EVAL-ADF4108EB1 [ADI]

PLL Frequency Synthesizer; PLL频率合成器
EVAL-ADF4108EB1
型号: EVAL-ADF4108EB1
厂家: ADI    ADI
描述:

PLL Frequency Synthesizer
PLL频率合成器

文件: 总20页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PLL Frequency Synthesizer  
ADF4108  
FEATURES  
GENERAL DESCRIPTION  
8.0 GHz bandwidth  
3.2 V to 3.6 V power supply  
Separate charge pump supply (VP) allows extended tuning  
voltage in 3.3 V systems  
Programmable, dual modulus prescaler 8/9, 16/17, 32/33, or  
64/65  
Programmable charge pump currents  
Programmable antibacklash pulse width  
3-wire serial interface  
Analog and digital lock detect  
Hardware and software power-down mode  
Loop filter design possible with ADIsimPLL  
The ADF4108 frequency synthesizer can be used to implement  
local oscillators in the up-conversion and down-conversion  
sections of wireless receivers and transmitters. It consists of a  
low noise digital PFD (phase frequency detector), a precision  
charge pump, a programmable reference divider, programmable  
A and B counters, and a dual-modulus prescaler (P/P + 1). The  
A (6-bit) and B (13-bit) counters, in conjunction with the dual-  
modulus prescaler (P/P + 1), implement an N divider (N =  
BP + A). In addition, the 14-bit reference counter (R counter),  
allows selectable REFIN frequencies at the PFD input. A  
complete phase-locked loop (PLL) can be implemented if the  
synthesizer is used with an external loop filter and voltage  
controlled oscillator (VCO). Its very high bandwidth means  
that frequency doublers can be eliminated in many high  
frequency systems, simplifying system architecture and  
reducing cost.  
APPLICATIONS  
Broadband wireless access  
Satellite systems  
Instrumentation  
Wireless LANs  
Base stations for wireless radio  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
R
SET  
V
CPGND  
DD  
DD  
P
REFERENCE  
14-BIT  
R COUNTER  
PHASE  
FREQUENCY  
DETECTOR  
REF  
CHARGE  
PUMP  
IN  
CP  
14  
R COUNTER  
LATCH  
LOCK  
DETECT  
CURRENT  
SETTING 2  
CURRENT  
SETTING 1  
CLK  
DATA  
LE  
24-BIT INPUT  
REGISTER  
FUNCTION  
LATCH  
CPI6 CPI5 CPI4  
HIGH Z  
CPI3 CPI2 CPI1  
22  
A, B COUNTER  
LATCH  
FROM  
SD  
OUT  
19  
AV  
FUNCTION  
LATCH  
DD  
MUXOUT  
MUX  
13  
13-BIT  
N = BP + A  
SD  
OUT  
B COUNTER  
LOAD  
RF  
RF  
A
B
PRESCALER  
P/P + 1  
IN  
IN  
LOAD  
M3 M2 M1  
6-BIT  
A COUNTER  
ADF4108  
6
CE  
AGND DGND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADF4108  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Phase Frequency Detector and Charge Pump...........................9  
MUXOUT and Lock Detect...................................................... 10  
Input Shift Register .................................................................... 10  
Latch Summary........................................................................... 11  
Reference Counter Latch Map.................................................. 12  
AB Counter Latch Map ............................................................. 13  
Function Latch Map................................................................... 14  
Initialization Latch Map ............................................................ 15  
Function Latch............................................................................ 16  
Initialization Latch ..................................................................... 17  
Power Supply Considerations................................................... 17  
Interfacing ....................................................................................... 18  
ADuC812 Interface.................................................................... 18  
ADSP-2181 Interface ................................................................. 18  
PCB Design Guidelines for Chip Scale Package......................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics..................................................................... 5  
Absolute Maximum Rating ............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ........................................................................ 9  
Reference Input Stage................................................................... 9  
RF Input Stage............................................................................... 9  
Prescaler (P/P + 1)........................................................................ 9  
A and B Counters ......................................................................... 9  
R Counter ...................................................................................... 9  
REVISION HISTORY  
4/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADF4108  
SPECIFICATIONS  
AVDD = DVDD = 3.3 V 2ꢀ, AVDD ≤ VP ≤ 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMIN to  
MAX, unless otherwise noted.  
T
Table 1.  
B Chips2  
(Typ)  
Parameter  
B Version1  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)  
RF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity4  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency6  
CHARGE PUMP  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage  
Sink and Source Current  
Matching  
See Figure 12 for input circuit  
For lower frequencies ensure slew rate (SR) > 320 V/μs  
1.0/8.0  
−5/+5  
300  
1.0/8.0  
−5/+5  
300  
GHz min/max  
dBm min/max  
MHz max  
P = 8  
P = 16  
325  
325  
MHz max  
20/250  
0.8/VDD  
10  
20/250  
0.8/VDD  
10  
MHz min/max  
For f < 20 MHz, ensure SR > 50 V/μs  
V p-p min/max Biased at AVDD/25  
pF max  
μA max  
100  
100  
104  
104  
MHz max  
Programmable; see Figure 19  
With RSET = 5.1 kΩ  
5
5
mA typ  
μA typ  
% typ  
kΩ typ  
nA typ  
% typ  
625  
2.5  
3.0/11  
1
625  
2.5  
3.0/11  
1
With RSET = 5.1 kΩ  
See Figure 19  
1 nA typical; TA = 25°C  
0.5 V ≤ VCP ≤ VP – 0.5 V  
2
2
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
1.5  
2
1.5  
2
% typ  
% typ  
0.5 V ≤ VCP ≤ VP – 0.5 V  
VCP = VP/2  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOH, Output High Voltage  
IOH  
1.4  
0.6  
1
1.4  
0.6  
1
V min  
V max  
μA max  
pF max  
10  
10  
1.4  
VDD − 0.4  
100  
1.4  
VDD − 0.4  
100  
V min  
V min  
μA max  
V max  
Open-drain output chosen; 1 kΩ pull-up resistor to 1.8 V  
CMOS output chosen  
VOL, Output Low Voltage  
POWER SUPPLIES  
AVDD  
0.4  
0.4  
IOL = 500 μA  
3.2/3.6  
AVDD  
AVDD/5.5  
17  
0.4  
10  
3.2/3.6  
AVDD  
AVDD/5.5  
17  
0.4  
10  
V min/V max  
DVDD  
VP  
V min/V max  
mA max  
mA max  
μA typ  
AVDD ≤ VP ≤ 5.5 V  
15 mA typ  
TA = 25°C  
7
IDD (AIDD + DIDD  
)
IP  
8
Power-Down Mode (AIDD + DIDD  
)
Rev. 0 | Page 3 of 20  
 
