HMC7043 [ADI]

JEDEC JESD204B support;
HMC7043
型号: HMC7043
厂家: ADI    ADI
描述:

JEDEC JESD204B support

文件: 总44页 (文件大小:919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 3.2 GHz, 14-Output  
Fanout Buffer  
Data Sheet  
HMC7043  
The HMC7043 is designed to meet the requirements of multicarrier  
GSM and LTE base station designs, and offers a wide range of  
clock management and distribution features to simplify baseband  
FEATURES  
JEDEC JESD204B support  
Low additive jitter: <15 fs rms at 2457.6 MHz (12 kHz to 20 MHz)  
Very low noise floor: −155.2 dBc/Hz at 983.04 MHz  
Up to 14 LVDS, LVPECL, or CML type device clocks (DCLKs)  
Maximum CLKOUTx/CLKOUTx and SCLKOUTx/SCLKOUTx  
frequency of 3200 MHz  
JESD204B-compatible system reference (SYSREF) pulses  
25 ps analog and ½ clock input cycle digital delay  
independently programmable on each of 14 clock  
output channels  
and radio card clock tree designs.  
The HMC7043 provides 14 low noise and configurable outputs  
to offer flexibility in interfacing with many different components in  
a base transceiver station (BTS) system, such as data converters,  
local oscillators, transmit/receive modules, field programmable  
gate arrays (FPGAs), and digital front-end ASICs. The HMC7043  
can generate up to seven DCLK and SYSREF clock pairs per the  
JESD204B interface requirements.  
SPI-programmable adjustable noise floor vs. power consumption  
SYSREF valid interrupt to simplify JESD204B synchronization  
Supports deterministic synchronization of multiple  
HMC7043 devices  
RFSYNCIN pin or SPI-controlled SYNC trigger for output  
synchronization of JESD204B  
GPIO alarm/status indicator to determine system health  
Clock input to support up to 6 GHz  
48-lead, 7 mm × 7 mm LFCSP package  
The system designer can generate a lower number of DCLK and  
SYSREF pairs, and configure the remaining output signal paths  
for independent phase and frequency. Both the DCLK and SYSREF  
clock outputs can be configured to support different signaling  
standards, including CML, LVDS, LVPECL, and LVCMOS, and  
different bias conditions to adjust for varying board insertion losses.  
One of the unique features of the HMC7043 is the independent  
flexible phase management of each of the 14 channels. All  
14 channels feature both frequency and phase adjustment. The  
outputs can also be programmed for 50 Ω or 100 Ω internal and  
external termination options.  
APPLICATIONS  
JESD204B clock generation  
Cellular infrastructure (multicarrier GSM, LTE, W-CDMA)  
Data converter clocking  
Phase array reference distribution  
Microwave baseband cards  
The HMC7043 device features an RF SYNC feature that synchro-  
nizes multiple HMC7043 devices deterministically, that is, ensures  
that all clock outputs start with the same edge. This operation is  
achieved by rephrasing the nested HMC7043 or SYSREF control  
unit/divider, deterministically, and then restarting the output  
dividers with this new phase.  
GENERAL DESCRIPTION  
The HMC7043 is a high performance clock buffer for the  
The HMC7043 is offered in a 48-lead, 7 mm × 7 mm LFCSP  
package with an exposed pad connected to ground.  
distribution of ultralow phase noise references for high speed data  
converters with either parallel or serial (JESD204B type) interfaces.  
FUNCTIONAL BLOCK DIAGRAM  
CLKOUT0  
CLKOUT0  
SCLKOUT1  
SCLKOUT1  
CLKIN/  
CLKIN  
÷
÷
CLKOUT12  
CLKOUT12  
SCLKOUT13  
SCLKOUT13  
RFSYNCIN/  
RFSYNCIN  
SYSREF  
CONTROL  
SPI  
CONTROL  
INTERFACE  
14-CLOCK  
DISTRIBUTION  
SDATA  
SLEN SCLK  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC7043* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Technical Articles  
• Synchronizing Sample Clocks of a Data Converter Array  
Evaluation Kits  
Design Resources  
• HMC7043 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
• HMC7043 Evaluation Kit  
Documentation  
Data Sheet  
• HMC7043: High Performance, 3.2 GHz, 14-Output Fanout  
Buffer Data Sheet  
User Guides  
Discussions  
View all HMC7043 EngineerZone Discussions  
• UG-892: Evaluating the HMC7043 High Performance, 3.2  
GHz, 14-Output Fanout Buffer  
Sample and Buy  
Visit the product page to see pricing options  
Tools and Simulations  
• HMC7043 IBIS Model  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
HMC7043  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 14  
Theory of Operation ...................................................................... 15  
Detailed Block Diagram ............................................................ 16  
Clock Input Network ................................................................. 16  
Clock Output Network .............................................................. 17  
Typical Programming Sequence............................................... 23  
Power Supply Considerations................................................... 24  
Serial Control Port ......................................................................... 27  
Serial Port Interface (SPI) Control........................................... 27  
Control Registers............................................................................ 28  
Control Register Map ................................................................ 28  
Control Register Map Bit Descriptions ................................... 33  
Applications Information .............................................................. 41  
Evaluation PCB And Schematic............................................... 41  
Outline Dimensions....................................................................... 43  
Ordering Guide .......................................................................... 43  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Conditions..................................................................................... 3  
Supply Current.............................................................................. 3  
Digital Input/Output (I/O) Electrical Specifications............... 4  
Clock Input Path Specifications.................................................. 4  
Additive Jitter and Phase Noise Characteristics....................... 5  
Clock Output Distribution Specifications................................. 5  
Clock Output Driver Characteristics......................................... 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Typical Application Circuits.......................................................... 13  
REVISION HISTORY  
7/2016—Rev. A to Rev. B  
Changes to Table 1............................................................................ 3  
5/2016—Rev. 0 to Rev. A  
Changes to Table 3 ............................................................................. 4  
Change to Maximum Operating Frequency Parameter, Table 7..... 7  
Added Figure 6, Renumbered Sequentially ................................ 11  
Change to Synchronization FSM/Pulse Generator  
Timing Section................................................................................. 21  
Changes to Table 20........................................................................ 28  
Change to Table 22 ......................................................................... 33  
Changes to Table 28........................................................................ 34  
Changes to Table 29........................................................................ 35  
Change to Table 31 ......................................................................... 36  
Change to Table 38 ......................................................................... 37  
Changes to Table 41........................................................................ 39  
12/2015—Revision 0: Initial Version  
Rev. B | Page 2 of 43  
 
Data Sheet  
HMC7043  
SPECIFICATIONS  
VCC = 3.3 V ꢀ5% ꢁad TA = 2ꢀ°C% ualess otherwise aoted. Miaimum ꢁad mꢁximum vꢁlues ꢁre givea over the full VCC ꢁad TA (−40°C to  
+8ꢀ°C) vꢁriꢁtioa% ꢁs listed ia Tble 1.  
CONDITIONS  
Table 1.  
Parameter1  
Min  
Typ Max  
Unit Test Conditions/Comments  
SUPPLY VOLTAGE, VCC  
VCC1_CLKDIST  
VCC2_OUT  
3.135 3.3  
3.135 3.3  
3.465  
3.465  
V
V
3.3 V 5ꢀ, ꢁsuuly voltage for CLK diꢁtribstion  
3.3 V 5ꢀ, ꢁsuuly voltage for Ostust Channel 2 and  
Ostust Channel 3  
VCC3_OUT  
3.135 3.3  
3.465  
V
3.3 V 5ꢀ, ꢁsuuly voltage for Ostust Channel 4, Ostust  
Channel 5, Ostust Channel 6 and Ostust Channel 7  
VCC4_CLKIN  
VCC5_SYSREF  
VCC6_OUT  
3.135 3.3  
3.135 3.3  
3.135 3.3  
3.465  
3.465  
3.465  
V
V
V
3.3 V 5ꢀ, ꢁsuuly voltage for the clock inust uath  
3.3 V 5ꢀ, ꢁsuuly voltage for the common SYSREF divider  
3.3 V 5ꢀ, ꢁsuuly voltage for Ostust Channel 8, Ostust  
Channel 9, Ostust Channel 10, and Ostust Channel 11  
VCC7_OUT  
3.135 3.3  
3.465  
V
3.3 V 5ꢀ, ꢁsuuly voltage for Ostust Channel 0, Ostust  
Channel 1, Ostust Channel 12, and Ostust Channel 13  
TEMPERATURE  
Ambient Temueratsre Range, TA  
−40  
+25 +85  
°C  
1 Maximsm valseꢁ are gsaranteed by deꢁign and characterization.  
SUPPLY CURRENT  
For detꢁiled test coaditioas% see Tble 17 ꢁad Tꢁble 18.  
Table 2  
Parameter1, 2  
Min Typ  
Max Unit Test Conditions/Comments  
CURRENT CONSUMPTION3  
VCC1_CLKDIST  
VCC2_OUT4  
87  
90  
52  
125  
250  
500  
mA  
mA  
mA  
Tyuical valse iꢁ given at TA = 25°C with two LVDS clockꢁ at divide by 8  
Tyuical valse iꢁ given at 25°C with two LVDS high uerformance clockꢁ,  
fsndamental freqsency of the clock inust (fO), two SYSREF clockꢁ (off)  
VCC3_OUT4  
VCC4_CLKIN  
16  
25  
mA  
Tyuical valse iꢁ given at TA = 25°C with RF ꢁynchronization (RFSYNC) inust  
bsffer off  
VCC5_SYSREF  
VCC6_OUT4  
23  
90  
35  
500  
mA  
mA  
Tyuical valse iꢁ given at TA = 25°C with internal RF SYNC uath off  
Tyuical valse iꢁ given at 25°C with two LVDS high uerformance clockꢁ at  
divide by 2, two SYSREF clockꢁ (off)  
Tyuical valse iꢁ given at 25°C with two LVDS clockꢁ at divide by 8, two SYSREF  
clockꢁ (off)  
VCC7_OUT4  
100  
458  
500  
mA  
mA  
Total Csrrent  
1 Maximsm valseꢁ are gsaranteed by deꢁign and characterization.  
2 Csrrentꢁ inclsde LVDS termination csrrentꢁ.  
3 Maximsm valseꢁ are for all circsitꢁ enabled in their worꢁt caꢁe uower conꢁsmution mode, PVT variationꢁ, and accosnting for ueak csrrent draw dsring temuorary  
ꢁynchronization eventꢁ.  
4 Tyuical ꢁuecification auulieꢁ to a normal sꢁage urofile (Profile 1 in Table 17) bst very low dsty cycle csrrentꢁ (ꢁync eventꢁ) and ꢁome outional featsreꢁ are diꢁabled.  
Thiꢁ ꢁuecification aꢁꢁsmeꢁ ostust configsrationꢁ aꢁ deꢁcribed in the teꢁt conditionꢁ/commentꢁ colsmn.  
Rev. B | Page 3 of 43  
 
