EVAL-AD7626EDZ [ADI]

16-Bit, 10 MSPS, PulSAR Differential ADC; 16位, 10 MSPS , PulSAR系列ADC差分
EVAL-AD7626EDZ
型号: EVAL-AD7626EDZ
厂家: ADI    ADI
描述:

16-Bit, 10 MSPS, PulSAR Differential ADC
16位, 10 MSPS , PulSAR系列ADC差分

文件: 总28页 (文件大小:1345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 10 MSPS, PulSAR  
Differential ADC  
AD7626  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFIN REF VCM  
Throughput: 10 MSPS  
SNR: 91.5 dB  
16-bit no missing codes  
INL: 0.45 LSB  
1.2V  
BAND GAP  
VIO  
÷2  
CLOCK  
LOGIC  
IN+  
IN–  
CAP  
DAC  
CNV+, CNV–  
DNL: 0.35 LSB  
Power dissipation: 136mW  
32-lead LFCSP (5 mm × 5 mm)  
SAR architecture  
D+, D–  
SERIAL  
LVDS  
SAR  
DCO+, DCO–  
CLK+, CLK–  
AD7626  
No latency/no pipeline delay  
16-bit resolution with no missing codes  
Zero error: 1LSB  
Figure 1.  
GENERAL DESCRIPTION  
Differential input range: 4.096 V  
Serial LVDS interface  
Self-clocked mode  
Echoed-clock mode  
LVDS or CMOS option for conversion control (CNV signal)  
Reference options  
Internal: 4.096 V  
External (1.2 V) buffered to 4.096 V  
External: 4.096 V  
The AD7626 is a 16-bit, 10 MSPS, charge redistribution  
successive approximation register (SAR) based architecture  
analog-to-digital converter (ADC). SAR architecture allows  
unmatched performance both in noise (91.5 dB SNR) and in  
linearity ( 0.ꢀ5 ꢁSB INꢁ). The AD7626 contains a high speed,  
16-bit sampling ADC, an internal conversion clock, and an  
internal buffered reference. On the CNV edge, it samples the  
voltage difference between the IN+ and IN− pins. The voltages  
on these pins swing in opposite phase between 0 V and REF.  
The ꢀ.096 V reference voltage, REF, can be generated internally  
or applied externally.  
APPLICATIONS  
Digital imaging systems  
Digital X-ray  
Digital MRI  
All converted results are available on a single ꢁVDS self-clocked  
or echoed-clock serial interface, reducing external hardware  
connections.  
CCD and IR cameras  
High speed data acquisition  
High dynamic range telecommunications receivers  
Spectrum analysis  
The AD7626 is housed in a 32-lead, 5 mm × 5 mm ꢁFCSP with  
operation specified from −ꢀ0°C to +85°C.  
Test equipment  
Table 1. Fast PulSAR® ADC Selection  
Input Type  
Resolution (Bits)  
1 MSPS to <2 MSPS  
AD7653  
2 MSPS to 3 MSPS  
6 MSPS  
10 MSPS  
Differential (Ground Sense)  
16  
AD7667  
AD7980  
AD7983  
True Bipolar  
Differential (Antiphase)  
16  
16  
AD7671  
AD7677  
AD7621  
AD7622  
AD7641  
AD7625  
AD7626  
AD7623  
AD7643  
Differential (Antiphase)  
18  
AD7982  
AD7984  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD7626  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
Circuit Information.................................................................... 15  
Converter Information .............................................................. 15  
Transfer Functions ..................................................................... 16  
Analog Inputs ............................................................................. 16  
Typical Connection Diagram ................................................... 17  
Driving the AD7626................................................................... 18  
Voltage Reference Options........................................................ 20  
Power Supply............................................................................... 21  
Digital Interface.......................................................................... 22  
Applications Information.............................................................. 2ꢀ  
ꢁayout, Decoupling, and Grounding....................................... 2ꢀ  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 1ꢀ  
REVISION HISTORY  
9/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD7626  
SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.5 V; REF = ꢀ.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
VIN+ − VIN−  
−VREF  
+VREF  
V
Operating Input Voltage  
Common-Mode Input Range  
CMRR  
VIN+, VIN− to AGND  
−0.1  
VREF/2 − 0.05  
VREF + 0.1  
VREF/2 + 0.05  
V
V
dB  
μA  
VREF/2  
68  
168  
fIN = 1 MHz  
Midscale input  
Input Current  
THROUGHPUT  
Complete Cycle  
Throughput Rate  
DC ACCURACY  
100  
10  
ns  
MSPS  
0.1  
Integral Linearity Error  
No Missing Codes  
Differential Linearity Error  
Transition Noise  
Zero Error, TMIN to TMAX  
Zero Error Drift  
−1.5  
16  
−0.5  
0.45  
+1.5  
+0.5  
+6  
LSB  
Bits  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
0.35  
0.6  
1
0.5  
8
−6  
Gain Error, TMIN to TMAX  
20  
Gain Error Drift  
Power Supply Sensitivity1  
0.7  
0.4  
0.2  
ppm/°C  
LSB  
LSB  
VDD1 = 5 V 5%  
VDD2 = 2.5 V 5%  
AC ACCURACY  
fIN = 20 kHz, −0.5 dBFS  
Dynamic Range  
Signal-to-Noise Ratio  
90.5  
90  
91.5  
91  
105  
−105.5  
91  
dB  
dB  
dB  
dB  
dB  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
fIN = 100 kHz, −0.5 dBFS  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
fIN = 2.4 MHz, −1 dBFS  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
fIN = 2.4 MHz, −6 dBFS  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
−3 dB Input Bandwidth  
Aperture Jitter  
89.5  
91.3  
dB  
dB  
dB  
dB  
104.5  
−102.5  
91  
88.5  
84  
−86  
85  
dBFS  
dB  
dB  
dB  
89  
84  
−93  
88  
95  
dBFS  
dB  
dB  
dB  
MHz  
ps rms  
0.25  
INTERNAL REFERENCE  
Output Voltage  
Temperature Drift  
REFIN @ 25°C  
−40°C to +85°C  
1.18  
1.19  
15  
1.2  
V
ppm/°C  
Rev. 0 | Page 3 of 28  
 
