT  
PH7  
PH6  
PH5  
PH4  
GND  
VDDEXT  
PH3  
PH2  
PH1  
PF6  
VDDEXT  
VPPOTP  
VDDOTP  
PF5  
PF4  
PF3  
9
TCK  
97  
98  
99  
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
TRST  
TMS  
D15  
D14  
D13  
VDDMEM  
D12  
D11  
D10  
VDDINT  
D9  
D8  
D7  
GND  
VDDMEM  
D6  
D5  
D4  
D3  
D2  
D1  
VDDMEM  
D0  
A19  
A18  
VDDINT  
A17  
A16  
VDDMEM  
GND  
A15  
A14  
A13  
GND  
GND  
VDDINT  
GND  
VDDINT  
A6  
A5  
A4  
VDDMEM  
A3  
A2  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
PF2  
VDDINT  
GND  
VDDFLASH  
VDDFLASH  
PF1  
PF0  
A1  
PG15  
PG14  
GND  
VDDINT  
VDDEXT  
PG13  
PG12  
PG11  
PG10  
VDDFLASH  
VDDINT  
PG9  
PG8  
PG7  
PG6  
VDDEXT  
PG5  
PG4  
PG3  
PG2  
BMODE2  
BMODE1  
BMODE0  
GND  
GND  
ABE1  
ABE0  
SA10  
GND  
VDDMEM  
SWE  
SCAS  
SRAS  
VDDINT  
GND  
SMS  
SCKE  
AMS1  
ARE  
AWE  
AMS0  
VDDMEM  
CLKOUT  
VDDFLASH  
NC1  
PH0  
GND  
VDDINT  
PF15  
PF14  
PF13  
PF12  
GND  
VDDEXT  
PF11  
SDA  
VDDEXT  
VDDEXT  
EXT_WAKE  
GND  
GND  
SCL  
PF10  
GND  
GND  
177*  
* Pin no. 177 is the GND supply (see Figure 69) for the processor; this pad must connect to GND.  
1 This pin must not be connected.  
Rev. B  
| Page 57 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 53. 176-Lead LQFP Pin Assignment (Alphabetical by Signal Mnemonic)  
Lead No.  
107  
106  
105  
103  
102  
101  
97  
96  
94  
93  
92  
91  
86  
85  
84  
81  
80  
78  
77  
109  
108  
123  
120  
121  
122  
42  
41  
40  
150  
143  
125  
76  
74  
73  
72  
71  
70  
69  
66  
65  
Signal  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Lead No.  
58  
57  
56  
51  
130  
1
2
15  
22  
43  
44  
45  
46  
67  
83  
87  
88  
Signal  
D13  
D14  
Lead No.  
5
4
Signal  
PF7  
PF8  
Lead No.  
113  
53  
52  
50  
55  
54  
7
24  
Signal  
SWE  
TCK  
TDI  
TDO  
D15  
3
PF9  
EMU  
EXT_WAKE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC1  
174  
171  
168  
167  
166  
165  
135  
48  
47  
39  
38  
37  
36  
34  
33  
32  
31  
28  
27  
26  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PH0  
PH1  
PH2  
PH3  
PH4  
TMS  
TRST  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDFLASH  
VDDFLASH  
VDDFLASH  
VDDFLASH  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDOTP  
VDDRTC  
VPPOTP  
XTAL  
A9  
35  
49  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
ABE0  
ABE1  
AMS0  
AMS1  
ARE  
AWE  
BMODE0  
BMODE1  
BMODE2  
CLKBUF  
CLKIN  
CLKOUT  
D0  
128  
129  
136  
145  
148  
158  
170  
16  
17  
29  
126  
14  
23  
30  
63  
79  
98  
100  
116  
138  
152  
164  
59  
68  
75  
82  
95  
104  
112  
124  
9
142  
8
89  
90  
99  
111  
131  
132  
133  
134  
137  
139  
149  
151  
157  
163  
169  
175  
176  
117  
127  
147  
19  
25  
21  
20  
162  
161  
160  
159  
156  
155  
154  
153  
146  
141  
140  
110  
114  
119  
173  
172  
118  
115  
PH5  
PH6  
PH7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
RESET  
RTXI  
RTXO  
SA10  
SCAS  
SCKE  
SCL  
SDA  
SMS  
SRAS  
NMI  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
18  
13  
12  
11  
10  
6
64  
62  
61  
60  
D9  
D10  
D11  
D12  
144  
GND  
177*  
* Pin no. 177 is the GND supply (see Figure 69) for the processor; this pad must connect to GND.  