 
 
 
HMC7043  
Data Sheet  
DIGITAL INPUT/OUTPUT (I/O) ELECTRICAL SPECIFICATIONS  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
DIGITAL INPUT SIGNALS (RESET, SLEN, SCLK)  
Safe Input Voltage Range  
Input Load  
−0.1  
+3.6  
V
pF  
0.3  
Input Voltage  
Input Logic High  
Input Logic Low  
SPI Bus Frequency  
1.2  
0
VCC  
0.5  
10  
V
V
MHz  
DIGITAL BIDIRECTIONAL SIGNALS  
CONFIGURED AS INPUTS (SDATA, GPIO)  
Safe Input Voltage Range  
Input Capacitance  
Input Resistance  
−0.1  
+3.6  
V
pF  
GΩ  
0.4  
50  
Input Voltage  
Input Logic High  
Input Logic Low  
1.22  
0
VCC  
0.24  
V
V
Input Hysteresis  
0.2  
2
V
Occurs around 0.85 V  
Does not include tDGPO  
GPIO ALARM MUXING/DELAY  
Delay from Internal Alarm/Signal to  
General-Purpose Output (GPO) Driver  
ns  
DIGITAL BIDIRECTIONAL SIGNALS  
CONFIFURED AS OUTPUTS (SDATA, GPIO)  
CMOS Mode  
Logic 1 Level  
Logic 0 Level  
1.6  
1.9  
0
2.2  
0.1  
V
V
Output Drive Resistance (RDRIVE  
Output Driver Delay (tDGPO  
)
50  
ns  
)
1.5 + 42 × CLOAD  
Approximately 1.5 ns + 0.69 × RDRIVE × CLOAD  
(CLOAD in nF)  
Maximum Supported DC Current1  
Open-Drain Mode  
Logic 1 Level  
0.6  
mA  
V
External 1 kΩ pull-up resistor  
3.6 V maximum permitted; specifications set by  
external supply  
3.6  
Logic 0 Level  
Pull-Down Impedance  
Maximum Supported Sink Current1  
0.13  
60  
0.28  
V
mA  
Against a 1 kΩ external pull-up resistor to 3.3 V  
5
1 Guaranteed by design and characterization for long-term reliability.  
CLOCK INPUT PATH SPECIFICATIONS  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CLK INPUT (CLKIN) CHARACTERISTICS  
Recommended Input Power, AC-Coupled  
Differential  
−6  
−10  
+8  
+6  
dBm  
dBm  
dB  
Single-Ended1  
Noise floor degrade by 3 dB at fCLKIN = 2400 MHz  
When terminated with 100 Ω differential  
Return Loss  
−12  
Clock Input Frequency (fCLKIN  
)
200  
3200 MHz  
Fundamental mode; if <1 GHz, set the low frequency  
clock input path enable bit (Register 0x0064, Bit 0)  
200  
0.4  
6000 MHz  
Using clock input ÷ 2  
Common-Mode Range  
2.4  
V
1 Guaranteed by design and characterization.  
Rev. B | Page 4 of 43  
 
 
Data Sheet  
HMC7043  
ADDITIVE JITTER AND PHASE NOISE CHARACTERISTICS  
Table 5.  
Parameter1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
ADDITIVE JITTER  
RMS Additive Jitter  
HMC7044 used as a clock source (see Figure 3)  
Clock output frequency (fCLKOUT) = 983.04 MHz, BW = 12 kHz to 20 MHz,  
clock input slew rate ≥ 8 ns  
<30  
<15  
fs rms  
fs rms  
fCLKOUT = 2457.6 MHz, BW = 12 kHz to 20 MHz, clock input slew rate ≥ 4 ns  
CLOCK OUTPUT PHASE NOISE  
HMC830 used as a clock source and configured to produce 983.04 MHz  
at the output (see Figure 4), input slew rate > 1 V/ns  
Absolute Phase Noise  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
−144.3  
−154.8  
−155.2  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fCLKOUT = 983.04 MHz, fCLKOUT = 983.04 MHz, divide by 1 at the output  
fCLKOUT = 983.04 MHz, fCLKOUT = 2949.12 MHz, divide by 3 at the output  
fCLKOUT = 983.04 MHz, fCLKOUT = 983.04 MHz, divide by 1 at the output  
1 Guaranteed by design and characterization.  
CLOCK OUTPUT DISTRIBUTION SPECIFICATIONS  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CLOCK OUTPUT SKEW  
CLKOUTx/CLKOUTx to SCLKOUTx/SCLKOUTx Skew  
Within One Clock Output Pair  
Any CLKOUTx/CLKOUTx to Any SCLKOUTx/SCLKOUTx  
15  
|ps|  
|ps|  
ps  
Same pair, same type termination and  
configuration  
30  
Any pair, same type termination and  
configuration  
PROPAGATION DELAY CLKIN to CLKOUTx and SCLKOUTx1 770  
CLOCK OUTPUT DIVIDER CHARACTERISTICS  
820  
870  
fCLKIN = 983.04 MHz, all VCC set to 3.3 V  
12-Bit Divider Range  
1
4094  
4094  
1, 3, 5, and all even numbers up to 4094  
SYSREF CLOCK OUTPUT DIVIDER CHARACTERISTICS  
12-Bit Divider Range  
1
1, 3, 5, and all even numbers up to 4094;  
pulse generator behavior is only  
supported for divide ratios ≥ 32  
CLOCK OUTPUT ANALOG FINE DELAY  
Analog Fine Delay  
Adjustment Range1  
Resolution  
135  
0
670  
17  
ps  
ps  
MHz  
24 delay steps, fCLKOUT = 983.04 MHz  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
25  
1600  
Maximum Analog Fine Delay Frequency  
CLOCK OUTPUT COARSE DELAY (FLIP FLOP BASED)  
Coarse Delay Adjustment Range  
Coarse Delay Resolution  
Maximum Frequency Coarse Delay  
CLOCK OUTPUT COARSE DELAY (SLIP BASED)  
Coarse Delay  
½ CLKIN period 17 delay steps  
ps  
MHz  
169.54  
1500  
fCLKIN = 2949.12 MHz  
Adjustment Range  
Resolution  
Maximum Frequency Coarse Delay  
1 to ∞  
339.08  
1600  
CLKIN period  
ps  
MHz  
fCLKIN = 2949.12 MHz  
1 Guaranteed by design and characterization.  
Rev. B | Page 5 of 43  
 
 
HMC7043  
Data Sheet  
CLOCK OUTPUT DRIVER CHARACTERISTICS  
Table 7.  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
CML MODE (LOW POWER)  
−3 dB Bandwidth  
Output Rise Time  
RL = 100 Ω, 9.6 mA  
1950  
175  
145  
185  
145  
MHz  
ps  
ps  
ps  
ps  
Differential output voltage = 980 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
RL = 100 Ω, 14.5 mA  
Differential output voltage = 1470 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
52.5  
%
1390  
1360  
VCC − 1.05  
mV p-p diff  
mV p-p diff  
V
Common-Mode Output Voltage  
CML MODE (HIGH POWER)  
−3 dB Bandwidth  
1500  
250  
165  
255  
170  
MHz  
ps  
ps  
ps  
ps  
%
Output Rise Time  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
52.5  
2000  
1800  
mV p-p diff  
mV p-p diff  
Differential Output  
Voltage Magnitude  
Power  
Common-Mode Output Voltage  
LVPECL MODE  
590  
−3.6  
VCC − 1.6  
mV p-p diff  
dBm diff  
V
fCLKOUT = 3200 MHz  
fCLKOUT = 3200 MHz  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
RL = 150 Ω, 4.8 mA  
−3 dB Bandwidth  
Output Rise Time  
2400  
135  
130  
135  
130  
MHz  
ps  
ps  
ps  
ps  
%
Differential output voltage = 1240 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
52.5  
1760  
1850  
mV p-p diff  
mV p-p diff  
Differential Output  
Voltage Magnitude  
Power  
Common-Mode Output Voltage  
LVDS MODE (LOW POWER)  
Maximum Operating Frequency  
Output Rise Time  
930  
0.3  
VCC − 1.3  
mV p-p diff  
dBm diff  
V
fCLKOUT = 3200 MHz  
fCLKOUT = 3200 MHz  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
1.75 mA  
Differential output voltage = 320 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
1700  
135  
100  
135  
95  
MHz  
ps  
ps  
ps  
ps  
%
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
Common-Mode Output Voltage  
47.5 50  
52.5  
390  
1.1  
mV p-p diff  
V
Rev. B | Page 6 of 43  
 