ADF4108  
B Chips2  
(Typ)  
Parameter  
B Version1  
−219  
Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor9  
Phase Noise Performance10  
7900 MHz Output11  
Spurious Signals  
−219  
−81  
–61  
dBc/Hz typ  
dBc/Hz typ  
dBc typ  
@ VCO output  
@ 1 kHz offset and 1 MHz PFD frequency  
−81  
7900 MHz Output11  
–61  
@ 1 MHz offset and 1 MHz PFD frequency  
1 Operating temperature range (B version) is –40°C to +85°C.  
2 The B chip specifications are given as typical values.  
3 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
4 AVDD = DVDD = 3.3 V.  
5 AC coupling ensures AVDD/2 bias.  
6 Guaranteed by design. Sample tested to ensure compliance.  
7 TA = 25°C; AVDD = DVDD = 3.3 V; P = 32; RFIN = 8 GHz, fPFD = 200 kHz, REFIN = 10 MHz.  
8 TA = 25°C; AVDD = DVDD = 3.3 V; R = 16,383; A = 63; B = 891; P = 32; RFIN = 7.0 GHz.  
9 This value can be used to calculate phase noise for any application. Use the formula –219 + 10 log(fPFD) + 20 logN to calculate in-band phase noise performance as seen  
at the VCO output. The value given is the lowest noise mode.  
10 The phase noise is measured with the EVAL-ADF4108EB1 evaluation board, with the Hittite HMC506LP4 VCO. The spectrum analyzer provides the REFIN for the  
synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
11  
f
= 10 MHz; fPFD = 1 MHz; fRF = 7900 MHz; N = 7900; loop B/W = 50 kHz, VCO = HMC506LP4, spurs are dominated by the leakage current on the tuning port of the  
REFIN  
HMC506LP4 VCO.  
Rev. 0 | Page 4 of 20  
 
 
ADF4108  
TIMING CHARACTERISTICS  
AVDD = DVDD = 3.3 V 2ꢀ, AVDD ≤ VP ≤ 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω, TA = TMIN to  
MAX, unless otherwise noted.  
T
Table 2.  
Parameter1  
Limit2 (B Version)  
Unit  
Test Conditions/Comments  
DATA to CLOCK setup time  
DATA to CLOCK hold time  
CLOCK high duration  
CLOCK low duration  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CLOCK to LE setup time  
LE pulse width  
1 Guaranteed by design but not production tested.  
2 Operating temperature range (B Version) is –40°C to +85°C.  
t3  
t4  
CLOCK  
t1  
t2  
DB0 (LSB)  
(CONTROL BIT C1)  
DB1 (CONTROL  
BIT C2)  
DB2  
DB23 (MSB)  
DATA  
DB22  
t6  
LE  
LE  
t5  
Figure 2. Timing Diagram  
Rev. 0 | Page 5 of 20  
 
 
 
ADF4108  
ABSOLUTE MAXIMUM RATING  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
AVDD to GND1  
Rating  
–0.3 V to +3.9 V  
–0.3 V to +0.3 V  
–0.3 V to +5.8 V  
–0.3 V to +5.8 V  
–0.3 V to VDD + 0.3 V  
–0.3 V to VP + 0.3 V  
–0.3 V to VDD + 0.3 V  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
CSP θJA Thermal Impedance  
(Paddle Soldered)  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
–40°C to +85°C  
–65°C to +125°C  
150°C  
112°C/W  
30.4°C/W  
Reflow Soldering  
Peak Temperature (60 sec)  
Time at Peak Temperature  
Transistor Count  
260  
40 sec  
CMOS  
Bipolar  
6425  
303  
1 GND = AGND = DGND = 0 V.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
 
