EVAL-ADF4113HVEB1Z [ADI]

High Voltage Charge Pump, PLL Synthesizer; 高电压电荷泵, PLL合成器
EVAL-ADF4113HVEB1Z
型号: EVAL-ADF4113HVEB1Z
厂家: ADI    ADI
描述:

High Voltage Charge Pump, PLL Synthesizer
高电压电荷泵, PLL合成器

文件: 总20页 (文件大小:489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage  
Charge Pump, PLL Synthesizer  
ADF4113HV  
FEATURES  
GENERAL DESCRIPTION  
High voltage charge pump (15 V)  
2.7 V to 5.5 V power supply  
200 MHz to 4.0 GHz frequency range  
Pin compatible with ADF4110, ADF4111, ADF4112, ADF4113  
ADF4106, and ADF4002 synthesizers  
Two selectable charge pump currents  
Digital lock detect  
The ADF4113HV is an integer-N frequency synthesizer with a  
high voltage charge pump (15 V). The synthesizer is designed  
for use with voltage controlled oscillators (VCOs) that have  
high tuning voltages (up to 15 V). Active loop filters are often  
used to achieve high tuning voltages, but the ADF4113HV  
charge pump can drive a high voltage VCO directly with a  
passive-loop filter. The ADF4113HV can be used to implement  
local oscillators in the upconversion and downconversion  
sections of wireless receivers and transmitters. It consists of a  
low noise digital phase frequency detector (PFD), a precision  
high voltage charge pump, a programmable reference divider,  
programmable A and B counters, and a dual-modulus prescaler  
(P/P + 1).  
Power-down mode  
Loop filter design possible with ADIsimPLL™  
APPLICATIONS  
Applications using high voltage VCOs  
IF/RF local oscillator (LO) generation in base stations  
Point-to-point radio LO generation  
Clock for analog-to-digital and digital-to-analog converters  
Wireless LANs, PMR  
A simple 3-wire interface controls all of the on-chip registers.  
The devices operate with a power supply ranging from 2.7 V to  
5.5 V and can be powered down when not in use.  
Communications test equipment  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
R
SET  
DD  
DD  
P
CPGND  
REFERENCE  
14-BIT  
R COUNTER  
REF  
IN  
PHASE  
CHARGE  
PUMP  
CP  
FREQUENCY  
DETECTOR  
14  
R COUNTER  
LATCH  
CURRENT  
SETTING  
LOCK  
DETECT  
CLK  
DATA  
LE  
24-BIT  
INPUT REGISTER  
FUNCTION  
LATCH  
22  
A, B COUNTER  
LATCH  
SD  
OUT  
HIGH Z  
FROM  
FUNCTION  
LATCH  
19  
AV  
DD  
MUX  
MUXOUT  
13  
N = BP + A  
SD  
13-BIT  
B COUNTER  
OUT  
LOAD  
RF  
RF  
A
B
IN  
PRESCALER  
P/P + 1  
M3 M2 M1  
IN  
LOAD  
6-BIT  
A COUNTER  
ADF4113HV  
6
CE  
AGND  
DGND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADF4113HV  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Prescaler (P/P + 1) ........................................................................9  
A and B Counters..........................................................................9  
R Counter .......................................................................................9  
Phase Frequency Detector (PFD) and Charge Pump............ 10  
Muxout and Lock Detect........................................................... 10  
Input Shift Register .................................................................... 10  
Function Latch............................................................................ 13  
Applications..................................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
Transistor Count ........................................................................... 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Circuit Description........................................................................... 9  
Reference Input Section............................................................... 9  
RF Input Stage............................................................................... 9  
Using a Digitial-to-Analog Converter to Drive  
the RSET Pin.................................................................................. 15  
Interfacing ................................................................................... 15  
PCB Design Guidelines for Chip Scale Package .................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
1/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADF4113HV  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10ꢀ, 5 V 10ꢀꢁ 13.5 V < VP ≤ 16.5 Vꢁ AGND = DGND = CPGND = 0 Vꢁ RSET = 4.7 kΩꢁ dBm referred to 50 Ωꢁ  
TA = TMIN to TMAX, unless otherwise noted. Operating temperature range for B version: −40°C to +85°C.  
Table 1.  
Parameter  
B Version  
B Chips1  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS (3 V)  
RF Input Sensitivity  
RF Input Frequency  
Prescaler Output Frequency2  
RF CHARACTERISTICS (5 V)  
RF Input Sensitivity  
−15/0  
0.2/3.7  
165  
−15/0  
0.2/3.7  
165  
dBm min/max  
GHz min/max  
MHz max  
For lower frequencies, ensure SR > 130 V/μs  
−10/0  
0.2/3.7  
0.2/4.0  
200  
−10/0  
0.2/3.7  
0.2/4.0  
200  
dBm min/max  
GHz min/max  
GHz min/max  
MHz max  
RF Input Frequency  
For lower frequencies, ensure SR > 130 V/ꢀs  
Input level = −5 dBm  
Prescaler Output Frequency  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
5/150  
0.4/AVDD  
1.0/AVDD  
10  
5/150  
0.4/AVDD  
1.0/AVDD  
10  
MHz min/max  
V p-p min/max  
V p-p min/max  
pF max  
ꢀA max  
MHz max  
For f < 5 MHz, ensure SR > 100 V/ꢀs  
AVDD = 3.3 V, biased at AVDD/23  
For f ≥ 10 MHz, AVDD = 5 V, biased at AVDD/23, 4  
Reference Input Sensitivity  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR FREQUENCY  
CHARGE PUMP  
100  
100  
5
5
ICP Sink/Source  
RSET = 4.7 kΩ  
High Value  
Low Value  
640  
80  
2.5  
3.9/10  
5
3
1.5  
2
640  
80  
2.5  
3.9/10  
5
3
1.5  
2
μA typ  
ꢀA typ  
% typ  
kΩ typ  
nA max  
% typ  
% typ  
% typ  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage Current  
Sink and Source Current Matching  
ICP vs. VCP  
1 V ≤ VCP ≤ VP – 1 V  
1 V ≤ VCP ≤ VP – 1 V  
VCP = VP/2  
ICP vs. Temperature  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage  
POWER SUPPLIES  
AVDD  
0.8 × DVDD  
0.2 × DVDD  
1
10  
0.8 × DVDD  
0.2 × DVDD  
1
10  
V min  
V max  
ꢀA max  
pF max  
DVDD − 0.4  
0.4  
DVDD − 0.4  
0.4  
V min  
V max  
IOH = 500 ꢀA  
IOL = 500 ꢀA  
2.7/5.5  
AVDD  
13.5/16.5  
16  
0.25  
1
2.7/5.5  
AVDD  
13.5/16.5  
11  
0.25  
1
V min/V max  
DVDD  
VP  
IDD5 (AIDD + DIDD)  
V min/V max  
mA max  
mA max  
ꢀA typ  
11 mA typical  
TA = 25°C  
IP  
Low Power Sleep Mode  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor6  
−212  
−212  
dBc/Hz typ  
1 The B chip specifications are given as typical values.  
2 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
3 AC coupling ensures AVDD/2 bias.  
4 Guaranteed by characterization.  
5 TA = 25oC; AVDD = DVDD = 5.5 V; P = 16; RFIN = 900 MHz.  
6 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO, PNTOT, and subtracting 20logN (where N is the N divider  
value) and 10logfPFD: PNSYNTH = PNTOT − 10logfPFD − 20logN.  
Rev. 0 | Page 3 of 20  
 