Data Sheet  
HMC7043  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
LVDS MODE (HIGH POWER)  
Maximum Operating Frequency  
Output Rise Time  
3.5 mA  
1700  
145  
105  
145  
100  
MHz  
ps  
ps  
ps  
ps  
Differential output voltage = 600 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 983.04 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
fCLKOUT = 983.04 MHz (2949.12 MHz/3)  
fCLKOUT = 245.76 MHz (2949.12 MHz/12)  
Output Fall Time  
Output Duty Cycle1  
Differential Output Voltage Magnitude  
47.5 50  
750  
52.5  
%
mV p-p diff  
mV p-p diff  
V
730  
1.1  
Common-Mode Output Voltage  
CMOS MODE  
Maximum Operating Frequency  
Output Rise Time  
600  
425  
MHz  
ps  
Single-ended output voltage = 940 mV p-p diff  
fCLKOUT = 245.76 MHz, 20% to 80%  
Output Fall Time  
Output Duty Cycle1  
420  
47.5 50  
ps  
%
fCLKOUT = 245.76 MHz, 20% to 80%  
fCLKOUT = 1075 MHz (2150 MHz/2)  
52.5  
Output Voltage  
High  
VCC  
VCC − 0.5  
0.07  
0.5  
V
V
V
V
Load current = 1 mA  
Load current = 10 mA  
Load current = 1 mA  
Load current = 10 mA  
Low  
1 Guaranteed by design and characterization.  
Rev. B | Page 7 of 43  
HMC7043  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 8.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7 to −0.3 V to +3.6 V  
Ground  
Maximum Junction Temperature  
Thermal Resistance (Channel to Ground Pad)  
Storage Temperature Range  
Operating Temperature Range  
Peak Reflow Temperature  
125°C  
7°C/W  
−65°C to +125°C  
−40°C to +85°C  
260°C  
ESD CAUTION  
ESD Sensitivity Level  
Human Body Model (HBM)  
Charged Device Model (CDM)1  
Class 1C  
Class 4  
1 Per JESD22-C101-F (CDM) standard.  
Rev. B | Page 8 of 43  
 
 
Data Sheet  
HMC7043  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
36 SCLKOUT9  
SCLKOUT9  
CLKOUT0  
CLKOUT0  
35  
3
4
5
6
7
8
9
10  
11  
12  
SCLKOUT1  
SCLKOUT1  
RESET  
BGAPBYP1  
LDOBYP2  
34 GPIO  
33 SDATA  
32  
SCLK  
HMC7043  
31 SLEN  
TOP VIEW  
VCC5_SYSREF  
RFSYNCIN  
30  
29  
(Not to Scale)  
VCC1_CLKDIST  
SCLKOUT3  
SCLKOUT3  
CLKOUT2  
28 RFSYNCIN  
27 VCC4_CLKIN  
26  
CLKIN  
CLKOUT2  
25 CLKIN  
NOTES  
1. RSV = RESERVED PIN AND MUST BE TIED TO GROUND.  
2. CONNECT THE EXPOSED PAD TO A HIGH QUALITY RF/DC GROUND.  
Figure 2.  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic  
Type1 Description  
1
2
3
4
5
6
CLKOUT0  
CLKOUT0  
SCLKOUT1  
SCLKOUT1  
RESET  
O
O
O
O
I
True Clock Output Channel 0. Default DCLK profile.  
Complementary Clock Output Channel 0. Default DCLK profile.  
True Clock Output Channel 1. Default SYSREF profile.  
Complementary Clock Output Channel 1. Default SYSREF profile.  
Device Reset Input. Active high. For normal operation, set RESET to 0.  
Band Gap Bypass Capacitor Connection. Connect a 4.7 µF capacitor to ground. This pin affects all  
internally regulated supplies.  
BGAPBYP1  
7
LDOBYP2  
LDO Bypass 2. Connect a 4.7 µF capacitor to ground. The internal digital supply is 1.8 V. This pin is the  
LDO bypass for the SYSREF section.  
8
9
10  
11  
12  
13  
VCC1_CLKDIST  
SCLKOUT3  
SCLKOUT3  
CLKOUT2  
P
3.3 V Supply for CLK Distribution.  
O
O
O
O
P
True Clock Output Channel 3. Default SYSREF profile.  
Complementary Clock Output Channel 3. Default SYSREF profile.  
True Clock Output Channel 2. Default DCLK profile.  
Complementary Clock Output Channel 2. Default DCLK profile.  
CLKOUT2  
VCC2_OUT  
Power Supply for Clock Group 1 (Southwest)—Channel 2 and Channel 3. See the Clock Grouping,  
Skew, and Crosstalk section.  
14  
15  
16  
17  
18  
19  
RSV  
R
Reserved Pin. This pin must be tied to ground.  
SCLKOUT5  
SCLKOUT5  
CLKOUT4  
CLKOUT4  
VCC3_OUT  
O
O
O
O
P
True Clock Output Channel 5. Default SYSREF profile.  
Complementary Clock Output Channel 5. Default SYSREF profile.  
True Clock Output Channel 4. Default DCLK profile.  
Complementary Clock Output Channel 4. Default DCLK profile.  
Power Supply for Clock Group 2 (South)—Channel 4, Channel 5, Channel 6, and Channel 7. See the  
Clock Grouping, Skew, and Crosstalk section.  
20  
21  
22  
23  
24  
25  
26  
CLKOUT6  
CLKOUT6  
SCLKOUT7  
SCLKOUT7  
RSV  
O
O
O
O
R
I
True Clock Output Channel 6. Default DCLK profile.  
Complementary Clock Output Channel 6. Default DCLK profile.  
True Clock Output Channel 7. Default SYSREF profile.  
Complementary Clock Output Channel 7. Default SYSREF profile.  
Reserved Pin. This pin must be tied to ground.  
Complementary Clock Input.  
CLKIN  
CLKIN  
I
True Clock Input.  
Rev. B | Page 9 of 43  
 
HMC7043  
Data Sheet  
Pin No. Mnemonic  
Type1 Description  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
VCC4_CLKIN  
RFSYNCIN  
RFSYNCIN  
VCC5_SYSREF  
SLEN  
SCLK  
SDATA  
GPIO  
SCLKOUT9  
SCLKOUT9  
CLKOUT8  
CLKOUT8  
VCC6_OUT  
P
I
I
Power Supply for the Clock Input Path.  
True RF Synchronization Input with Deterministic Delay.  
Complementary RF Synchronization Input with Deterministic Delay.  
Power Supply for Common SYSREF Divider.  
SPI Latch Enable.  
SPI Clock.  
SPI Data.  
Programmable General-Purpose Input/Output.  
True Clock Output Channel 9. Default SYSREF profile.  
Complementary Clock Output Channel 9. Default SYSREF profile.  
True Clock Output Channel 8. Default DCLK profile.  
Complementary Clock Output Channel 8. Default DCLK profile.  
P
I/O  
I/O  
I/O  
I/O  
O
O
O
O
P
Power Supply for Clock Group 3 (North)—Channel 8, Channel 9, Channel 10, and Channel 11. See the  
Clock Grouping, Skew, and Crosstalk section.  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CLKOUT10  
CLKOUT10  
SCLKOUT11  
SCLKOUT11  
SCLKOUT13  
SCLKOUT13  
CLKOUT12  
CLKOUT12  
VCC7_OUT  
O
O
O
O
O
O
O
O
P
True Clock Output Channel 10. Default DCLK profile.  
Complementary Clock Output Channel 10. Default DCLK profile.  
True Clock Output Channel 11. Default SYSREF profile.  
Complementary Clock Output Channel 11. Default SYSREF profile.  
True Clock Output Channel 13. Default SYSREF profile.  
Complementary Clock Output Channel 13. Default SYSREF profile.  
True Clock Output Channel 12. Default DCLK profile.  
Complementary Clock Output Channel 12. Default DCLK profile.  
Power Supply for Clock Group 0 (Northwest)—Channel 0, Channel 1, Channel 12, and Channel 13. See  
the Clock Grouping, Skew, and Crosstalk section.  
EP  
Exposed Pad. Connect the exposed pad to a high quality RF/dc ground.  
1 O is output, I is input, P is power, R is reserved, and I/O is input/output.  
Rev. B | Page 10 of 43  
Data Sheet  
HMC7043  
TYPICAL PERFORMANCE CHARACTERISTICS  
–100  
2.25  
2.10  
1.95  
1.80  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0
HMC7043 OUTPUT:  
HMC7044-CLOCK SOURCE  
HMC7043  
LVPECL  
AT FUNDEMENTAL MODE  
1MHz, –140.30 dBc/Hz  
5MHz, –151.02 dBc/Hz  
10MHz, –151.77 dBc/Hz  
20MHz, –151.97 dBc/Hz  
RMS JITTER = 77.01fs  
CML100 HIGH  
CML100 LOW  
LVDS HIGH  
–110  
–120  
–130  
–140  
–150  
–160  
HMC7044 AS CLOCK SOURCE:  
OUTPUT FREQ = 983.04MHz  
OUTPUT POWER = 3.7dBm  
1MHz, –140.56dBc/Hz  
5MHz, –153.26dBc/Hz  
10MHz, –154.28dBc/Hz  
20MHz, –154.85dBc/Hz  
RMS JITTER (12kHz TO 20MHz): 73.74fs  
1
10  
100  
1000  
10000  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FREQUENCY OFFSET (kHz)  
FREQUENCY (GHz)  
Figure 3. Additive Jjitter at 983.04 MHz at Output  
Figure 6.Differential Output Voltage vs. Frequency over Various Modes  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
2.00  
HMC830-CLOCK SOURCE HMC830 AS CLOCK SOURCE:  
–40°C  
+25°C  
HMC7043  
OUTPUT FREQ = 983.04MHz  
OUTPUT POWER = 4dBm  
1MHz, –144.49dBc/Hz  
+85°C  
1.75  
1.5  
5MHz, –158.38dBc/Hz  
10MHz,–162.61dBc/Hz  
20MHz, –164.29dBc/Hz  
1.25  
1.00  
0.75  
0.5  
HMC7043 OUTPUT:  
AT FUNDEMENTAL MODE  
1MHz, –144.31 dBc/Hz  
5MHz, –153.46 dBc/Hz  
10MHz, –154.78 dBc/Hz  
20MHz, –155.18 dBc/Hz  
0.25  
0
1
10  
100  
1000  
10000  
100M  
1G  
3G  
FREQUENCY OFFSET (kHz)  
FREQUENCY (Hz)  
Figure 7. LVPECL Differential Output Power vs. Frequency over Various  
Temperatures  
Figure 4. Absolute Phase Noise Measured at 983.04 MHz at Output  
3.5  
0.4  
0.3  
LVPECL  
CML100 HIGH  
CML100 LOW  
3.0  
LVDS HIGH  
CMOS (NOT IN  
DIFFERENTIAL MODE)  
0.2  
2.5  
0.1  
2.0  
1.5  
1.0  
0.5  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
100M  
1G  
3.2G  
0
0.4  
0.8  
1.2  
TIME (ns)  
1.6  
2.0  
FREQUENCY (Hz)  
CLKOUT0  
Figure 8. Differential CLKOUT0/  
at 2457 MHz, LVPECL  
Figure 5. Differential Output Power vs. Frequency over Various Modes  
Rev. B | Page 11 of 43  
 
