EVAL-AD1896EB [ADI]

AD1896 7.75:1 to 1:8, 192 kHz Stereo ASRC Evaluation Board; AD1896 7.75 : 1到1 : 8 , 192千赫立体声ASRC评估板
EVAL-AD1896EB
型号: EVAL-AD1896EB
厂家: ADI    ADI
描述:

AD1896 7.75:1 to 1:8, 192 kHz Stereo ASRC Evaluation Board
AD1896 7.75 : 1到1 : 8 , 192千赫立体声ASRC评估板

文件: 总28页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AD1896 7.75:1 to 1:8, 192 kHz  
Stereo ASRC Evaluation Board  
a
EVAL-AD1896EB  
OVERVIEW  
INTEGRATED CIRCUIT FUNCTIONS  
AD1896 ASRC (U13)  
The AD1896 is a 24-bit, high-performance, single-chip, second  
generation Asynchronous Sample Rate Converter (ASRC). The  
AD1896 supports sample rates up to 192 kHz with 7.75:1  
downsampling and 1:8 upsampling ranges while maintaining  
the highest performance. In normal operation, input serial data  
(@ input sample rate fS_IN) in 3-wire serial format is sourced to  
the serial input port pins SCLK_I, LRCLK_I, and SDATA_I.  
The output serial data (@ output sample rate fS_out) is accessed  
via the output serial port pins SCLK_O, LRCLK_O, and  
SDATA_O. The LRCLK_I and LRCLK_O signals define the  
input and output sample frequency, respectively. The input and  
output signals are typically asynchronous with respect to each  
other and to the master clock, MCLK_I.  
Asynchronous Sample Rate Converter  
CS8414 SPDIF Receiver (U1)  
Receives the digital signal from an external source in SPDIF/  
AES format and recovers the data and clocks. The 3-wire sig-  
nals are then sourced to the AD1896 input serial port. SPDIF  
receiver supports sample rates up to 96 kHz.  
CS8404 SPDIF Transmitter (U6)  
Encodes the AD1896 output (3-wire format) in SPDIF format.  
SPDIF transmitter supports sample rates up to 96 kHz.  
AD1852 Stereo DAC (U12)  
Stereo DAC for converting the AD1896 output into stereo analog  
outputs. Supports up to 192 kHz sample rates unlike SPDIF  
transmitter.  
The AD1896 has very flexible serial input and output data ports  
for glueless interconnection to audio DACs, DSPs, Digital Inter-  
face Receivers (DIR), and Digital Interface Transmitters (DIT).  
The AD1896 input and output serial data ports can be config-  
ured in left-justified, right-justified (16, 18, 20, and 24 bits),  
I2S, or TDM mode. Top-level pins are provided for controlling  
the data formats and other functional modes of the AD1896  
without any serial programming. Other features include bypass  
mode, matched phase mode, group delay selection of the digital  
filter, mute control, and mute flag pin for an internal error  
flagging. Please refer to the AD1896 data sheet for the detailed  
product description.  
Input CPLD (U2)  
This PLD is used to control the input serial port signals of the  
AD1896. In addition, it controls SPDIF receiver and other  
control signals of the AD1896.  
Output CPLD (U3)  
This PLD controls the output serial port signals of the AD1896  
as well as the SPDIF transmitter and stereo DAC AD1852.  
In addition to these components, there is a circuit that divides  
the master clock of the AD1896 by two or three, based on the  
master/slave clock mode and generates the on-board signals  
256 fS, EXT256 fS, and 128 fS (Figure 9 of the AD1896EB  
schematic). If the AD1896 output port is operating in 768 × fS  
master mode, then the master clock is divided by three; and if  
the AD1896 output port is operating in 512 × fS master mode,  
then the master clock is divided by two. The 256 fS clock (for  
DAC) is divided by two to generate the 128 fS master clock for  
SPDIF transmitter.  
The overall setup of the evaluation board is described briefly  
including jumper settings. The AD1896 evaluation board uses a  
9 V to 15 V dc source. Clean regulated 5 V and 3.3 V are  
generated to power the AD1896 and other on-board compo-  
nents. Separate 5 V supplies are used for analog and digital  
sections. Op amps used for the analog filtering are powered  
from 15 V. Please refer to Appendix A for the block diagram,  
schematics, layout plots, Bill of Materials, and PLD code.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
EVAL-AD1896EB  
The following section highlights key jumpers and switches on  
the evaluation board. Please refer to the AD1896 evaluation  
board schematic for more details. These switches and jumpers  
configure the AD1896 and other components, such as, SPDIF  
receiver, transmitter, and stereo DAC.  
JP2 selects the internal interpolation ratio of the AD1852  
stereo DAC (U12). Based on the sample rate, 8×, 4×, or 2×  
interpolation could be selected. DAC should be configured  
in 8×, 4×, or 2×… mode for 48 kHz, 96 kHz, or 192 kHz  
sample rates, respectively.  
JP3 enables the autoMUTE feature where the AD1896  
MUTE_IN will be asserted if the MUTE_OUT output from  
AD1896 is set high. The MUTE_OUT is set high when  
sample rate of LRCLK_I and LRCLK_O changes.  
SWITCH AND JUMPER FUNCTIONS  
S1 is used to switch the mux inside the PLD (U2) between  
the Digital Interface Receiver (DIR), the CS8414 (U1), and  
the Direct Digital Input (DDI HDR3) signals. The selected  
signal is sourced to the input serial port of the AD1896. DIR  
selection works in conjunction with the Switch S2 as  
described below.  
JP4 jumper selects between an on-board clock oscillator  
(12.288 MHz) and on-board third order overtone crystal  
oscillator (33.8688 MHz) for master clock (MCLK_I) of  
the AD1896. Please refer to Table IX for the maximum  
allowable sample rates for 76 × fS, 512 × fS, and 256 × fS master  
mode with 33.8688 MHz master clock. The on-board clock  
oscillator (12.288 MHz) is enabled only for the SLAVE mode  
operation of the AD1896 (Switch S4 position 7).  
S2 selects between the RCA SPDIF input (J1) and the  
TOSLINK optical input (U4). The selected signal is  