ADF4108  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
V
R
P
SET  
DV  
CP  
DD  
MUXOUT  
LE  
CPGND  
AGND  
ADF4108  
PIN 1  
INDICATOR  
15 MUXOUT  
14 LE  
13 DATA  
12 CLK  
11 CE  
CPGND 1  
AGND 2  
AGND 3  
TOP VIEW 13  
(Not to Scale)  
12  
ADF4108  
TOP VIEW  
(Not to Scale)  
DATA  
CLK  
RF  
RF  
B
IN  
IN  
RF B 4  
IN  
11  
10  
9
A
RF A 5  
IN  
CE  
AV  
DD  
DGND  
REF  
IN  
NOTE: TRANSISTOR COUNT 6425 (CMOS),  
303 (BIPOLAR).  
Figure 3. TSSOP Pin Configuration for TSSOP  
Figure 4. LFCSP_VQ Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP_VQ Mnemonic  
Description  
1
19  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICP MAX  
=
with RSET = 5.1 kΩ, ICP MAX = 5 mA.  
2
20  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter, which in turn  
drives the external VCO.  
3
4
5
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. This is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with a  
small bypass capacitor, typically 100 pF. See Figure 12.  
6
7
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac-coupled to the external VCO.  
Analog Power Supply. This voltage may range from 3.2 V to 3.6 V. Decoupling capacitors to the  
analog ground plane should be placed as close as possible to this pin. AVDD must be the same value  
as DVDD  
.
8
8
REFIN  
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input  
resistance of 100 kΩ. See Figure 11. This input can be driven from a TTL or CMOS crystal oscillator or  
it can be ac-coupled.  
9
10  
9, 10  
11  
DGND  
CE  
Digital Ground.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into  
three-state mode. Taking the pin high will power up the device, depending on the status of the  
power-down bit, F2.  
11  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS  
input.  
12  
13  
14  
15  
16  
13  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the 2 LSBs being the control bits. This input  
is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into  
one of the four latches, the latch being selected using the control bits.  
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference  
frequency to be accessed externally.  
Digital Power Supply. This may range from 3.2 V to 3.6 V. Decoupling capacitors to the digital ground  
14  
15  
MUXOUT  
DVDD  
VP  
16, 17  
18  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
Charge Pump Power Supply. This voltage should be greater than or equal to VDD. In systems where  
VDD is 3.3 V, it can be set to 5 V and used to drive a VCO with a tuning range of up to 5 V.  
Rev. 0 | Page 7 of 20  
 
ADF4108  
TYPICAL PERFORMANCE CHARACTERISTICS  
FREQ UNIT:  
GHz  
s
KEYWORD: R  
PARAM TYPE:  
DATA FORMAT: MA  
0
–20  
Freq  
MAGS11 ANGS11  
–17.2820  
Freq  
MAGS11 ANGS11  
V
I
= 3.3V, V = 5V  
P
DD  
= 5mA  
0.89148  
0.88133  
0.87152  
0.85855  
0.84911  
0.83512  
0.82374  
0.80871  
0.79176  
0.77205  
0.75696  
0.74234  
0.72239  
0.69419  
0.67288  
0.66227  
0.64758  
0.62454  
0.59466  
0.55932  
0.52256  
0.48754  
0.46411  
0.45776  
0.44859  
0.44588  
0.43810  
0.43269  
0.42777  
0.42859  
0.43365  
0.43849  
0.44475  
0.44800  
0.45223  
0.45555  
0.45313  
0.45622  
4.30000  
4.40000  
4.50000  
4.60000  
4.70000  
4.80000  
4.90000  
5.00000  
5.10000  
5.20000  
5.30000  
5.40000  
5.50000  
5.60000  
5.70000  
5.80000  
5.90000  
6.00000  
6.10000  
6.20000  
6.30000  
6.40000  
6.50000  
6.60000  
6.70000  
6.80000  
6.90000  
7.00000  
7.10000  
7.20000  
7.30000  
7.40000  
7.50000  
7.60000  
7.70000  
7.80000  
7.90000  
8.00000  
0.45555  
0.46108  
0.45325  
0.45054  
0.45200  
0.45043  
0.45282  
0.44287  
0.44909  
0.44294  
0.44558  
0.45417  
0.46038  
0.47128  
0.47439  
0.48604  
0.50637  
0.52172  
0.53342  
0.53716  
0.55804  
0.56362  
0.58268  
0.59248  
0.61066  
0.61830  
0.61633  
0.61673  
0.60597  
0.58376  
0.57673  
0.58157  
0.60040  
0.61332  
0.62927  
0.63938  
0.65320  
0.65804  
–159.680  
–164.916  
–168.452  
–173.462  
–176.697  
178.824  
174.947  
170.237  
166.617  
162.786  
158.766  
153.195  
147.721  
139.760  
132.657  
125.782  
121.110  
115.400  
107.705  
101.572  
97.5379  
93.0936  
89.2227  
86.3300  
83.0956  
80.8843  
78.0872  
75.3727  
73.9456  
73.5883  
74.1975  
76.2136  
77.1545  
76.1122  
74.8359  
74.0546  
72.0061  
69.9926  
0.50000  
0.60000  
0.70000  
0.80000  
0.90000  
1.00000  
1.10000  
1.20000  
1.30000  
1.40000  
1.50000  
1.60000  
1.70000  
1.80000  
1.90000  
2.00000  
2.10000  
2.20000  
2.30000  
2.40000  
2.50000  
2.60000  
2.70000  
2.80000  
2.90000  
3.00000  
3.10000  
3.20000  
3.30000  
3.40000  
3.50000  
3.60000  
3.70000  
3.80000  
3.90000  
4.00000  
4.10000  
4.20000  
–20.6919  
–24.5386  
–27.3228  
–31.0698  
–34.8623  
–38.5574  
–41.9093  
–45.6990  
–49.4185  
–52.8898  
–56.2923  
–60.2584  
–63.1446  
–65.6464  
–68.0742  
–71.3530  
–75.5658  
–79.6404  
–82.8246  
–85.2795  
–85.6298  
–86.1854  
–86.4997  
–88.8080  
–91.9737  
–95.4087  
–99.1282  
–102.748  
–107.167  
–111.883  
–117.548  
–123.856  
–130.399  
–136.744  
–142.766  
–149.269  
–154.884  
CP  
–0.3dBm  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 50kHz  
RES BANDWIDTH = 3kHz  
VIDEO BANDWIDTH = 3kHz  
AVERAGES = 1  
–40  
OUTPUT POWER = –0.3dBm  
HMC506LP4 VCO  
–61dBc  
–60  
–80  
–100  
–120  
–2MHz  
–1MHz  
7900MHz  
FREQUENCY  
1MHz  
2MHz  
Figure 5. S Parameter Data for the RF Input  
Figure 8. Reference Spurs at 7.9 GHz  
Note: The spurs are dominated by the leakage current of the tuning port on  
the HMC506LP4 VCO. The leakage current was measured to be 27 nA.  
6
5
4
0
–5  
V
= 3.3V  
DD  
V
= 5V  
SETTLING = 5mA  
PP  
T
= +85°C  
= +25°C  
A
I
CP  
3
2
–10  
–15  
–20  
–25  
–30  
–35  
1
T
A
0
–1  
–2  
–3  
–4  
–5  
–6  
T
= –40°C  
8 9  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
1
2
3
4
5
6
7
V
CP  
RF INPUT FREQUENCY (GHz)  
Figure 6. RF Input Sensitivity  
Figure 9. Charge Pump Output Characteristics  
–50  
–120  
V
V
= 3V  
DD  
= 5V  
–60  
–70  
P
–130  
–140  
–150  
–160  
–170  
–180  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
V
= 3.3V, V = 5V  
P
= 5mA  
DD  
I
CP  
PFD FREQUENCY = 1MHz  
LOOP BANDWIDTH = 50kHz  
PHASE NOISE = –82dBc/Hz @ 1kHz  
HMC506LP4 VCO  
10k  
100k  
1M  
10M  
100M  
1kHz  
10MHz  
PHASE FREQUENCY DETECTOR (Hz)  
FREQUENCY OFFSET  
Figure 7. Phase Noise at 7.9 GHz Phase Noise  
Figure 10. Phase Noise (Referred to CP Output) vs. PFD Frequency  
Rev. 0 | Page 8 of 20  
 