AD7626  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
REFERENCE BUFFER  
REFIN Input Voltage Range  
REF Output Voltage Range  
Line Regulation  
1.18  
4.076  
1.2  
4.096  
5
1.22  
4.116  
V
V
mV  
REF @ 25°C, EN0 = EN1 = 1  
VDD1 5%, VDD2 5%  
EXTERNAL REFERENCE  
Voltage Range  
REF  
4.096  
REF/2  
5
V
VCM PIN  
VCM Output  
VCM Error  
Output Impedance  
LVDS I/O (ANSI-644)  
Data Format  
−0.015  
+0.015  
V
kΩ  
Serial LVDS twos complement  
Differential Output Voltage, VOD  
Common-Mode Output Voltage, VOCM RL = 100 Ω  
Differential Input Voltage, VID  
Common-Mode Input Voltage, VICM  
RL = 100 Ω  
245  
9802  
100  
800  
290  
1130  
454  
1375  
650  
mV  
mV  
mV  
mV  
1575  
POWER SUPPLIES  
Specified Performance  
VDD1  
VDD2  
VIO  
4.75  
2.37  
2.37  
5
2.5  
2.5  
5.25  
2.63  
2.63  
V
V
V
Operating Currents  
Static—Not Converting  
VDD1  
VDD2  
VIO  
3.5  
16.7  
11.6  
4.5  
21.2  
13.5  
mA  
mA  
mA  
With Internal Reference  
VDD1  
VDD2  
10 MSPS throughput  
10.4  
23.5  
15.8  
11.2  
27.8  
17.8  
mA  
mA  
mA  
VIO  
Echoed-clock mode  
10 MSPS throughput  
With External Reference  
VDD1  
VDD2  
VIO  
Power-Down  
VDD1  
7.5  
23  
16.4  
8.8  
28  
18.5  
mA  
mA  
mA  
Echoed-clock mode  
EN0 = 0, EN1 = 0  
0.6  
0.8  
1
4
10  
5
μA  
μA  
μA  
VDD2  
VIO  
Power Dissipation3  
Static—Not Converting  
With Internal Reference  
With External Reference  
Power-Down  
Energy per Conversion  
TEMPERATURE RANGE  
Specified Performance  
88  
107  
170  
160  
58  
mW  
mW  
mW  
μW  
10 MSPS throughput  
10 MSPS throughput  
150  
136  
8
10 MSPS throughput  
TMIN to TMAX  
13.6  
nJ/sample  
−40  
+85  
°C  
1 Using an external reference.  
2 The ANSI-644 LVDS specification has a minimum output common mode (VOCM) of 1125 mV.  
3 Power dissipation is for the AD7626 device only. In self-clocked interface mode, 0.9 mW is dissipated in the 100 Ω terminator. In echoed-clock interface mode, 1.8 mW  
is dissipated in two 100 Ω terminators.  
Rev. 0 | Page 4 of 28  
AD7626  
TIMING SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.37 V to 2.63 V; REF = ꢀ.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
tCYC  
tCNVH  
tMSB  
tCLKL  
tCLK  
fCLK  
tDCO  
tD  
Min  
100  
10  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
Time Between Conversions1  
10,000  
40  
100  
72  
(tCYC − tMSB + tCLKL)/n  
300  
7
1
7
CNV High Time  
CNV to D (MSB) Ready  
CNV to Last CLK (LSB) Delay  
CLK Period2  
3.33  
0
4
250  
4
0
4
CLK Frequency  
CLK to DCO Delay (Echoed-Clock Mode)  
DCO to D Delay (Echoed-Clock Mode)  
CLK to D Delay  
tCLKD  
0
1 The maximum time between conversions is 10,000 ns. If CNV is left idle for a time greater than the maximum value of tCYC, the subsequent conversion result is invalid.  
2 For the maximum CLK period, the window available to read data is tCYC − tMSB + tCLKL. Divide this time by the number of bits (n) to be read giving the maximum CLK  
frequency that can be used for a given conversion CNV frequency. In echoed-clock interface mode, n = 16; in self-clocked interface mode, n = 18.  
Rev. 0 | Page 5 of 28  
 
AD7626  
TIMING DIAGRAMS  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
15  
tCLK  
15  
16  
1
2
16  
1
2
3
CLK–  
CLK+  
tDCO  
1
15  
16  
1
2
15  
16  
2
3
DCO–  
DCO+  
tMSB  
tD  
tCLKD  
D+  
D–  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
D15  
N + 1  
D14  
D13  
0
0
N + 1 N + 1  
Figure 2. Echoed-Clock Interface Mode Timing Diagram  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
ACQUISITION  
tCLK  
ACQUISITION  
ACQUISITION  
tCLKL  
1
17  
18  
1
2
3
4
17  
18  
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D–  
D15  
N + 1  
D14  
N
D1  
N
D0  
N
D1  
N – 1  
D0  
N – 1  
D15  
N
0
1
0
0
1
0
Figure 3. Self-Clocked Interface Mode Timing Diagram  
Rev. 0 | Page 6 of 28  
 
AD7626  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Analog Inputs/Outputs  
IN+, IN− to GND1  
−0.3 V to REF + 0.3 V or  
130 mA  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +2.7 V  
Table 5. Thermal Resistance  
REF2 to GND  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP_VQ  
40  
4
°C/W  
VCM, CAP2 to GND  
CAP1, REFIN to GND  
Supply Voltage  
VDD1  
VDD2, VIO  
Digital Inputs to GND  
Digital Outputs to GND  
ESD CAUTION  
−0.3 V to +6 V  
−0.3 V to +3 V  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
10 mA  
Input Current to Any Pin Except  
Supplies3  
Operating Temperature Range  
(Commercial)  
−40°C to +85°C  
Storage Temperature Range  
Junction Temperature  
ESD  
−65°C to +150°C  
150°C  
1 kV  
1 See the Analog Inputs section.  
2 Keep CNV low for any external REF voltage > 4.3 V applied to the REF pin.  
3 Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 28  
 
 
 
AD7626  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
IN+  
IN–  
VCM  
VDD1  
VDD1  
VDD1  
VDD2  
CAP1  
REFIN  
EN0  
EN1  
VDD2  
CNV–  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
PIN 1  
INDICATOR  
AD7626  
TOP VIEW  
(Not to Scale)  
18 VDD2  
17 CLK+  
NOTES  
1. CONNECT THE EXPOSED PAD TO THE GROUND  
PLANE OF THE PCB USING MULTIPLE VIAS.  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
2
VDD1  
VDD2  
P
P
Analog 5 V Supply. Decouple the 5 V supply with a 100 nF capacitor.  
Analog 2.5 V Supply. Decouple this pin with a 100 nF capacitor. The 2.5 V supply source should  
supply this pin first, then be traced to the other VDD2 pins (Pin 7 and Pin 18).  
3
4
CAP1  
REFIN  
AO  
AI/O  
Connect this pin to a 10 nF capacitor.  
Prebuffer Reference Voltage. When using the internal reference, this pin outputs the band gap voltage  
and is nominally at 1.2 V. It can be overdriven with an external reference voltage such as the ADR280.  
In either internal or external reference mode, a 10 ꢀF capacitor is required. If using an external 4.096 V  
reference (connected to REF), this pin is a no connect and does not require any capacitor.  
5, 6  
EN0, EN1  
DI  
Enable. The logic levels of these pins set the operation of the device as follows:  
EN1 = 0, EN0 = 0: power-down mode.  
EN1 = 0, EN0 = 1: external 1.2 V reference applied to the REFIN pin is required.  
EN1 = 1, EN0 = 0: external 4.096 V reference applied to the REF pin required.  
EN1 = 1, EN0 = 1: internal reference and internal reference buffer in use.  
7
VDD2  
P
Digital 2.5 V Supply. Decouple this pin with a 100 nF capacitor.  
8, 9  
CNV−, CNV+  
DI  
Convert Input. These pins act as the conversion control pin. On the rising edge of these pins, the  
analog inputs are sampled and a conversion cycle is initiated. CNV+ works as a CMOS input when  
CNV− is grounded; otherwise, CNV+ and CNV− are differential LVDS inputs.  
10, 11  
12  
13  
D−, D+  
VIO  
GND  
DO  
P
P
LVDS Data Outputs. The conversion data is output serially on these pins.  
Input/Output Interface Supply. Use a 2.5 V supply and decouple this pin with a 100 nF capacitor.  
Ground. Return path for the 100 nF capacitor connected to Pin 12.  
14, 15  
DCO−, DCO+ DO  
LVDS Buffered Clock Outputs. When DCO+ is grounded, the self-clocked interface mode is selected.  
In this mode, the 16-bit results on D are preceded by an initial 0 (which is output at the end of the  
previous conversion), followed by a 2-bit header (10) to allow synchronization of the data by the  
digital host with extra logic. The 1 in this header provides the reference to acquire the subsequent  
conversion result correctly. When DCO+ is not grounded, the echoed-clock interface mode is  
selected. In this mode, DCO is a copy of CLK . The data bits are output on the falling edge of DCO+  
and can be captured in the digital host on the next rising edge of DCO+.  
16, 17  
18  
CLK−, CLK+  
VDD2  
DI  
P
LVDS Clock Inputs. This clock shifts out the conversion results on the falling edge of CLK+.  
Analog 2.5 V Supply. Decouple this pin with a 100 nF capacitor.  
19, 20  
VDD1  
P
Analog 5 V Supply. Isolate these pins from Pin 1 with a ferrite bead and decouple them with a 100 nF  
capacitor.  
21  
VCM  
AO  
Common-Mode Output. When using any reference scheme, this pin produces one-half the voltage  
present on the REF pin, which can be useful for driving the common mode of the input amplifiers.  
22  
23  
IN−  
IN+  
AI  
AI  
Differential Negative Analog Input. Referenced to and must be driven 180° out of phase with IN+.  
Differential Positive Analog Input. Referenced to and must be driven 180° out of phase with IN−.  
Rev. 0 | Page 8 of 28  
 