sourced to SPDIF receiver and recovered SCLK_I,  
LRCLK_I, and SDATA_I signals drive the input serial  
port of the AD1896.  
10-pin header HDR1(TDM_IN) is used to input the  
TDM_IN data from the SHARCDSP board.  
S3 is used to select the different input interface format of  
the AD1896 input serial data. Total of six input serial modes  
are possible: LJ, I2S, RJ-24, RJ-20, RJ-18, and RJ-16. Refer  
to the Digital Audio Input Signals section for the configura-  
tion Table IV. Note that the input logic PLD (U2) reads  
the S3 selection and controls the AD1896 and SPDIF receiver  
CS8414 accordingly.  
10-pin header HDR2 (TDM_OUT) is used to receive the  
TDM_OUT data from the AD1896 to SHARC DSP board.  
10-pin header HDR3 (DDI) is used to drive the input serial  
port signals SCLK_I, LRCLK_I, and SDATA_I in 3-wire  
format from an external source.  
S4 selects the master/slave mode of the input and output  
serial ports of the AD1896. Refer to Table II for the mode  
selection settings. In the slave operation, the corresponding  
SCLK and LRCLK signals are externally provided by the  
target system. In the master mode, these two signals are  
internally generated from the MCLK_I signal at 768 × fS,  
512 × fS, or 256 × fS rate. In MASTER MODE operation,  
maximum sample rate for MASTER PORT is limited to 96 kHz.  
10-pin header HDR5 (DDO) is used to drive the output  
serial port signals SCLK_O, LRCLK_O and SDATA_O in  
3-wire format from an external source.  
LEDS  
DS1 (VERF) is illuminated when Validity+Error flag out-  
put on SPDIF receiver CS8414 goes high, indicating  
problems with SPDIF receiver or missing audio signal to the  
SPDIF receiver.  
S5 resets the AD1896 and other components.  
DS2 (PREEMP) indicates the pre-emphasized data to the  
SPDIF receiver.  
S6 activates the BYPASS function of the AD1896 where the  
input serial data is bypassed to the output serial port without  
any signal processing.  
DS3 (3.3 V) is illuminated when 3.3 V dc supply is present  
to power up the VDD_CORE of the AD1896.  
S7 is used to MUTE the AD1896 output serial data as well  
as the AD1852 stereo DAC.  
DS4 (AVDD = 5 V) is illuminated when analog supply to the  
stereo DAC AD1852 is present.  
S8 selects between SHORT or LONG group delay for the  
AD1896.  
DS5 (RIGHT channel) and DS6 (LEFT channel) DAC  
ZERO STATUS LEDs are illuminated when no input signal  
is present to the stereo DAC AD1852 (U12).  
JP1 jumper is used to select output interface format and  
word width of the AD1896 output serial data. Refer to the  
Digital Audio Output Signals section for configuration  
Tables V and VI. Again, the output logic PLD (U3) decodes  
the JP1 signals and configures the AD1852 DAC and  
CS8404 SPDIF transmitter to match the output data format  
of the AD1896.  
DS7 (AUDIO) is illuminated when the SPDIF receiver  
CS8414 is receiving audio data.  
SHARC® is a registered trademark of Analog Devices, Inc.  
–2–  
REV. 0  
EVAL-AD1896EB  
1
2
MMODE_2  
28  
S8  
GRPDLYS  
MCLK_I  
MCLK_O  
SDATA_I  
SCLK_I  
JP4 CRYSTAL OSC./EXTERNAL CLK  
27 MMODE_1  
26 MMODE_0  
25 SCLK_O  
24 LRCLK_O  
23 SDATA_O  
S4 (8-POSITION SWITCH)  
3
4
DDI-HDR3, SPDIF-J1,  
TOSLINK-U4  
DDO-HDR5, SPDIF-J2,  
TDM_OUT-HDR2  
5
6
LRCLK_I  
VDD_IO  
AD1896  
7
22  
21  
20  
19  
18  
17  
16  
VDD_CORE  
8
DGND  
DGND  
S6  
BYPASS  
TDM_IN  
TDM IN HEADER HDR1  
9
10  
11  
12  
13  
14  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
RESET  
SMODE_OUT_0  
SMODE_OUT_1  
WLNGTH_OUT_0  
WLNGTH_OUT_1  
S3 (8-POSITION SWITCH)  
JP1 (4-POSITION JUMPER)  
S5  
S7  
MUTE_IN  
15 MUTE_OUT  
Figure 1. Key Jumpers and Switches on the Evaluation Board  
Table I. Pinout Table for 10-Pin Header Connectors  
Pin  
HDR1 (TDM_IN)  
HDR2 (TDM_OUT)  
HDR3 (DDI)  
HDR5 (DDO)  
1
5 V (O)  
5 V (O)  
5 V (O)  
5 V (O)  
3
5
7
TDM_I (I)  
SCLK_O (I/O)  
LRCLK_O (I/O)  
GND  
SDATA_O (O)  
SCLK_O (I/O)  
LRCLK_O (I/O)  
GND  
SDATA_I (I)  
LRCLK_I (I/O)  
SCLK_I (I/O)  
GND  
SDATA_O (O)  
SCLK_O (I/O)  
LRCLK_O (I/O)  
GND  
2, 4, 6, 8, 10  
DIGITAL AUDIO INPUT SIGNALS  
Input serial port of the AD1896 can be driven in various ways  
using this evaluation board.  
input sample rate up to 192 kHz is possible (input port in  
slave mode) and set by an external source. All input serial  
data formats and master/slave clock modes are supported.  
1. RCA phone jack (J1) or TOSLINK (U4) optical connector  
can be used to input the AES/EBU or SPDIF signal to the  
SPDIF receiver CS8414 (U1). SPDIF receiver generated  
SCLK_I, LRCLK_I, and SDATA_I signals drive the input  
serial port of the AD1896. SPDIF input is supported only  
when the AD1896 serial input port is in SLAVE mode (Switch  
S4 position 3 to 7) and supports all input serial data formats  
except RJ-24 bit and RJ-20 bit (Switch S3 positions 2, 3). The  
SPDIF receiver limits input sample rates to 96 kHz.  
SCLK_I and LRCLK_I signals of the input serial port are  
bidirectional signals. Logic levels on pins MMODE_ [2:0]  
control the direction of these signals. When the input serial port  
is in master mode, these signals are generated by the AD1896;  
whereas, in the slave mode these signals are provided by an  
external source. MMODE_[2:0] pins are set by the 8-position  
Switch S4. Tables II and III show the master/slave clock mode  
corresponding to each switch position.  
Input data format, such as, I2S, LJ, or RJ is set by the logic  
levels on SMODE_IN_[2:0] pins as shown in Table IV. Set the  
8-position Switch S3 on the evaluation board for the proper  
input data format.  
2. Alternatively, an external data header (HDR3) can be used  
to directly source all three signals SCLK_I, LRCLK_I, and  