ADF4108  
THEORY OF OPERATION  
feedback counter. The counters are specified to work when the  
prescaler output is 300 MHz or less. Thus, with an RF input  
frequency of 4.0 GHz, a prescaler value of 16/17 is valid but a  
value of 8/9 is not valid.  
REFERENCE INPUT STAGE  
The reference input stage is shown in Figure 11. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
Pulse Swallow Function  
The A and B counters, in conjunction with the dual-modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the reference frequency divided by R. The  
equation for the VCO frequency is as follows:  
POWER-DOWN  
CONTROL  
NC  
100k  
fREFIN  
R
fVCO  
= (P ×B)+ A ×  
[ ]  
SW2  
SW3  
REF  
TO R COUNTER  
IN  
NC  
BUFFER  
SW1  
where:  
VCO is the output frequency of external voltage controlled  
f
oscillator (VCO).  
NO  
P is the preset modulus of dual-modulus prescaler (8/9, 16/17,  
and so on.).  
Figure 11. Reference Input Stage  
B is the preset divide ratio of binary 13-bit counter (3 to 8191).  
A is the preset divide ratio of binary 6-bit swallow counter (0 to  
63).  
RF INPUT STAGE  
The RF input stage is shown in Figure 12. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
f
REFIN is the external reference frequency oscillator.  
N = BP + A  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
TO PFD  
13-BIT B  
COUNTER  
500  
500Ω  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
LOAD  
6-BIT A  
COUNTER  
RF  
RF  
A
B
IN  
MODULUS  
CONTROL  
N DIVIDER  
IN  
Figure 13. A and B Counters  
R COUNTER  
AGND  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
Figure 12. RF Input Stage  
PRESCALER (P/P + 1)  
The dual-modulus prescaler (P/P + 1), along with the A and B  
counters, enables the large division ratio, N, to be realized (N =  
BP + A). The dual-modulus prescaler, operating at CML levels,  
takes the clock from the RF input stage and divides it down to a  
manageable frequency for the CMOS A and B counters. The  
prescaler is programmable. It can be set in software to 8/9,  
16/17, 32/33, or 64/65. It is based on a synchronous 4/5 core. A  
minimum divide ratio is possible for contiguous output  
frequencies. This minimum is determined by P, the prescaler  
value, and is given by: (P2 – P).  
PHASE FREQUENCY DETECTOR AND CHARGE  
PUMP  
The phase frequency detector (PFD) takes inputs from the R  
counter and N counter (N = BP + A) and produces an output  
proportional to the phase and frequency difference between  
them. Figure 14 is a simplified schematic. The PFD includes a  
programmable delay element that controls the width of the  
antibacklash pulse. This pulse ensures that there is no dead zone  
in the PFD transfer function and minimizes phase noise and  
reference spurs. Two bits in the reference counter latch, ABP2  
and ABP1, control the width of the pulse. (See Figure 17.)  
A AND B COUNTERS  
The A and B CMOS counters combine with the dual-modulus  
prescaler to allow a wide ranging division ratio in the PLL  
Rev. 0 | Page 9 of 20  
 
 
 