 
ADF4113HV  
TIMING CHARACTERISTICS  
Guaranteed by design but not production tested. AVDD = DVDD = 3 V 10ꢀ, 5 V 10ꢀꢁ 13.5 V ≤ VP ≤ 16.5 Vꢁ  
AGND = DGND = CPGND = 0 Vꢁ RSET = 4.7 kΩꢁ TA = TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN to TMAX (B Version)  
Unit  
Test Conditions/Comments  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
20  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CLK to LE setup time  
LE pulse width  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
DB23 (MSB)  
DB22  
DB2  
DATA  
LE  
(CONTROL BIT C1)  
t7  
t1  
t6  
LE  
Figure 2. Timing Diagram  
Rev. 0 | Page 4 of 20  
 
 
ADF4113HV  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
TRANSISTOR COUNT  
The transistor count is 12,150 (CMOS) and 348 (bipolar).  
Parameter  
AVDD to GND1  
Rating  
THERMAL RESISTANCE  
Table 4. Thermal Resistance  
Package Type  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−0.3 V to +18 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to VDD + 0.3 V  
320 mV  
AVDD to DVDD  
VP to GND  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
RFINA to RFINB  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
TSSOP  
150.4  
122  
216  
LFCSP (Paddle Soldered)  
LFCSP (Paddle Not Soldered)  
ESD CAUTION  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
−40°C to +85°C  
−65°C to +150°C  
150°C  
215°C  
220°C  
1 GND = AGND = DGND = 0 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating onlyꢁ functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
This device is a high performance RF integrated circuit with an  
ESD rating of <1 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Rev. 0 | Page 5 of 20  
 