SDATA_I from an external source. Unlike SPDIF receiver,  
Table II. Input and Output Serial Port Modes  
MMODE_[2:0]  
S4 Switch Position  
2
1
0
Master/Slave Modes  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Both Serial Ports are in Slave Mode  
*Output Serial Port is Master with 768 fS_OUT  
*Output Serial Port is Master with 512 fS_OUT  
*Output Serial Port is Master with 256 fS_OUT  
Matched Phase Mode  
*Input Serial Port is Master with 768 fS_IN  
*Input Serial Port is Master with 512 fS_IN  
*Input Serial Port is Master with 256  
fS  
_IN  
*In MASTER MODE operation, maximum sample rate for Master Port is limited to 96 kHz.  
–3–  
REV. 0  
EVAL-AD1896EB  
Table III. Master/Slave Mode Configuration  
Input Header (HDR3) Output Header (HDR5)  
Switch  
SW4  
MCLK_I  
[MHz]  
Jumper  
JP4 Short  
fS_IN  
fS_OUT  
SCLK_I  
LRCLK_I  
SCLK_O  
LRCLK_O  
0
1
2
3
4
5
6
7
132.3 kHz  
66.15 kHz  
44.1 kHz  
Not Used  
Set Externally  
Set Externally  
Set Externally  
Set Externally  
Set Externally Output  
Set Externally Output  
Set Externally Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Input  
33.8688  
33.8688  
33.8688  
33.8688  
33.8688  
33.8688  
33.8688  
33.8688  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
Not Used  
132.3 kHz  
66.15 kHz  
44.1 kHz  
Input  
Input  
Input  
Input  
Input  
Input  
Set Externally Input  
Table IV. Input Interface Formats  
SMODE_IN_[2:0]  
S3 Switch Position  
2
1
0
Input Interface Format  
0
1
2
3
4
5
6
7
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
Left Justified  
I2S  
Right Justified, 24 Bits  
Right Justified, 20 Bits  
Right Justified, 18 Bits  
Right Justified, 16 Bits  
Not Used  
Not Used  
DIGITAL AUDIO OUTPUT SIGNALS  
control the direction of these signals. Please refer to Table II  
for the switch position S4 setting to control the Master/Slave  
mode of the output serial port. The output interface mode,  
such as I2S, LJ, RJ, and TDM mode, is set by the pins  
SMODE_OUT_[2:0]. Also, the output port has two more pins  
WLNGTH_OUT_[1:0] to set the output word width to 24, 20,  
18, or 16 bits. The logic levels on SMODE_OUT_ [1:0] and  
WLNGTH_OUT_ [1:0] pins allow different serial output data  
formats. As shown in Tables V and VI, set the jumpers one and  
two of JP1 for the word width and three and four of JP1 for the  
output data format.  
Similar to the input serial port, output serial data (SDATA_O,  
SCLK_O, and LRCLK_O signals) can be accessed in three  
different ways using this evaluation board.  
1. Refer to Figure 8. Direct digital output header (HDR5) or,  
alternatively, TDM_OUT header (HDR2) can be used to  
monitor the output serial data of the AD1896 (SDATA_O  
signal) in the digital form. HDR5 provides LRCLK_O,  
SCLK_O, and SDATA_O in 3-wire interface format;  
whereas, HDR2 should be used in TDM mode to interface  
the TDM output data to the SHARC DSP board.  
2. SPDIF output through connector J2, which is generated by  
the SPDIF transmitter CS8404. In this case, SCLK_O,  
LRCLK_O, and SDATA_O from AD1896 are encoded in  
the SPDIF signal. Similar to the SPDIF receiver, the output  
sample rates above 96 kHz are not possible due to the  
transmitter functionality. Note that SPDIF output is supported  
only for the output port in 768 fS_OUT, 512 fS_OUT, and  
256 fS_OUT master mode (Switch S4 positions 4, 5, 6).  
Table V. Output Interface Formats  
SMODE_OUT_[1:0]  
JP1[4:3]  
1
0
Interface Format  
00  
01  
10  
11  
0
0
1
1
0
1
0
1
Left-Justified (LJ)  
I2S  
TDM Mode  
Right-Justified (RJ)  
3. RCA jack J6 and J7 provide stereo LEFT and RIGHT analog  
output signals from AD1852 DAC. Refer to Figure 10.  
Interpolation ratio of the DAC needs to be set based on the  
sample rate and set by jumper JP2. DAC analog output is  
supported only when the AD1896 output port is configured in  
768 fS_OUT, 512 fS_OUT, and 256 fS_OUT master mode  
(Switch S4 positions 4, 5, 6).  
Table VI. Output Signal Word Width  
WLNGTH_OUT_[1:0]  
JP1[2:1]  
1
0
Word  
00  
01  
10  
11  
0
0
1
1
0
1
0
1
24 Bits  
20 Bits  
18 Bits  
16 Bits  
SCLK_O and LRCLK_O signals of output serial port are  
bidirectional signals. Logic levels on pins MMODE_ [2:0]  
–4–  
REV. 0  
EVAL-AD1896EB  
DEFAULT CONFIGURATION  
enabled for SLAVE mode only (Switch S3 position 7). The evalua-  
tion board contains 12.288 MHz (U15) clock oscillator. The  
operating and quiescent currents for the 12 V dc supplies are  
listed below.  
The default configuration of this evaluation board is highlighted  
in Tables VII and VIII. The AD1896 is configured in 24-bit  
input and output data format, with input serial ports in slave  
mode and output serial port in (768 fS) master mode. In this  
configuration, input serial port needs to be driven by an external  
system, such as, Audio Precision, for the slave mode operation.  
An on-board third overtone crystal oscillator at 33.8688 MHz  
clocks the AD1896. Since the output serial port is configured  
in 768 fS master mode and the AD1896 is clocked by  
33.8688 MHz clock, the output sample rate will be 44.1 kHz  
for this configuration. The maximum input sample rate for this  
case can be up to 192 kHz based on the requirement that the  
AD1896 master clock must be higher than 138 times the  
maximum input or output sample rate. The AD1896 can be  
clocked by secondary on-board clock oscillator (U15) by first  
inserting the desired clock oscillator in socket U15 and then  
switching the clock source selection from on-board crystal to  
clock oscillator (U15) by jumper JP4; however, clock oscillator is  
+12 V Quiescent Current  
–12 V Quiescent Current  
~250 mA  
~5 mA  
+12 V Normal Operation Current  
–12 V Normal Operation Current  