1 This pin must not be connected.  
Rev. B  
| Page 58 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Figure 68 shows the top view of the LQFP_EP lead configura-  
tion. Figure 69 shows the bottom view of the LQFP_EP lead  
configuration.  
PIN 176  
PIN 133  
PIN 1  
PIN 132  
PIN 1 INDICATOR  
ADSP-BF51X  
176-LEAD LQFP_EP  
TOP VIEW  
PIN 44  
PIN 89  
PIN 45  
PIN 88  
Figure 68. 176-Lead LQFP_EP Lead Configuration (Top View)  
PIN 133  
PIN 176  
PIN 132  
PIN 1  
ADSP-BF51X  
176-LEAD  
LQFP_EP  
GND PAD  
(PIN 177)  
PIN 1 INDICATOR  
BOTTOM VIEW  
PIN 89  
PIN 44  
PIN 88  
PIN 45  
Figure 69. 176-Lead LQFP_EP Lead Configuration (Bottom View)  
Rev. B  
| Page 59 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
168-BALL CSP_BGA BALL ASSIGNMENT  
Table 54 lists the CSP_BGA by ball number. Table 55 on  
Page 61 lists the CSP_BGA balls by signal mnemonic.  
Table 54. 168-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)  
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name  
A1  
GND  
SCL  
C1  
PF4  
E10  
E12  
E13  
E14  
F1  
VDDINT  
VDDMEM  
ARE  
H1  
H2  
H3  
H5  
H6  
H7  
H8  
H9  
H10  
H12  
H13  
H14  
J1  
PG12  
PG13  
PG11  
VDDEXT  
GND  
GND  
GND  
GND  
VDDINT  
A3  
K6  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
A8  
N1  
N2  
BMODE1  
PG1  
TDO  
TRST  
TMS  
D13  
D9  
A2  
C2  
PF7  
K7  
A3  
SDA  
C3  
PF8  
K8  
N3  
A4  
PF13  
PF15  
PH2  
C4  
PF10  
VDDEXT  
VDDEXT  
PF11  
VDDEXT  
VDDINT  
VDDEXT  
RTXI  
AWE  
PF0  
K9  
N4  
A5  
C5  
K10  
K12  
K13  
K14  
L1  
N5  
A6  
C6  
F2  
PF1  
N6  
A7  
PH1  
C7  
F3  
VDDINT  
VDDEXT  
GND  
GND  
GND  
GND  
VDDINT  
SMS  
A2  
N7  
A8  
PH5  
C8  
F5  
A1  
N8  
D5  
A9  
PH6  
C9  
F6  
PG5  
PG3  
PG2  
A9  
N9  
D1  
A10  
A11  
A12  
A13  
A14  
B1  
PH7  
C10  
C11  
C12  
C13  
C14  
D1  
D2  
D3  
D12  
D13  
D14  
E1  
F7  
L2  
N10  
N11  
N12  
N13  
N14  
P1  
A18  
A16  
A14  
A11  
A7  
CLKBUF  
XTAL  
CLKIN  
GND  
VDDOTP  
GND  
PF9  
F8  
ABE0  
SCAS  
PG10  
VDDFLASH  
PG9  
L3  
RTXO  
PG  
NC1  
F9  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
F10  
F12  
F13  
F14  
G1  
A6  
J2  
A4  
PF3  
SCKE  
AMS1  
PG15  
PG14  
VDDINT  
VDDEXT  
GND  
GND  
GND  
GND  
VDDINT  
SWE  
J3  
PG4  
BMODE2  
BMODE0  
PG0  
EMU  
D12  
D10  
D2  
GND  
TDI  
B2  
PF5  
J5  
VDDMEM  
GND  
GND  
GND  
GND  
VDDINT  
A15  
P2  
B3  
VPPOTP  
VDDFLASH  
CLKOUT  
AMS0  
VDDFLASH  
PF2  
J6  
P3  
TCK  
D15  
D14  
D11  
D8  
B4  
PF12  
PF14  
PH0  
G2  
J7  
P4  
B5  
G3  
J8  
P5  
B6  
G5  
J9  
P6  
B7  
PH3  
G6  
J10  
J12  
J13  
J14  
K1  
P7  
B8  
PH4  
E2  
G7  
P8  
D7  
B9  
VDDEXT  
RESET  
NMI  
E3  
PF6  
G8  
ABE1  
SA10  
PG6  
D0  
P9  
D6  
B10  
B11  
B12  
B13  
B14  
E5  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
G9  
A17  
P10  
P11  
P12  
P13  
P14  
D4  
E6  
G10  
G12  
G13  
G14  
A13  
D3  
VDDRTC  
VDDEXT  
E7  
K2  
PG8  
A12  
A19  
GND  
GND  
E8  
SRAS  
GND  
K3  
PG7  
A10  
EXT_WAKE E9  
K5  
VDDMEM  
A5  
1 This pin must not be connected.  
Rev. B  
|
Page 60 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Table 55. 168-Ball CSP_BGA Ball Assignment (Alphabetical by Signal Mnemonic)  
Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name  
