DAC8420FSZ-REEL2 [ADI]

Quad 12-Bit Serial Voltage Output DAC; 四通道12位串行电压输出DAC
DAC8420FSZ-REEL2
型号: DAC8420FSZ-REEL2
厂家: ADI    ADI
描述:

Quad 12-Bit Serial Voltage Output DAC
四通道12位串行电压输出DAC

文件: 总24页 (文件大小:1183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 12-Bit Serial  
Voltage Output DAC  
DAC8420  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VREFHI  
VDD  
Guaranteed monotonic over temperature  
Excellent matching between DACs  
Unipolar or bipolar operation  
Buffered voltage outputs  
High speed serial digital interface  
Reset-to-zero scale or midscale  
Wide supply range, +5 V only to 15 V  
Low power consumption (35 mW maximum)  
Available in 16-Lead PDIP, SOIC, and CERDIP packages  
5
1
DAC8420  
10  
SDI  
REG  
A
7
6
3
2
DAC A  
DAC B  
DAC C  
DAC D  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
12  
12  
11  
CS  
REG  
B
CLK  
SHIFT  
REGISTER  
13  
14  
NC  
LD  
APPLICATIONS  
REG  
C
4
Software controlled calibration  
Servo controls  
Process control and automation  
ATE  
DECODE  
REG  
D
2
9
16  
CLSEL CLR  
8
15  
4
GND  
VREFLO  
VSS  
Figure 1.  
GENERAL DESCRIPTION  
asynchronously overriding the current DAC register values. The  
output voltage range, determined by the inputs VREFHI and  
VREFLO, is set by the user for positive or negative unipolar or  
bipolar signal swings within the supplies, allowing considerable  
design flexibility.  
The DAC8420 is a quad, 12-bit voltage-output DAC with serial  
digital interface in a 16-lead package. Utilizing BiCMOS tech-  
nology, this monolithic device features unusually high circuit  
density and low power consumption. The simple, easy-to-use  
serial digital input and fully buffered analog voltage outputs  
require no external components to achieve a specified per-  
formance.  
The DAC8420 is available in 16-lead PDIP, SOIC, and CERDIP  
packages. Operation is specified with supplies ranging from  
+5 V only to 15 V, with references of +2.5 V to 10 V, respec-  
tively. Power dissipation when operating from 15 V supplies is  
less than 255 mW (maximum) and only 35 mW (maximum)  
with a +5 V supply.  
The 3-wire serial digital input is easily interfaced to micro-  
processors running at 10 MHz with minimal additional  
circuitry. Each DAC is addressed individually by a 16-bit  
serial word consisting of a 12-bit data word and an address  
CLR  
header. The user-programmable reset control  
forces all  
four DAC outputs to either zero scale or midscale,  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
DAC8420  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
CS  
Correct Operation of  
and CLK........................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 14  
Introduction ................................................................................ 14  
Digital Interface Operation....................................................... 14  
CLR  
Using  
and CLSEL .............................................................. 14  
Programming the Analog Outputs .......................................... 14  
VREFHI Input Requirements................................................... 16  
Power-Up Sequence ................................................................... 16  
Applications..................................................................................... 17  
Power Supply Bypassing and Grounding................................ 17  
Analog Outputs .......................................................................... 17  
Reference Configuration ........................................................... 18  
Isolated Digital Interface ........................................................... 19  
Dual Window Comparator ....................................................... 20  
MC68HC11 Microcontroller Interfacing................................ 20  
DAC8420 to M68HC11 Interface Assembly Program.......... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
REVISION HISTORY  
5/07—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Endnote 3 ...................................................................... 4  
Changes to Table 3............................................................................ 6  
Changes to Table 4............................................................................ 2  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 23  
9/03—Rev. 0 to Rev. A  
Changes to General Description .................................................... 1  
Deleted Wafer Test Limits table...................................................... 4  
Deleted Dice Characteristics........................................................... 4  
Updated Ordering Guide................................................................. 4  
Added Power-Up Sequence section ............................................. 12  
Updated Outline Dimensions....................................................... 17  
Rev. B | Page 2 of 24  
 
DAC8420  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS1  
@ VDD = +5.0 V 5ꢀ, VSS = 0 V, VVREFHI = +2.5 V, VVREFLD = 0 V, and VSS = −5.0 V 5ꢀ, VVREFLO = −2.5 V, 40°C ≤ TA ≤ +85°C unless  
otherwise noted.2  
Table 1.  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Integral Linearity E Grade  
Integral Linearity E Grade  
Integral Linearity F Grade  
Integral Linearity F Grade  
Differential Linearity  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient  
MATCHING PERFORMANCE  
Linearity Matching  
INL  
INL  
INL  
INL  
DNL  
ZSE  
FSE  
ZSE  
FSE  
TCZSE  
TCFSE  
±±  
±ꢁ  
±ꢂ  
±ꢀ  
±ꢀ  
±3  
±2  
±4  
±ꢀ  
±4  
±4  
±ꢃ  
±ꢃ  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
VSS = 0 V3  
VSS = 0 V3  
Monotonic over temperature  
RL = 2 kΩ, VSS = −5 V  
RL = 2 kΩ, VSS = −5 V  
RL = 2 kΩ, VSS = 0 V3  
RL = 2 kΩ, VSS = 0 V3  
RL = 2 kΩ, VSS = −5 V4  
RL = 2 kΩ, VSS = −5 V4  
±±  
LSB  
ppm/°C  
ppm/°C  
±0  
±0  
±ꢀ  
LSB  
REFERENCE  
Positive Reference Input Range5  
Negative Reference Input Range5  
Negative Reference Input Range  
Reference High Input Current  
Reference Low Input Current  
AMPLIFIER CHARACTERISTICS  
Output Current  
VVREFHI  
VVREFLO  
VVREFLO  
IVREFHI  
VVREFLO + 2.5  
VSS  
0
−0.75  
−ꢀ.0  
VDD − 2.5  
VVREFHI − 2.5  
VVREFHI − 2.5  
V
V
V
mA  
mA  
VSS = 0 V5  
Code 0x000, Code 0x555  
Code 0x000, Code 0x555, VSS = −5 V  
±0.25 +0.75  
−0.6  
IVREFLO  
IOUT  
tS  
SR  
VSS = −5 V  
To 0.0ꢀ%6  
ꢀ0% to 90%6  
−ꢀ.25  
2.4  
+ꢀ.25  
mA  
μs  
V/μs  
Settling Time  
Slew Rate  
ꢀ.5  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Input Capacitance4  
VINH  
VINL  
IIN  
V
V
μA  
pF  
0.ꢃ  
ꢀ0  
CIN  
ꢀ3  
LOGIC TIMING CHARACTERISTICS4, 7  
Data Setup Time  
Data Hold  
Clock Pulse Width High  
Clock Pulse Width Low  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLDꢀ  
tLD2  
tLDW  
tCLRW  
25  
55  
90  
ꢀ20  
90  
5
ꢀ30  
35  
ꢃ0  
ꢀ50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clear Pulse Width  
Rev. B | Page 3 of 24  
 