AD7626  
Pin No.  
Mnemonic  
Type1  
P
Description  
24  
GND  
Ground.  
25, 26, 28 CAP2  
AO  
Connect all three CAP2 pins together and decouple them with the shortest trace possible to a single  
10 ꢀF, low ESR, low ESL capacitor. The other side of the capacitor must be placed close to Pin 27 (GND).  
27  
GND  
P
Ground. Return path for the 10 ꢀF capacitor connected to Pin 25, Pin 26, and Pin 28.  
29, 30, 32 REF  
AI/O  
Buffered Reference Voltage. When using the internal reference or the 1.2 V external reference (REFIN  
input), the 4.096 V system reference is produced at this pin. When using an external reference, such  
as the ADR434 or the ADR444, the internal reference buffer must be disabled. In either case, connect  
all three REF pins together and decouple them with the shortest trace possible to a single 10 ꢀF, low  
ESR, low ESL capacitor. The other side of the capacitor must be placed close to Pin 31 (GND).  
31  
EP  
GND  
Exposed pad  
P
Ground. Return path for the 10 ꢀF capacitor connected to Pin 29, Pin 30, and Pin 32.  
The exposed pad is located on the underside of the package. Connect the exposed pad to the  
ground plane of the PCB using multiple vias. See the Exposed Paddle section for more information.  
1 AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DO = digital output; P = power.  
Rev. 0 | Page 9 of 28  
 
AD7626  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.5 V; REF = ꢀ.096 V; all plots at 10 MSPS unless otherwise noted. FFT plots for 2 MHz, 3 MHz, and  
5 MHz input tones use band pass filter ( ꢀ00 kHz pass bandwidth around fundamental frequency).  
0
0
INPUT FREQUENCY = 10.37kHz  
SNR = 91.85dB  
INPUT FREQUENCY = 100kHz  
SNR = 91.323dB  
–20  
–20  
SINAD = 91.8dB  
SINAD = 91.047dB  
THD = –112.1dB  
SFDR = 112.85dB  
32k SAMPLES  
THD = –102.543dB  
SFDR = 104.529dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
10  
30  
50  
70  
90  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
Figure 5. 10 kHz, −0.5 dB Input Tone, Zoomed View  
Figure 8.100 kHz, −0.5 dB Input Tone FFT, Full Frequency View  
0
–20  
0
INPUT FREQUENCY = 2.0026MHz  
–0.5dB INPUT AMPLITUDE  
SNR = 87.4dBFS  
INPUT FREQUENCY = 2.0026MHz  
–6dB INPUT AMPLITUDE  
SNR = 87.6dBFS  
SINAD = 87.6dBFS  
THD = –101.6dB  
SFDR = 101.9dB  
64k SAMPLES  
–20  
–40  
SINAD = 84.8dBFS  
THD = –87.9dB  
SFDR = 88.1dB  
64k SAMPLES  
–40  
–60  
–60  
THIRD  
HARMONIC  
–80  
–80  
FIFTH  
HARMONIC  
SECOND  
HARMONIC  
FIFTH  
HARMONIC  
THIRD  
HARMONIC  
SECOND  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. FFT, 2 MHz, −0.5 dB Input Tone, Wide View  
Figure 9. FFT, 2 MHz, −6 dB Input Tone, Wide View  
0
–20  
0
–20  
INPUT FREQUENCY = 3.00125MHz  
–6dB INPUT AMPLITUDE  
SNR = 88.48dBFS  
INPUT FREQUENCY = 3.00125MHz  
–0.5dB INPUT AMPLITUDE  
SNR = 87.1dBFS  
SINAD = 88.3dBFS  
THD = –97.2dB  
SINAD = 81.2dBFS  
THD = –82.0dB  
SFDR = 98.3dB  
64k SAMPLES  
SFDR = 82.1dB  
64k SAMPLES  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
FIFTH  
HARMONIC  
–80  
–80  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
FIFTH  
FOURTH  
HARMONIC  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
HARMONIC  
FOURTH  
HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. FFT, 3 MHz, −0.5 dB Input Tone, Wide View  
Figure 10. FFT, 3 MHz, −6 dB Input Tone, Wide View  
Rev. 0 | Page 10 of 28  
 