K14  
K13  
H12  
L14  
M14  
L13  
N14  
K12  
L12  
M13  
N13  
M12  
M11  
N12  
J12  
A1  
A11  
A13  
D13  
M9  
N9  
M8  
P11  
P10  
N8  
P9  
CLKBUF  
CLKIN  
CLKOUT  
D0  
G6  
G7  
G8  
G9  
H6  
H7  
H8  
H9  
J6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC1  
C4  
C7  
B4  
A4  
B5  
A5  
C13  
M4  
N2  
L3  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG  
A8  
PH5  
G5  
H5  
D12  
E1  
VDDEXT  
VDDEXT  
VDDFLASH  
VDDFLASH  
VDDFLASH  
VDDINT  
VDDINT  
A2  
A9  
PH6  
A3  
A10  
B10  
C11  
C12  
J14  
H14  
F13  
A2  
PH7  
A4  
RESET  
RTXI  
RTXO  
SA10  
SCAS  
SCKE  
SCL  
A5  
D1  
J2  
A6  
D2  
C9  
A7  
D3  
E7  
A8  
D4  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PH0  
PH1  
PH2  
PH3  
PH4  
E8  
VDDINT  
A9  
D5  
E9  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
ABE0  
ABE1  
AMS0  
AMS1  
ARE  
AWE  
BMODE0  
BMODE1  
BMODE2  
D6  
J7  
E10  
F3  
P8  
D7  
J8  
L2  
A3  
SDA  
P7  
D8  
J9  
M1  
L1  
F12  
G13  
G12  
P3  
SMS  
F10  
G3  
G10  
H10  
J10  
E12  
J5  
N7  
M7  
P6  
D9  
P1  
SRAS  
SWE  
D10  
D11  
D12  
D13  
D14  
D15  
EMU  
P13  
P14  
G14  
C14  
B11  
F1  
K1  
K3  
K2  
J3  
VDDINT  
VDDINT  
TCK  
N11  
M10  
N10  
P12  
H13  
J13  
M6  
N6  
P5  
P2  
TDI  
VDDINT  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDMEM  
VDDOTP  
VDDRTC  
VPPOTP  
XTAL  
N3  
TDO  
NMI  
PF0  
J1  
N5  
TMS  
P4  
H3  
H1  
H2  
G2  
G1  
B6  
A7  
A6  
B7  
B8  
N4  
TRST  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
K5  
M5  
B14  
A1  
F2  
PF1  
B9  
K6  
EXT_WAKE E2  
PF2  
B13  
C5  
K7  
D14  
F14  
E13  
E14  
M3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D1  
C1  
D2  
E3  
C2  
C3  
B3  
PF3  
K8  
A14  
B2  
PF4  
C6  
K9  
PF5  
C8  
K10  
B1  
F6  
PF6  
C10  
E5  
F7  
PF7  
B12  
D3  
A12  
N1  
F8  
PF8  
E6  
M2  
F9  
PF9  
F5  
1 This pin must not be connected.  
Rev. B  
|
Page 61 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Figure 70 shows the top view of the CSP_BGA ball configura-  
tion. Figure 71 shows the bottom view of the CSP_BGA  
ball configuration.  
A1 BALL PAD CORNER  
A
B
C
D
NC  
E
F
KEY  
G
H
J
V
V
GND  
I/O  
DDINT  
DDMEM  
K
L
V
V
V
DDRTC  
DDEXT  
M
N
P
DDFLASH  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TOP VIEW  
Figure 70. 168-Ball CSP_BGA Ball Configuration (Top View)  
A1 BALL PAD CORNER  
A
B
C
D
NC  
KEY  
E
V
V
GND  
F
DDINT  
DDMEM  
G
V
V
V
I/O  
H
J
DDRTC  
DDEXT  
DDFLASH  
K
L
M
N
P
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
BOTTOM VIEW  
Figure 71. 168-Ball CSP_BGA Ball Configuration (Bottom View)  
Rev. B  
| Page 62 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
OUTLINE DIMENSIONS  
Dimensions in Figure 72 are shown in millimeters.  
NOTE: THE EXPOSED PAD IS REQUIRED TO BE ELECTRICALLY AND  
THERMALLY CONNECTED TO GND. IMPLEMENT THIS BY  
SOLDERING THE EXPOSED PAD TO A GND PCB LAND THAT IS  
THE SAME SIZE AS THE EXPOSED PAD. THE GND PCB LAND  
SHOULD BE ROBUSTLY CONNECTED TO THE GND PLANE IN  
THE PCB WITH AN ARRAY OF THERMAL VIAS FOR BEST  
PERFORMANCE.  
26.20  
26.00 SQ  
25.80  
24.10  
24.00 SQ  
23.90  
1.60  
0.75  
0.60  
0.45  
MAX  
133  
132  
133  
132  
176  
1
176  
1
1.00 REF  
PIN 1  
5.80 REF  
SQ  
EXPOSED  
PAD  