 
 
DAC8420  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Unit  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002  
4
−3  
0.0ꢀ  
7
%/%  
mA  
mA  
−6  
PDISS  
VSS = 0 V  
20  
35  
mW  
Typical values indicate performance measured at 25°C.  
2 All supplies can be varied ±5% and operation is guaranteed. Device is tested with VDD = 4.75 V.  
3 For single-supply operation (VVREFLO = 0 V, VSS = 0 V), due to internal offset errors INL and DNL are measured beginning at Code 0x005.  
4 Guaranteed, but not tested.  
5 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
6 VOUT swing between +2.5 V and −2.5 V with VDD = 5.0 V.  
7 All input control signals are specified with tr = tf = 5 ns (ꢀ0% to 90% of 5 V) and timed from a voltage level of ꢀ.6 V.  
Rev. B | Page 4 of 24  
 
DAC8420  
@ VDD = +15.0 V 5ꢀ, VSS = −15.0 V 5ꢀ, VVREFHI = +10.0 V, VVREFLO = −10.0 V, 40°C ≤ TA ≤ +85°C unless otherwise noted.1, 2  
Table 2.  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Integral Linearity E Grade  
Integral Linearity F Grade  
Differential Linearity  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient TCFSE  
MATCHING PERFORMANCE  
Linearity Matching  
INL  
INL  
DNL  
ZSE  
FSE  
TCZSE  
±±  
±ꢁ  
±±  
±ꢁ  
±ꢀ  
±ꢀ  
±2  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
ppm/°C  
Monotonic over temperature  
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ3  
RL = 2 kΩ3  
±4  
±4  
±ꢀ  
LSB  
REFERENCE  
Positive Reference Input Range4  
Negative Reference Input Range4  
Reference High Input Current  
Reference Low Input Current  
AMPLIFIER CHARACTERISTICS  
Output Current  
VVREFHI  
VVREFLO  
IVREFHI  
VVREFLO + 2.5  
−ꢀ0  
−2.0  
VDD − 2.5  
VVREFHI − 2.5  
+2.0  
V
V
mA  
mA  
Code 0x000, Code 0x555  
Code 0x000, Code 0x555  
±.0  
−2.0  
IVREFLO  
−3.5  
IOUT  
tS  
SR  
−5  
+5  
mA  
μs  
V/μs  
Settling Time  
Slew Rate  
To 0.0ꢀ%5  
ꢀ0% to 90%5  
ꢀ3  
2
DYNAMIC PERFORMANCE  
Analog Crosstalk3  
Digital Feedthrough3  
Large Signal Bandwidth  
Glitch Impulse  
>64  
>72  
90  
dB  
dB  
kHz  
μV-s  
3 dB, VVREFHI = 5 V + ꢀ0 V p-p, VVREFLO = −ꢀ0 V3  
Code Transition = 0x7FF to 0xꢃ003  
6
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Input Capacitance3  
VINH  
VINL  
IIN  
2.4  
V
V
μA  
pF  
0.ꢃ  
ꢀ0  
CIN  
ꢀ3  
LOGIC TIMING CHARACTERISTICS3, 6  
Data Setup Time  
Data Hold  
Clock Pulse Width High  
Clock Pulse Width Low  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLDꢀ  
tLD2  
tLDW  
tCLRW  
25  
20  
30  
50  
55  
ꢀ5  
40  
ꢀ5  
45  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clear Pulse Width  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002 0.0ꢀ  
%/%  
mA  
mA  
6
9
−ꢃ  
−5  
PDISS  
255  
mW  
Typical values indicate performance measured at 25°C.  
2 All supplies can be varied ±5% and operation is guaranteed.  
3 Guaranteed, but not tested.  
4 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
5 VOUT swing between +ꢀ0 V and −ꢀ0 V.  
6 All input control signals are specified with tr = tf = 5 ns (ꢀ0% to 90% of 5 V) and timed from a voltage level of ꢀ.6 V.  
Rev. B | Page 5 of 24  
 
DAC8420  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Table 4.  
Table 3.  
Package Type  
ꢀ6-Lead PDIP (N)  
ꢀ6-Lead CERDIP (Q)  
ꢀ6-Lead SOIC (RW)  
θJA  
70ꢀ  
ꢃ2ꢀ  
ꢃ62  
θJC  
27  
9
Unit  
°C/W  
°C/W  
°C/W  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VSS to VDD  
VSS to VVREFLO  
VVREFHI to VVREFLO  
VVREFHI to VDD  
IVREFHI, IVREFLO  
Digital Input Voltage to GND  
Output Short-Circuit Duration  
Operating Temperature Range  
EP, FP, ES, FS, EQ, FQ  
Dice Junction Temperature  
Storage Temperature Range  
Power Dissipation  
Lead Temperature  
Soldering  
−0.3 V, +ꢀꢃ.0 V  
+0.3 V, −ꢀꢃ.0 V  
−0.3 V, +36.0 V  
−0.3 V, VSS − 2.0 V  
+2.0 V, VDD − VSS  
+2.0 V, +33.0 V  
ꢀ0 mA  
22  
θJA is specified for worst case mounting conditions, that is, θJA is specified for  
device in socket.  
2 θJA is specified for device on board.  
ESD CAUTION  
−0.3 V, VDD + 0.3 V  
Indefinite  
–40°C to +ꢃ5°C  
ꢀ50°C  
–65°C to +ꢀ50°C  
ꢀ000 mW  
JEDEC Industry Standard  
J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 6 of 24  
 