AD7626  
0
–20  
0
–20  
INPUT FREQUENCY = 5.00656128MHz  
–0.5dB INPUT AMPLITUDE  
SNR = 86.7dBFS  
INPUT FREQUENCY = 5.00656128MHz  
–0.5dB INPUT AMPLITUDE  
SNR = 86.7dBFS  
SINAD = 83.2dBFS  
SINAD = 83.2dBFS  
FUNDAMENTAL  
THD = –85.3dB  
THD = –85.3dB  
SFDR = 86.1dB  
SFDR = 86.1dB  
–40  
–40  
64k SAMPLES  
64k SAMPLES  
–60  
–60  
THIRD  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
FIFTH  
HARMONIC  
FIFTH  
HARMONIC  
SECOND  
HARMONIC  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
FOURTH  
HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. FFT, 5 MHz, −0.5 dB Input Tone, Wide View  
Figure 14. FFT, 5 MHz, −0.5 dB Input Tone Zoomed View  
0
–20  
0
INPUT FREQUENCY = 5.00656128MHz  
–6dB INPUT AMPLITUDE  
SNR = 88.4dBFS  
INPUT FREQUENCY = 5.00656128MHz  
–6dB INPUT AMPLITUDE  
SNR = 88.4dBFS  
SINAD = 88.0dBFS  
THD = –92.4dB  
SFDR = 92.8dB  
64k SAMPLES  
–20  
SINAD = 88.0dBFS  
FUNDAMENTAL  
FUNDAMENTAL  
THD = –92.4dB  
SFDR = 92.8dB  
64k SAMPLES  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
THIRD  
–80  
–80  
HARMONIC  
SECOND  
HARMONIC  
FIFTH HARMONIC  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
FIFTH  
FOURTH  
HARMONIC  
HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. FFT, 5 MHz, −6 dB Input Tone, Wide View  
Figure 15. FFT, 5 MHz, −0.5 dB Input Tone Zoomed View  
–75  
–80  
94  
92  
90  
88  
86  
84  
82  
80  
–50  
–60  
9.7MHz  
–85  
5MHz  
–70  
–90  
SNR  
–95  
–80  
–90  
1MHz  
–100  
–105  
–110  
–115  
–100  
3MHz  
THD  
2MHz  
–15  
–110  
10M  
–18  
–12  
–9  
–6  
–3  
0
10k  
100k  
1M  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (Hz)  
Figure 13. THD vs. Input Amplitudes at Input Frequency Tones of  
10 kHz to 9.7 MHz  
Figure 16. THD and SNR vs. Input Frequency (−0.5 dB Input Tone)  
Rev. 0 | Page 11 of 28  
AD7626  
92.0  
91.8  
91.6  
91.4  
91.2  
91.0  
90.8  
90.6  
90.4  
90.2  
92.0  
91.8  
91.6  
91.4  
91.2  
91.0  
90.8  
90.6  
90.4  
90.2  
90.0  
EXTERNAL REFERENCE  
EXTERNAL REFERENCE  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
90.0  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. SNR vs. Temperature (−0.5 dB, 20 kHz Input Tone)  
Figure 20. SINAD vs. Temperature (−0.5 dB, 20 kHz Input Tone)  
0.35  
7
6
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
5
4
GAIN ERROR  
+INPUT CURRENT  
3
2
–INPUT CURRENT  
1
0
ZERO ERROR  
–20  
–0.05  
–0.10  
–1  
–40  
–6  
–4  
–2  
0
2
4
6
0
20  
40  
60  
80  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 18. Input Current (IN+, IN−) vs. Differential Input Voltage (10 MSPS)  
Figure 21. Zero Error and Gain Error vs. Temperature  
–103.0  
–103.5  
250,000  
200,000  
150,000  
100,000  
50,000  
0
262,144 SAMPLES  
STD DEVIATION = 0.4829  
201,320  
–104.0  
–104.5  
–105.0  
–105.5  
–106.0  
–106.5  
–107.0  
EXTERNAL REFERENCE  
INTERNAL REFERENCE  
30,651  
FEC9  
30,073  
FECB  
54  
46  
0
0
–40  
–20  
0
20  
40  
60  
80  
FEC7  
FEC8  
FECA  
FECC  
FECD  
TEMPERATURE (°C)  
CODE (HEX)  
Figure 19. THD vs. Temperature (−0.5 dB, 20 kHz Input Tone)  
Figure 22. Histogram of 262,144 Conversions of a DC Input  
at the Code Center (Internal Reference)  
Rev. 0 | Page 12 of 28  
AD7626  
250,000  
200,000  
150,000  
100,000  
50,000  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
262,144 SAMPLES  
STD DEVIATION = 0.4814  
201,614  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
30,250  
30,206  
FECA  
41  
33  
0
0
FEC8  
FEC9  
FECB  
FECC  
FECD  
FECE  
0
16,384  
32,768  
CODE  
49,152  
65,536  
CODE (HEX)  
Figure 23. Histogram of 262,144 Conversions of a DC Input  
at the Code Center (External Reference)  
Figure 25. Differential Nonlinearity vs. Code (25ºC)  
140,000  
0.8  
0.6  
129,601  
262,144 SAMPLES  
STD DEVIATION = 0.5329  
+85°C  
128,084  
+25°C  
–40°C  
120,000  
100,000  
80,000  
60,000  
40,000  
20,000  
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
2329  
0
2130  
0
FEC6  
FEC7  
FEC8  
FEC9  
FECA  
FECB  
0
16,384  
32,768  
CODE  
49,152  
65,536  
CODE (HEX)  
Figure 24. Histogram of 262,144 Conversions of a DC Input  
at the Code Transition  
Figure 26. Integral Nonlinearity vs. Code vs. Temperature  
Rev. 0 | Page 13 of 28  
AD7626  
TERMINOLOGY  
Power Supply Rejection Ratio (PSRR)  
Common-Mode Rejection Ratio (CMRR)  
Variations in power supply affect the full-scale transition but not  
the linearity of the converter. PSRR is the maximum change in  
the full-scale transition point due to a change in power supply  
voltage from the nominal value.  
CMRR is defined as the ratio of the power in the ADC output  
at full-scale frequency, f, to the power of a 100 mV p-p sine  
wave applied to the common-mode voltage of VIN+ and VIN−  
at frequency, fS.  
Reference Voltage Temperature Coefficient  
CMRR (dB) = 10 log(Pf/PfS)  
The reference voltage temperature coefficient is derived from the  
typical shift of output voltage at 25°C on a sample of parts at the  
maximum and minimum reference output voltage (VREF) meas-  
ured at TMIN, T(25°C), and TMAX. It is expressed in ppm/°C as  
where:  
Pf is the power at frequency, f, in the ADC output.  
PfS is the power at frequency, fS, in the ADC output.  
Differential Nonlinearity (DNL) Error  
V
REF (Max)–VREF (Min)  
TCVREF (ppm/°C) =  
×106  
In an ideal ADC, code transitions are 1 ꢁSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value. It  
is often specified in terms of resolution for which no missing  
codes are guaranteed.  
VREF (25°C) × (TMAX TMIN  
)
where:  
V
V
V
T
T
REF (Max) = maximum VREF at TMIN, T(25°C), or TMAX.  
REF (Min) = minimum VREF at TMIN, T(25°C), or TMAX  
REF (25°C) = VREF at 25°C.  
.
Integral Nonlinearity (INL) Error  
ꢁinearity error refers to the deviation of each individual code  
from a line drawn from negative full scale through positive full  
scale. The point used as negative full scale occurs ½ ꢁSB before  
the first code transition. Positive full scale is defined as a level  
1½ ꢁSB beyond the last code transition. The deviation is meas-  
ured from the middle of each code to the true straight line.  
MAX = +85°C.  
MIN = −ꢀ0°C.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured for an input typically at −60 dB. The  
value for dynamic range is expressed in decibels.  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Effective Number of Bits (ENOB)  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD and is expressed in bits by  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal (including  
harmonics).  
ENOB = [(SINADdB − 1.76)/6.02]  
Gain Error  
The first transition (from 100 … 000 to 100 …001) should occur  
at a level ½ ꢁSB above nominal negative full scale (−ꢀ.0959375 V  
for the ꢀ.096 V range). The last transition (from 011 … 110 to  
011 … 111) should occur for an analog voltage 1½ ꢁSB below  
the nominal full scale (+ꢀ.0959375 V for the ꢀ.096 V range).  
The gain error is the deviation of the difference between the  
actual level of the last transition and the actual level of the first  
transition from the difference between the ideal levels.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
Zero Error  
Zero error is the difference between the ideal midscale input  
voltage (0 V) and the actual voltage producing the midscale  
output code.  
Gain Error Drift  
The ratio of the gain error change due to a temperature change  
of 1°C and the full-scale range (2N). It is expressed in parts per  
million.  
Zero Error Drift  
The ratio of the zero error change due to a temperature change  
of 1°C and the full scale code range (2N). It is expressed in parts  
per million.  
Least Significant Bit (LSB)  
The least significant bit, or ꢁSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the ꢁSB expressed in volts is  
VINp-p  
LSB (V) =  
2N  
Rev. 0 | Page 14 of 28  
 