 
ADF4113HV  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
V
SET  
P
DV  
CP  
DD  
CPGND  
AGND  
MUXOUT  
LE  
PIN 1  
ADF4113HV  
INDICATOR  
TOP VIEW  
CPGND  
AGND  
AGND  
1
2
3
4
5
15 MUXOUT  
14 LE  
13 DATA  
12 CLK  
11 CE  
(Not to Scale)  
ADF4113HV  
R
R
B
DATA  
CLK  
FIN  
FIN  
TOP VIEW  
RF  
RF  
B
A
IN  
IN  
(Not to Scale)  
A
AV  
CE  
DD  
REF  
DGND  
IN  
Figure 3. TSSOP Pin Configuration  
Figure 4. LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
TSSOP  
Pin No.  
LFCSP  
Pin No.  
Mnemonic Description  
1
19  
RSET  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current.  
The nominal voltage potential at the RSET pin is 0.56 V for the ADF4113HV. The relationship between  
ICP and RSET is ICPmax = 3/RSET. Therefore, with RSET = 4.7 kΩ, ICPmax = 640 μA.  
2
20  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter; in turn, this  
drives the external VCO.  
3
4
5
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. CPGND is the ground return path for the charge pump.  
Analog Ground. This is the ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with  
a small bypass capacitor, typically 100 pF.  
6
7
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small-signal input is ac-coupled from the VCO.  
Analog Power Supply. The power supply can range from 2.7 V to 5.5 V. Decoupling capacitors to the  
analog ground plane should be placed as close as possible to this pin. AVDD must be the same value  
as DVDD.  
8
8
REFIN  
Reference Input. This pin is a CMOS input with a nominal threshold of VDD/2, and an equivalent  
input resistance of 100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator, or can be  
ac-coupled.  
9
10  
9, 10  
11  
DGND  
CE  
Digital Ground.  
Chip Enable. A Logic low on this pin powers down the device and puts the charge pump output  
into three-state mode. Taking the pin high powers up the device depending on the status of the  
Power-Down Bit PD1.  
11  
12  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS  
input.  
12  
13  
14  
15  
13  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into  
one of the four latches; the latch is selected using the control bits.  
Multiplexer Output. This multiplexer output allows either the lock detect, the scaled RF, or the  
scaled reference frequency to be externally accessed.  
Digital Power Supply. This can range from 2.7 V to 5.5 V. Decoupling capacitors to the digital ground  
plane (1ꢀF, 1nF) should be placed as close as possible to this pin. For best performance, the 1 ꢀF  
capacitor should be placed within 2 mm of the pin. The placing of the 1nF capacitor is less critical  
but should still be within 5 mm of the pin. DVDD must have the same value as AVDD.  
14  
15  
MUXOUT  
DVDD  
16, 17  
16  
18  
VP  
Charge Pump Power Supply. VP can range from 13.5 V to 16.5 V and should be decoupled  
appropriately.  
Rev. 0 | Page 6 of 20  
 