TOP VIEW  
(PINS DOWN)  
12°  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
7°  
BOTTOM VIEW  
(PINS UP)  
89  
89  
44  
45  
44  
0.15  
0°  
88  
88  
45  
0.10  
0.05  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
VIEW A  
BSC  
EXPOSED PAD IS CENTERED ON  
THE PACKAGE.  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BGA-HD  
Figure 72. 176-Lead Low Profile Quad Flat Package [LQFP_EP]  
(SQ-176-2)  
Dimensions shown in millimeters  
Rev. B  
| Page 63 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
10.40  
BSC SQ  
0.80  
BSC  
K
L
M
N
P
0.80  
REF  
TOP VIEW  
BOTTOM VIEW  
DETAIL A  
1.50  
1.40  
1.30  
1.12  
1.06  
1.00  
0.70  
REF  
DETAIL A  
0.34 NOM  
0.29 MIN  
0.36  
REF  
0.50  
0.45  
0.40  
COPLANARITY  
0.20  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 73. 168-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-168-1)  
Dimensions shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 56 is provided as an aid to PCB design. For industry  
standard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface Mount Design and Land Pattern  
Standard.  
Table 56. BGA Data for Use with Surface-Mount Design  
Package Solder Mask  
Opening  
Package  
Package Ball Attach Type  
Package Ball Pad Size  
168-Ball CSP_BGA  
Solder Mask Defined  
0.35 mm diameter  
0.48 mm diameter  
Rev. B  
|
Page 64 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
AUTOMOTIVE PRODUCTS  
The ADBF512W and ADBF518 models are available with con-  
motive grade products shown in Table 57 are available for use in  
automotive applications. Contact your local ADI account repre-  
sentative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these  
models.  
trolled manufacturing to support the quality and reliability  
requirements of automotive applications. Note that these auto-  
motive models may have specifications that differ from the  
commercial models and designers should review the product  
Specifications section of this data sheet carefully. Only the auto-  
Table 57. Automotive Products  
Temperature  
Range3  
Instruction  
Package  
Option  
Automotive Models1,2  
ADBF512WBBCZ4xx  
ADBF518WBBCZ4xx  
ADBF512WBSWZ4xx  
ADBF518WBSWZ4xx  
Rate (Max)  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
Package Description  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
1 Z = RoHS Compliant Part.  
2 The use of xx designates silicon revision.  
3 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 20 for junction temperature (TJ)  
specification which is the only temperature specification.  
ORDERING GUIDE  
Temperature  
Range2  
Processor Instruction  
Rate (Max)  
Flash  
Memory  
Package  
Option  
Model1  
Package Description  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
ADSP-BF512BBCZ-3  
ADSP-BF512BBCZ-4  
ADSP-BF512BBCZ-4F4  
ADSP-BF512BSWZ-3  
ADSP-BF512BSWZ-4  
ADSP-BF512BSWZ-4F4  
ADSP-BF512KBCZ-3  
ADSP-BF512KBCZ-4  
ADSP-BF512KBCZ-4F4  
ADSP-BF512KSWZ-3  
ADSP-BF512KSWZ-4  
ADSP-BF512KSWZ-4F4  
ADSP-BF514BBCZ-3  
ADSP-BF514BBCZ-4  
ADSP-BF514BBCZ-4F4  
ADSP-BF514BSWZ-3  
ADSP-BF514BSWZ-4  
ADSP-BF514BSWZ-4F4  
ADSP-BF514KBCZ-3  
ADSP-BF514KBCZ-4  
ADSP-BF514KBCZ-4F4  
ADSP-BF514KSWZ-3  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