 
ADF4108  
V
P
DV  
DD  
CHARGE  
PUMP  
UP  
Q1  
U1  
D1  
HI  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
R DIVIDER  
CLR1  
MUX  
CONTROL  
MUXOUT  
PROGRAMMABLE  
DELAY  
U3  
CP  
ABP2  
ABP1  
DGND  
CLR2  
D2 Q2  
DOWN  
HI  
Figure 15. MUXOUT Circuit  
U2  
N DIVIDER  
INPUT SHIFT REGISTER  
CPGND  
The ADF4108 digital section includes a 24-bit input shift  
register, a 14-bit R counter, and a 19-bit N counter, comprising a  
6-bit A counter and a 13-bit B counter. Data is clocked into the  
24-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the 2 LSBs, DB1 and DB0, as  
shown in the timing diagram of Figure 2. The truth table for  
these bits is shown in Table 5.  
Figure 14. PFD Simplified Schematic and Timing (in Lock)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4108 allows the user to  
access various internal points on the chip. The state of  
MUXOUT is controlled by M3, M2, and M1 in the function  
latch. Figure 19 shows the full truth table. Figure 15 shows the  
MUXOUT section in block diagram form.  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
Figure 16 shows a summary of how the latches are  
programmed.  
Digital lock detect is active high. When the lock detect  
precision (LDP) bit in the R counter latch is set to 0, digital lock  
detect is set high when the phase error on three consecutive  
phase detector (PD) cycles is less than 15 ns. With LDP set to 1,  
five consecutive cycles of less than 15 ns are required to set the  
lock detect. It will stay set high until a phase error of greater  
than 25 ns is detected on any subsequent PD cycle.  
Table 5. C2 and C1 Truth Table  
Control Bits  
Data Latch  
C2  
0
C1  
0
R counter  
0
1
1
1
0
1
N counter (A and B)  
Function latch (Including prescaler)  
Initialization latch  
The N-channel open-drain analog lock detect should be  
operated with an external pull-up resistor of 10 kΩ nominal.  
When lock has been detected, this output will be high with  
narrow, low-going pulses.  
Rev. 0 | Page 10 of 20  
 
 
 
 
ADF4108  
LATCH SUMMARY  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
WIDTH  
TEST  
MODE BITS  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
R6  
DB1  
DB0  
X
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R5  
R4  
R3  
R2  
R1  
C2 (0) C1 (0)  
N COUNTER LATCH  
CONTROL  
BITS  
RESERVED  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
X
X
G1  
B13 B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2 (0)  
C1 (1)  
FUNCTION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
PRESCALER  
VALUE  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2 CPI6 CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F5  
F4  
F3  
F2  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (0)  
INITIALIZATION LATCH  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
CONTROL  
BITS  
MUXOUT  
CONTROL  
PRESCALER  
VALUE  
TIMER COUNTER  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
CPI5 F3 F2  
DB1  
DB0  
P2  
P1  
PD2 CPI6  
CPI4 CPI3 CPI2 CPI1 TC4 TC3  
TC2  
TC1  
F5  
F4  
M3  
M2  
M1  
PD1  
F1  
C2 (1) C1 (1)  
Figure 16. Latch Summary  
Rev. 0 | Page 11 of 20  
 
 
ADF4108  
REFERENCE COUNTER LATCH MAP  
ANTI-  
TEST  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER  
BACKLASH  
RESERVED  
MODE BITS  
WIDTH  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7  
DB6 DB5 DB4  
R5 R4 R3  
DB3 DB2  
R2  
DB1  
DB0  
0
0
LDP  
T2  
T1 ABP2 ABP1 R14  
R13  
R12 R11  
R10  
R9  
R8  
R7  
R6  
R1 C2 (0) C1 (0)  
X
X
= DON’T CARE  
R14  
R13  
R12  
..........  
R3  
R2  
R1  
DIVIDE RATIO  
0
0
0
0
0
0
0
0
0
..........  
..........  
..........  
0
0
0
0
1
1
1
0
1
1
2
3
0
.
0
.
0
.
..........  
..........  
1
.
0
.
0
.
4
.
.
.
.
.
.
.
..........  
..........  
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
..........  
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
ABP2  
0
ABP1  
0
ANTIBACKLASH PULSE WIDTH  
2.9ns  
0
1
1
0
1.3ns  
6.0ns  
1
1
2.9ns  
TEST MODE BITS  
SHOULD BE SET  
TO 00 FOR NORMAL  
OPERATION.  
LDP  
OPERATION  
0
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN  
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.  
1
BOTH OF THESE BITS  
MUST BE SET TO 0 FOR  
NORMAL OPERATION.  
Figure 17. Reference Counter Latch Map  
Rev. 0 | Page 12 of 20  
 
 
ADF4108  
AB COUNTER LATCH MAP  
CONTROL  
BITS  
RESERVED  
6-BIT A COUNTER  
13-BIT B COUNTER  
DB21  
G1  
DB19  
B12  
DB16 DB15 DB14  
DB10  
B3  
DB9  
B2  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB0  
C2 (0) C1 (1)  
DB23 DB22  
DB20  
B13  
DB18 DB17  
B11 B10  
DB13 DB12 DB11  
B6 B5 B4  
DB8  
B1  
DB7  
A6  
DB2  
A1  
DB1  
X
X
B9  
B8  
B7  
X = DON’T CARE  
A COUNTER  
A6  
A5  
..........  
A2  
A1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
1
.
1
..........  
..........  
.
0
.
0
.
60  
1
1
1
1
1
1
..........  
..........  
..........  
0
1
1
1
0
1
61  
62  
63  
B13  
B12  
B11  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
.
0
0
0
0
.
.
0
0
0
0
.
.
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
.
0
0
1
1
.
.
0
1
0
1
.
.
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
.
.
.
..........  
..........  
..........  
..........  
..........  
.
.
.
8188  
8189  
8190  
8191  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
F4 (FUNCTION LATCH) G1  
FASTLOCK ENABLE  
CP GAIN OPERATION  
0
0
1
0
1
CHARGE PUMP CURRENT  
SETTING 1 IS PERMANENTLY USED.  
0
1
1
CHARGE PUMP CURRENT  
SETTING 2 IS PERMANENTLY USED.  
CHARGE PUMP CURRENT  
SETTING 1 IS USED.  
CHARGE PUMP CURRENT IS  
SWITCHED TO SETTING 2. THE  
TIME SPENT IN SETTING 2 IS  
DEPENDENT ON WHICH FASTLOCK  
MODE IS USED. SEE FUNCTION  
LATCH DESCRIPTION.  
N = BP + A, P IS PRESCALER VALUE SET IN THE FUNCTION  
LATCH. B MUST BE GREATER THAN OR EQUAL TO A. FOR  
CONTINUOUSLY ADJACENT VALUES OF (N × F  
), AT THE  
REF  
2
OUTPUT, N  
IS (P – P).  
MIN  
THESE BITS ARE NOT USED  
BY THE DEVICE AND ARE  
DON'T CARE BITS.  
Figure 18. AB Counter Latch Map  
Rev. 0 | Page 13 of 20  
 