 
DAC8420  
DATA LOAD SEQUENCE  
CS  
tCSH  
tCSS  
SDI  
A1  
A0  
X
X
D11  
D10  
D9  
D8  
D4  
D3  
D2  
D1  
D0  
CLK  
LD  
tLD1  
tLD2  
tDS  
tDH  
DATA LOAD TIMING  
CLEAR TIMING  
CLSEL  
SDI  
tCLRW  
CLR  
CLK  
CS  
tCH  
tCL  
tS  
tCSH  
V
OUT  
tLD2  
tLDW  
±1LSB  
LD  
tS  
VOUTx  
±1LSB  
Figure 2. Timing Diagram  
5k  
10kΩ  
+15V  
1N4001  
1
16  
+
10µF  
0.1µF  
NC  
NC  
2
3
4
5
6
7
8
15  
14  
10kΩ  
–10V  
1N4001  
13 NC  
DUT  
10µF  
0.1µF  
0.1µF  
+
+
12  
11  
10  
9
5kΩ  
NC  
NC  
10kΩ  
+10V  
1N4001  
10µF  
10kΩ  
10kΩ  
–15V  
1N4001  
NC = NO CONNECT  
10µF  
0.1µF  
+
Figure 3. Burn-In Diagram  
Rev. B | Page 7 of 24  
 
DAC8420  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VDD  
VOUTD  
VOUTC  
VREFLO  
VREFHI  
VOUTB  
VOUTA  
VSS  
1
2
3
4
5
6
7
8
16 CLSEL  
15 CLR  
14 LD  
VDD  
VOUTD  
VOUTC  
VREFLO  
VREFHI  
VOUTB  
VOUTA  
VSS  
1
2
3
4
5
6
7
8
16 CLSEL  
15 CLR  
14 LD  
DAC8420  
TOP VIEW  
DAC8420  
13 NC  
13 NC  
TOP VIEW  
(Not to Scale)  
12 CS  
(Not to Scale)  
12 CS  
11 CLK  
10 SDI  
11 CLK  
10 SDI  
9
GND  
9
GND  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. PDIP and CERDIP  
Figure 5. SOIC  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
4
VDD  
VREFLO  
Positive Power Supply, 5 V to ꢀ5 V.  
Reference Input. Lower DAC ladder reference voltage input, equal to zero-scale output. Allowable  
range is VSS to (VVREFHI − 2.5 V).  
5
VREFHI  
Reference Input. Upper DAC ladder reference voltage input. Allowable range is (VDD − 2.5 V) to  
(VVREFLO + 2.5 V).  
7, 6, 3, 2  
9
ꢀ0  
VOUTA through VOUTD  
Buffered DAC Analog Voltage Outputs.  
Negative Power Supply, 0 V to −ꢀ5 V.  
Power Supply, Digital Ground.  
Serial Data Input. Data presented to this pin is loaded into the internal serial-parallel shift register,  
which shifts data in, beginning with DAC Address Bit Aꢀ. This input is ignored when CS is high. SDI  
is CMOS/TTL compatible. The format of the ꢀ6-bit serial word is shown in Table ꢃ.  
VSS  
GND  
SDI  
ꢀꢀ  
ꢀ2  
CLK  
CS  
System Serial Data Clock Input, TTL/CMOS Levels. Data presented to the input SDI is shifted into  
the internal serial-parallel input register on the rising edge of clock. This input is logically OR’ed  
with CS.  
Control Input, Device Chip Select, Active Low. This input is logically OR’ed with the clock and  
disables the serial data register input when high. When low, data input clocking is enabled (see  
Table 6). CS is CMOS/TTL compatible.  
ꢀ3  
ꢀ4  
NC  
LD  
No Connect = Don’t Care.  
Control Input, Asynchronous DAC Register Load Control, Active Low. The data currently contained  
in the serial input shift register is shifted out to the DAC data registers on the falling edge of LD,  
independent of CS. Input data must remain stable while LD is low. LD is CMOS/TTL compatible.  
ꢀ5  
ꢀ6  
CLR  
Control Input, Asynchronous Clear, Active Low. Sets internal data Register A through Register D to  
zero or midscale, depending on current state of CLSEL. The data in the serial input shift register is  
unaffected by this control. CLR is CMOS/TTL compatible.  
CLSEL  
Control Input, Determines action of CLR. If high, a clear command sets the internal DAC Register A  
through Register D to midscale (0xꢃ00). If low, the registers are set to zero (0x000). CLSEL is CMOS/  
TTL compatible.  
Rev. B | Page ꢃ of 24  
 
DAC8420  
Table 6. Control Function Logic Table  
CLK1  
CS1  
LD  
CLR  
CLSEL  
Serial Input Shift Register  
DAC Register A to DAC Register D  
NC2  
NC2  
NC2  
Low  
High  
High  
NC2  
High  
High  
High  
Low  
NC ()2  
NC2  
High  
High  
High  
High  
High  
Low  
Low  
High  
High  
High  
High  
High  
High  
Low  
High /Low  
NC2  
NC2  
NC2  
NC2  
NC2  
No change  
No change  
No change  
Shifts register one bit  
Shifts register one bit  
No change  
Loads midscale value (0xꢃ00)  
Loads zero-scale value (0x000)  
Latches value  
No change  
No change  
Loads the serial data-word3  
Transparent4  
Low  
High  
No change  
No change  
High  
No change  
CS  
CLK and are interchangeable.  
2 NC = Don’t Care.  
3
CS  
CS  
Returning high while CLK is high avoids an additional false clock of serial input data. CLK and are interchangeable.  
4
LD  
Do not clock in serial data while  
is low.  
Rev. B | Page 9 of 24  
 
 
DAC8420  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.3  
0.4  
0.3  
0.2  
0.1  
0
T
= +25°C  
= +5V  
A
T
= +25°C  
A
V
V
V
DD  
V
V
V
= +15V  
= –15V  
DD  
SS  
0.2  
0.1  
= 0V  
SS  
VREFLO  
= 0V  
= –10V  
VREFLO  
0
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.4  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
14  
1.5  
2.0  
2.5  
3.0  
3.5  
V
(V)  
V
(V)  
VREFHI  
VREFHI  
Figure 6. DNL vs. VVREFHI  
(
15 V)  
Figure 9. INL vs. VVREFHI (+5 V)  
0.7  
0.5  
0.3  
0.10  
0.05  
0
x + 3σ  
T
= +25°C  
= +5V  
A
V
V
V
DD  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= 0V  
SS  
VREFLO  
= 0V  
= +10V  
VREFHI  
= –10V  
VREFLO  
–0.05  
–0.10  
–0.15  
x
0.1  
–0.1  
–0.3  
–0.5  
–0.20  
–0.25  
x – 3σ  
0
200  
400  
600  
800  
1000  
–0.30  
1.5  
2.0  
2.5  
3.0  
3.5  
t
= HOURS OF OPERATION AT 125°C  
CURVES NOT NORMALIZED  
V
(V)  
VREFHI  
Figure 7. DNL vs. VVREFHI (+5 V)  
Figure 10. Full-Scale Error vs. Time Accelerated by Burn-In  
1.2  
0.3  
0.2  
x + 3σ  
1.0  
0.8  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
0.1  
VREFHI  
VREFLO  
x
0.6  
0.4  
0.2  
0
0
–0.1  
–0.2  
–0.3  
T
= +25°C  
A
V
V
V
= +15V  
= –15V  
DD  
SS  
= –10V  
VREFLO  
x – 3σ  
0
200  
t
400  
600  
800  
1000  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
14  
= HOURS OF OPERATION AT 125°C  
CURVES NOT NORMALIZED  
V
(V)  
VREFHI  
Figure 8. INL vs. VREFHI ( 15 V)  
Figure 11. Zero-Scale Error vs. Time Accelerated by Burn-In  
Rev. B | Page ꢀ0 of 24  
 