~300 mA–360 mA  
~5 mA  
AP1 TRANSMITTER  
AD1896  
SCLK_I SCLK_O  
AP2 RECEIVER  
SCLK  
LRCLK  
SDATA  
SCLK  
LRCLK_I LRCLK_O  
SDATA_I SDATA_O  
LRCLK  
SDATA  
Figure 2. Input and Output Serial Port Direction in Default  
Configuration  
Table VII. Default Jumper/Switch Settings  
DAC  
Input  
Mode  
(S3)  
Output  
Mode  
(JP1)  
Master/Slave  
Mode  
Interpolation  
Ratio Select  
(JP2)  
Clock  
Source  
(JP4)  
Group  
Delay  
(S8)  
Bypass  
Mode  
(S6)  
Mute  
(S7)  
(S4)  
Position 0  
Position 1, 2, 3, 4  
Shorted  
Position 6  
Position 1, 2  
Shorted  
Position 2, 3  
Shorted  
Pushed Up  
Pushed  
Down  
Pushed  
Down  
LJ-24 Bits  
LJ-24 Bits  
Output Port  
Master,  
768 fS_OUT  
48 kHz  
Sample  
Rate  
33.8688 MHz  
Crystal  
Oscillator  
Short  
Off  
Off  
Table VIII. Default Evaluation Board Configuration  
DAC  
Input Source  
(HDR3, HDR1, (HDR2, HDR5, Ratio Select  
J1, U4)  
Output Source  
Interpolation  
Input  
Output  
Master/Slave  
Clock Source  
(JP4)  
Mode (S3) Mode (JP1) Mode (S4)  
J2)  
(JP2)  
LJ  
X
LJ-24  
X
Both Ports in  
SLAVE Mode  
DIRECT  
INPUT  
X
SPDIF  
96/48  
X
X
On-Board  
33.8688 MHz Crystal  
X
I2S  
I2S-24  
O_MAS_768  
X
TDM_IN  
DIRECT  
X
192/48  
External  
OUTPUT  
256 fS Clock  
RJ-24  
RJ-20  
RJ-18  
RJ-24  
RJ-20  
RJ-18  
O_MAS_512  
O_MAS_256  
SPDIF  
TDM_OUT  
TOSLINK  
MATCHED  
PHASE  
Group Delay  
(S8)  
Bypass Mode  
(S6)  
Automute  
Enable (JP3)  
Mute  
(S7)  
RJ-16  
RJ-16  
TDM  
I_MAS_768  
I_MAS_512  
I_MAS_256  
Short  
Long  
X
Enable  
Disable  
Enable  
Disable  
X
Enable  
Disable  
X
X
REV. 0  
–5–  
EVAL-AD1896EB  
DEFAULT SETUP  
AD1852 DAC  
U12  
LEFT OUT  
256f  
MCLK_I  
SCLK_I  
LRCLK_I  
SDATA_I  
S
fS_IN  
fS_OUT  
RIGHT OUT  
SET EXTERNALLY 44.1kHz  
INPUT DATA:  
DIRECT DIGITAL INPUT HEADER  
HDR3 (DDI)  
OUTPUT DATA:  
DIRECT DIGITAL OUTPUT HEADER  
HDR5 (DDO)  
AD1896  
U13  
SCLK  
LRCLK  
SDATA  
SCLK_I  
SCLK_O  
SCLK  
LRCLK_I LRCLK_O  
SDATA_I SDATA_O  
LRCLK  
SDATA  
MCLK_I  
MCLK_O  
1
2 3  
CS8404 DIT  
U6  
SDATA_I  
JUMPER JP4  
33.868MHz CRYSTAL  
SPDIF OUTPUT  
LRCLK_I  
SCLK_I  
MCLK_I  
128fS  
256fS  
128fS  
CLOCK DIVIDER  
Figure 3. Default Setup (Refer to Figure 5 for Detailed Setup)  
TYPICAL PERFORMANCE  
Typical performance of the AD1896 for 44.1 kHz:48 kHz (asynchronous) sample rate is listed below.  
1. DNR, No Filter  
–139 dBFS, 20 Hz to 20 kHz (–60 dBFS)  
–142 dBFS, 20 Hz to 20 kHz (–60 dBFS)  
–120 dBFS, 20 Hz to 20 kHz (0 dBFS)  
0.015 dB, 20 Hz to 20 kHz (0 dBFS)  
2. DNR, A-Weighted  
3. THD+N, No Filter  
4. Frequency Response  
Table IX. MCLK_I Frequencies for Common Sample Rates in Master Mode  
MCLK_I Frequency (MHz)  
Sample Rate (kHz)  
256 fS  
512 fS  
768 fS  
44.100  
48.000  
96.000  
11.289600  
12.288000  
24.576000  
22.579200  
24.576000  
33.868800  
EXTERNAL 192 kHz CLOCK GENERATOR CIRCUIT  
An external circuit can be used to generate the 192 kHz clock  
signals (SCLK, LRCLK) using on-board 128 fS clock oscilla-  
tor (U15) running at 24.576 MHz. Please refer to Figure 4 for  
the schematic and instructions on how to connect the exter-  
nal circuit to the AD1896EB. In general, external SCLK and  
LRCLK can be used for converting the audio input data to 192 kHz  
rate by connecting SCLK to SCLK_O (DDO_SCLK_O,  
HDR5 on the AD1896EB) and LRCLK to LRCLK_O  
(DDO_LRCLK_O, HDR5 on the AD1896EB). On-board SPDIF  
transmitter CS8404 (U6) does not support sample rates above  
96 kHz.  
ATTACHMENTS  
Appendix A  
1. External 192 kHz Clock Generator Circuit  
2. AD1896 Evaluation Board Block Diagram, Schematics, and  
Layout Plots  
3. Bill of Materials  
4. PLD Code  
FURTHER INFORMATION  
Ordering Information  
Order number is EVAL-AD1896EB  
For Application Questions or Technical Support  
Contact Analog Devices’ Central Applications Department at  
1-781-937-1428 for assistance.  
–6–  
REV. 0  
EVAL-AD1896EB  
5V  
5V  
U2  
J1  
CLR  
LD  
ENT  
ENP  
BCLK  
LRCLK  
MCLK  
MCLK  
24.576MHz  
CLK RCO  
BCLK  
12.288MHz  
D0  
Q0  
Q1  
Q2  
Q3  
HEADER10  
D1  
D2  
D3  
DDO DIRECT DIGITAL OUTPUT HEADER  
74AC161  
U3  
NOTES  
CLR  
LD  
1. REPLACE U15, 12.288MHz OSCILLATORWITH 24.576MHz  
2
2. SET S3, I/P IF MODETO 1 FOR I S  
3. SET S4, MASTER/SLAVE MODETO 7  
ENT  
ENP  
4. JUMPER JP4, MCLK_SRCE PINS 1 AND 2  
2
5. JUMPER JP1, O/P I/F MODE POSITIONS 1, 2, AND 4 FOR 24-BIT I S OUTPUT  
6. JUMPER JP2, SELECT POSITION 1 ONLY FOR 192kHz DAC OPERATION  
7. SET S1TO DIR  
CLK RCO  
8. SET S2TO SELECT COAX OR OPTICAL INPUT  
D0  
Q0  
Q1  
Q2  
Q3  
D1  
D2  
D3  
LRCLK  
192kHz  
74AC161  
Figure 4. 192 kHz Clock Generator for AD1896EB  
REV. 0  
–7–  
EVAL-AD1896EB  
Figure 5. Evaluation Board Block Diagram  
–8–  
REV. 0  
EVAL-AD1896EB  
INPUT INTERFACE  
96-020C.SCH  
SAMPLE RATE CONVERTER  
96-040C.SCH  
TDM-I  
SDATA-I  
SCLK-I  
LRCLK-I  
RESET  
SDATA-O  
MUTE  
128fS  
EXT256fS  
256fS  
IMODE0  
IMODE1  
IMODE2  
WDLEN0  
WDLEN1  
OMODE0  
OMODE1  
CMODE0  
CMODE1  
CMODE2  
SCLK-O  
LRCLK-O  
DIV2/DIV3  
OSC-EN  
SLVCLK0  
SLVCLK1  
OUTPUT INTERFACE  
96-030C.SCH  
MONITOR DAC  
96-050C.SCH  
IDPM0  
IDPM1  
SDATA  
LRCLK  
BCLK  
MCLK  
DEEMP  
MUTE  
RESET  
POWER SUPPLIES AND  
POWER CONNECTIONS  
96-060C.SCH  
UNLESS OTHERWISE NOTED  
1.0 ALL RESISTOR VALUES ARE EXPRESSED IN OHMS.  
1.1 ALL RESISTORS ARE 1%, 1/10 W, THICK FILM TYPES.  
1.2 ALL MF RESISTORS ARE 0.1%, 1/10 W, METAL FILM TYPES.  
1.3 R, K, AND M ARE USED INSTEAD OF A DECIMAL POINT IN RESISTOR VALUES.  
2. ALL RESISTOR NETWORKS ARE 5%, 1/16 W TYPES WITH THEIR VALUES EXPRESSED IN OHMS.  
3.0 ALL CAPACITOR VALUES ARE EXPRESSED IN FARADS.  
3.1 U, N, AND P ARE USED INSTEAD OF A DECIMAL POINT IN CAPACITOR VALUES.  