ADF4108  
FUNCTION LATCH MAP  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (0)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
OUTPUT  
F3  
0
1
NORMAL  
THREE-STATE  
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3k  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Figure 19. Function Latch Map  
Rev. 0 | Page 14 of 20  
 
 
ADF4108  
INITIALIZATION LATCH MAP  
CURRENT  
SETTING  
2
CURRENT  
SETTING  
1
PRESCALER  
VALUE  
CONTROL  
BITS  
TIMER COUNTER  
CONTROL  
MUXOUT  
CONTROL  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5  
DB4 DB3 DB2 DB1  
DB0  
P2  
P1  
PD2  
CPI5 CPI4 CPI3 CPI2 CPI1 TC4 TC3 TC2  
TC1  
F4  
F3  
F2  
M3  
M2  
M1  
F1  
C2 (1) C1 (1)  
CPI6  
F5  
PD1  
PHASE DETECTOR  
POLARITY  
COUNTER  
OPERATION  
F2  
F1  
0
1
NEGATIVE  
POSITIVE  
0
1
NORMAL  
R, A, B COUNTERS  
HELD IN RESET  
CHARGE PUMP  
F3 OUTPUT  
NORMAL  
THREE-STATE  
0
1
F4  
F5  
FASTLOCK MODE  
0
1
1
X
0
1
FASTLOCK DISABLED  
FASTLOCK MODE 1  
FASTLOCK MODE 2  
M3  
M2  
M1  
OUTPUT  
TIMEOUT  
TC4  
TC3  
TC2  
TC1  
(PFD CYCLES)  
0
0
0
0
0
1
THREE-STATE OUTPUT  
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
3
7
11  
15  
19  
23  
27  
0
0
1
1
1
1
0
0
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
N-CHANNEL OPEN-DRAIN  
LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
1
1
1
1
0
1
0
1
1
0
1
0
1
0
31  
35  
1
0
0
1
39  
1
1
0
0
1
1
0
1
43  
47  
1
1
1
1
0
0
0
1
51  
55  
1
1
1
1
1
1
0
1
59  
63  
CPI6  
CPI5  
CPI4  
I
(mA)  
CP  
CPI3  
CPI2  
CPI1  
3kΩ  
1.06  
2.12  
3.18  
5.1kΩ  
0.625  
1.25  
11kΩ  
0
0
0
0
0
1
0
1
0
0.289  
0.580  
0.870  
1.875  
0
1
1
0
1
0
4.24  
5.30  
2.5  
3.125  
1.160  
1.450  
1
0
1
6.36  
3.75  
1.730  
1
1
1
1
0
1
7.42  
8.50  
4.375  
5.0  
2.020  
2.320  
CE PIN  
PD2  
PD1  
MODE  
X
X
0
1
ASYNCHRONOUS POWER-DOWN  
NORMAL OPERATION  
ASYNCHRONOUS POWER-DOWN  
SYNCHRONOUS POWER-DOWN  
0
1
1
1
X
0
1
1
PRESCALER VALUE  
P2  
P1  
0
0
1
1
0
1
0
1
8/9  
16/17  
32/33  
64/65  
Figure 20. Initialization Latch Map  
Rev. 0 | Page 15 of 20  
 