ADF4113HV  
TYPICAL PERFORMANCE CHARACTERISTICS  
Loop bandwidth = 25 kHz, reference = 10 MHz reference from Agilent E4440A PSA, VCO = Sirenza VCO190-1500T(Y), evaluation  
board = EVAL-ADF4113HVEBZ1.  
5
FREQ  
PARAM  
DATA  
–FORMAT  
KEYWORD  
IMPEDANCE  
–OHMS  
–UNIT –TYPE  
–5  
GHz  
S
MA  
R
50  
FREQ MAGS11  
ANGS11  
FREQ MAGS11  
ANGS11  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
0.89207  
0.8886  
–2.0571  
–4.4427  
–6.3212  
–2.1393  
–12.13  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
0.9512  
–40.134  
–43.747  
–44.393  
–46.937  
–49.6  
0.93458  
0.94782  
0.96875  
0.92216  
0.93755  
0.96178  
0.94354  
0.95189  
0.97647  
0.98619  
0.95459  
0.97945  
0.98864  
0.97399  
0.97216  
0.89022  
0.96323  
0.90566  
0.90307  
0.89318  
0.89806  
0.89565  
0.88538  
0.89699  
0.89927  
0.87797  
0.90765  
0.88526  
0.81267  
0.90357  
0.92954  
0.92087  
0.93788  
–13.52  
–51.884  
–51.21  
–15.746  
–18.056  
–19.693  
–22.246  
–24.336  
–25.948  
–28.457  
–29.735  
–31.879  
–32.681  
–31.522  
–34.222  
–36.961  
–39.343  
–53.55  
–56.786  
–58.781  
–60.545  
–61.43  
–61.241  
–64.051  
–66.19  
–63.775  
1MHz  
–92.428dBc  
FREQUENCY (Hz)  
Figure 5. S-Parameter Data for the ADF4113HV RF Input (Up to 1.8 GHz)  
Figure 8. Reference Spurs (RF = 1000 MHz, PFD = 1 MHz)  
0
–5  
–70  
–80  
–90  
–10  
–15  
1kHz  
–86.33dBc/Hz  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–20  
CARRIER POWER: –0.88dBm  
+85°C  
–25  
+25°C  
–30  
–40°C  
–35  
–40  
–45  
0
1k  
2k  
3k  
4k  
5k  
6k  
100  
1k  
10k  
FREQUENCY OFFSET (Hz)  
100k  
1M  
RF INPUT FREQUENCY (MHz)  
Figure 6. Input Sensitivity  
Figure 9. Integrated Phase Noise  
(RF = 1800 MHz, PFD= 1 MHz, VTUNE = 13.1 V, RMS Noise = 1.16°)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
1kHz  
–91.08dBc/Hz  
CARRIER POWER: –5.09dBm  
1MHz  
–87.264dBc  
–80  
–90  
–100  
100  
1k  
10k  
100k  
1M  
FREQUENCY OFFSET (Hz)  
FREQUENCY (Hz)  
Figure 7. Integrated Phase Noise  
(RF = 1000 MHz, PFD = 1 MHz, VTUNE = 1.8 V, RMS Noise = 0.93°)  
Figure 10. Reference Spurs (RF = 1800 MHz, PFD = 1 MHz)  
Rev. 0 | Page 7 of 20  
 
ADF4113HV  
0
800  
600  
V
V
= 3V  
= 15V  
DD  
P
–20  
400  
–40  
200  
–60  
0
–200  
–400  
–600  
–800  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
TUNING VOLTAGE (V)  
V
(V)  
CP  
Figure 11. PFD Spurs (1 MHz) vs. VTUNE  
Figure 13. Charge Pump Output Characteristics  
–50  
–60  
–70  
–80  
–90  
V
V
= 3V  
= 15V  
DD  
P
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 12. Phase Noise vs. Temperature  
(RF = 1500 MHz, PFD = 1 MHz)  
Rev. 0 | Page 8 of 20  
ADF4113HV  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
A AND B COUNTERS  
The reference input stage is shown in Figure 14. SW1 and SW2  
are normally closed switches (NC in Figure 14). SW3 is normally  
open (NO in Figure 14). When power-down is initiated, SW3 is  
closed and SW1 and SW2 are opened. This ensures that there is  
no loading of the REFIN pin on power-down.  
The A and B CMOS counters combine with the dual-modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The counters are specified to work when the  
prescaler output is 200 MHz or less (for AVDD = 5 V). Thus,  
with an RF input frequency of 2.5 GHz, a prescaler value of  
16/17 is valid but a value of 8/9 is not.  
POWER-DOWN  
CONTROL  
Pulse Swallow Function  
100k  
SW2  
NC  
The A and B counters, in conjunction with the dual-modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the reference frequency divided by R. The  
equation for the VCO frequency is  
REF  
TO R COUNTER  
IN  
NC  
SW1  
BUFFER  
SW3  
NO  
f
VCO = [(P × B) + A]fREFIN/R  
where:  
VCO = output frequency of external voltage controlled  
Figure 14. Reference Input Stage  
RF INPUT STAGE  
f
The RF input stage is shown in Figure 15. It is followed by a  
two-stage limiting amplifier to generate the current-mode logic  
(CML) clock levels needed for the prescaler.  
oscillator (VCO).  
P = preset modulus of dual-modulus prescaler.  
B = preset divide ratio of binary 13-bit counter (3 to 8191).  
A = preset divide ratio of binary 6-bit swallow counter (0 to 63).  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
f
REFIN = output frequency of the external reference frequency  
500  
500Ω  
oscillator.  
RF  
RF  
A
B
IN  
R = preset divide ratio of binary 14-bit programmable reference  
counter (1 to 16,383).  
IN  
N = BP + A  
TO PFD  
13-BIT B  
COUNTER  
AGND  
Figure 15. RF Input Stage  
FROM RF  
INPUT STAGE  
LOAD  
LOAD  
PRESCALER  
P/P + 1  
PRESCALER (P/P + 1)  
6-BIT A  
COUNTER  
MODULUS  
CONTROL  
Together with the A and B counters, the dual-modulus prescaler  
(P/P + 1) enables the large division ratio, N, to be realized by  
N = BP + A  
Figure 16. A and B Counters  
The dual-modulus prescaler, operating at CML levels, takes the  
clock from the RF input stage and divides it down to a manageable  
frequency for the CMOS A and CMOS B counters. The pre-  
scaler is programmableꢁ it can be set in software to 8/9, 16/17,  
32/33, or 64/65. It is based on a synchronous 4/5 core.  
R COUNTER  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase fre-  
quency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
Rev. 0 | Page 9 of 20  
 