3.2 ALL 100N BYPASS CAPACITORS ARE 20%, 50 V, Z5U, CERAMIC MONOLITHIC TYPES.  
3.3 ALL NON-ELECTROLYTIC CAPACITORS ARE 10%, 50 V, X7R, CERAMIC MONOLITHIC TYPES.  
3.4 ALL NP0 CAPACITORS ARE 5%, 50V, CERAMIC MONOLITHICTYPES.  
3.5 ALL MY CAPACITORS ARE 5%, 50V, METALLIZED POLYESTERTYPES.  
3.6 ALL PPS CAPACITORS ARE 5%, 50V, METALLIZED PPS FILMTYPES.  
3.7 ALL PC CAPACITORS ARE 5%, 50V, METALLIZED POLYCARBONATETYPES.  
3.8 ALL ELECTROLYTIC CAPACITORS ARE 20%, 10 V (OR HIGHER), ALUMINUM ELECTROLYTE TYPES.  
3.9 ALL T CAPACITORS ARE 20%, 10 V (OR HIGHER), TANTALUM ELECTROLYTE TYPES.  
A
4. FOR COMPLETE INFORMATION ON ANY COMPONENT, PLEASE SEE THE ASSOCIATED BILL OF MATERIALS.  
5. ALL NET NAMES PRECEDED BY/ARE ACTIVE LOW SIGNALS.  
Figure 6. Evaluation Board  
REV. 0  
–9–  
EVAL-AD1896EB  
Figure 7. Evaluation Board  
–10–  
REV. 0  
EVAL-AD1896EB  
Figure 8. Evaluation Board  
REV. 0  
–11–  
EVAL-AD1896EB  
Figure 9. Evaluation Board  
–12–  
REV. 0  
EVAL-AD1896EB  
FIgure 10. Evaluation Board  
–13–  
REV. 0  
EVAL-AD1896EB  
Figure 11. Evaluation Board  
–14–  
REV. 0  
EVAL-AD1896EB  
Figure 12. Audio ASRC  
Figure 13. Component Side  
REV. 0  
–15–  
EVAL-AD1896EB  
Figure 14. Ground Planes  
Figure 15. Power Planes  
–16–  
REV. 0  
EVAL-AD1896EB  
Figure 16. Bottom Layer  
REV. 0  
–17–  
EVAL-AD1896EB  
BILL OF MATERIALS  
Item Qty Ref  
Detail  
Title  
Mfr P/N  
Mfr Name  
1
2
3
4
5
6
7
8
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
1
1
1
6
1
1
7
LH99321 Rev 0  
AD1852JRS  
AD1895YRS  
ADM811TART  
ADP3303AR-3.3  
ADP3303AR-5  
CS8404A-CS  
CS8414-CS  
LM317MDT  
M4A5-64/32-10VC  
OP275GS  
74AHC02  
74AHC74  
74AHCT04  
74HC14  
PCB FAB AD1895 Evaluation  
LH99321 Rev 0  
AD1852JRS  
AD1895YRS  
ADM811TART  
ADP3303AR-3.3  
ADP3303AR-5  
CS8404A-CS  
CS8414-CS  
Prototype Circuits, Inc.  
Analog Devices, Inc.  
Analog Devices, Inc.  
Analog Devices, Inc.  
Analog Devices, Inc.  
Analog Devices, Inc.  
Crystal Semiconductor  
Crystal Semiconductor  
Motorola  
Lattice  
Analog Devices, Inc.  
Philips  
Texas Instruments  
Texas Instruments  
Fairchild  
ST Microelectronics  
Scientific Conversion, Inc.  
Panasonic  
U12  
U13  
U8  
U9  
U10  
U6  
U1  
U7  
U2, U3  
U11  
U14  
U17, U18  
U16  
U5  
U19  
T1  
R45  
R36  
IC DAC Stereo 24-Bit 192kS/s SSOP-28  
IC Async Sample Rate Converter SSOP-28  
IC Reset Generator SOT-143  
Voltage Regulator 3 V 3 SO-8  
Voltage Regulator 5 V SO-8  
IC Digital Audio Transmitter 96 kHz SOIC-24L  
IC Digital Audio Receiver 96 kHz SOIC-28L  
Voltage Regulator Pos Adj DPAK  
IC PLD CMOS ISP TQFP44  
IC OPAMP Dual Bipolar/JFET SO-8  
IC Quad 2-Input NOR SO-14  
IC Dual D Flip-Flop SO-14  
IC Hex Inverter SO-14  
IC Hex Schmitt Trigger Inverter SO-14  
IC Dual 4-Input MUX SO-14  
Transformer Signal AES/EBU  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
9
LM317MDT  
M4A5-64/32-10VC  
OP275GS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
74AHC02D  
SN74AHC74D  
SN74AHCT04D  
MM74HC14M  
M74HC153M  
SC937-02  
ERJ-6ENF22.1  
ERJ-6ENF47.5  
ERJ-6ENF75.0  
ERJ-6ENF90R9  
ERJ-6ENF1000  
ERJ-6ENF2430  
ERJ-6ENF3320  
ERJ-6ENF3920  
74HC153  
SC937-02  
22R1  
47R5 Ω  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
R7  
R17  
R39–R44  
R18  
R16  
R10–R15,  
R38  
75R0 Ω  
90R9 Ω  
100 Ω  
243 Ω  
332 Ω  
392 Ω  
26  
27  
28  
29  
30  
31  
32  
33  
1
2
1
4
4
4
1
8
R9  
R32, R33  
R19  
475 Ω  
549 Ω  
715 Ω  
1.5 kΩ  
2.8 kΩ  
3.01 kΩ  
3.4 kΩ  
10 kΩ  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Resistor 1% 100 mW Thick Film 0805  
ERJ-6ENF4750  
ERJ-6ENF5490  
ERJ-6ENF7150  
ERJ-6ENF1501  
ERJ-6ENF2801  
ERJ-6ENF3011  
ERJ-6ENF3401  
ERJ-6ENF1002  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
R28–R31  
R20–R23  
R24–R27  
R8  
R1–R6,  
R37, R46  
R34, R35  
C56  
34  
35  
36  
37  
38  
39  
2
1
1
6
4
5
53.6 kΩ  
15 pF  
22 pF  
47 pF  
270 pF  
1 nF  
Chip Resistor 1% 100 mW Thick Film 0805  
Chip Capacitor 5% 50 V NP0 Ceramic 0805  
Chip Capacitor 5% 50 V NP0 Ceramic 0805  
Chip Capacitor 5% 50 V NP0 Ceramic 0805  
Chip Capacitor 5% 50 V NP0 Ceramic 0805  
Chip Capacitor 5% 50 V NP0 Ceramic 0805  
ERJ-6ENF5362  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
ECU-V1H150JCN  
ECU-V1H220JCN  
ECU-V1H470JCG  
ECU-V1H271JCG  
ECU-V1H102JCX  
C55  
C62–C67  
C47–C50  
C43–C46,  
C57  
40  
41  
42  
43  
2
2
1
35  
C51, C52  
C1, C2  
C28  
C5–C27,  
C29–C31,  
C53, C54,  
C58–C61,  
C68–C70  
C34, C36–  
C39  
2.2 nF  
10 nF  
68 nF  
100 nF  
Chip Capacitor 5% 50 V PPS Film 0805  
Chip Capacitor 10% 50 V X7R Ceramic 0805  
Chip Capacitor 10% 50 V X7R Ceramic 0805  
Chip Capacitor 10% 50 V X7R Ceramic 0805  
ECH-U1H222JB5  
ECU-V1H103KBG  
ECJ-2YB1H683K  
ECJ-2YB1H104K  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
44  
45  
5
3
15 µF  
47 µF  
Chip Capacitor 20% 20 V Tantalum 7343  
Chip Capacitor 20% 10 V Tantalum 7343  
ECS-T1DD156R  
ECS-T1AD476R  
Panasonic  
Panasonic  
C32, C33,  
C35  
46  
47  
3
1
C40–C42  
Y1  
100 µF  
33M8688 Hz  
SMD Capacitor 20% 25 V Aluminum CASE-F  
SMD Crystal HCM49  
EEV-FC1E101P  
HCM49-33.8688  
MABJT  
Panasonic  
Citizen  
48  
49  
50  
10  
1
7
FB1–FB10  
L1  
DS1–DS7  
600Z  
1.8 µs  
Red  
Chip Ferrite Bead 600 @100 MHz 0805  
Chip Inductor 20% 0R82 RLP167  
Chip LED 1206LED  
HZ0805E601R  
ELJ-FA1R8KF  
CMD15-21VRD/TR8 Chicago Miniature  
Lamp, Inc.  
Steward  
Panasonic  
51  
52  
53  
2
2
2
CR1, CR2  
CR3, CR4  
J1, J2  
DL4001  
1SMB15AT3  
Black Insert  
Chip Diode 50 V 1A SOD-87  
Chip Transient Suppressor 15 V 600 W SMB  
Connector RCA Female Right Angle CTP-021  
DL4001  
1SMB15AT3  
CTP-021-A-S-BLK  
Microsemi  
ON Semiconductor  
Connect-Tech Products,  
Products, Inc.  
Connect-Tech Products,  