 
 
 
HMC7043  
Data Sheet  
1.0  
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.8  
0.6  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
CLKOUT0  
CLKOUT2  
VALID PHASE ALARM  
–0.5  
715  
0
1
2
3
4
5
6
7
8
9
10  
695  
700  
705  
710  
TIME (ns)  
TIME (ns)  
CLKOUT0  
Figure 9. Differential CLKOUT0/  
Voltage at 614.4 MHz, LVPECL  
Figure 12. Output Channel Synchronization After Rephase  
0.6  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
CLKOUT0  
CLKOUT2  
VALID PHASE ALARM  
0.4  
0.2  
25  
20  
15  
10  
0
–0.2  
–0.4  
–0.6  
–40°C  
+25°C  
+85°C  
–0.5  
0
200  
400  
600  
TIME (ns)  
800  
1000  
DELAY STEP  
Figure 10. Output Channel Synchronization Before and After Rephase  
Figure 13. Analog Delay Step Size vs. Delay Step over Temperature,  
LVPECL at 983.04 MHz  
800  
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+27°C  
CLKOUT0  
CLKOUT2  
700  
+85°C  
600  
VALID PHASE ALARM  
500  
400  
300  
200  
100  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–100  
FUND:FUNDAMENTAL MODE AT 2949.12MHz  
DIS: ANALOG DELAY IS DISABLED AT 983.04MHz  
–200  
–0.5  
350  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
330  
335  
340  
345  
DELAY STEP  
TIME (ns)  
Figure 11. Output Channel Synchronization Before Rephase  
Figure 14. Analog Delay vs. Delay Setting over Temperature, LVPECL at  
983.04 MHz  
Rev. B | Page 12 of 43  
Data Sheet  
HMC7043  
TYPICAL APPLICATION CIRCUITS  
HMC7043  
0.1µF  
HMC7043  
HIGH  
HIGH  
IMPEDANCE  
INPUT  
LVDS  
LVDS  
OUTPUT  
DOWNSTREAM  
DOWNSTREAM  
DEVICE  
100Ω IMPEDANCE  
100Ω  
OUTPUT  
DEVICE  
INPUT  
0.1µF  
Figure 15. AC-Coupled LVDS Output Driver  
Figure 19. DC-Coupled LVDS Output Driver  
VCC  
HMC7043  
100Ω  
100Ω  
LVPECL-  
COMPATIBLE  
OUTPUT  
DOWNSTREAM  
DEVICE  
(LVPECL)  
0.1µF  
HMC7043  
HIGH  
IMPEDANCE  
INPUT  
DOWNSTREAM  
DEVICE  
100Ω  
50Ω  
50Ω  
CML  
OUTPUT  
0.1µF  
50Ω  
GND  
Figure 16. AC-Coupled CML (Configured High-Z) Output Driver  
Figure 20. DC-Coupled LVPECL Output Driver  
0.1µF  
HMC7043  
HMC7043  
DOWNSTREAM  
DEVICE  
100Ω  
100Ω  
(CML)  
HIGH  
IMPEDANCE  
INPUT  
DOWNSTREAM  
VCC  
VCC  
100Ω  
DEVICE  
100Ω  
100Ω  
CML  
OUTPUT  
0.1µF  
CML  
OUTPUT  
Figure 17. AC-Coupled CML (Internal) Output Driver  
Figure 21. DC-Coupled CML (Internal) Output Driver  
0.1µF  
HMC7043  
HMC7043  
3.3V  
DRIVER  
0.1µF  
SELF BIASED  
REF, VCXO  
INPUTS  
0.1µF  
0.1µF  
Figure 22. CLKIN, RFSYNCIN Input Single-Ended Mode  
CLKIN  
Figure 18. CLKIN/  
, RFSYNCIN Input Differential Mode  
Rev. B | Page 13 of 43  
 
HMC7043  
Data Sheet  
TERMINOLOGY  
Phase Jitter and Phase Noise  
wave, the time jitter is a displacement of the edges from their  
ideal (regular) times of occurrence. In both cases, the variations in  
timing from the ideal are the time jitter. Because these variations  
are random in nature, the time jitter is specified in seconds root  
mean square (rms) or 1 sigma of the Gaussian distribution.  
An ideal sine wave has a continuous and even progression of  
phase with time from 0° to 360° for each cycle. Actual signals,  
however, display a certain amount of variation from ideal phase  
progression over time. This phenomenon is phase jitter. Although  
many causes can contribute to phase jitter, one major cause is  
random noise, which is characterized statistically as being  
Gaussian (normal) in distribution.  
Time jitter that occurs on a sampling clock for a DAC or an  
ADC decreases the signal-to-noise ratio (SNR) and dynamic  
range of the converter. A sampling clock with the lowest possible  
jitter provides the highest performance from a given converter.  
This phase jitter leads to the energy of the sine wave in the  
frequency domain spreading out, producing a continuous power  
spectrum. This power spectrum is usually reported as a series of  
values whose units are dBc/Hz at a given offset in frequency from  
the sine wave (carrier). The value is a ratio (expressed in decibels)  
of the power contained within a 1 Hz bandwidth with respect to  
the power at the carrier frequency. For each measurement, the  
offset from the carrier frequency is also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured.  
The phase noise of any external oscillators or clock sources is  
subtracted, which makes it possible to predict the degree to  
which the device impacts the total system phase noise when  
used in conjunction with the various oscillators and clock  
sources, each of which contributes a phase noise to the total. In  
many cases, the phase noise of one element dominates the  
system phase noise. When there are multiple contributors to  
phase noise, the total is the square root of the sum of squares of  
the individual contributors.  
It is meaningful to integrate the total power contained within some  
interval of offset frequencies (for example, 10 kHz to 10 MHz).  
This is the integrated phase noise over that frequency offset  
interval and can be readily related to the time jitter due to the  
phase noise within that offset frequency interval.  
Phase noise has a detrimental effect on the performance of analog-  
to-digital converters (ADCs), digital-to-analog converters (DACs),  
and RF mixers. It lowers the achievable dynamic range of the  
converters and mixers, although they are affected in somewhat  
different ways.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable to  
the device or subsystem being measured. The time jitter of any  
external oscillators or clock sources is subtracted, which makes  
it possible to predict the degree to which the device impacts the  
total system time jitter when used in conjunction with the various  
oscillators and clock sources, each of which contributes a time  
jitter to the total. In many cases, the time jitter of the external  
oscillators and clock sources dominates the system time jitter.  
Time Jitter  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When observing  
a sine wave, the time of successive zero crossings varies. In a square  
Rev. B | Page 14 of 43  
 