 
 
ADF4113HV  
DV  
DD  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 17 is a simplified schematic.  
The PFD includes a programmable delay element that controls  
the width of the antibacklash pulse. This pulse ensures that  
there is no dead zone in the PFD transfer function and mini-  
mizes phase noise and reference spurs. Two bits in the reference  
counter latch, ABP2 and ABP1, control the width of the pulse.  
See Figure 20. The only recommended setting for the antiback-  
lash pulse width is 7.2 ns.  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
SDOUT  
MUXOUT  
MUX  
CONTROL  
DGND  
Figure 18. MUXOUT Circuit  
Lock Detect  
MUXOUT can be programmed for two types of lock detect:  
digital lock detect and analog lock detect.  
V
P
CHARGE  
PUMP  
UP  
Digital lock detect is active high. When LDP in the AB counter  
latch is set to 0, digital lock detect is set high when the phase  
error on five consecutive phase detector (PD) cycles is less than  
10 ns. With LDP set to 1, five consecutive cycles of less than  
3 ns are required to set the lock detect. It stays high until a phase  
error greater than 25 ns is detected on any subsequent PD cycle.  
HIGH  
D1  
Q1  
U1  
R DIVIDER  
CLR1  
PROGRAMMABLE  
DELAY  
CP  
U3  
Operate the N-channel, open-drain, analog lock detect with a  
10 kΩ nominal external pull-up resistor. When lock has been  
detected, this output is high with narrow low-going pulses.  
ABP1  
ABP2  
CLR2  
U2  
DOWN  
HIGH  
D2  
Q2  
INPUT SHIFT REGISTER  
The ADF4113HV digital section includes a 24-bit input shift  
register, a 14-bit R counter, and a 19-bit N counter comprising  
a 6-bit A counter and a 13-bit B counter. Data is clocked into  
the 24-bit shift register on each rising edge of CLK, MSB first.  
Data is transferred from the shift register to one of three latches  
on the rising edge of LE. The destination latch is determined by  
the state of the two control bits (C2, C1) in the shift register.  
These are the two LSBs, DB1 and DB0, as shown in Figure 2.  
The truth table for these bits is shown in Table 6. Figure 19  
shows a summary of how the latches are programmed.  
N DIVIDER  
CPGND  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
Figure 17. PFD Simplified Schematic and Timing (in Lock)  
Table 6. C2, C1 Truth Table  
Control Bits  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4113HV allows the user to  
access various internal points on the chip. The state of MUXOUT  
is controlled by M3, M2, and M1 in the function latch. Figure 22  
shows the full truth table (function latch map). Figure 18 shows  
the MUXOUT section in block diagram form.  
C2  
0
C1  
0
Data Latch  
R counter  
0
1
1
0
N counter (A and B)  
Function latch (including prescaler)  
Rev. 0 | Page 10 of 20  
 
 
 
 
ADF4113HV  
Latch Summary  
REFERENCE COUNTER LATCH  
ANTI-  
BACKLASH  
PULSE  
CONTROL  
BITS  
RESERVED  
14-BIT REFERENCE COUNTER  
WIDTH  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
ABP2 ABP1 R14 R13 R12 R11 R10 R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1 C2(0) C1(0)  
N COUNTER LATCH  
13-BIT B COUNTER  
CONTROL  
BITS  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
L1  
0
B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2(0) C1(1)  
FUNCTION LATCH  
RESERVED  
PRE-  
SCALER  
VALUE  
CURRENT  
SETTING  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P2  
P1  
0
0
0
0
CP3 CP2 CP1  
0
0
0
0
0
0
F4  
F3  
M3  
M2  
M1  
F2  
F1 C2(1) C1(0)  
Figure 19. Latch Summary Tables  
Reference Counter Latch Map  
ANTI-  
BACKLASH  
PULSE  
CONTROL  
BITS  
RESERVED  
14-BIT REFERENCE COUNTER  
WIDTH  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ABP2 ABP1 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 C2(0) C1(0)  
0
0
0
0
0
0
THESE BITS MUST BE SET AS  
INDICATED FOR NORMAL OPERATION  
ANTI-BACKLASH  
R14  
R13  
R12  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
R3  
0
0
0
1
.
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
ABP2  
1
ABP1  
0
PULSE WIDTH  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
1
0
1
0
.
1
7.2ns (ONLY ALLOWED  
SETTING)  
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
Figure 20. Reference Counter Latch Bit Map  
Rev. 0 | Page 11 of 20  
 