Products, Inc.  
Connect-Tech Products,  
Products, Inc.  
3M  
54  
55  
1
1
J6  
J7  
White Insert  
Red Insert  
Connector RCA Female Right Angle CTP-021  
Connector RCA Female Right Angle CTP-021  
CTP-021-A-S-WHT  
CTP-021-A-S-RED  
56  
57  
58  
1
1
1
JP3  
JP2  
JP4  
Header 2 1  
Header 2 2  
Header 3 1  
Connector 2P 2 1 Male 100ctr SIP2  
Connector 4P 2 2 Male 100ctr HDR2X2  
Connector 3P 3 1 Male 100ctr HDR3X1  
2340-6111TN  
2380-6121TN  
2340-6111TN  
3M  
3M  
–18–  
REV. 0  
EVAL-AD1896EB  
BILL OF MATERIALS (continued)  
Title  
Item Qty Ref  
Detail  
Mfr P/N  
Mfr Name  
59  
60  
61  
3
2
1
HDR1,  
HDR2, JP1  
HDR3,  
HDR5  
Header 4 2  
Connector 8P 4 2 Male 100ctr HDR4X2  
2380-6121TN  
3M  
Header 5 2  
Header 5 2  
Connector 10P 5 2 Male 100ctr HDR5X2  
2380-6121TN  
3M  
HDR4  
Connector 10P 5 2 Male 100ctr Shrouded  
HDR5X2SHR  
Socket Oscillator Half Size OSC8  
IC CMOS Oscillator 12.288 MHz OSC8  
Switch Slide DPDT Side Act PCB  
Switch Rotary 8 Pos Octal  
Switch PB NO Momentary Tactile  
Switch Slide SPDT Vert Act PCB  
IC Fiber Optic Receiver  
Connector Binding Post  
Connector Binding Post  
Connector Binding Post  
Spacer Nylon 3/4" Snap-In  
51138-44624  
30310-6002HB  
1108800  
SG-531P-12.288MC  
EG-2215  
PT65526  
FSM6JSMA  
10SP001  
3M  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
1
1
2
2
1
3
1
1
1
1
4
U15  
U15  
S1, S2  
S3, S4  
S5  
S6–S8  
U4  
J3  
J4  
J5  
Socket 4/8  
12M288 Hz  
EG-2215  
PT65526  
FSM6JSMA  
10SP001  
TORX173  
Yellow  
Aries  
Epson Electronics  
E-Switch  
APEM  
Augat  
Mouser  
Toshiba  
Johnson Components, Inc.  
Johnson Components, Inc.  
Johnson Components, Inc.  
SPC Technology  
TORX173  
111-0107-001  
111-0104-001  
111-0110-001  
SPCS-12  
Green  
Blue  
Spacer Snap-in  
REV. 0  
–19–  
EVAL-AD1896EB  
in_pld.abl  
MODULEIF_Logic  
TITLE  
'AD1896 EVB Input Interface Logic'  
//===================================================================================  
// FILE:  
// REVISION DATE:  
// REVISION BY:  
input_pld.abl  
03-20-01  
Chirag Patel  
// REVISION:  
1.0  
//  
// DESCRIPTION:  
//  
// This input interface PLD (U2) selects between the External Data Interface header  
// (HDR3) and the on-board CS8414 DIR (U1) for the AD1896 ASRC input signals, depending  
// upon the SPDIF/DDI switch position (S1). When the SPDIF Receiver DIR is the selected  
// signal source the digital audio signals, SDATA_I, SCLK_I and LRCLK_I are derived from  
// the DIR output. SPDIF receiver needs the digital data in the SPDIF format in order to  
// generate these signals. When the external data is the selected source the digital  
// signals from (HDR3) are applied to the AD1896.  
// Signals SCLK_I, LRCLK_I, DDI_SCLK, DDI_LRCLK, DIR_SCLK, DIR_FSYNC on the PLD are  
// bi-directional signals. The direction of these signals are controlled by the  
// MASTER_SLAVE MODE switch position (S4). When the AD1896 input serial port is set in the  
// master mode, the SCLK_I and LRCLK_I are generated from the AD1896 input serial port.  
// On the other hand, these signals are provided from the external source in the slave mode  
// operation.  
// PLD also decodes the Input Interface Format Switch (S3) and sets the Interface mode pins  
// for both the CS8414 DIR and the AD1896 ASRC.  
//===================================================================================  
LIBRARY 'MACH';  
DECLARATIONS  
//  
IF_Logic DEVICE 'M4-64/32-15VC';  
"INPUTS ===========================================================================  
// TDI, TCK, TMS  
DIR_SDATA  
pin 4,7,26 istype 'com';  
pin 1 istype 'com';  
//JTAG I/P's  
//CS8414 DIR SDATA OUT  
//SPDIF_DDI SWITCH S1  
SPDIF_DDI  
DDI_SDATA  
RESET  
pin 12 istype 'com';  
pin 22 istype 'com';  
//EXTERNAL DATA INPUT DDI  
//Active hi reset output  
Pin 23 istype 'com';  
to AD1896  
RESET_LO  
Pin 44 istype 'com';  
//Active low reset input  
MS_MODE2, MS_MODE1, MS_MODE0  
IN_MODE2,IN_MODE1,IN_MODE0  
SWITCH S3  
pin 24,25,30 istype 'com'; //MASTER/SLAVE MODE SWITCH S4  
pin 18,15,14 istype 'com'; //INPUT SERIAL MODE  
"OUTPUTS =========================================================================  
// TDO pin 29 istype 'com'; //JTAG O/P  
M0, M1, M2, M3  
SMODE_I_0, SMODE_I_1, SMODE_I_2  
FOR AD1896  
pin 8,9,10,11 istype 'com'; //SPDIF_RVR MODE SELECT  
pin 33,32,31 istype 'com'; //INPUT SERIAL MODE FORMAT  
SDATA_I  
pin 37 istype 'com';  
//SERIAL DATA INPUT TO  
AD1896 ASRC  
//IO SIGNALS  
DIR_FSYNC, DIR_SCLK  
pin 2,3;  
pin 21,20;  
//DIR_FYSNC AND DIR_SCLK  
//EXTERNAL LRCLK AND  
IO'S  
DDI_LRCLK, DDI_SCLK  
SCLK IO'S FOR HDR3  
LRCLK_I, SCLK_I  
AD1896 ASRC  
pin 35,36;  
//LRCLK_I AND SCLK_I IO'S TO  
"NODES  
–20–  
REV. 0  
EVAL-AD1896EB  
I_SDATA, ISCLK, ILRCLK  
node istype 'com';  
//================================================================================  
in_pld.abl  
"MACROS  
//INPUT SERIAL DATA FORMATS  
// S3 position 0, LEFT-JUSTIFIED  
LJ  
// S3 position 1, I2S  
I2S ( IN_MODE2 & IN_MODE1 & !IN_MODE0);  
// S3 position 2, RIGHT-JUSTIFIED 24-BITS  
RJ24 ( IN_MODE2 & !IN_MODE1 & IN_MODE0);  
// S3 position 3, RIGHT-JUSTIFIED 20-BITS  
RJ20 ( IN_MODE2 & !IN_MODE1 & !IN_MODE0);  
// S3 position 4, RIGHT-JUSTIFIED 18-BITS  
RJ18 ( !IN_MODE2 & IN_MODE1 & IN_MODE0);  
// S3 position 5, RIGHT-JUSTIFIED 16-BITS  
RJ16 ( !IN_MODE2 & IN_MODE1 & !IN_MODE0);  
=
( IN_MODE2 & IN_MODE1 & IN_MODE0);  
=
=
=
=
=
// S3 positons 6,7 are not used  
//MASTER_SLAVE MODE MAPPING  
// S4 position 7, INPUT/OUTPUT SERIAL PORTS IN SLAVE MODE  
BOTH_SLAVE  
// S4 position 6, OUTPUT SERIAL PORT IN MASTER MODE FSX768  
O_MAS_768 (!MS_MODE2 & !MS_MODE1 & MS_MODE0);  
// S4 position 5, OUTPUT SERIAL PORT IN MASTER MODE FSX512  