DAC8420  
0.2  
0.1  
1.5  
1.0  
0.5  
0
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +5V  
= 0V  
DD  
SS  
= +10V  
= –10V  
VREFHI  
= +2.5V  
= 0V  
VREFHI  
VREFLO  
0
–0.1  
–0.2  
VREFLO  
DAC C  
DAC D  
DAC A  
–0.5  
–0.3  
–0.4  
–0.5  
–0.6  
–1.0  
–1.5  
DAC B  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
TEMPERATURE (  
°
Figure 15. Channel-to-Channel Matching  
Figure 12. Full-Scale Error vs. Temperature  
13  
12  
1.2  
1.0  
T = +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
V
V
V
= +15V  
= –15V  
DD  
SS  
SS  
= +10V  
= –10V  
VREFHI  
VREFLO  
11  
10  
9
= –10V  
VREFLO  
0.8  
0.6  
0.4  
DAC B  
DAC C  
DAC D  
DAC A  
8
7
0.2  
0
6
–0.2  
–0.4  
5
4
–7  
–5  
–3  
–1  
0
1
3
5
7
9
11  
13  
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
V
(V)  
TEMPERATURE (  
°
VREFHI  
Figure 13. Zero-Scale Error vs. Temperature  
Figure 16. IDD vs. VVREFHI, All DACs High  
0.8  
0.9  
0.7  
T
= +25°C, –55°C, 125°C  
= +15V  
T
= +25°C  
= +15V  
A
A
0.7  
0.6  
V
V
V
V
V
V
V
V
DD  
DD  
= –15V  
= –15V  
SS  
SS  
= +10V  
= –10V  
= +10V  
= –10V  
0.5  
VREFHI  
VREFHI  
0.5  
0.4  
VREFLO  
VREFLO  
0.3  
0.3  
0.1  
0.2  
0.1  
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
Figure 14. Channel-to-Channel Matching  
Figure 17. INL vs. Code  
Rev. B | Page ꢀꢀ of 24  
DAC8420  
1.5  
31.25mV  
LD  
T
= +25°C  
A
1.0  
0.5  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
VREFHI  
VREFLO  
0
T
= +25°C  
4.88mV  
A
1 LSB  
0mV  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–0.5  
–1.0  
= +10V  
= –10V  
VREFHI  
VREFLO  
–18.75mV  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–9.8µs  
10µs/DIV  
90.2µs  
tSETT  
13µs  
Figure 18. IVREFHI vs. Code  
Figure 21. Positive Settling Time ( 15 V)  
–2.50µV  
LD  
43.75mV  
CLR  
T
= +25°C  
= +5V  
T
= +25°C  
A
A
V
V
V
V
V
V
V
V
= +15V  
= –15V  
DD  
DD  
SS  
= –5V  
SS  
= +2.5V  
= –2.5V  
= +10V  
= –10V  
VREFHI  
VREFHI  
1.22mV  
1 LSB  
0mV  
VREFLO  
VREFLO  
0mV  
1 LSB  
–4.88mV  
–10.25mV  
–6.25mV  
–9.8µs  
–4.9µs  
5µs/DIV  
45.1µs  
10µs/DIV  
90.2µs  
tSETT  
8µs  
tSETT  
13µs  
Figure 19. Positive Settling Time ( 5 V)  
Figure 22. Negative Settling Time ( 15 V)  
6.5mV  
CLR  
5V  
T
= +25°C  
A
V
V
V
V
= +5V  
= –5V  
DD  
SS  
T
= +25°C  
A
V
V
V
V
= +5V  
= –5V  
DD  
SS  
= +2.5V  
= –2.5V  
VREFHI  
VREFLO  
= +2.5V  
= –2.5V  
VREFHI  
VREFLO  
+1V/DIV  
0
0mV  
1 LSB  
1.22mV  
–5V  
–47.6µs  
3.5mV  
–4.9µs  
5µs/DIV  
45.1µs  
20µs/DIV  
152.4µs  
V
µs  
V
µs  
SR  
RISE  
= 1.65  
SR  
= 1.17  
FALL  
tSETT  
8µs  
Figure 20. Negative Settling Time ( 5 V)  
Figure 23. Slew Rate ( 5 V)  
Rev. B | Page ꢀ2 of 24  
DAC8420  
6
25V  
LD  
I
DD  
4
2
CLR  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
+5V/DIV  
0
= +10V  
= –10V  
VREFHI  
0
VREFLO  
ALL DACS HIGH (FULL SCALE)  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–2  
–4  
–6  
= +10V  
= –10V  
VREFHI  
VREFLO  
I
SS  
–25V  
–33.6µs  
–75  
0
75  
150  
20µs/DIV  
166.4µs  
V
µs  
V
µs  
SR  
RISE  
= 1.9  
SR = 2.02  
FALL  
TEMPERATURE (°C)  
Figure 24. Slew Rate ( 15 V)  
Figure 27. Power Supply Current vs. Temperature  
VOUTA THROUGH VOUTD  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
10  
0
= +10V  
= –10V  
VREFHI  
VREFLO  
–10  
–20  
–30  
DATA = 0x800  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= 0 ±100mV  
VREFHI  
= –10V  
VREFLO  
ALL BITS HIGH 200mV p-p  
5V/DIV  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 25. Small-Signal Response  
Figure 28. DAC Output Current vs. VOUTx  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
6
4
T
= +25°C  
A
T = +25°C  
A
DATA = 0x000  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +15V ±1V  
= –15V  
DD  
2
SS  
= +10V  
= –10V  
VREFHI  
= +10V  
= –10V  
VREFHI  
VREFLO  
VREFLO  
DATA = 0xFFF OR 0x000  
0
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k 10k  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
Figure 26. PSRR vs. Frequency  
Figure 29. Output Swing vs. Load Resistance  
Rev. B | Page ꢀ3 of 24  
DAC8420  
THEORY OF OPERATION  
INTRODUCTION  
USING CLR AND CLSEL  
The DAC8420 is a quad, voltage-output 12-bit DAC with a serial  
digital input capable of operating from a single 5 V supply. The  
straightforward serial interface can be connected directly to  
most popular microprocessors and microcontrollers, and can  
accept data at a 10 MHz clock rate when operating from 15 V  
supplies. A unique voltage reference structure ensures maximum  
utilization of the DAC output resolution by allowing the user to  
set the zero-scale and full-scale output levels within the supply  
rails. The analog voltage outputs are fully buffered, and are  
capable of driving a 2 kΩ load. Output glitch impulse during  
major code transitions is a very low 64 nV-s (typ).  
CLR  
The clear (  
) control allows the user to perform an asyn-  
CLR  
chronous reset function. Asserting  
loads all four DAC  
data-word registers, forcing the DAC outputs to either zero  
scale (0x000) or midscale (0x800), depending on the state of  
CLSEL as shown in Table 6. The clear function is asynchronous  
and totally independent of . When  
DAC outputs remain latched at the reset value until  
strobed, reloading the individual DAC data-word registers  
with either the data held in the serial input register prior to the  
reset or with new data loaded through the serial interface.  
CS  
CLR  
returns high, the  
LD  
is  
Table 7. DAC Address Word Decode Table  
DIGITAL INTERFACE OPERATION  
A1  
A0  
DAC Addressed  
CS  
The serial input of the DAC8420, consisting of , SDI, and  
0
0
DAC A  
LD  
, is easily interfaced to a wide variety of microprocessor serial  
0
DAC B  
CS  
ports. While  
is low, the data presented to the input SDI is  
0
DAC C  
shifted into the internal serial-to-parallel shift register on the  
rising edge of the clock, with the address MSB first, data LSB  
last, as shown in Table 6 and in the timing diagram (Figure 2).  
The data format, shown in Table 8, is two bits of DAC address  
and two don’t care fill bits, followed by the 12-bit DAC data-  
word. Once all 16 bits of the serial data-word have been input,  
DAC D  
PROGRAMMING THE ANALOG OUTPUTS  
The unique differential reference structure of the DAC8420  
allows the user to tailor the output voltage range precisely to  
the needs of the application. Instead of spending DAC resolu-  
tion on an unused region near the positive or negative rail, the  
DAC8420 allows the user to determine both the upper and  
lower limits of the analog output voltage range. Thus, as shown  
in Table 9 and Figure 30, the outputs of DAC A through DAC D  
range between VREFHI and VREFLO, within the limits specified  
in the Specifications section. Note also that VREFHI must be  
greater than VREFLO.  
LD  
the load control  
is strobed and the word is parallel-shifted  
out onto the internal data bus. The two address bits are decoded  
and used to route the 12-bit data-word to the appropriate DAC  
data register (see the Applications section).  
CORRECT OPERATION OF CS AND CLK  
CS  
In Table 6, the control pins CLK and  
require some attention  
during a data load cycle. Since these two inputs are fed to the  
same logical OR gate, the operation is in fact identical. The user  
must take care to operate them accordingly to avoid clocking in  
false data bits. In the timing diagram, CLK must be halted high  
V
DD  
2.5V MIN  
V
VREFHI  
0xFFF  
CS  
or  
CLK following the rising edge that latched in the last data bit.  
CS  
must be brought high during the last high portion of the  
1 LSB  
2.5V MIN  
Otherwise, an additional rising edge is generated by  
while CLK is low, causing  
rising  
to act as the clock and allowing a  
CS  
false data bit into the serial input register. The same issue must  
also be considered in the beginning of the data load sequence.  
0x000  
–10V MIN  
V
VREFLO  
0V MIN  
V
SS  
Figure 30. Output Voltage Range Programming  
Table 8.  
(FIRST)  
(LAST)  
B15  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
Aꢀ  
A0  
NC  
NC  
Dꢀꢀ  
(MSB)  
Dꢀ0  
D9  
Dꢃ  
D7  
D6  
D5  
D4  
D3  
D2  
Dꢀ  
D0  
—Address Word—  
—DAC Data-Word—  
(LSB)  
Rev. B | Page ꢀ4 of 24  
 