 
ADF4113HV  
AB Counter Latch Map  
CONTROL  
BITS  
13-BIT B COUNTER  
6-BIT A COUNTER  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
1
0
B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A6  
A5  
A4  
A3  
A2  
A1 C2(0) C1(1)  
A6  
A5  
A2  
A1  
A COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
0
1
0
1
.
0
1
2
L2  
0
LOCK DETECT PRECISION  
3
10ns  
3ns  
.
1
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
0
1
1
1
0
1
61  
62  
63  
B13  
B12  
B11  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
0
0
1
1
.
0
1
0
1
.
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
8188  
8189  
8190  
8191  
Figure 21. B Counter Latch Map  
Rev. 0 | Page 12 of 20  
ADF4113HV  
Function Latch Map  
PRE-  
SCALER  
VALUE  
CURRENT  
SETTING  
MUXOUT  
CONTROL  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P2  
P1  
0
0
0
0
CP3 CP2 CP1  
0
0
0
0
0
0
F4  
F3  
M3  
M2  
M1  
F2  
F1 C2(1) C1(0)  
COUNTER  
F1  
CHARGE PUMP  
OUTPUT  
F4  
OPERATION  
I
(µA)  
CP  
0
1
NORMAL  
0
1
NORMAL  
4.7k  
80  
CPI3  
CPI2  
CPI1  
THREE-STATE  
0
1
0
1
0
1
R, A, B COUNTERS  
HELD IN RESET  
640  
PHASE DETECTOR  
POLARITY  
F3  
PD1  
0
OPERATION  
P2  
0
P1  
0
PRESCALER VALUE  
0
1
POSITIVE  
NEGATIVE  
NORMAL  
8/9  
1
POWER DOWN  
0
1
16/17  
32/33  
64/65  
1
0
1
1
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DIGITAL LOCK DETECT  
(ACTIVE HIGH)  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
N DIVIDER OUTPUT  
DV  
DD  
R DIVIDER OUTPUT  
ANALOG LOCK DETECT  
SERIAL DATA OUTPUT  
DGND  
Figure 22. Function Latch Map  
FUNCTION LATCH  
The RFINA and RFINB inputs are debiased.  
The on-chip function latch is programmed with C2 and C1 set  
to 1,0, respectively. Figure 22 shows the input data format for  
programming the function latch.  
The reference input buffer circuitry is disabled.  
The input register remains active and capable of loading  
and latching data.  
Counter Reset  
DB2 (F1) is the counter reset bit. When DB2 is 1, the R counter  
and the AB counters are reset. For normal operation, this bit  
should be 0. Upon powering up, the F1 bit must be disabled,  
and the N counter resumes counting in close alignment with  
the R counter. (The maximum error is one prescaler cycle.)  
MUXOUT Control  
The on-chip multiplexer is controlled by M3, M2, and M1 on  
the ADF4113HV. Figure 22 shows the truth table.  
Charge Pump Currents  
CPI3, CPI2, and CPI1 program the current setting for the  
charge pump. The truth table is given in Figure 22.  
Power-Down  
DB3 (F2) in the function latch provides a software power-down  
for the ADF4113HV. The device powers down immediately  
after latching a 1 into Bit F2.  
Prescaler Value  
P2 and P1 in the function latch set the prescaler values. The  
prescaler value should be chosen so that the prescaler output  
frequency is always less than or equal to 200 MHz. Thus, with  
an RF frequency of 2 GHz, a prescaler value of 16/17 is valid,  
but a value of 8/9 is not.  
When the CE pin is low, the device immediately powers down  
regardless of the state of the power-down bit (F2).  
When a power-down is activated (either through software or  
a CE pin activated power-down), the following events occur:  
PD Polarity  
All active dc current paths are removed.  
This bit sets the phase detector polarity bit. See Figure 22.  
The R, N, and timeout counters are forced to their load  
state conditions.  
CP Three-State  
This bit controls the CP output pin. With the bit set high, the  
CP output is put into three-state. With the bit set low, the CP  
output is enabled.  
The charge pump is forced into three-state mode.  
The digital clock detect circuitry is reset.  
Rev. 0 | Page 13 of 20  
 