AD7626  
THEORY OF OPERATION  
IN+  
GND  
LSB  
SWITCHES  
CONTROL  
SW+  
MSB  
32,768C 16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
REF  
(4.096V)  
CLK+, CLK–  
DCO+, DCO–  
D+, D–  
DATA TRANSFER  
CONTROL  
LOGIC  
COMP  
GND  
OUTPUT CODE  
32,768C 16,384C  
MSB  
SW–  
LSB  
CNV+, CNV–  
LVDS INTERFACE  
GND  
CONVERSION  
CONTROL  
IN–  
Figure 27. ADC Simplified Schematic  
CIRCUIT INFORMATION  
When the conversion phase begins, SW+ and SW− are opened  
first. The two capacitor arrays are then disconnected from the  
inputs and connected to the GND input. Therefore, the differential  
voltage between the inputs (IN+ and IN−) captured at the end  
of the acquisition phase is applied to the comparator inputs,  
causing the comparator to become unbalanced. By switching  
each element of the capacitor array between GND and ꢀ.096 V  
(the reference voltage), the comparator input varies by binary  
weighted voltage steps (VREF/2, VREF/ꢀ … VREF/65,536). The  
control logic toggles these switches, MSB first, to bring the  
comparator back into a balanced condition. At the completion  
of this process, the control logic generates the ADC output code.  
The AD7626 is a 10 MSPS, high precision, power effi-  
cient, 16-bit ADC that uses SAR-based architecture to  
provide a performance of 91.5 dB SNR, 0.ꢀ5 ꢁSB INꢁ,  
and 0.35 ꢁSB DNꢁ.  
The AD7626 is capable of converting 10,000,000 samples per  
second (10 MSPS). The device typically consumes 136 mW of  
power. The AD7626 offers the added functionality of a high  
performance on-chip reference and on-chip reference buffer.  
The AD7626 is specified for use with 5 V and 2.5 V supplies  
(VDD1, VDD2). The interface from the digital host to the  
AD7626 uses 2.5 V logic only. The AD7626 uses an ꢁVDS  
interface to transfer data conversions. The CNV+ and CNV−  
inputs to the part activate the conversion of the analog input.  
The CNV+ and CNV− pins can be applied using a CMOS or  
ꢁVDS source.  
The AD7626 digital interface uses low voltage differential  
signaling (ꢁVDS) to enable high data transfer rates.  
The AD7626 conversion result is available for reading after  
tMSB (time from the conversion start until MSB is available) has  
elapsed. The user must apply a burst ꢁVDS CꢁK signal to the  
AD7626 to transfer data to the digital host.  
The AD7626 is housed in a space-saving, 32-lead, 5 mm ×  
5 mm ꢁFCSP.  
CONVERTER INFORMATION  
The CꢁK signal outputs the ADC conversion result onto the  
data output D . The bursting of the CꢁK signal is illustrated  
in Figure ꢀ1 and Figure ꢀ2 and is characterized as follows:  
The AD7626 is a 10 MSPS ADC that uses SAR-based archi-  
tecture to incorporate a charge redistribution DAC. Figure 27  
shows a simplified schematic of the ADC. The capacitive DAC  
consists of two identical arrays of 16 binary weighted capacitors  
that are connected to the two comparator inputs.  
The differential voltage on CꢁK should be held steady  
state in the time between tCꢁKꢁ and tMSB  
.
The AD7626 has two data read modes. For more  
information about the echoed-clock and self-clocked  
interface modes, see the Digital Interface section.  
During the acquisition phase, the terminals of the array tied  
to the input of the comparator are connected to GND via SW+  
and SW−. All independent switches are connected to the analog  
inputs. In this way, the capacitor arrays are used as sampling  
capacitors and acquire the analog signal on the IN+ and IN−  
inputs. A conversion phase is initiated when the acquisition  
phase is complete and the CNV input goes high. Note that the  
AD7626 can receive a CMOS or ꢁVDS format CNV signal.  
Rev. 0 | Page 15 of 28  
 
 
 
 
AD7626  
TRANSFER FUNCTIONS  
ANALOG INPUTS  
The AD7626 uses a ꢀ.096 V reference. The AD7626 converts  
the differential voltage of the antiphase analog inputs (IN+  
and IN−) into a digital output. The analog inputs, IN+ and IN−,  
require a 2.0ꢀ8 V common-mode voltage (REF/2).  
The analog inputs, IN+ and IN−, applied to the AD7626 must be  
180° out of phase with each other. Figure 29 shows an equivalent  
circuit of the input structure of the AD7626.  
The two diodes provide ESD protection for the analog inputs,  
IN+ and IN−. Care must be taken to ensure that the analog input  
signal does not exceed the reference voltage by more than 0.3 V.  
If the analog input signal exceeds this level, the diodes become  
forward-biased and start conducting current. These diodes can  
handle a forward-biased current of 130 mA maximum. However,  
if the supplies of the input buffer (for example, the supplies of  
the ADAꢀ899-1 in Figure 33) are different from those of the  
reference, the analog input signal may eventually exceed the  
supply rails by more than 0.3 V. In such a case (for example, an  
input buffer with a short circuit), the current limitation can be  
used to protect the part.  
The 16-bit conversion result is in MSB first, twos complement  
format.  
The ideal transfer functions for the AD7626 are shown  
in Figure 28 and Table 7.  
011 ... 111  
011 ... 110  
011 ... 101  
CNV  
VDD1  
25pF  
67  
IN+  
OR IN–  
100 ... 010  
100 ... 001  
100 ... 000  
–FSR  
–FSR + 1LSB  
+FSR – 1LSB  
+FSR – 1.5LSB  
–FSR + 0.5LSB  
Figure 29. Equivalent Analog Input Circuit  
ANALOG INPUT  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these differ-  
ential inputs, signals common to both inputs are rejected. The  
AD7626 shows some degradation in THD with higher analog  
input frequencies.  
Figure 28. ADC Ideal Transfer Functions (FSR = Full-Scale Range)  
Table 7. Output Codes and Ideal Input Voltages  
Analog Input  
(IN+ − IN−)  
Digital Output Code  
Description  
REF = 4.096 V  
Twos Complement (Hex)  
75  
FSR − 1 LSB  
+4.095875V  
0x7FFF  
0x0001  
0x0000  
0xFFFF  
0x8001  
0x8000  
Midscale + 1 LSB +125 ꢀV  
Midscale 0 V  
Midscale − 1 LSB −125 ꢀV  
−FSR + 1 LSB  
−FSR  
70  
65  
60  
55  
50  
45  
−4.095875 V  
− 4.096 V  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT COMMON-MODE FREQUENCY (Hz)  
Figure 30. Analog Input CMRR vs. Frequency  
Rev. 0 | Page 16 of 28  
 
 
 