Data Sheet  
HMC7043  
THEORY OF OPERATION  
The HMC7043 is a high performance, clock distribution IC  
designed for extending the number of clock signals across the  
system with minimal noise contribution. The device can be  
used for distributing the noise sensitive reference clocks for high  
speed data converters with either parallel or serial (JESD204B)  
interfaces, FPGAs, and local oscillators. The HMC7043 is  
designed to meet the requirements of demanding base station  
designs, and offers a wide range of clock management and  
distribution features to simplify baseband and radio card clock  
tree designs. The device provides 14 low noise and configurable  
outputs to offer flexibility in distributing clocks while applying  
frequency division, phase adjustment, cycle slip, and external  
signal synchronization options.  
The HMC7043 provides output clock signals of up to 3.2 GHz,  
while having the flexibility to support input reference frequencies of  
up to 6 GHz when the internal clock division blocks are turned on.  
The higher frequency support enables higher bandwidth RF  
designs, and allows for distribution of low noise RF phase-locked  
loop (PLL) voltage controlled oscillator (VCO) outputs as well  
as other critical clocks across the system.  
One of the key challenges in JESD204B system design is ensuring  
the synchronization of data converter frame alignment across  
the system, from the FPGA or digital front end (DFE) to ADCs  
and DACs through a large clock tree that may comprise multiple  
clock generation and distribution ICs.  
There are two input paths on the HMC7043; one is for the clock  
signal that is distributed, and the other may be used as an external  
synchronization signal. In typical JESD204B systems, serial data  
converter interfaces, there may be a need to ensure that all clock  
signals that are sent to the data converters have phases which are  
controlled by an FPGA. By virtue of the RF SYNC input, the  
device ensures that output signals have a deterministic phase  
alignment to this synchronization input. The RF SYNC input  
can also implement multiple device clock trees by nesting more  
than one HMC7043 to generate an even larger clock distribution  
network, while still maintaining phase alignment across the  
clock tree.  
The HMC7043 generates up to seven DCLK and SYSREF clock  
pairs per the JESD204B interface requirements. The system  
designer can generate a lower number of DCLK and SYSREF  
pairs, and configure the remaining output signal paths as  
DCLKs, additional SYSREFs, or other reference clocks with  
independent phase and frequency adjustment. Frequency  
adjustment can be accomplished by selecting the appropriate  
output divider values.  
One of the unique features of the HMC7043 is the independent  
flexible phase management of each of the 14 channels. Using a  
combination of divider slip based, digital (coarse) and analog  
(fine) delay adjustments, each channel can be programmed to  
have a different phase offset. The phase adjustment capability  
allows the designer to offset board flight time delay variations,  
match data converter sample windows, and meet JESD204B  
synchronization challenges. The output signal path design of  
the HMC7043 is implemented to ensure both linear phase  
adjustment steps and minimal noise perturbation when phase  
adjustment circuits are turned on.  
Offering excellent crosstalk, frequency isolation, and spurious  
performance, the device generates independent frequencies in  
both single-ended and differential formats including LVPECL,  
LVDS, CML, and CMOS, and different bias conditions to  
offset varying board insertion losses. The outputs can also be  
programmed for ac or dc coupling and 50 Ω or 100 Ω internal  
and external termination options.  
The HMC7043 is programmed via a 3-wire serial port interface  
(SPI). The HMC7043 is offered in a 48-lead, 7 mm × 7 mm,  
LFCSP package with the exposed pad to ground.  
Rev. B | Page 15 of 43  
 
HMC7043  
Data Sheet  
DETAILED BLOCK DIAGRAM  
CLK DISTRIBUTION PATH  
SYSREF TIMER  
CLKIN  
CLKIN  
DIVIDER  
÷1, ÷2  
COARSE  
CYCLE  
SLIP/  
DIVIDER  
(1 TO 4094)  
DIGITAL  
DELAY  
SYNC  
CLKOUT0  
CLKOUT0  
ANALOG  
DELAY  
RFSYNCIN  
RFSYNCIN  
MUX  
MUX  
FUNDAMENTAL MODE  
GPI  
SPI  
SYNC/PULSOR  
CONTROL  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
SCLKOUT1  
SCLKOUT1  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
TO LEAF DIVIDERS  
CYCLE  
COARSE  
DIGITAL  
DELAY  
COARSE  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIVIDER  
(1 TO 4094)  
DIGITAL  
DELAY  
SLIP/  
SYNC  
CLKOUT2  
CLKOUT2  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT8  
CLKOUT8  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT3  
SCLKOUT3  
SCLKOUT9  
SCLKOUT9  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
DELAY  
CLKOUT4  
CLKOUT4  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT10  
CLKOUT10  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT5  
SCLKOUT5  
SCLKOUT11  
SCLKOUT11  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
DELAY  
CLKOUT6  
CLKOUT6  
ANALOG  
DELAY  
ANALOG  
DELAY  
CLKOUT12  
CLKOUT12  
MUX  
MUX  
MUX  
MUX  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
COARSE  
DIVIDER  
COARSE  
DIGITAL  
DELAY  
CYCLE  
SLIP/  
SYNC  
CYCLE  
SLIP/  
SYNC  
DIVIDER  
(1 TO 4094)  
DIGITAL  
(1 TO 4094)  
SCLKOUT13  
SCLKOUT13  
SCLKOUT7  
SCLKOUT7  
DELAY  
ANALOG  
DELAY  
ANALOG  
DELAY  
FUNDAMENTAL MODE  
FUNDAMENTAL MODE  
DEVICE  
LDOs  
SPI  
ALARM GENERATION  
GPIO  
CONTROL  
BGABYP1 LDOBYP2  
SDATA SCLK SLEN  
RESET  
Figure 23. Detailed Block Diagram  
CLOCK INPUT NETWORK  
2.8V  
50Ω,  
100Ω,  
1kΩ  
Input Termination Network—Common for All Input Buffers  
4kΩ  
The two clock and RFSYNC input buffers share similar architecture  
and control features. The input termination network is configurable  
to 100 Ω, 200 Ω, and 2 kΩ differentially. It is typically ac-coupled  
on the board, and uses the on-chip resistive divider to set the  
internal common-mode voltage, VCM, to 2.1 V.  
5kΩ  
1pF  
50Ω,  
100Ω,  
1kΩ  
50Ω  
Figure 24. On-Chip Termination Network for Clock and RFSYNC Buffers  
By closing the 50 Ω termination switch (see Figure 24), the network  
also can serve as the termination system for an LVPECL driver.  
Although the input termination network for the two clock and  
RFSYNC input buffers is identical, the buffer behind the  
network is different.  
Recommendations for Normal Use  
For both buffer types, unless there are extenuating circumstances  
in the application, use 100 Ω differential termination resistors  
to control reflections, to use the on-chip dc bias network to set  
the common mode level, and to externally ac couple the input  
signals in. Do not use a receiver side dc termination of the  
LVPECL signal.  
Rev. B | Page 16 of 43  
 
 
 
Data Sheet  
HMC7043  
Single-Ended Operation  
Fine phase control of synchronization channels with  
respect to the DCLK channel  
The buffers can support a single-ended signal with slightly reduced  
input sensitivity and bandwidth. If driving any of the buffers  
single-ended, ac couple the unused leg of the buffer to ground  
at the input of the die.  
Frequency coverage to satisfy typical clock rates in systems  
Skew between SYSREF and DCLK channels that is much  
less than a DCLK period  
Spur and crosstalk performance that does not impact  
system budgets  
Maximum Signal Swing Considerations  
The internal supplies to these input buffers are supplied directly  
from 3.3 V. The ESD network and parasitic diodes can generally  
shunt away excess power and protect the internal circuits  
(withstanding reference powers above 13 dBm). Nevertheless,  
to protect from latch-up concerns, the signals on the reference  
inputs must not exceed the 3.3 V internal supply. For a 2.1 V  
common mode, 50 Ω single-ended source, this allows ~1200 mV  
of amplitude, or 11 dBm maximum reference power.  
The HMC7043 output network supports the following recom-  
mended features, which are sometimes critical in user applications:  
Deterministic synchronization of the output channels with  
respect to an external signal (RFSYNC), which allows  
multichip synchronization and clean expansion to larger  
systems  
Pulse generator behavior to temporarily generate a  
synchronization pulse stream at a user request  
The flexibility to define unused JESD204B SYSREF and  
DCLK channels for other purposes  
Glitchless phase control of signals relative to each other  
50% duty cycle clocks with odd division ratios  
Multimode output buffers with a variety of swings and  
termination options  
Skew between all channels is much less than a DCLK period  
Adjustable performance vs. power consumption for less  
sensitive clock channels  
CLOCK OUTPUT NETWORK  
The HMC7043 is a high performance clock buffer, is appropriate  
for JESD204B data converters, and much of the uniqueness of a  
JESD204B clock generation chip relates to the array of output  
channels. In this device, the output network requirements include  
A large number of device clock (DCLK) and synchronization  
(SYSREF) channels  
Very good phase noise floor of the DCLK channels that can  
be connected to critical data converter sample clock inputs  
Deterministic phase alignment between all output channels  
relative to one another  
SYSREF INPUT NETWORK  
RF  
SYNC  
D Q  
RESET  
SYSREF TIMER  
CLKIN PATH  
PULSE GENERATOR REQUEST (FROM SPI OR GPI PIN)  
SYNC REQUEST (FROM SPI OR GPI PIN)  
SYNC/PULSE GENERATOR  
CONTROL  
SYNC_FSM_STATE  
OUTPUT CHANNEL ×14  
LEAF CONTROLLER  
DIGITAL  
DELAY AND  
RETIME  
CLOCK  
GATING  
DIVIDER  
Figure 25. Clock Output Network Simplified Diagram  
Rev. B | Page 17 of 43  
 