O_MAS_512 (!MS_MODE2 & MS_MODE1 & !MS_MODE0);  
// S4 position 4, OUTPUT SERIAL PORT IN MASTER MODE FSX256  
O_MAS_256 (!MS_MODE2 & MS_MODE1 & MS_MODE0);  
=
(!MS_MODE2 & !MS_MODE1 & !MS_MODE0);  
=
=
=
// S4 position 3, INPUT SERIAL PORT IN MATCHED_PHASE MODE  
MATCH_PHASE = (MS_MODE2 & !MS_MODE1 & !MS_MODE0);  
// S4 position 2, INPUT SERIAL PORT IN MASTER MODE FSX768  
IN_MAS_768  
// S4 position 1, INPUT SERIAL PORT IN MASTER MODE FSX512  
IN_MAS_512 (MS_MODE2 & MS_MODE1 & !MS_MODE0);  
// S4 position 0, INPUT SERIAL PORT IN MASTER MODE FSX256  
IN_MAS_256 (MS_MODE2 & MS_MODE1 & MS_MODE0);  
=
(MS_MODE2 & !MS_MODE1 & MS_MODE0);  
=
=
"==========================================================================  
EQUATIONS  
// AD1896 ASRC Input Serial Port Interface Mode Select  
SMODE_I_2 = RJ24 # RJ20 # RJ18 # RJ16;  
SMODE_I_1 = RJ24 # RJ20;  
SMODE_I_0 = RJ24 # RJ18 # I2S;  
// CS8414 DIR Interface Mode Select, DIR_FSYNC and DIR_SCLK are bi-directional signals.  
// If AD1896 input serial port is in slave mode, the CS8414 DIR RJ-24 and RJ-20 modes  
// are not supported.  
M0 =  
M1 =  
(RJ16 & (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256))  
# ((LJ # RJ24 # RJ20 # I2S) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));  
((I2S # RJ18) & (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256))  
# (I2S & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));  
M2 = RJ18 # RJ16;  
M3 = 0;  
REV. 0  
–21–  
EVAL-AD1896EB  
in_pld.abl  
// IO control logic  
DDI_SCLK.oe  
= (IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
DDI_LRCLK.oe = (IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
DIR_FSYNC.oe = (IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
DIR_SCLK.oe  
SCLK_I.oe  
LRCLK_I.oe  
= (IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
= (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256);  
= (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256);  
DDI_SCLK  
DDI_LRCLK  
DIR_SCLK  
DIR_FSYNC  
= ISCLK;  
= ILRCLK;  
= ((!ISCLK) & (LJ # RJ24 # RJ20 # RJ18 # RJ16)) # (ISCLK & I2S);  
= ILRCLK;  
// AD1896 ASRC Input Serial port signals  
SCLK_I  
= ((LJ # RJ24 # RJ20 # RJ18 # RJ16 # I2S) & (ISCLK) & (!SPDIF_DDI))  
# ((((LJ # RJ24 # RJ20) & (!ISCLK)) # ((I2S # RJ18 # RJ16) & (ISCLK))) &  
(SPDIF_DDI));  
LRCLK_I  
(!SPDIF_DDI));  
SDATA_I  
= (SPDIF_DDI & DIR_FSYNC) # (((I2S & !DDI_LRCLK) # (!I2S & DDI_LRCLK)) &  
= (DDI_SDATA & !SPDIF_DDI) # (((LJ#RJ24#RJ20#RJ18#RJ16#I2S)&(DIR_SDATA)) &  
(SPDIF_DDI));  
// Internal node signals  
ISCLK  
= ((DDI_SCLK) & (BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &  
(!SPDIF_DDI))  
# ((LJ#RJ24#RJ20) & ((DIR_SCLK) &  
(BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) & (SPDIF_DDI)))  
# ((SCLK_I) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256))  
# ((I2S # RJ18 # RJ16) & (DIR_SCLK) &  
(BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) & (SPDIF_DDI));  
ILRCLK = ((DDI_LRCLK) & (BOTH_SLAVE # MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &  
(!SPDIF_DDI))  
# ((DIR_FSYNC) & (BOTH_SLAVE # MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &  
(SPDIF_DDI))  
# ((LRCLK_I) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));  
I_SDATA = (DDI_SDATA & !SPDIF_DDI) # (DIR_SDATA & SPDIF_DDI);  
"====================================================================================  
END IF_Logic  
–22–  
REV. 0  
EVAL-AD1896EB  
out_pld.abl  
//===================================================================================  
MODULE  
IF_Logic  
TITLE  
'AD1896 EVB Output Interface Logic'  
//===================================================================================  
// FILE: output_pld.abl  
// REVISION DATE: 03-20-01  
// REVISION BY:  
// REVISION:  
Chirag Patel  
1.0  
// DESCRIPTION:  
// This output interface PLD (U3) decodes output interface signals of AD1896 and sources  
// these signals to the DAC, DIT and external header (HDR2, HDR5).  
// Signals SCLK_O, LRCLK_O, DDO_SCLK and DDO_LRCLK on the PLD are bi-directional signals.  
// The direction of these signals are controlled by the MASTER_SLAVE MODE switch position  
(S4).  
// When the AD1896 output serial port is set in the master mode, the SCLK_O and LRCLK_O are  
// generated from the AD1896 output serial port. On the other hand, these signals are pro-  
vided  
// from the external source in the slave mode operation.  
//  
// PLD also decodes the Output Interface Format and data width Jumper header (JP1) and sets  
// the Interface mode pins for the AD1896 ASRC, AD1852 DAC and CS8404 DIT to meet the inter-  
face  
// requirements of all three devices in any given mode.  
//===================================================================================  
LIBRARY 'MACH';  
DECLARATIONS  
//  
IF_Logic DEVICE 'M4-64/32-15VC';  
"INPUTS ===========================================================================  
// TDI, TCK, TMS  
SDATA_O  
pin 4, 7, 26 istype 'com';  
pin 3 istype 'com, buffer';  
//JTAG I/P's  
MS_MODE2, MS_MODE1, MS_MODE0 pin 42, 43, 44 istype 'com';  
WDLNGTH1, WDLNGTH0  
OPMODE1, OPMODE0  
pin 19, 18 istype 'com';  
pin 21, 20 istype 'com';  
"OUTPUTS ========================================================================  
// TDO  
pin 29 istype 'com';  
//JTAG O/P  
SMODE_O_1, SMODE_O_0 pin 9, 8 istype 'com';  
WDLNGTH_O_1, WDLNGTH_O_0  
pin 11, 10 istype 'com';  
OSC_EN, SLVCLK1, SLVCLK0, DIV2_3  
pin 14,12, 13, 15 istype 'com';  
IDPM1, IDPM0  
DDO_SDATA  
pin 41, 40 istype 'com';  
pin 34 istype 'com, buffer';  
SDATA_DAC_DIT  
LRCLK_DAC, SCLK_DAC  
FSYNC_DIT, SCLK_DIT  
pin 22 istype 'com, buffer';  
pin 36, 35 istype 'com, buffer';  
pin 23, 24 istype 'com, buffer';  
M2,M1,M0  