ADF4108  
fastlock is enabled, this bit determines which fastlock mode is  
used. If the fastlock mode bit is 0, then Fastlock Mode 1 is  
selected; and if the fastlock mode bit is 1, then Fastlock Mode 2  
is selected.  
FUNCTION LATCH  
The on-chip function latch is programmed with C2 and C1 set  
to 1 and 0, respectively. Figure 19 shows the input data format  
for programming the function latch.  
Fastlock Mode 1  
Counter Reset  
The charge pump current is switched to the contents of Current  
Setting 2.  
DB2 (F1) is the counter reset bit. When this bit is 1, the R  
counter and the AB counters are reset. For normal operation,  
this bit should be 0. Upon powering up, the F1 bit needs to be  
disabled (set to 0). Then, the N counter resumes counting in  
close alignment with the R counter. (The maximum error is one  
prescaler cycle.)  
The device enters fastlock by having a 1 written to the CP gain  
bit in the AB counter latch. The device exits fastlock by having a  
0 written to the CP gain bit in the AB counter latch.  
Fastlock Mode 2  
The charge pump current is switched to the contents of Current  
Setting 2.  
Power-Down  
DB3 (PD1) and DB21 (PD2) provide programmable power-  
down modes. They are enabled by the CE pin.  
The device enters fastlock by having a 1 written to the CP gain  
bit in the AB counter latch. The device exits fastlock under the  
control of the timer counter. After the timeout period  
determined by the value in TC4:TC1, the CP gain bit in the AB  
counter latch is automatically reset to 0 and the device reverts to  
normal mode instead of fastlock. See Figure 19 for the timeout  
periods.  
When the CE pin is low, the device is immediately disabled  
regardless of the states of PD2 and PD1.  
In the programmed asynchronous power-down, the device  
powers down immediately after latching a 1 into the PD1 bit,  
with the condition that PD2 has been loaded with a 0.  
In the programmed synchronous power-down, the device  
power-down is gated by the charge pump to prevent unwanted  
frequency jumps. Once the power-down is enabled by writing a  
1 into PD1 (on condition that a 1 has also been loaded to PD2),  
then the device will go into power-down on the occurrence of  
the next charge pump event.  
Timer Counter Control  
The user has the option of programming two charge pump  
currents. The intent is that Current Setting 1 is used when the  
RF output is stable and the system is in a static state. Current  
Setting 2 is meant to be used when the system is dynamic and in  
a state of change (that is, when a new output frequency is  
programmed).  
When a power-down is activated (either synchronous or  
asynchronous mode, including CE pin activated power-down),  
the following events occur:  
The normal sequence of events is as follows:  
All active dc current paths are removed.  
The user initially decides what the preferred charge pump  
currents are going to be. For example, the choice may be 2.5 mA  
as Current Setting 1 and 5 mA as Current Setting 2.  
The R, N, and timeout counters are forced to their load  
state conditions.  
At the same time it must be decided how long the secondary  
current is to stay active before reverting to the primary current.  
This is controlled by the timer counter control bits, DB14:DB11  
(TC4:TC1) in the function latch. The truth table is given in  
Figure 19.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry is reset.  
The RFIN input is debiased.  
The reference input buffer circuitry is disabled.  
Now, to program a new output frequency, the user simply  
programs the AB counter latch with new values for A and B. At  
the same time, the CP gain bit can be set to 1, which sets the  
charge pump with the value in CPI6:CPI4 for a period of time  
determined by TC4–TC1. When this time is up, the charge  
pump current reverts to the value set by CPI3:CPI1. At the  
same time, the CP gain bit in the AB counter latch is reset to 0  
and is now ready for the next time the user wishes to change the  
frequency.  
The input register remains active and capable of loading  
and latching data.  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF4108. Figure 19 shows the truth table.  
Fastlock Enable Bit  
DB9 of the function latch is the fastlock enable bit. Fastlock is  
enabled only when this bit is 1.  
Note that there is an enable feature on the timer counter. It is  
enabled when Fastlock Mode 2 is chosen by setting the fastlock  
mode bit (DB10) in the function latch to 1.  
Fastlock Mode Bit  
DB10 of the function latch is the fastlock mode bit. When  
Rev. 0 | Page 16 of 20  
 
ADF4108  
When the initialization latch is loaded, the following occurs:  
Charge Pump Currents  
The function latch contents are loaded.  
CPI3, CPI2, and CPI1 program Current Setting 1 for the charge  
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the  
charge pump. The truth table is given in Figure 19.  
An internal pulse resets the R, AB, and timeout counters to  
load-state conditions and also three-states the charge pump.  
Note that the prescaler band gap reference and the oscillator  
input buffer are unaffected by the internal reset pulse, allowing  
close phase alignment when counting resumes.  
Latching the first AB counter data after the initialization word  
will activate the same internal reset pulse. Successive AB loads  
will not trigger the internal reset pulse unless there is another  
initialization.  
Prescaler Value  
P2 and P1 in the function latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 300 MHz. Thus, with  
an RF frequency of 4 GHz, a prescaler value of 16/17 is valid but  
a value of 8/9 is not valid.  
CE Pin Method  
1. Apply VDD  
PD Polarity  
.
This bit sets the phase detector polarity bit. See Figure 19.  
2. Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
CP Three-State  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
3. Program the function latch (10).  
4. Program the R counter latch (00).  
5. Program the AB counter latch (01).  
INITIALIZATION LATCH  
6. Bring CE high to take the device out of power-down. The R  
and AB counters will now resume counting in close  
alignment.  
The initialization latch is programmed when C2 and C1 are set  
to 1 and 1. This is essentially the same as the function latch  
(programmed when C2, C1 = 1, 0).  
Note that after CE goes high, a duration of 1 μs may be required  
for the prescaler band gap voltage and oscillator input buffer  
bias to reach steady state.  
However, when the initialization latch is programmed, an  
additional internal reset pulse is applied to the R and AB  
counters. This pulse ensures that the AB counter is at load point  
when the AB counter data is latched and the device will begin  
counting in close phase alignment.  
CE can be used to power the device up and down to check for  
channel activity. The input register does not need to be  
reprogrammed each time the device is disabled and enabled as  
long as it has been programmed at least once after VDD was  
initially applied.  
If the latch is programmed for synchronous power-down (CE  
pin is high; PD1 bit is high; PD2 bit is low), the internal pulse  
also triggers this power-down. The prescaler reference and the  
oscillator input buffer are unaffected by the internal reset pulse  
and so close phase alignment is maintained when counting  
resumes.  
Counter Reset Method  
1. Apply VDD  
.
2. Do a function latch load (10 in 2 LSBs). As part of this,  
load 1 to the F1 bit. This enables the counter reset.  
When the first AB counter data is latched after initialization, the  
internal reset pulse is again activated. However, successive AB  
counter loads after this will not trigger the internal reset pulse.  
3. Do an R counter load (00 in 2 LSBs).  
4. Do an AB counter load (01 in 2 LSBs).  
Device Programming after Initial Power-Up  
5. Do a function latch load (10 in 2 LSBs). As part of this,  
load 0 to the F1 bit. This disables the counter reset.  
After initially powering up the device, there are three ways to  
program the device.  
This sequence provides the same close alignment as the  
initialization method. It offers direct control over the internal  
reset. Note that counter reset holds the counters at load point  
and three-states the charge pump, but does not trigger  
synchronous power-down.  
Initialization Latch Method  
1. Apply VDD  
.
2. Program the initialization latch (11 in 2 LSBs of input  
word). Make sure that the F1 bit is programmed to 0.  
POWER SUPPLY CONSIDERATIONS  
3. Next, do a function latch load (10 in 2 LSBs of the control  
word), making sure that the F1 bit is programmed to a 0.  
The ADF4108 operates over a power supply range of 3.2 V to  
3.6 V. The ADP3300ART-3.3 is a low dropout linear regulator  
from Analog Devices. It outputs 3.3 V with an accuracy of 1.4ꢀ  
and is recommended for use with the ADF4108.  
4. Then do an R load (00 in 2 LSBs).  
5. Then do an AB load (01 in 2 LSBs).  
Rev. 0 | Page 17 of 20  
 