 
ADF4113HV  
grammed each time the device is disabled and enabled as long  
as it has been programmed at least once after VDD was initially  
applied.  
DEVICE PROGRAMMING AFTER INITIAL  
POWER-UP  
After initial power-up of the device, there are two ways to  
program the device.  
Counter Reset Method  
1. Apply VDD  
.
CE Pin Method  
2. Conduct a function latch load (10 in 2 LSBs). As part of  
this, load 1 to the F1 bit. This enables the counter reset.  
1. Apply VDD  
.
2. Bring CE low to put the device into power-down. This is an  
asynchronous power-down in that it happens immediately.  
3. Conduct an R counter load (00 in 2 LSBs).  
4. Conduct an AB counter load (01 in 2 LSBs).  
3. Program the function latch (10). Program the R counter  
latch (00). Program the AB counter latch (01).  
5. Conduct a function latch load (10 in 2 LSBs). As part of  
this, load 0 to the F1 bit. This disables the counter reset.  
4. Bring CE high to take the device out of power-down. The R  
and AB counters resume counting in close alignment.  
This sequence provides the same close alignment as the initiali-  
zation method. It offers direct control over the internal reset.  
Note that counter reset holds the counters at load point and  
three-states the charge pump, but does not trigger synchronous  
power-down.  
After CE goes high, a duration of 1 μs is sometimes required for  
the prescaler band gap voltage and oscillator input buffer bias to  
reach steady state.  
CE can be used to power the device up and down to check for  
channel activity. The input register does not need to be repro-  
Rev. 0 | Page 14 of 20  
ADF4113HV  
APPLICATIONS  
RF  
OUT  
100pF  
18  
18Ω  
VCO  
100pF  
18Ω  
LOOP  
FILTER  
2
CP  
8
INPUT OUTPUT  
FREF  
REF  
IN  
IN  
GND  
ADF4113HV  
CE  
CLK  
DATA  
LE  
LOCK  
DETECT  
14  
MUXOUT  
1
R
SET  
100pF  
6
5
RF  
RF  
A
B
IN  
2.7kΩ  
51Ω  
IN  
100pF  
AD5320  
12-BIT  
V-OUT DAC  
SPI-COMPATIBLE SERIAL BUS  
NOTES  
1. POWER SUPPLY CONNECTIONS AND DECOUPLING  
CAPACITORS ARE OMITTED FOR CLARITY.  
Figure 23. Driving the RSET Pin with a Digital-to-Analog Converter  
microcontroller. The MicroConverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF4113HV needs  
a 24-bit word. This is accomplished by writing three 8-bit bytes  
from the MicroConverter to the device. When the third byte  
has been written, the LE input should be brought high to  
complete the transfer.  
USING A DIGITIAL-TO-ANALOG CONVERTER TO  
DRIVE THE RSET PIN  
A digital-to-analog converter (DAC) can be used to drive the  
RSET pin of the ADF4113HV, thus increasing the level of control  
over the charge pump current (ICP). This can be advantageous in  
wideband applications where the sensitivity of the VCO varies  
over the tuning range. To compensate for this, ICP can be varied  
to maintain good phase margin and ensure loop stability. See  
Figure 23 for this configuration.  
I/O port lines on the ADuC812 are also used to control power-  
down (CE input), and to detect lock (MUXOUT configured as  
lock detect and polled by the port input).  
INTERFACING  
When the ADuC812 is operating in the SPI master mode, the  
maximum SCLOCK rate of the ADuC812 is 4 MHz. This  
means that the maximum rate at which the output frequency  
can be changed is 166 kHz.  
The ADF4113HV has a simple SPI®-compatible serial interface  
for writing to the device. CLK, DATA, and LE control the data  
transfer. When latch enable (LE) goes high, the 24 bits that have  
been clocked into the input register on each rising edge of CLK  
are transferred to the appropriate latch. See Figure 2 for the  
timing diagram and Table 6 for the latch truth table.  
CLK  
DATA  
LE  
SCLOCK  
MOSI  
ADuC812  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device  
is 833 kHz, or one update every 1.2 μs. This rate is more than  
adequate for systems that have typical lock times in the  
hundreds of microseconds.  
ADF4113HV  
I/O PORTS  
CE  
MUXOUT  
(LOCK DETECT)  
ADuC812 Interface  
Figure 24. ADuC812 to ADF4113HV Interface  
Figure 24 shows the interface between the ADF4113HV and the  
ADuC812 MicroConverter®. Because the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
Rev. 0 | Page 15 of 20  
 