TST9  
pin 31,32,33 ISTYPE 'com';  
pin 37 istype 'com, buffer';  
//IO SIGNALS  
SCLK_O, LRCLK_O  
DDO_SCLK, DDO_LRCLK  
pin 1, 2 istype 'com, buffer';  
pin 30, 25 istype 'com, buffer';  
"NODES  
I_SDATA, ISCLK, ILRCLK  
node istype 'com, buffer';  
//================================================================================  
out_pld.abl  
"MACROS  
REV. 0  
–23–  
EVAL-AD1896EB  
//OUTPUT SERIAL DATA FORMATS  
// JP1[4:3] 0, LEFT-JUSTIFIED  
LJ  
// JP1[4:3] 1, I2S  
I2S (!OPMODE1 & OPMODE0);  
// JP1[4:3] 2, TDM MODE  
TDM (OPMODE1 & !OPMODE0);  
// JP1[4:3] 3, RIGHT-JUSTIFIED  
RJ (OPMODE1 & OPMODE0);  
=
(!OPMODE1 & !OPMODE0);  
=
=
=
// OUTPUT DATA BIT WIDTH SETTINGS  
// JP1[2:1] 0, 24-BITS  
BITS_24  
// JP1[2:1] 0, 20-BITS  
BITS_20 ( !WDLNGTH1 & WDLNGTH0);  
// JP1[2:1] 0, 18-BITS  
BITS_18  
// JP1[2:1] 0, 16-BITS  
BITS_16  
=
( !WDLNGTH1 & !WDLNGTH0);  
=
=
(
WDLNGTH1 & !WDLNGTH0);  
WDLNGTH1 & WDLNGTH0);  
=
(
// OUTPUT SERIAL DATA FORMAT MAPPING  
// LJ-24 BITS  
LJ24 = (LJ & BITS_24);  
// I2S-24 BITS  
I2S24 = (I2S & BITS_24);  
// TDM-24 BITS  
TDM24 = (TDM & BITS_24);  
// RJ-24 BITS  
RJ24 = (RJ & BITS_24);  
// RJ-20 BITS  
RJ20 = (RJ & BITS_20);  
// LJ-18 BITS  
RJ18 = (RJ & BITS_18);  
// LJ-16 BITS  
RJ16 = (RJ & BITS_16);  
//MASTER_SLAVE MODE MAPPING  
// S4 position 7, BOTH SERIAL PORT IN SLAVE MODE  
BOTH_SLAVE  
// S4 position 6, OUTPUT SERIAL PORT IN MASTER MODE FSX768  
O_MAS_768 (!MS_MODE2 & !MS_MODE1 & MS_MODE0);  
// S4 position 5, OUTPUT SERIAL PORT IN MASTER MODE FSX512  
O_MAS_512 (!MS_MODE2 & MS_MODE1 & !MS_MODE0);  
// S4 position 4, OUTPUT SERIAL PORT IN MASTER MODE FSX256  
O_MAS_256 (!MS_MODE2 & MS_MODE1 & MS_MODE0);  
=
(!MS_MODE2 & !MS_MODE1 & !MS_MODE0);  
=
=
=
// S4 position 3, INPUT SERIAL PORT IN MATCHED_PHASE MODE  
MATCH_PHASE = (MS_MODE2 & !MS_MODE1 & !MS_MODE0);  
// S4 position 2, INPUT SERIAL PORT IN MASTER MODE FSX768  
IN_MAS_768  
// S4 position 1, INPUT SERIAL PORT IN MASTER MODE FSX512  
IN_MAS_512 (MS_MODE2 & MS_MODE1 & !MS_MODE0);  
// S4 position 0, INPUT SERIAL PORT IN MASTER MODE FSX256  
=
(MS_MODE2 & !MS_MODE1 & MS_MODE0);  
=
IN_MAS_256  
=
(MS_MODE2 & MS_MODE1 & MS_MODE0);  
"====================================================================================  
out_pld.abl  
–24–  
REV. 0  
EVAL-AD1896EB  
EQUATIONS  
// AD1896 ASRC Output Serial Port Interface Mode and word length Select  
WDLNGTH_O_1 = WDLNGTH1;  
WDLNGTH_O_0 = WDLNGTH0;  
SMODE_O_1  
SMODE_O_0  
= OPMODE1;  
= OPMODE0;  
// CS8414 DIT Interface Mode Select. The chip is configured in the LJ mode when AD1896 output  
format are  
// set either RJ24, RJ20, RJ18 or RJ16. Also need to invert the incoming SCLK signal in the  
LJ24, RJ24, RJ20,  
// RJ18 and RJ16 mode to match the DIT interface requirment for DIT_SCLK.  
M0 = LJ;  
M1 = 0;  
M2 = I2S;  
// AD1852 Stereo DAC input serial Interface mode select. NOTE that the DAC requires serial  
programing for  
// RJ20, RJ18, RJ16 mode. Since AD1896 EVB does not allow serial programming of the AD1852  
registers,  
// AD1852 will be configured in RJ24 mode when AD1896 output port is configured in RJ20, RJ18  
and RJ16 mode.  
IDPM1 = LJ;  
IDPM0 = I2S;  
// AD1896, DIR, DIT, AD1852 MCLK control logic. Based on the Master/Slave operation of the  
AD1896 in/out ports,  
// 33.8688MHz crystal frequency will be divided by either 1, 2 or 3 and the ouput of the di-  
vider is feed into the DAC and DIT.  
// On-board 12.288MHz clock oscillator is enabled only when input and ouput serial ports are  
configured in SLAVE mode.  
OSC_EN = (BOTH_SLAVE);  
SLVCLK1 = (O_MAS_768) # (BOTH_SLAVE);  
SLVCLK0 = (O_MAS_512) # (BOTH_SLAVE);  
DIV2_3 = (!O_MAS_512) & (O_MAS_768);  
// IO control logic for bi-directional signals  
DDO_SCLK.OE = (O_MAS_768 # O_MAS_512 # O_MAS_256);  
DDO_LRCLK.OE = (O_MAS_768 # O_MAS_512 # O_MAS_256);  
SCLK_O.OE  
LRCLK_O.OE  
= (BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
= (BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 # IN_MAS_256);  
// AD1896 ASRC Output Serial port signals  
DDO_SDATA = SDATA_O;  
DDO_SCLK = ISCLK;  
DDO_LRCLK = ILRCLK;  
SCLK_O  
= ISCLK;  
LRCLK_O  
= ILRCLK;  
// DAC AND DIT SIGNALS  
SDATA_DAC_DIT = SDATA_O;  
LRCLK_DAC  
= ILRCLK;  
REV. 0  
–25–  
EVAL-AD1896EB  
SCLK_DAC  
= ISCLK;  
FSYNC_DIT  
SCLK_DIT  
= ILRCLK;  
= ((!ISCLK) & (LJ # RJ24 # RJ20 # RJ18 # RJ16)) # (ISCLK & I2S);  
// Internal node signals  
out_pld.abl  
ISCLK  
=
((SCLK_O) & (O_MAS_768 # O_MAS_512 # O_MAS_256))  
# ((DDO_SCLK) & (BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 #  
IN_MAS_256));  
ILRCLK  
=
((LRCLK_O) & (O_MAS_768 # O_MAS_512 # O_MAS_256))  
# ((DDO_LRCLK) & (BOTH_SLAVE#MATCH_PHASE#IN_MAS_768#IN_MAS_512#IN_MAS_256) & (LJ  
# TDM # RJ24 # RJ20 # RJ18 # RJ16))  
# ((!DDO_LRCLK) & (BOTH_SLAVE#MATCH_PHASE#IN_MAS_768#IN_MAS_512#IN_MAS_256) &  
(I2S));  
"====================================================================================  
END IF_Logic  
–26–  
REV. 0  
–27–  
–28–  

相关型号:

EVAL-AD1928EB

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1928EBZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1934EB

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI

EVAL-AD1935EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1936EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1937EBZ

Four ADCs/Eight DACs with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938AZ

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

EVAL-AD1938EB

4 ADC/8 DAC with PLL, 192 kHz, 24 Bit CODEC
ADI

EVAL-AD1939AZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

EVAL-AD1939EB

4 ADC/8 DAC with PLL, 192 kHz, 24-Bit CODEC
ADI

EVAL-AD1940EB

SigmaDSP-TM Multichannel 28-Bit Audio Processor
ADI