0ºC to +70ºC  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
N/A  
BC-168-1  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
SQ-176-2  
BC-168-1  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
SQ-176-2  
BC-168-1  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
SQ-176-2  
BC-168-1  
BC-168-1  
BC-168-1  
SQ-176-2  
N/A  
4M bit  
N/A  
N/A  
4M bit  
N/A  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
4M bit  
N/A  
0ºC to +70ºC  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
4M bit  
N/A  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
0ºC to +70ºC  
N/A  
4M bit  
N/A  
N/A  
4M bit  
N/A  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
4M bit  
N/A  
0ºC to +70ºC  
Rev. B  
|
Page 65 of 68  
|
January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Temperature  
Range2  
Processor Instruction  
Rate (Max)  
Flash  
Memory  
Package  
Option  
Model1  
Package Description  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
168-Ball CSP_BGA  
168-Ball CSP_BGA  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
ADSP-BF514KSWZ-4  
ADSP-BF514KSWZ-4F4  
ADSP-BF516KSWZ-3  
ADSP-BF516KBCZ-3  
ADSP-BF516KSWZ-4  
ADSP-BF516KBCZ-4  
ADSP-BF516KSWZ-4F4  
ADSP-BF516KBCZ-4F4  
ADSP-BF516BBCZ-3  
ADSP-BF516BBCZ-4  
ADSP-BF516BBCZ-4F4  
ADSP-BF516BSWZ-3  
ADSP-BF516BSWZ-4  
ADSP-BF516BSWZ-4F4  
ADSP-BF518BBCZ-4  
ADSP-BF518BBCZ-4F4  
ADSP-BF518BSWZ-4  
ADSP-BF518BSWZ-4F4  
1 Z = RoHS compliant part.  
0ºC to +70ºC  
400 MHz  
400 MHz  
300 MHz  
300 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
N/A  
SQ-176-2  
SQ-176-2  
SQ-176-2  
BC-168-1  
SQ-176-2  
BC-168-1  
SQ-176-2  
BC-168-1  
BC-168-1  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
SQ-176-2  
BC-168-1  
BC-168-1  
SQ-176-2  
SQ-176-2  
0ºC to +70ºC  
4M bit  
N/A  
0ºC to +70ºC  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
N/A  
0ºC to +70ºC  
4M bit  
4M bit  
N/A  
0ºC to +70ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
N/A  
4M bit  
N/A  
N/A  
4M bit  
N/A  
4M bit  
N/A  
4M bit  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 20 for junction temperature (TJ)  
specification which is the only temperature specification.  
Rev. B  
| Page 66 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
Rev. B  
| Page 67 of 68 | January 2011  
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08574-0-1/11(B)  
Rev. B  
| Page 68 of 68 | January 2011  

相关型号:

BF516

Blackfin Embedded Processor
ADI

BF516F

Blackfin Embedded Processor
ADI

BF517

NPN Silicon RF Transistor (For amplifier and oscillator applications in TV-tuners)
INFINEON

BF517A

TRANSISTOR Si, NPN, RF SMALL SIGNAL TRANSISTOR, BIP RF Small Signal
NXP

BF517ATRL

TRANSISTOR Si, NPN, RF SMALL SIGNAL TRANSISTOR, BIP RF Small Signal
NXP

BF517ATRL13

TRANSISTOR Si, NPN, RF SMALL SIGNAL TRANSISTOR, BIP RF Small Signal
NXP

BF517E6327

RF Small Signal Bipolar Transistor, 0.025A I(C), 1-Element, Silicon, NPN
INFINEON

BF517E6327HTSA1

RF Small Signal Bipolar Transistor, 0.025A I(C), 1-Element, Silicon, NPN
INFINEON

BF517E6433

RF Small Signal Bipolar Transistor, 0.025A I(C), 1-Element, Silicon, NPN,
INFINEON

BF517_07

NPN Silicon RF Transistor
INFINEON

BF518

Blackfin Embedded Processor
ADI

BF518F

Blackfin Embedded Processor
ADI