 
 
ADF4113HV  
ADSP-21xx Interface  
PCB DESIGN GUIDELINES FOR CHIP SCALE  
PACKAGE  
Figure 25 shows the interface between the ADF4113HV and the  
ADSP-21xx digital signal processor. The ADF4113HV needs a  
24-bit serial word for each latch write. The easiest way to  
accomplish this using the ADSP-21xx family is to use the auto  
buffered transmit mode of operation with alternate framing.  
This provides a means for transmitting an entire block of serial  
data before an interrupt is generated.  
The lands on the chip scale package (CP-20-1) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length, and 0.05 mm wider than  
the package land width. The land should be centered on the pad  
to ensure that the solder joint size is maximized.  
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. On the printed circuit board, provide  
a clearance of at least 0.25 mm between the thermal pad and the  
inner edges of the pad pattern. This ensures that shorting is  
avoided.  
CLK  
SCLK  
DT  
DATA  
ADSP-21xx  
ADF4113HV  
TFS  
LE  
CE  
I/O FLAGS  
MUXOUT  
Thermal vias can be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at a 1.2 mm  
pitch grid. The via diameter should be between 0.3 mm and  
0.33 mm, and the via barrel should be plated with 1 oz. copper  
to plug the via.  
(LOCK DETECT)  
Figure 25. ADSP-21xx to ADF4113HV Interface  
Set up the word length for eight bits and use three memory  
locations for each 24-bit word. To program each 24-bit latch,  
store the three 8-bit bytes, enable the auto buffered mode, and  
then write to the transmit register of the DSP. This last opera-  
tion initiates the autobuffer transfer.  
The user should connect the printed circuit board thermal pad  
to AGND.  
Rev. 0 | Page 16 of 20  
 
 
ADF4113HV  
OUTLINE DIMENSIONS  
0.60  
4.00  
PIN 1  
MAX  
BSC SQ  
INDICATOR  
0.60  
MAX  
20  
1
16  
15  
PIN 1  
INDICATOR  
2.25  
TOP  
VIEW  
3.75  
BCS SQ  
2.10 SQ  
1.95  
11  
10  
5
6
0.75  
0.55  
0.35  
0.25 MIN  
0.80 MAX  
0.65 TYP  
0.30  
0.23  
0.18  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
0.20  
REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.50  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 26. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm x 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
8°  
0°  
0.60  
0.45  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RU-16  
RU-16  
ADF4113HVBRUZ1  
ADF4113HVBRUZ-RL1  
ADF4113HVBRUZ-RL71  
ADF4113HVBCPZ1  
ADF4113HVBCPZ-RL1  
ADF4113HVBCPZ-RL71  
EVAL-ADF4113HVEB1Z1  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
RU-16  
CP-20-1  
CP-20-1  
CP-20-1  
1 Z = Pb-free part.  
Rev. 0 | Page 17 of 20  
 
 
ADF4113HV  
NOTES  
Rev. 0 | Page 18 of 20  
ADF4113HV  
NOTES  
Rev. 0 | Page 19 of 20  
ADF4113HV  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06223-0-1/07(0)  
Rev. 0 | Page 20 of 20  
 

相关型号:

EVAL-ADF4118EB1

WCDMA Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF4118EBZ11

RF PLL Frequency Synthesizers
ADI

EVAL-ADF411XEB1

Evaluation Board For PLL Frequency Synthesizer
ADI

EVAL-ADF411XEBZ11

RF PLL Frequency Synthesizers
ADI

EVAL-ADF4150EB1Z

Fractional-N/Integer-N PLL Synthesizer
ADI

EVAL-ADF4150HVEB1Z

High Voltage, Fractional-N
ADI

EVAL-ADF4151EB1Z

Fractional-N/Integer-N PLL Synthesizer
ADI

EVAL-ADF4153EB1

Evaluation Board For Fractional-N PLL Frequency Synthesizer
ADI

EVAL-ADF4154EB1

Fractional-N Frequency Synthesizer
ADI

EVAL-ADF4154EBZ1

Fractional-N Frequency Synthesizer
ADI

EVAL-ADF4157EB1Z1

High Resolution 6 GHz Fractional-N Frequency Synthesizer
ADI

EVAL-ADF4158EB1Z

Direct Modulation/Waveform Generating, 6.1 GHz Fractional-N Frequency Synthesizer
ADI