 
HMC7043  
Data Sheet  
Each of the 14 output channels are logically identical. The only  
distinction between the SYSREF and DCLK channels is in the  
SPI configuration, and in how they are used. Each channel  
contains independent dividers, phase adjustment, and analog  
delay circuits. This combination provides the ultimate flexibility,  
cleanly accommodating nonJESD204B devices in the system.  
To support divider synchronization, arbitrary phase slips, and  
pulse generator modes, the following blocks are included:  
A clock gating stage pauses the clock for synchronization  
or slip operations  
An output channel leaf (×14) controller that manages slip,  
synchronization, and pulse generators with information  
from the SYSREF finite state machine (FSM)  
In addition to the 14 output channel dividers, an internal SYSREF  
timer continually operates, and the synchronization of the output  
channel dividers occurs deterministically with respect to this  
timer, which the user can rephased deterministically by the user  
through GPI or SPI or deterministically by using the RFSYNCIN/  
Each channel has an array of control signals. Some of the  
controls are described in Table 10.  
System wide broadcast signals can be triggered from the SPI or  
general-purpose input (GPI) port to issue a SYNC command  
(to align dividers to the system internal SYSREF timer), issue a  
pulse generator stream, (temporarily exporting SYSREF signals to  
receivers), or to cause the dividers to slip a number of clock  
input cycles to adjust their phases.  
RFSYNCIN  
differential pins.  
The pulse generator functionality of the JESD204B standard  
involves temporarily generating SYSREF output pulses, with  
appropriate phasing, to downstream devices. The centralized  
SYSREF timer and the associated SYNC/pulse generator control  
manage the process of enabling the intended SYSREF channels,  
phasing them, and then disabling them for signal integrity and  
power saving advantages.  
Individual dividers can be made sensitive to these events by  
adjusting their slip enable, SYNC enable, and Start-Up Mode[1:0]  
configuration, as described in Table 11.  
When output buffers are configured in CMOS mode and phase  
alignment is required among the outputs, additional multislip  
delays must be issued for Channel 0, Channel 3, Channel 5,  
Channel 6, Channel 9, Channel 10, and Channel 13. The value  
of the delay must be as large as half of the selected divider ratio.  
Note that this requirement of having additional multislip delays  
is not needed when the channels are used in LVPECL, CML, or  
LVDS mode.  
Basic Output Divider Channel  
Each of the 14 output channels are logically identical, and support  
divide ratios from 1 to 4094. The supported odd divide ratios  
(1, 3, or 5) have 50.0% duty cycle. The only distinction between  
a SYSREF channel and a device clock channel is in the SPI  
configuration and the typical usage of a given channel.  
For basic functionality and phase control, each output path  
consists of the following:  
If a channel is configured to behave as a pulse generator, to  
temporarily power up and power down according to the GPI  
and SPI pulse generator commands; additional controls define the  
behavior outside of the pulse generator chain (see Table 12).  
Divider—generates the logic signal of the appropriate  
frequency and phase  
Digital phase adjust—adjusts the phase of each channel in  
increments of ½ clock input cycles  
Retimer—a low noise flip flop to retime the channel,  
removing any accumulated jitter  
Each divider has an additional phase offset register that adjusts  
the start phase or influences the behavior of slip events sent via  
the SPI (see Table 13).  
Analog fine delay—provides a number of ~25 ps delay steps  
Selection mux—selects the fundamental, divider, analog  
delay, or an alternate path  
Table 14 outlines the typical configuration combinations for a  
DCLK channel relative to a SYSREF synchronization channel.  
Note that other combinations are possible. Synchronization of  
downstream devices can be managed manually, or by using the  
pulse generator functionality of the HMC7043. See the Typical  
Programming Sequence section for more information about the  
differences between the two methods.  
Multimode output buffer—low noise LVDS, CML, CMOS,  
or LVPECL  
The digital phase adjuster and retimer launch on either clock  
phase of the clock input, depending on the digital phase adjust  
setpoint (Coarse Digital Delay[4:0]).  
Rev. B | Page 18 of 43  
Data Sheet  
HMC7043  
Table 10. Basic Divider Controls  
Bit Name  
Description  
Channel Enable  
Channel enable. If set to 0, the channel is disabled. If set to 1, the channel can be enabled depending on the  
settings of the Start-Up Mode[1:0], Seven Pairs of 14-Channel Outputs Enable[6:0], and sleep mode bits.  
12-Bit Channel Divider[11:0] Divide ratio.12-bit divide ratio, split across two words (MSB and LSB). Set to 0 if not using the channel divider  
(Output Mux Selection[1:0] = 2 or 3)  
High Performance Mode  
Coarse Digital Delay[4:0]  
Fine Analog Delay[4:0]  
High performance mode. Adjusts the divider and buffer bias to improve swing/phase noise slightly at the expense of  
power. The performance advantage is about 1 dB, and the current penalty depends on whether the divider is enabled.  
Digital delay. Adjusts the phase of the divider signal by up to 17 ½ cycles of the clock input. This circuit is  
practically noiseless; however, note that a low amount of additional current is consumed.  
Analog delay. Adjusts the delay of the divider signal in increments of ~25 ps. Set Output Mux Selection[1:0] = 1  
to expose this channel. Exposing this channel causes phase noise degradation of up to 12 dB; therefore, do not use  
on noise sensitive DCLK channels.  
Output Mux Selection[1:0]  
Output mux selection. 00 = divider channel, 01 = analog delay, 10 = other channel of pair, 11 = input clock.  
Fundamental mode can be generated with the divider (12-Bit Channel Divider[11:0] = 1), or via Output Mux  
Selection[1:0] = 10 and 12-Bit Channel Divider[11:0] = 0. Because the divider path consumes power and degrades  
phase noise slightly, the fundamental mux path is recommended, but at a cost of a deterministic skew vs. a path  
that is divider-based. Such skew can be compensated for with delay (digital and analog) on the divider-based  
path.  
Force Mute[1]  
Force mute. If 1, and the channel enable is true (channel enable = 1) and Force Mute[0] = 0, the signal just  
before the output buffer is asynchronously forced to Logic 0. To see the effect of this, the output buffer must  
be enabled, which is dependent on the dynamic driver enable and Start-Up Mode[1:0] controls.  
Table 11. Channel Features  
Bit Name  
Description  
Slip Enable  
Slip enable. A channel processes slip requests broadcast from the SPI or GPI (or, if multislip enable = 1, initiated  
following a recognized SYNC or pulse generator startup).  
SYNC Enable  
SYNC enable. A channel processes synchronization events broadcast from the SPI or GPI or due to SYNC/RF SYNC (via  
the SYSREF FSM) to reset the phase. This signal can be safely toggled on and off to adjust SYNC sensitivity without  
risking the state of the divider.  
Start-Up Mode[1:0]  
00 = asynchronous (normal mode). The divider starts with uncontrolled phase. It is rephased by SYNC events if SYNC  
enable = 1.  
11 = dynamic (pulse generator mode). The divider monitors pulse generator events broadcast from the SYSREF  
controller. It is powered up just before a pulse generator chain, rephased at the start, and powered down after the  
pulse generator chain. This mode is only supported for divide ratios > 31.  
Table 12. Pulse Generator Mode Behavior Options  
Bit Name Description  
Dynamic Driver Enable Dynamic output buffer enable (pulse generator mode only).  
0 = the output buffer is simply enabled/disabled with the main channel enable.  
1 = the output buffer enable is controlled together with the channel divider, which allows it to dynamically power  
down outside pulse generator events.  
Force Mute[0]  
Idle at Logic 0 (pulse generator mode only).  
1 = if the buffer remains on outside of the pulse generator chain, drive to Logic 0.  
0 = if the buffer remains on outside of the pulse generator chain, allow the outputs to float naturally to  
approximately VCM  
.
Rev. B | Page 19 of 43  
 
 
 