ADF4108  
INTERFACING  
The ADF4108 has a simple SPI™-compatible serial interface for  
writing to the device. CLK, DATA, and LE control the data  
transfer. When LE (Latch Enable) goes high, the 24 bits that  
have been clocked into the input register on each rising edge of  
CLK are transferred to the appropriate latch. See Figure 2 for  
the timing diagram and Table 5 for the latch truth table.  
CLK  
SCLOCK  
MOSI  
DATA  
LE  
CE  
ADuC812  
I/O PORTS  
ADF4108  
MUXOUT  
(LOCK DETECT)  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
833 kHz or one update every 1.2 μs. This is certainly more than  
adequate for systems that have typical lock times in hundreds of  
microseconds.  
Figure 21. ADuC812 to ADF4108 Interface  
ADSP-2181 INTERFACE  
Figure 22 shows the interface between the ADF4108 and the  
ADSP-21xx Digital Signal Processor. The ADF4108 needs a  
24-bit serial word for each latch write. The easiest way to  
accomplish this using the ADSP21xx family is to use the  
autobuffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated. Set up the word  
length for 8 bits and use three memory locations for each 24-bit  
word. To program each 24-bit latch, store the three 8-bit bytes,  
enable the autobuffered mode, and then write to the transmit  
register of the DSP. This last operation initiates the autobuffer  
transfer.  
ADuC812 INTERFACE  
Figure 21 shows the interface between the ADF4108 and the  
ADuC812 MicroConverter®. Since the ADuC812 is based on an  
8051 core, this interface can be used with any 8051 based  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4108 needs a  
24-bit word. This is accomplished by writing three 8-bit bytes  
from the MicroConverter to the device. When the third byte  
has been written, the LE input should be brought high to  
complete the transfer.  
On first applying power to the ADF4108, it needs four writes  
(one each to the initialization latch, function latch, R counter  
latch, and N counter latch) for the output to become active.  
SCLOCK  
MOSI  
CLK  
DATA  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input) and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
TFS  
LE  
CE  
ADSP-21xx  
ADF4108  
I/O FLAGS  
MUXOUT  
(LOCK DETECT)  
When operating in the mode described, the maximum  
SCLOCK rate of the ADuC812 is 4 MHz. This means that the  
maximum rate at which the output frequency can be changed  
will be 166 kHz.  
Figure 22. ADSP-21xx to ADF4108 Interface  
Rev. 0 | Page 18 of 20  
 
 
 
ADF4108  
PCB DESIGN GUIDELINES FOR CHIP SCALE PACKAGE  
The lands on the chip scale package (CP-20) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the  
pad. This will ensure that the solder joint size is maximized.  
The bottom of the chip scale package has a central thermal pad.  
Thermal vias can be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at 1.2 mm  
pitch grid. The via diameter should be between 0.3 mm and  
0.33 mm and the via barrel should be plated with 1 oz. copper  
to plug the via.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, there  
should be a clearance of at least 0.25 mm between the thermal  
pad and the inner edges of the pad pattern. This will ensure that  
shorting is avoided.  
The user should connect the printed circuit board thermal pad  
to AGND.  
Rev. 0 | Page 19 of 20  
 
ADF4108  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
0.60  
MAX  
4.00  
BSC SQ  
PIN 1  
INDICATOR  
0.60  
MAX  
20  
1
16  
15  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BCS SQ  
11  
10  
5
6
0.75  
0.55  
0.35  
0.25 MIN  
0.80 MAX  
0.65 TYP  
0.30  
0.23  
0.18  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
0.20  
REF  
SEATING  
PLANE  
COPLANARITY  
0.08  
0.50  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 24. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm x 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RU-16  
RU-16  
ADF4108BRUZ1  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
ADF4108BRUZ-RL1  
ADF4108BRUZ-RL71  
ADF4108BCPZ1  
ADF4108BCPZ–RL1  
ADF4108BCPZ–RL71  
EVAL-ADF4108EB1  
RU-16  
CP-20-1  
CP-20-1  
CP-20-1  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06015-0-4/06(0)  
Rev. 0 | Page 20 of 20  
 
 
 

相关型号:

EVAL-ADF4108EBZ1

PLL Frequency Synthesizer
ADI

EVAL-ADF4112EB1

CDMA Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF4113EB1

GSM900 Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF4113EB2

1750MHz Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF4113EBZ1

RF PLL Frequency Synthesizers
ADI

EVAL-ADF4113EBZ2

RF PLL Frequency Synthesizers
ADI

EVAL-ADF4113HVEB1Z

High Voltage Charge Pump, PLL Synthesizer
ADI

EVAL-ADF4118EB1

WCDMA Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF4118EBZ11

RF PLL Frequency Synthesizers
ADI

EVAL-ADF411XEB1

Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF411XEBZ11

RF PLL Frequency Synthesizers
ADI

EVAL-ADF4150EB1Z

Fractional-N/Integer-N PLL Synthesizer
ADI