 
AD7626  
TYPICAL CONNECTION DIAGRAM  
8
V+  
ADR434  
ADR444  
CAPACITOR ON OUTPUT  
FOR STABILITY  
C
10µF  
REF  
1, 2  
1
10µF  
VDD1  
(5V)  
100nF  
VDD2  
(2.5V)  
32  
31  
30  
29  
28  
27  
26  
25  
100nF  
24  
GND  
1
2
VDD1  
VDD2  
CAP1  
REFIN  
EN0  
10nF  
23  
22  
IN+  
IN–  
IN+  
IN–  
8
ADR280  
PADDLE  
SEE THE DRIVING  
THE AD7625 SECTION  
7
3
4
10µF  
VCM  
21  
20  
VCM  
VIO  
AD7626  
3
10kΩ  
10kΩ  
5
6
VDD1  
(5V)  
CONTROL FOR  
ENABLE  
VDD1  
FERRITE  
BEAD  
PINS  
100nF  
6
EN1  
19  
18  
VDD1  
VDD2  
VDD2  
(2.5V)  
7
VDD2  
VDD2  
(2.5V)  
100nF  
100nF  
4
CONVERSION  
CONTROL  
CMOS (CNV+ ONLY)  
OR  
8
9
10  
11  
12  
13  
14  
15  
16  
100Ω  
17  
LVDS CNV+ AND CNV–  
USING 100Ω  
5
TERMINATION RESISTOR  
100Ω  
VIO  
(2.5V)  
100Ω  
100Ω  
DIGITAL INTERFACE SIGNALS  
DIGITAL HOST  
LVDS TRANSMIT AND RECEIVE  
1
2
3
SEE THE LAYOUT, DECOUPLING, AND GROUNDING SECTION.  
IS USUALLY A 10µF CERAMIC CAPACITOR WITH LOW ESR AND ESL.  
USE PULL-UP OR PULL-DOWN RESISTORS TO CONTROL EN0 AND EN1 DURING POWER-UP. EN0 AND EN1 INPUTS CAN BE  
FIXED IN HARDWARE OR CONTROLLED USING A DIGITAL HOST (EN0 = 0 AND EN1 = 0 PUTS THE ADC IN POWER-DOWN).  
OPTION TO USE A CMOS (CNV+) OR LVDS (CNV±) INPUT TO CONTROL CONVERSIONS.  
TO ENABLE SELF-CLOCKED MODE, TIE DCO+ TO GND.  
CONNECT PIN 19 AND PIN 20 TO VDD1 SUPPLY; ISOLATE THE TRACE TO PIN 19 AND PIN 20 FROM THE TRACE TO PIN 1 USING A  
FERRITE BEAD SIMILAR TO WURTH 74279266.  
C
REF  
4
5
6
7
8
SEE THE DRIVING THE AD7626 SECTION FOR DETAILS ON AMPLIFIER CONFIGURATIONS.  
SEE THE VOLTAGE REFERENCE OPTIONS SECTION FOR DETAILS.  
Figure 31. Typical Application Diagram  
Rev. 0 | Page 17 of 28  
 
AD7626  
DRIVING THE AD7626  
Differential Analog Input Source  
ADA4899-1  
U1  
ANALOG INPUT  
(UNIPOLAR 0V TO 4.096V)  
Figure 33 shows an ADAꢀ899-1 driving each differential input  
to the AD7626.  
590Ω  
590Ω  
20Ω  
Single-Ended-to-Differential Driver  
56pF  
For applications using unipolar analog signals, a single-  
ended-to-differential driver (as shown in Figure 32) allows  
for a differential input into the part. This configuration, when  
provided with an input signal of 0 V to ꢀ.096 V, produces a  
differential ꢀ.096 V with midscale at 2.0ꢀ8 V. The one-pole  
filter using R = 20 Ω and C = 56 pF provides a corner frequency  
of 1ꢀ0 MHz. The VCM output of the AD7626 can be buffered  
and then used to provide the required 2.0ꢀ8 V common-mode  
voltage.  
IN+  
AD7626  
IN–  
VCM  
20Ω  
ADA4899-1  
U2  
56pF  
100nF  
100nF  
V+  
V–  
50Ω  
Single-Ended or Fully Differential High Frequency Driver  
In applications that require higher input frequency tones, the  
ADAꢀ932-1 can be used to drive the inputs to the AD7626. The  
ADAꢀ932-1 is a differential driver, which also allows the user  
the option of single-ended-to-differential conversion.  
AD8031, AD8032  
Figure 32. Single-Ended-to-Differential Driver Circuit Using ADA4899-1  
Figure 3ꢀ shows the typical circuit for a 50 ꢂ source impedance  
(ac-coupled in this example). The input to the ADAꢀ932-1 is  
configured to be balanced to the source impedance (in this case  
50 ꢂ). Further information on balancing the input impedance  
to the source impedance can be found on the ADAꢀ932-1  
datasheet. The circuit shown in Figure 3ꢀ operates with an  
overall gain of ~0.5 when the termination input termination  
is taken into account.  
Alternatively, the ADAꢀ932-1 can be used with a fully diffe-  
rential source—it acts as an inverting differential driver.  
1
1
REF  
REF  
C
10µF  
C
10µF  
REF  
REF  
2
2
+V  
S
20  
0V TO V  
REF  
REFIN  
REF  
56pF  
IN+  
IN–  
–V  
ADA4899-1  
S
AD7626  
+V  
S
VCM  
2.048V  
20Ω  
GND  
V
TO 0V  
REF  
56pF  
–V  
S
ADA4899-1  
VCM  
+V  
–V  
S
BUFFERED VCM PIN OUTPUT  
GIVES THE REQUIRED 2.048V  
COMMON-MODE SUPPLY FOR  
ANALOG INPUTS.  
0.1µF  
AD8031, AD8032  
S
1
2
SEE THE VOLTAGE REFERENCE OPTIONS SECTION. CONNECTION TO EXTERNAL REFERENCE SIGNALS  
IS DEPENDENT ON THE EN1 AND EN0 SETTINGS.  
C
IS USUALLY A 10µF CERAMIC CAPACITOR WITH LOW ESL AND ESR.  
REF  
DECOUPLE REF AND REFIN PINS AS PER THE EN1 AND EN0 RECOMMENDATIONS  
Figure 33. Driving the AD7626 from a Differential Analog Source Using ADA4899-1  
Rev. 0 | Page 18 of 28  
 
 
 
AD7626  
499  
R35  
SINGLE-ENDED  
ANALOG INPUT  
AC-COUPLED  
50SOURCE  
499Ω  
AD8031  
C22  
0.1µF  
C24  
0.1µF  
+7.25V  
53.6Ω  
GND  
GND  
VDRV+  
VCM  
100nF  
GND  
GND  
56pF  
+V  
S
V
20Ω  
VCM  
OCM  
FB–  
IN–  
IN+  
1
2
3
+IN  
–IN  
PD  
11  
10  
4
C
499Ω  
–OUT  
+OUT  
FB+  
ADA4932-1  
AD7626  
12  
20Ω  
50Ω  
53.6Ω  
–V  
S
PAD  
56pF  
–2.5V  
GND  
GND  
C15  
0.1µF  
GND  
499Ω  
Figure 34. High Frequency Input Drive Circuit Using the ADA4932-1; Single-Ended-to Differential Configuration  
Rev. 0 | Page 19 of 28  
 