HMC7043  
Data Sheet  
Table 13. Multislip Configuration  
Bit Name  
Description  
Multislip Enable  
Allow multislip. This bit determines whether the 12-Bit Multislip Digital Delay[11:0] parameter is used  
for multislip operations. Note that a multislip operation is automatically started following a SYNC or  
pulse generator initiation if multislip enable = 1.  
12-Bit Multislip Digital Delay[11:0] Multislip amount. If multislip enable = 1, any slip events (caused by GPI, SPI, SYNC, or pulse generator  
events) repeat the number of times set by 12-Bit Multislip Digital Delay[11:0] to adjust the phase by the  
multislip amount × clock input cycles. A value of 0 is not supported if multislip enable = 1. Note that  
phase slips are free from a noise and current perspective, that is, no additional power is needed and  
with no noise degradation, but they take some time to occur. Each slip operation takes a number of  
nanoseconds to complete, and thus the phases do not necessarily stabilize immediately. An alarm is  
available for the user to indicate when all phase operations are complete.  
Table 14. Typical Configuration Combinations  
Bit Name  
DCLK  
Pulse Generator SYSREF  
Manual SYSREF  
Big  
NonJESD204B  
Any  
Normal  
12-Bit Channel Divider[11:0]  
Start-Up Mode-Bit  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
Slip Enable  
Multislip Enable  
High Performance Mode  
Sync Enable  
Small  
Normal  
Off  
Optional  
Optional  
Optional  
Optional  
On  
Big  
Pulse generator  
Normal  
Optional  
Optional  
Optional  
Optional  
Off  
On  
Don’t care  
Don’t care  
Optional  
Optional  
Optional  
Off  
Off  
On  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Don’t care  
Don’t care  
Dynamic Driver Enable  
Force Mute[1:0]  
Don’t care  
Don’t care  
On  
On  
Synchronization FSM/Pulse Generator Timing  
Figure 27 shows the start-up behavior of an example divider  
that is configured as a pulse generator, with a period matching  
the internal SYSREF period.  
Figure 25 show a block diagram of the interface of the SYNC/  
pulse generator control to the divider channels and the internal  
SYSREF timer.  
The startup of the pulse stream occurs a fixed number of clock  
input cycles after the FSM transitions to the start phase. Disabling  
the pulse generator stream where the logic path is forced to zero  
comes from a combinational path directly from the FSM.  
The SYSREF timer counts in periods defined by SYSREF  
Timer[11:0], a 12-bit setting from the SPI. The SYSREF  
timer sequences the enable, reset, and startup, and disables  
the downstream dividers in the event of sync or pulse generator  
requests. Program the SYSREF timer count to a submultiple of  
the lowest output frequency in the clock network, and never  
faster than 4 MHz. To synchronize the divider channels, it is  
recommended, though not required, that the SYSREF Timer[11:0]  
bits be set to a related frequency that is either a factor or  
multiple of other frequencies on the IC.  
Because the divider has the option for nearly arbitrary phase  
adjustment, the stop condition can arrive when the pulse stream  
is a Logic 1 and create a runt pulse.  
For phase offsets of zero to (50% − 8) clock input cycles, and at  
clock input frequencies <3 GHz, this condition is met naturally  
within the design. For clock input frequencies >3 GHz, it is  
recommended to use digital delay or slip offsets to increase the  
natural phase offset and avoid the stress conditions.  
The pulse generator is defined with respect to the periods of  
this SYSREF timer, not with respect to the output period. This  
behavior of the pulse generator leads to a timing constraint that  
must be considered to prevent any runt pulses from affecting  
the pulse generator stream.  
The situation is avoided by never applying phase offset more  
than (50% − 8) clock input cycles to an output channel  
configured as a pulse generator.  
Rev. B | Page 20 of 43  
 
 
Data Sheet  
HMC7043  
RF_SYNC  
RESET  
NOTIFY CHANNEL FSM  
WHAT TYPE OF EVENT  
IS COMING  
PULSE  
GENERATOR  
SETUP  
SYNC  
SETUP  
POWER DIVIDERS/SYNC BLOCKS,  
PAUSE BLOCKS, RESET LATCHES  
CLEAR  
REMOVE LATCH RESET,  
PREPARE TO START CLOCKS  
WAIT  
SYNC  
REQUEST  
START CLOCKS,  
STARTUP  
WITH CLEAN TIMING,  
SMALL PIPELINE DELAY  
PULSE  
GENERATOR  
TIMEOUT?  
WAIT UNTIL THE NUMBER OF  
PULSE GENERATOR CYCLES  
EXPIRES  
DONE  
REMOVE POWER  
PULSE  
GENERATOR  
REQUEST  
Figure 26. Synchronization FSM Flowchart  
FSM STATE  
STARTUP  
PULSE GENERATOR = 2  
DONE  
DIVIDER CHANNEL  
IF MUTE SIGNAL ARRIVES QUICKLY  
RELATIVE TO SIGNAL TRAIN,  
NO RUNT PULSE  
FIXED NUMBER OF CLOCK INPUT CYCLES  
FROM STATE CHANGE TO STARTUP, AND  
ANY INTENTIONAL DIGITAL/ANALOG OFFSET  
FSM STATE  
STARTUP  
PULSE GENERATOR = 2  
DONE  
DIVIDER CHANNEL  
IF CONTROL IS TOO LATE  
RELATIVE TO SIGNAL TRAIN,  
THERE IS A RUNT PULSE  
Figure 27. Start-Up Behavior of an Example Divider Configured as a Pulse Generator  
Rev. B | Page 21 of 43  
 
HMC7043  
Data Sheet  
Clock Grouping, Skew, and Crosstalk  
Table 15. Supply Pin Clock Grouping by Location  
Although the output channels are logically independent, for  
physical reasons, they are first grouped into pairs, called clock  
groups. Each clock group shares a reference, an input buffer,  
and a SYNC retime flip flop originating from the clock  
distribution network.  
Supply Pin  
Location  
Clock Group  
Channel  
VCC2_OUT  
Southwest  
1
2
3
VCC3_OUT  
VCC6_OUT  
VCC7_OUT  
South  
2
3
4
5
6
0
4
5
6
7
The second level of grouping is according to the supply pin. Clock  
Group 1 (Channel 2 and Channel 3) is on an independent supply,  
and the other supply pins are each responsible for two clock groups.  
Northeast  
Northwest  
8
9
As the output channels are more tightly coupled (by sharing a  
clock group or by sharing a supply pin), the skew is minimized.  
However, the isolation between those channels suffers.  
10  
11  
12  
13  
0
Table 15 shows the clock grouping by location, and Table 16  
show the typical skew and isolation that can be expected and how  
it scales with distance between output channels.  
1
Isolation improves as either the aggressor or the affected  
frequencies decrease. Nevertheless, for particularly important  
clock channels where spurious tones must be minimized, carefully  
consider their frequency and channel configurations to isolate  
continuously running frequencies onto different supply domains.  
Channels configured as pulse generators are normally not an  
issue, because they are disabled during normal operation.  
Table 16. Typical Skew and Isolation vs. Distance  
Typical  
Skew (ps)  
1 GHz Isolation,  
Differential (dB)  
Distance  
Distant Supply Group  
Closest Neighbor on  
20  
15  
90 to 100  
70  
Different Supply Group  
Shared Supply  
Same Clock Group  
10  
10  
60  
45  
Rev. B | Page 22 of 43  
 
 
Data Sheet  
HMC7043  
Output Buffer Details  
NORTHWEST  
NORTHEAST  
CLKOUT0  
CLKOUT0  
SCLKOUT9  
SCLKOUT9  
SCLKOUT1  
SCLKOUT1  
GPIO  
SPI  
RESET  
VCC5_  
SYSREF  
BGAPBYP1  
LDOBYP2  
RFSYNCIN  
RFSYNCIN  
VCC1_  
CLKDIST  
VCC4_  
CLKIN  
SCLKOUT3  
SCLKOUT3  
CLKIN  
CLKIN  
CLKOUT2  
CLKOUT2  
SOUTHWEST  
SOUTH  
Figure 28. Clock Grouping  
Figure 28 shows the clock groups by supply pin location on the  
package. With appropriate supply pin bypassing, the spurious  
noise of the outputs is improved.  
the user to identify quickly that the desired SYSREF and device  
clock states are presented at the outputs of the HMC7043.  
The user has the flexibility to assign the SYSREF valid interrupt to  
a GPO pin or to use a software flag, set via Register 0x007D, Bit 2,  
which the user may poll as necessary. The flag notifies the user  
when the system is configured and operating in the desired  
state, or conversely when it is not ready.  
Table 15 describes how the supply pins of each of the 14 clock  
channels are connected within the seven clock groups. Clock  
channels that are closest to each other have the best channel to  
channel skew performance, but they also have the lowest isolation  
from each other. Select critical signals that require high isolation  
from each other from groups with distant supply pin locations.  
An example of the expected isolation and channel to channel  
skew performance of the HMC7043 at 1 GHz is provided in  
Table 16.  
TYPICAL PROGRAMMING SEQUENCE  
To initialize the HMC7043 to an operational state, use the  
following programming procedure:  
1. Connect the HMC7043 to the rated power supplies. No  
specific power supply sequencing is necessary.  
2. Release the hardware reset by switching from Logic 1 to  
Logic 0 when all supplies are stable.  
SYSREF Valid Interrupt  
One of the challenges in a JESD204B system is to control and  
minimize the latency from the primary system controller IC,  
typically an ASIC or FPGA, to the data converters. To estimate  
the correct amount of latency in the system, the designer must  
know the time required for a master clock generator like the  
HMC7043 to provide the correct output phases at each output  
channel after receiving the synchronization request. Typically, a  
period of time is required on the device to implement the  
change requests on the outputs due to internal state machine  
cycles, data transfers, and any propagation delays. The SYSREF  
valid interrupt is a function to notify the user that the correct  
output settings and phase relationships are established, allowing  
3. Load the configuration updates (provided by Analog  
Devices, Inc.) to specific registers (see Table 40).  
4. Program the SYSREF timer. Set the divide ratio (a submultiple  
of the lower output channel frequency). Set the pulse  
generator mode configuration, for example, selecting the  
level sensitivity option and the number of pulses desired.  
5. Program the output channels. Set the output buffer modes  
(for example, LVPECL, CML, and LVDS). Set the divide  
ratio, channel start-up mode, coarse/analog delays, and  
performance modes.  
6. Ensure the clock input signal are provided to CLKIN.  
Rev. B | Page 23 of 43  
 