 
 
 
 
DAC8420  
Table 9. Analog Output Code  
DAC Data-Word (Hex)  
0xFFF  
VOUT  
Note  
Full-scale output  
Midscale + ꢀ  
Midscale  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
VREFLO +  
× 4095  
× 2049  
× 2048  
× 2047  
×0  
0xꢃ0ꢀ  
0xꢃ00  
0x7FF  
0x000  
VREFLO +  
VREFLO +  
VREFLO +  
VREFLO +  
Midscale − ꢀ  
Zero scale  
(VREFHI VREFLO)  
4096  
Rev. B | Page ꢀ5 of 24  
 
DAC8420  
POWER-UP SEQUENCE  
VREFHI INPUT REQUIREMENTS  
To prevent a CMOS latch-up condition, power up VDD, VSS,  
and GND prior to any reference voltages. The ideal power-up  
sequence is GND, VSS, VDD, VREFHI, VREFLO, and digital  
inputs. Noncompliance with the power-up sequence over an  
extended period can elevate the reference currents and eventually  
damage the device. On the other hand, if the noncompliant  
power-up sequence condition is as short as a few milliseconds,  
the device can resume normal operation without being damaged  
once VDD/VSS is powered.  
The DAC8420 utilizes a unique, patented DAC switch driver  
circuit that compensates for different supply, reference voltage,  
and digital code inputs. This ensures that all DAC ladder switches  
are always biased equally, ensuring excellent linearity under all  
conditions. Thus, as shown in Table 1, the VREFHI input of the  
DAC8420 requires both sourcing and sinking current capabili-  
ties from the reference voltage source. Many positive voltage  
references are intended as current sources only and offer little  
sinking capability. The user should consider references such as  
the AD584, AD586, AD587, AD588, AD780, and REF43 for  
such an application.  
Rev. B | Page ꢀ6 of 24  
 