AD7626  
Table 8. Voltage Reference Options  
VOLTAGE REFERENCE OPTIONS  
Option EN1  
EN0  
Reference Mode  
The AD7626 allows flexible options for creating and buffering  
the reference voltage. The AD7626 conversions refer to ꢀ.096 V  
only. The various options creating this ꢀ.096 V reference are  
controlled by the EN1 and EN0 pins (see Table 8).  
A
1
1
Power-up  
Internal reference and internal  
reference buffer in use  
External 1.2 V reference applied to  
REFIN pin required  
External 4.096 V reference applied to  
REF pin required.  
B
C
0
1
0
1
0
0
Power-down mode  
DECOUPLE THE REF AND  
REFIN PINS EXTERNALLY.  
10µF  
10µF  
REF REFIN  
A
IN+  
IN–  
AD7626  
EN1 = 1 AND EN0 = 1  
POWER-UP—INTERNAL REFERENCE AND REFERENCE BUFFER IN USE.  
NO EXTERNAL REFERENCE CIRCUITRY REQUIRED.  
Figure 35. Powered Up, Internal Reference and Internal Reference Buffer  
ADR280  
1.2V  
(2.4V V+ 5.5V)  
CONNECT 1.2V EXTERNAL REFERENCE TO REFIN PIN.  
V
V+  
V+  
OUT  
1.2V REFIN INPUT IS BUFFERED INTERNALLY.  
IT CREATES A 4.096V REFERENCE FOR THE ADC.  
DECOUPLE THE REF AND REFIN PINS EXTERNALLY  
10µF  
10µF  
0.1µF  
0.1µF  
V–  
REF REFIN  
B
IN+  
IN–  
AD7626  
EN1 = 0 AND EN0 = 1  
EXTERNAL 1.2V REFERENCE CONNECTED TO REFIN PIN IS REQUIRED.  
Figure 36. External 1.2 V Reference Using Internal Reference Buffer  
V+  
ADR434/  
ADR444  
V
(6.1V V 18V)  
IN  
4.096V  
0.1µF  
CONNECT BUFFERED 4.096V SIGNAL TO REF PIN.  
DECOUPLE THE REF PIN EXTERNALLY.  
REFIN IS A NO CONNECT.  
V
10µF  
VIN  
IN  
OUT  
AD8031  
10µF  
0.1µF  
GND  
NO CONNECT  
REF REFIN  
C
IN+  
IN–  
AD7626  
EN1 = 1 AND EN0 = 0  
EXTERNAL 4.096V REFERENCE CONNECTED TO REF PIN IS REQUIRED.  
Figure 37. External 4.096 V Reference Applied to REF Pin  
Rev. 0 | Page 20 of 28  
 
 
AD7626  
Power-Up  
Wake-Up Time from EN1= 0, EN0 = 0  
As is best practice for all ADCs, the core supplies should be  
powered on prior to applying an external reference (where  
applicable). Lastly, apply the analog inputs.  
The AD7626 powers down when EN1 and EN0 are both set to  
0. Selecting the correct reference choice from power-down, the  
user sets EN1 and EN0 to the required value shown in Table 8.  
The user may immediately apply CNV pulses to receive data  
conversion results. Typical wake-up times for the selected  
reference settings are shown in Table 9. Each time represents  
the duration from the EN1, EN0 logic transition to when the  
output of the ADC is settled to 0.5 LSB accuracy.  
When powering up the AD7626 device, apply 5 V (VDD1)  
and 2.5 V(VDD2, VIO) to the device. Set the reference confi-  
guration pins, EN0 and EN1, to the correct values. In the case  
where an external reference is preferred (governed by EN1 and  
EN0 values), apply the external reference of 1.2 V to the REFIN  
pin or 4.096 V to the REF pin. EN0 = 0 and EN1 = 0 means that  
the AD7626 is in power-down mode.  
Table 9. Wake-Up Time from EN1=0, EN0 = 0  
Wake-Up  
25  
Time (0.5 LSB  
EN1 EN0 Accuracy)  
VDD2 INTERNAL  
REFERENCE  
Reference Mode  
A
Power-up  
Internal reference and inter-  
nal reference buffer in use  
External 1.2 V reference  
applied to REFIN pin  
External 4.096 V reference  
applied to REF pin  
1
1
9.5 sec  
20  
VDD2 EXTERNAL  
REFERENCE  
VIO INTERNAL  
REFERENCE  
15  
B
C
0
1
1
0
25 ms  
65 μs  
VIO EXTERNAL  
REFERENCE  
10  
VDD1 INTERNAL  
REFERENCE  
5
POWER SUPPLY  
VDD1 EXTERNAL  
REFERENCE  
The AD7626 uses both 5 V (VDD1) and 2.5 V (VDD2) power  
supplies, as well as a digital input/output interface supply (VIO).  
VIO allows a direct interface with 2.5 V logic only. VIO and  
VDD2 can be taken from the same 2.5 V source; however, it is  
best practice to isolate the VIO and VDD2 pins using separate  
traces as well as to decouple each pin separately.  
0
0
2
4
6
8
10  
THROUGHPUT (MSPS)  
Figure 39. Current Consumption vs. Sampling Rate  
160  
140  
120  
100  
80  
The 5 V and 2.5 V supplies required for the AD7626 can be  
generated using Analog Devices, Inc., LDOs such as the  
ADP3330-2.5, ADP3330-5, ADP3334, and ADP1708.  
90  
INTERNAL REFERENCE  
EXTERNAL REFERENCE  
VDD2  
85  
80  
60  
VDD1  
75  
40  
70  
65  
60  
55  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
THROUGHPUT (MSPS)  
Figure 40. Power Dissipation vs. Sampling Rate  
INTERNAL REFERENCE USED  
50  
1
10  
100  
1k  
10k  
SUPPLY FREQUENCY (Hz)  
Figure 38. PSRR vs. Supply Frequency  
(350 mV pp Ripple on VDD2, 600 mV Ripple on VDD1)  
Rev. 0 | Page 21 of 28  
 
AD7626  
The clock DCO is a buffered copy of CꢁK and is synchronous  
to the data, D , which is updated on the falling edge of DCO +  
(tD). By maintaining good propagation delay matching between  
D and DCO through the board and the digital host, DCO  
can be used to latch D with good timing margin for the shift  
register.  
DIGITAL INTERFACE  
Conversion Control  
All analog-to-digital conversions are controlled by the CNV  
signal. This signal can be applied in the form of a CNV+/CNV−  
ꢁVDS signal, or it can be applied in the form of a 2.5 V CMOS  
logic signal to the CNV+ pin. The conversion is initiated by the  
rising edge of the CNV signal.  
Conversions are initiated by a rising edge CNV pulse. The  
CNV pulse must be returned low (≤ tCNVH maximum) for  
valid operation. After a conversion begins, it continues until  
completion. Additional CNV pulses are ignored during the  
conversion phase. After the time, tMSB, elapses, the host should  
begin to burst the CꢁK . Note that, tMSB, is the maximum time  
for the MSB of the new conversion result and should be used as  
the gating device for CꢁK . The echoed clock, DCO , and the  
data, D, are driven in phase with D being updated on the  
falling edge of DCO+; the host should use the rising edge of  
DCO+ to capture D . The only requirement is that the 16  
CꢁK pulses finish before the time (tCꢁKꢁ) elapses of the next  
conversion phase or the data is lost. From the tCꢁKꢁ to tMSB, D  
and DCO are driven to 0. Set CꢁK to idle low between CꢁK  
bursts.  
After the AD7626 is powered up, the first conversion result  
generated is invalid. Subsequent conversion results are valid  
provided that the time between conversions does not exceed  
the maximum specification for tCYC  
.
The two methods for acquiring the digital data output of the  
AD7626 via the ꢁVDS interface are described in the following  
sections.  
Echoed-Clock Interface Mode  
The digital operation of the AD7626 in echoed-clock interface  
mode is shown in Figure ꢀ1. This interface mode, requiring  
only a shift register on the digital host, can be used with many  
digital hosts (such as FPGA, shift register, and microprocessor).  
It requires three ꢁVDS pairs (D , CꢁK , and DCO ) between  
each AD7626 and the digital host.  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
tCLK  
15  
16  
1
2
15  
16  
1
2
3
CLK–  
CLK+  
tDCO  
1
15  
16  
1
2
15  
16  
2
3
DCO–  
DCO+  
tMSB  
tD  
tCLKD  
D+  
D–  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
D15  
N + 1  
D14  
D13  
0
0
N + 1 N + 1  
Figure 41. Echoed-Clock Interface Mode Timing Diagram  
Rev. 0 | Page 22 of 28  
 
 
 