DAC8420  
APPLICATIONS  
performance of the device, the supply should be as noise free as  
possible. In the case of 5 V only systems, it is desirable to use  
the same 5 V supply for both the analog circuitry and the  
digital portion of the circuit. Unfortunately, the typical 5 V  
supply is extremely noisy due to the fast edge rates of the  
popular CMOS logic families, which induce large inductive  
voltage spikes, and busy microcontroller or microprocessor  
buses, and therefore commonly have large current spikes during  
bus activity. However, by properly filtering the supply as shown  
in Figure 32, the digital 5 V supply can be used. The inductors  
and capacitors generate a filter that not only rejects noise due  
to the digital circuitry, but also filters out the lower frequency  
noise of switch mode power supplies. The analog supply should  
be connected as close as possible to the origin of the digital  
supply to minimize noise pickup from the digital section.  
POWER SUPPLY BYPASSING AND GROUNDING  
In any circuit where accuracy is important, careful consid-  
eration of the power supply and ground return layout helps  
to ensure the rated performance. The DAC8420 has a single  
ground pin that is internally connected to the digital section  
as the logic reference level. The first thought may be to connect  
this pin to digital ground; however, in large systems digital  
ground is often noisy because of the switching currents of other  
digital circuitry. Any noise that is introduced at the ground pin  
can couple into the analog output. Thus, to avoid error-causing  
digital noise in the sensitive analog circuitry, the ground pin  
should be connected to the system analog ground. The ground  
path (circuit board trace) should be as wide as possible to reduce  
any effects of parasitic inductance and ohmic drops. A ground  
plane is recommended if possible. The noise immunity of the  
on-board digital circuitry, typically in the hundreds of milli-  
volts, is well able to reject the common-mode noise typically  
seen between system analog and digital grounds. Finally, the  
analog and digital ground should be connected to each other  
at a single point in the system to provide a common reference.  
This is preferably done at the power supply.  
FERRITE BEADS:  
2 TURNS, FAIR-RITE  
#2677006301  
TTL/CMOS  
LOGIC  
CIRCUITS  
+5V  
+
+
100µF  
ELECT.  
0.1µF  
CER.  
10µF TO 22µF  
TANT.  
+5V  
RETURN  
Good grounding practice is also essential to maintaining analog  
performance in the surrounding analog support circuitry. With  
two reference inputs and four analog outputs capable of moderate  
bandwidth and output current, there is a significant potential  
for ground loops. Again, a ground plane is recommended as the  
most effective solution to minimizing errors due to noise and  
ground offsets.  
+5V  
POWER SUPPLY  
Figure 32. Single-Supply Analog Supply Filter  
ANALOG OUTPUTS  
The DAC8420 features buffered analog voltage outputs capable  
of sourcing and sinking up to 5 mA when operating from 15 V  
supplies, eliminating the need for external buffer amplifiers in  
most applications while maintaining specified accuracy over the  
rated operating conditions. The buffered outputs are simply an  
op amp connected as a voltage follower, and thus have output  
characteristics very similar to the typical operational amplifier.  
These amplifiers are short-circuit protected. The user should  
verify that the output load meets the capabilities of the device,  
in terms of both output current and load capacitance. The  
DAC8420 is stable with capacitive loads up to 2 nF typically.  
However, any capacitive load will increase the settling time,  
and should be minimized if speed is a concern.  
1
+V  
V
DD  
S
10µF  
0.1µF  
8
9
–V  
V
GND  
S
SS  
10µF  
0.1µF  
10µF = TANTALUM  
0.1µF = CERAMIC  
The output stage includes a P-channel MOSFET to pull the  
output voltage down to the negative supply. This is very important  
in single-supply systems where VREFLO usually has the same  
potential as the negative supply. With no load, the zero-scale  
output voltage in these applications is less than 500 μV typically,  
or less than 1 LSB when VVREFHI = 2.5 V. However, when sinking  
current, this voltage does increase because of the finite imped-  
ance of the output stage. The effective value of the pull-down  
resistor in the output stage is typically 320 ꢁ. With a 100 kΩ  
resistor connected to 5 V, the resulting zero-scale output voltage  
Figure 31. Recommended Supply Bypassing Scheme  
The DAC8420 should have ample supply bypassing, located as  
close to the package as possible. Figure 31 shows the recom-  
mended capacitor values of 10 μF in parallel with 0.1 μF. The  
0.1 μF capacitor should have low effective series resistance (ESR)  
and effective series inductance (ESI) (such as any common  
ceramic type capacitor), which provide a low impedance path  
to ground at high frequencies to handle transient currents due  
to internal logic switching. To preserve the specified analog  
Rev. B | Page ꢀ7 of 24  
 
 
 
 
 
DAC8420  
is 16 mV. Thus, the best single-supply operation is obtained with  
the output load connected to ground, so the output stage does not  
have to sink current.  
AD588 as shown in Figure 33. Many applications utilize the  
DACs to synthesize symmetric bipolar waveforms, which  
require an accurate, low drift bipolar reference. The AD588  
provides both voltages and needs no external components.  
Additionally, the part is trimmed in production for 12-bit  
accuracy over the full temperature range without user calibra-  
tion. Performing a clear with the reset select CLSEL high allows  
the user to easily reset the DAC outputs to midscale, or 0 V in  
these applications.  
Like all amplifiers, the DAC8420 output buffers do generate  
voltage noise, 52 nV/√Hz typically. This is easily reduced by  
adding a simple RC low-pass filter on each output.  
REFERENCE CONFIGURATION  
The two reference inputs of the DAC8420 allow a great deal  
of flexibility in circuit design. The user must take care, however,  
to observe the minimum voltage input levels on VREFHI and  
VREFLO to maintain the accuracy shown in the data sheet.  
These input voltages can be set anywhere across a wide range  
within the supplies, but must be a minimum of 2.5 V apart in  
any case (see Figure 30). A wide output voltage range can be  
obtained with 5 V references, which can be provided by the  
When driving the reference inputs VREFHI and VREFLO, it is  
important to note that VREFHI both sinks and sources current,  
and that the input currents of both are code dependent. Many  
voltage reference products have a limited current sinking  
capability and must be buffered with an amplifier to drive  
VREFHI in order to maintain overall system accuracy. The  
input VREFLO, however, has no such requirement.  
+15V SUPPLY  
1µF  
VREFHI  
+5V  
7
6
4
3
0.1µF  
5
1
AD588  
A3  
R
DAC8420  
B
+5V  
–5V  
DAC A  
DAC B  
DAC C  
7
6
3
VOUTA  
VOUTB  
VOUTC  
1
A1  
R1  
14  
15  
R4  
A4  
R2  
R5  
+15V  
SUPPLY  
+V  
S
2
DIGITAL  
CONTROLS  
R3  
R6  
0.1µF  
0.1µF  
A2  
DAC D  
4
2
VOUTD  
0.1µF  
SYSTEM  
GROUND  
–V 16  
S
5
9
10  
8
12  
11 13  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
–15V  
SUPPLY  
VREFLO  
–5V  
GND  
–15V SUPPLY  
Figure 33. 10 V Bipolar Reference Configuration Using the AD588  
Rev. B | Page ꢀꢃ of 24  
 
 
DAC8420  
LD  
One opto-isolated line ( ) can be eliminated from this circuit  
by adding an inexpensive 4-bit TTL counter to generate the  
load pulse for the DAC8420 after 16 clock cycles. The counter  
is used to count the number of clock cycles loading serial data  
to the DAC8420. After all 16 bits have been clocked into the  
converter, the counter resets, and a load pulse is generated on  
Clock 17. In either circuit, the serial interface of the DAC8420  
provides a simple, low cost method of isolating the digital control.  
For a single 5 V supply, VVREFHI is limited to at most 2.5 V, and  
must always be at least 2.5 V less than the positive supply to  
ensure linearity of the device. For these applications, the REF43  
is an excellent low drift 2.5 V reference that consumes only  
450 μA (max). It works well with the DAC8420 in a single 5 V  
system as shown in Figure 34.  
+5V SUPPLY  
REF43  
2
V
IN  
+5V SUPPLY  
HIGH VOLTAGE  
ISOLATION  
0.1µF  
2.5V  
4
6
GND  
V
OUT  
5V  
5V  
REG  
VREFHI  
0.1µF  
5
1
POWER  
DAC8420  
DAC A  
7
6
3
VOUTA  
VOUTB  
VOUTC  
5V  
10k  
+5V  
REF43  
2
4
V
IN  
DAC B  
DAC C  
6
V
OUT  
GND  
LD  
SCLK  
SDI  
5V  
2.5V  
5V  
10kΩ  
0.1µF  
0.1µF  
5
1
DIGITAL  
CONTROLS  
5V  
10kΩ  
VREFHI  
CLR  
VDD  
15  
16  
14  
12  
11  
10  
DAC D  
4
2
VOUTD  
7
VOUTA  
CLSEL  
LD  
DAC8420  
CS  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
6
3
VOUTB  
VOUTC  
GND  
VREFLO  
5V  
10kΩ  
Figure 34. 5 V Single-Supply Operation Using REF43  
CLK  
SDI  
2
VOUTD  
ISOLATED DIGITAL INTERFACE  
VREFLO VSS GND  
Because the DAC8420 is ideal for generating accurate voltages  
in process control and industrial applications, due to noise,  
from the central controller; it may be necessary to isolate it  
from the central controller. This can be easily achieved by using  
opto-isolators, which are commonly used to provide electrical  
isolation in excess of 3 kV. Figure 35 shows a simple 3-wire  
interface scheme for controlling the clock, data, and load pulse.  
4
8
9
Figure 35. Opto-lsolated 3-Wire Interface  
CS  
For normal operation,  
is tied permanently low so that the  
DAC8420 is always selected. The resistor and capacitor on the  
CLR  
pin provide a power-on reset with 10 ms time constant.  
LD  
The three opto-isolators are used for the SDI, CLK, and  
lines.  
Rev. B | Page ꢀ9 of 24  
 
 
 
DAC8420  
5V SUPPLY  
REF43  
VINA  
5V  
2
4
V
IN  
5V SUPPLY  
0.1µF  
2.5V  
0.1µF  
6
GND  
V
OUT  
5V  
604  
0.1µF  
VREFHI  
3
5
1
CMP04  
VOUTA  
VOUTB  
VOUTC  
DAC8420  
5
4
7
6
DAC A  
7
6
3
RED LED  
5V  
C1  
C2  
C3  
2
1
OUT A  
DAC B  
DAC C  
604Ω  
9
8
RED LED  
DIGITAL  
CONTROLS  
14  
13  
OUT B  
VOUTD  
DAC D  
4
2
11  
10  
C4  
12  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
GND  
VREFLO  
VSS  
VINB  
Figure 36. Dual Programmable Window Comparator  
DUAL WINDOW COMPARATOR  
PC2  
CLSEL  
PC1  
PC0  
CLR  
CS  
Often a comparator is needed to signal an out-of-range  
warning. Combining the DAC8420 with a quad comparator  
such as the CMP04 provides a simple dual window comparator  
with adjustable trip points as shown in Figure 36. This circuit  
can be operated with either a dual supply or a single supply. For  
the A input channel, DAC B sets the low trip point, and DAC A  
sets the upper trip point. The CMP04 has open-collector outputs  
that are connected together in a wire-ORed configuration to  
generate an out-of-range signal. For example, when VINA  
goes below the trip point set by DAC B, Comparator C2 pulls  
the output down, turning on the red LED. The output can also  
be used as a logic signal for further processing.  
MC68HC11*  
DAC8420*  
(PD5) SS  
SCK  
LD  
CLK  
SDI  
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. MC68HC11 Microcontroller Interface  
For correct operation, the MC68HC11 should be configured  
such that its CPOL bit and CPHA bit are both set to 1. In this  
configuration, serial data on MOSI of the MC68HC11 is valid  
on the rising edge of the clock, which is the required timing for  
the DAC8420. Data is transmitted in 8-bit bytes (MSB first),  
with only eight rising clock edges occurring in the transmit  
cycle. To load data to the input register of the DAC8420, PC0  
is taken low and held low during the entire loading cycle. The  
first eight bits are shifted in address first, immediately followed  
by another eight bits in the second least-significant byte to load  
the complete 16-bit word. At the end of the second byte load,  
PC0 is then taken high. To prevent an additional advancing of  
the internal shift register, SCK must already be asserted before  
PC0 is taken high. To transfer the contents of the input shift  
register to the DAC register, PD5 is then taken low, asserting the  
MC68HC11 MICROCONTROLLER INTERFACING  
Figure 37 shows a serial interface between the DAC8420 and  
the MC68HC11 8-bit microcontroller. The SCK output of the  
port outputs the serial data to load into the SDI input of the  
DAC. The port lines (PD5, PC0, PC1, and PC2) provide the  
controls to the DAC as shown.  
LD  
input of the DAC and completing the loading process. PD5  
CLR  
should return high before the next load cycle begins. The  
input of the DAC8420 (controlled by the output PC1) provides  
an asynchronous clear function.  
Rev. B | Page 20 of 24  
 
 
 