AD7626  
Self-Clocked Mode  
The AD7626 data captured on each phase of the state  
machine clock is then compared. The location of the 1 in  
the header in each set of data acquired allows the user to  
choose the state machine clock phase that occurs during  
the data valid window of D .  
The digital operation of the AD7626 in self-clocked interface  
mode is shown in Figure ꢀ2. This interface mode reduces the  
number of traces between the ADC and the digital host to two  
ꢁVDS pairs (CꢁK and D ) or to a single pair if sharing a  
common CꢁK . Multiple AD7626 devices can share a common  
CꢁK signal. This can be useful in reducing the number of  
ꢁVDS connections to the digital host.  
The self-clocked mode data capture method allows the digital  
host to adapt its result capture timing to accommodate  
variations in propagation delay through any AD7626.For  
example, where data is captured from multiple AD7626s  
sharing a common input clock.  
When the self-clocked interface mode is used, each ADC  
data-word is preceded by a 010 sequence. The first zero is  
automatically on D once tMSB has elapsed. The 2-bit header  
is then clocked out by the first two CꢁK falling edges. This  
header is used to synchronize D of each conversion in the  
digital host because, in this mode, there is no data clock output  
synchronous to the data (D ) to allow the digital host to  
acquire the data output.  
Conversions are initiated by a CNV pulse. The CNV pulse  
must be returned low (tCNVH maximum) for valid operation.  
After a conversion begins, it continues until completion.  
Additional CNV pulses are ignored during the conversion  
phase. After the time, tMSB, elapses, the host begins to burst  
the CꢁK signal to the AD7626. All 18 CꢁK pulses are to be  
applied in the time window framed by tMSB and the subsequent  
tCꢁKꢁ. The required 18 CꢁK pulses must finish before tCꢁKꢁ  
(referenced to the next conversion phase) elapses. Otherwise,  
the data is lost because it is overwritten by the next conversion  
result.  
Synchronization of the D data to the digital hosts acquisition  
clock is accomplished by using one state machine per AD7626  
device. For example, using a state machine that runs at the  
same speed as CꢁK incorporates three phases of this clock  
frequency (120º apart). Each phase acquires the data D as  
output by the ADC.  
Set CꢁK to idle high between bursts of 18 CꢁK pulses. The  
header bit and conversion data of the next ADC result are  
output on subsequent falling edges of CꢁK during the next  
burst of the CꢁK signal.  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
ACQUISITION  
tCLK  
ACQUISITION  
ACQUISITION  
tCLKL  
1
17  
18  
1
2
3
4
17  
18  
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D–  
D15  
N + 1  
D14  
N
D1  
N
D0  
N
D1  
N – 1  
D0  
N – 1  
D15  
N
0
1
0
0
1
0
Figure 42. Self-Clocked Interface Mode Timing Diagram  
Rev. 0 | Page 23 of 28  
 
AD7626  
APPLICATIONS INFORMATION  
LAYOUT, DECOUPLING, AND GROUNDING  
VIO Supply Decoupling  
Decouple the VIO supply applied to Pin 12 to ground at Pin 13.  
Layout and Decoupling of Pin 25 to Pin 32  
When laying out the printed circuit board (PCB) for the AD7626,  
follow the practices described in this section to obtain the maxi-  
mum performance from the converter.  
Connect the outputs of Pin 25, Pin 26, and Pin 28 together and  
decouple them to Pin 27 using a 10 μF capacitor with low ESR  
and low ESꢁ.  
Exposed Paddle  
The AD7626 has an exposed paddle on the underside of the  
package.  
Reduce the inductance of the path connecting Pin 25, Pin 26,  
and Pin 28 by widening the PCB traces connecting these pins.  
Solder the paddle directly to the PCB.  
Connect the paddle to the ground plane of the board using  
multiple vias, as shown in Figure ꢀ3.  
Take a similar approach in the connections used for the  
reference pins of the AD7626. Connect Pin 29, Pin 30, and  
Pin 32 together using widened PCB traces to reduce inductance.  
In internal or external reference mode, a ꢀ.096 V reference voltage  
is output on Pin 29, Pin 30, and Pin 32. Decouple these pins to  
Pin 31 using a 10 μF capacitor with low ESR and low ESꢁ.  
Decouple all supply pins except for Pin 12 (VIO) directly to  
the paddle, minimizing the current return path.  
Pin 13 and Pin 2ꢀ can be connected directly to the paddle.  
Use vias to ground at the point where these pins connect to  
the paddle.  
Figure ꢀ3 shows an example of the recommended layout for  
the underside of the AD7626 device. Note the extended signal  
trace connections and the outline of the capacitors decoupling  
the signals applied to the REF pins (Pin 29, Pin 30, and Pin 32)  
and to the CAP2 pins (Pin 25, Pin 26, and Pin 28).  
VDD1 Supply Routing and Decoupling  
The VDD1 supply is connected to Pin 1, Pin 19, and Pin 20.  
Decouple the supply using a 100 nF capacitor at Pin 1. The user  
can connect this supply trace to Pin 19 and Pin 20. Use a series  
ferrite bead to connect the VDD1 supply from Pin 1 to Pin 19  
and Pin 20. The ferrite bead isolates any high frequency noise or  
ringing on the VDD1 supply. Decouple the VDD1 supply to Pin  
19 and Pin 20 using a 100 nF capacitor decoupled to ground at  
the exposed paddle.  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
PADDLE  
4.096V  
EXTERNAL REFERENCE  
(ADR434 OR ADR444)  
1
2
3
4
5
6
7
8
Figure 43. PCB Layout and Decoupling Recommendations for Pin 24 to Pin 32  
Rev. 0 | Page 24 of 28  
 
 
 
 
AD7626  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 44. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-32-2  
CP-32-2  
AD7626BCPZ1  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
AD7626BCPZ-RL71  
EVAL-AD7626EDZ1, 2  
EVAL-CED1Z1, 3  
Converter Evaluation and Development Board  
1 Z = RoHS Compliant Part.  
2 This board can be used as a standalone evaluation board or in conjunction with the EVAL-CEDIZ for evaluation/demonstration purposes.  
3 This board allows the PC to control and communicate with all Analog Devices evaluation boards with model numbers ending with the ED designator.  
Rev. 0 | Page 25 of 28  
 
 
 
AD7626  
NOTES  
Rev. 0 | Page 26 of 28  
AD7626  
NOTES  
Rev. 0 | Page 27 of 28  
AD7626  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07648-0-9/09(0)  
Rev. 0 | Page 28 of 28  

相关型号:

EVAL-AD7626FMCZ

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

EVAL-AD7631CBZ

18-Bit, 250 kSPS, Differential Programmable Input PulSAR® ADC
ADI

EVAL-AD7641CB

18-Bit 250/670 kSPS PulSAR Bipolar Programmable Inputs ADC
ADI

EVAL-AD7641CB1

18-Bit, 2 MSPS SAR ADC
ADI

EVAL-AD7650CB

Evaluation Board AD766X/AD767X
ADI

EVAL-AD7652CB1

16-Bit 500 kSPS PulSARTM Unipolar ADC with Reference
ADI

EVAL-AD7656-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI

EVAL-AD7656CB

250 kSPS, 6-Channel,Simultaneous Sampling, Bipolar 12/14/16-Bit ADC
ADI

EVAL-AD7656CBZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar 16-/14-/12-Bit ADC
ADI

EVAL-AD7657-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI

EVAL-AD7657CBZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar 16-/14-/12-Bit ADC
ADI

EVAL-AD7658-1EDZ

250 kSPS, 6-Channel, Simultaneous Sampling, Bipolar, 16-/14-/12-Bit ADC
ADI