 
DAC8420  
DAC8420 TO M68HC11 INTERFACE ASSEMBLY PROGRAM  
* M68HC11 Register Definitions  
PORTC EQU $1003 Port C control register  
* Initialize SPI Interface  
LDAA #$5F  
STAA SPCR SPI is Master,CPHA=1,CPOL=1,Clk rate=E/32  
* Call update subroutine  
BSR UPDATE Xfer 2 8-bit words to DAC-8420  
JMP $E000 Restart BUFFALO  
* Subroutine UPDATE  
UPDATE PSHX Save registers X, Y, and A  
PSHY  
PSHA  
* “0,0,0,0;0,CLSEL,CLR,CS”  
DDRC EQU $1007 Port C data direction  
PORTD EQU $1008 Port D data register  
* “0,0,LD,SCLK;SDI,0,0,0”  
DDRD EQU $1009 Port D data direction  
SPCR EQU $1028 SPI control register  
* “SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0”  
SPSR EQU $1029 SPI status register  
* “SPIF,WCOL,0,MODF;0,0,0,0”  
* Enter Contents of SDI1 Data Register (DAC# and 4 MSBs)  
LDAA #$80 1,0,0,0;0,0,0,0  
SPDR EQU $102A SPI data register; Read-Buffer; Write-Shifter  
STAA SDI1 SDI1 is set to 80 (Hex)  
* Enter Contents of SDI2 Data Register  
LDAA #$00 0,0,0,0;0,0,0,0  
STAA SDI2 SDI2 is set to 00 (Hex)  
LDX #SDI1 Stack pointer at 1st byte to send via SDI  
LDY #$1000 Stack pointer at on-chip registers  
* Clear DAC output to zero  
BCLR PORTC,Y $02 Assert CLR  
BSET PORTC,Y $02 Deassert CLR  
* Get DAC ready for data input  
BCLR PORTC,Y $01 Assert CS  
TFRLP LDAA 0,X Get a byte to transfer via SPI  
STAA SPDR Write SDI data reg to start xfer  
WAIT LDAA SPSR Loop to wait for SPIF  
BPL WAIT SPIF is the MSB of SPSR  
*
* SDI RAM variables: SDI1 is encoded from 0 (Hex) to CF (Hex)  
* To select: DAC A – Set SDI1 to $0X  
DAC B – Set SDI1 to $4X  
DAC C – Set SDI1 to $8X  
DAC D – Set SDI1 to $CX  
SDI2 is encoded from 00 (Hex) to FF (Hex)  
* DAC requires two 8-bit loads – Address + 12 bits  
SDI1 EQU $00 SDI packed byte 1 “A1,A0,0,0;MSB,DB10,DB9,DB8”  
SDI2 EQU $01 SDI packed byte 2  
“DB7,DB6,DB5,DB4;DB3,DB2,DB1,DB0”  
* Main Program  
ORG $C000 Start of user’s RAM in EVB  
INIT LDS #$CFFF Top of C page RAM  
* Initialize Port C Outputs  
*
(when SPIF is set, SPSR is negated)  
LDAA #$07 0,0,0,0;0,1,1,1  
INX  
Increment counter to next byte for xfer  
* CLSEL-Hi, CLR-Hi, CS-Hi  
CPX #SDI2+ 1 Are we done yet ?  
BNE TFRLP If not, xfer the second byte  
* To reset DAC to ZERO-SCALE, set CLSEL-Lo ($03)  
* To reset DAC to MID-SCALE, set CLSEL-Hi ($07)  
STAA PORTC Initialize Port C Outputs  
LDAA #$07 0,0,0,0;0,1,1,1  
STAA DDRC CLSEL, CLR, and CS are now enabled as outputs  
* Initialize Port D Outputs  
* Update DAC output with contents of DAC register  
BCLR PORTD,Y 520 Assert LD  
BSET PORTD,Y $20 Latch DAC register  
BSET PORTC,Y $01 De-assert CS  
PULA When done, restore registers X, Y & A  
PULY  
LDAA #$30 0,0,1,1;0,0,0,0  
* LD-Hi,SCLK-Hi,SDI-Lo  
PULX  
STAA PORTD Initialize Port D Outputs  
LDAA #$38 0,0,1,1;1,0,0,0  
RTS  
** Return to Main Program **  
STAA DDRD LD,SCLK, and SDI are now enabled as outputs  
Rev. B | Page 2ꢀ of 24  
 
DAC8420  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 38. 16-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-16)  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 22 of 24  
 
DAC8420  
0.098 (2.49) MAX  
9
0.005 (0.13) MIN  
16  
0.310 (7.87)  
0.220 (5.59)  
1
8
PIN 1  
0.100 (2.54) BSC  
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. 16-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-16)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
DACꢃ420EP  
DACꢃ420EPZ2  
Temperature Range  
Package Description  
Package Option  
N-ꢀ6  
N-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
N-ꢀ6  
N-ꢀ6  
Q-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
RW-ꢀ6  
INL1 ( LSB)  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
−40°C to +ꢃ5°C  
ꢀ6-Lead Plastic Dual In-Line Package [PDIP]  
ꢀ6-Lead Plastic Dual In-Line Package [PDIP]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Plastic Dual In-Line Package [PDIP]  
ꢀ6-Lead Plastic Dual In-Line Package [PDIP]  
ꢀ6-Lead Ceramic Dual In-Line Package [CERDIP]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
ꢀ6-Lead Standard Small Outline Package [SOIC_W]  
DACꢃ420ES  
DACꢃ420ES-REEL  
DACꢃ420ESZ2  
DACꢃ420ESZ-REEL2  
DACꢃ420FP  
DACꢃ420FPZ2  
DACꢃ420FQ  
DACꢃ420FS  
DACꢃ420FS-REEL  
DACꢃ420FSZ2  
DACꢃ420FSZ-REEL2  
INL measured at VDD = +ꢀ5 V and VSS = −ꢀ5 V.  
2 Z = RoHS Compliant Part.  
Rev. B | Page 23 of 24  
 
 
DAC8420  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00275-0-5/07(B)  
Rev. B | Page 24 of 24  

相关型号:

DAC8420FSZ2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420GBC

12-Bit Digital-to-Analog Converter
ETC

DAC8420QBC

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420_07

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420_16

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8426

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426AR

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426AR/883

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERAMIC, DIP-20, Digital to Analog Converter
ADI

DAC8426AR/883C

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10V Reference
ADI

DAC8426AR/883C

QUAD, PARALLEL, 8 BITS INPUT LOADING, 3us SETTLING TIME, 8-BIT DAC, CDIP20, CERDIP-20
ROCHESTER

DAC8426BR

Quad 8-Bit Voltage Out CMOS DAC Complete with Internal 10 V Reference
ADI

DAC8426BR/883

IC SERIAL INPUT LOADING, 3 us SETTLING TIME, 8-BIT DAC, CDIP20, CERAMIC, DIP-20, Digital to Analog Converter
ADI