 
HMC7043  
Data Sheet  
7. Issue a software restart to reset the system and initiate  
calibration. Toggle the restart dividers/FSMs bit to 1 and  
then back to 0.  
8. Send a sync request via the SPI (set the reseed request bit)  
to align the divider phases and send any initial pulse  
generator stream.  
9. Wait six SYSREF periods (6 × SYSREF Timer[11:0]) to  
allow the outputs to phase appropriately (~3 μs in typical  
configurations).  
To resynchronize one or more of the JESD204B slaves, use the  
following procedure:  
1. Set the channel enable and SYNC enable bit of the SYSREF  
channel of interest.  
2. To prevent an output channel from responding to a sync  
request, disable the SYNC enable mask of each channel so  
that it continues to run normally without a phase adjustment.  
3. Issue a reseed request to phase the SYSREF channel  
properly with respect to the DCLK.  
10. Confirm that the outputs have all reached their phases by  
checking that the clock outputs phases status bit = 1.  
11. At this time, initialize any other devices in the system.  
Configure the slave JESD204B devices in the system to  
operate with the SYSREF signal outputs from the HMC7043.  
The SYSREF channels from the HMC7043 can be on either  
asynchronously or dynamically, and may temporarily turn  
on for a pulse generator stream.  
12. Slave JESD204B devices in the system must be configured  
to monitor the input SYSREF signal exported from the  
HMC7043. At this point, SYSREF channels from the  
HMC7043 can either be on asynchronously (running) or on  
dynamically (temporarily turn on for a pulse generator train).  
13. When all JESD204B slaves are powered and ready, send a  
pulse generator request to send out a pulse generator chain on  
any SYSREF channels programmed for pulse generator mode.  
4. Enable the JESD204B slave sensitivity to the SYSREF channel.  
5. If the SYSREF channel is in pulse generator mode, wait at  
least 20 SYSREF periods from Step 3, and issue a pulse  
generator request.  
POWER SUPPLY CONSIDERATIONS  
The output buffers are susceptible to supply with a certain  
extent. The output buffers are also susceptible to supply noise,  
but to a lesser extent. A noise tone of −60 dBV at a 40 MHz  
offset results in a −90 dBc tone at the output of the buffers in  
CML mode and −85 dBc in LVPECL mode. This result is a  
relatively flat frequency response, and these numbers are  
measured differentially. Phase noise/spurs caused by supply  
noise on the output buffers do not scale with output frequency.  
Table 17 lists the supply network of the HMC7043 by pin, showing  
the relevant functional blocks. Three different usage profiles are  
defined for the network, not including the output channel  
supplies, which are accounted for separately.  
The system is initialized.  
For power savings and the reduction of the cross coupling of  
frequencies on the HMC7043, shut down the SYSREF channels.  
The values listed under Profile 0 to Profile 2 in Table 17 and  
Table 18 are the typical currents of that block or feature. If a  
number is not listed in a profile column, a typical profile does  
not exist for that block or feature, but the user can mix and  
match features outside of the profile list, and can determine  
what the power consumption is going to be given the current  
listings per feature.  
1. Program each JESD204B slave to ignore the SYSREF input  
channel.  
2. On the HMC7043, disable the individual channel enable bits  
of each SYSREF channel.  
Rev. B | Page 24 of 43  
 
Data Sheet  
HMC7043  
Table 17. Supply Network of the HMC7043 by Pin for VCC1_CLKDIST, VCC4_CLKIN, and VCC5_SYSREF  
Profile1  
Circuit Block  
Comment  
Typical Current (mA)  
0
1
2
VCC1_CLKDIST  
Regulator to 1.8 V, Bypassed on LDOBYP2  
SYSREF Timer  
2
1
2
2
1
2
GPO Driver in High Speed Mode2  
Clock Input Distribution Network  
Minimum possible value  
Minimum possible value3  
84  
8
8
84  
87  
16  
34  
36  
16  
Sync Retiming Network  
Subtotal for VCC1_CLKDIST  
VCC4_CLKIN  
10  
16  
7
CLKIN/CLKIN Buffer  
Extra current for divide by 2  
CLKIN/CLKIN Path  
RFSYNCIN/RFSYNCIN4 Retimer  
RFSYNCIN/RFSYNCIN Buffer  
Subtotal or VCC4_CLKIN  
3
9
0
16  
16  
VCC5_SYSREF  
SYSREF Input Network  
SYSREF Counter Base  
11  
12  
4
11  
12  
SYSREF Counter, SYNC Network  
Subtotal for VCC5_SYSREF  
Subtotal (Without Output Paths)  
27  
0
23  
0
10  
126  
52  
1 Profile 0 is sleep mode; Profile 1 is power-up defaults, SYSREF timer running and RFSYNC buffer is disabled; Profile2 is only one clock output enabled, SYSREF timer is  
not running and RFSYNC buffer is disabled.  
2 The current is highly dependent on rate of input/output and load of input/output traces. For heavily loaded traces, it is recommended to use a series resistance of  
~100 Ωto minimize the IR drop on the internal regulator during transitions.  
3 A temporary current only.  
4 Transient current in synchronization mode, can be temporarily enabled when using external synchronization.  
Rev. B | Page 25 of 43  
 
HMC7043  
Data Sheet  
Table 18. Supply Network of the HMC7043 by Pin for the Clock Output Network  
Profile1  
Per Output Channel  
Comment  
Typical Current (mA)  
0
1
2
3
4
Digital Regulator and Other Sources  
2.5  
0.5  
2.5 2.5  
2.5  
2.5  
Buffer  
LVPECL  
CML100  
High Power  
Low Power  
Including term currents  
Including term currents  
43  
43 43  
43  
31  
24  
LVDS  
High Power  
At 307 MHz  
10  
10  
Low Power  
8
CMOS  
At 100 MHz, both sections  
25  
Included2  
Channel Mux  
Different Power Modes Deleted  
2
2
2
2
3
Digital Delay  
Off  
Setpoint > 1  
Included2  
3
3
Analog Delay  
Off  
Included2  
0
Minimum Setting  
Maximum Setting  
Glitchless mode enabled  
Not using divider path  
9
9
9
9
Divider Logic  
0
Included2  
0
0
÷1  
÷2  
÷3  
÷4  
÷5  
÷6  
÷8  
÷16  
27  
24  
31  
28  
30  
26  
28  
29  
29  
29  
4
29  
÷32  
÷2044  
SYNC Logic3  
Slip Logic3  
Subtotal  
29  
89  
4
2.5  
48 87  
13  
1 Profile 0 is sleep mode; Profile 1 is fundamental mode; Profile 2 is SYSREF channel matched to fundamental mode; Profile 3 is LVDS—high power signal source from  
other channel; and Profile 4 is worst case configuration for power consumption of a channel.  
2 The base current consumption of the circuit (for example, mux) is included in the buffer typical current.  
3 Currents only occur temporarily during a synchronization event.  
Rev. B | Page 26 of 43  
 
Data Sheet  
HMC7043  
SERIAL CONTROL PORT  
Typical Write Cycle  
SERIAL PORT INTERFACE (SPI) CONTROL  
A typical write cycle is shown in Figure 30 and occurs as follows:  
The HMC7043 can be controlled via the SPI using 24-bit  
registers and three pins: serial port enable (SLEN) serial data  
input/output (SDATA), and serial clock (SCLK).  
1. The master (host) asserts both SLEN and SDATA to  
indicate a read, followed by a rising edge SCLK. The slave  
(HMC7043) reads SDIO on the first rising edge of SCLK  
after SLEN. Setting SDATA low initiates a write.  
2. The host places the 2-bit multibyte field to be written to  
low (0) on the next two falling edges of SCLK. The  
HMC7043 registers the 2-bit multibyte field on the next  
two rising edges of SCLK.  
The 24-bit register, shown in Table 19, consists of the following:  
1-bit read/write command  
2-bit multibyte field (W1, W0)  
13-bit address field (A12 to A0)  
8-bit data field (D7 to D0)  
3. The host places the13-bit address field (A12 to A0), MSB  
first, on SDATA on the next 13 falling edges of SCLK. The  
HMC7043 registers the 13-bit address field (MSB first) on  
SDIO over the next 13 rising edges of SCLK.  
4. The host places the 8-bit data (D7 to D0) MSB first on the  
next eight falling edges of SCLK. The HMC7043 register  
the 8-bit data (D7 to D0) MSB first on the next eight rising  
edges of SCLK.  
Table 19. SPI Bit Map  
MSB  
LSB  
Bit 23  
Bit 22  
Bit 21  
Bits[20:8]  
Bits[7:0]  
D7 to D0  
R/W  
W1  
W0  
A12 to A0  
Typical Read Cycle  
A typical read cycle is shown in Figure 29 and occurs as follows:  
5. The final rising edge of SCLK performs the internal data  
transfer into the register file, updating the configuration of  
the device.  
1. The master (host) asserts both SLEN and SDATA to  
indicate a read, followed by a rising edge SCLK. The slave  
(HMC7043) reads SDATA on the first rising edge of SCLK  
after SLEN. Setting SDATA high initiates a read.  
6. Deassertion of SLEN completes the register write cycle.  
2. The host places the 2-bit multibyte field to be written to  
low (0) on the next two falling edges of SCLK. The  
HMC7043 registers the 2-bit multibyte field on the next  
two rising edges of SCLK.  
3. The host places the 13-bit address field (A12 to A0) MSB  
first on SDATA on the next 13 falling edges of SCLK. The  
HMC7043 registers the 13-bit address field (MSB first) on  
SDATA over the next 13 rising edges of SCLK.  
4. The host registers the 8-bit data on the next eight rising  
edges of SCLK. The HMC7043 places 8-bit data (D7 to D0)  
MSB first on the next eight falling edges of SCLK.  
5. Deassertion of SLEN completes the register read cycle.  
1
2
3
4
5
16  
17  
18  
24  
SCLK  
X
READ W1  
W0  
A12 A11  
A0  
D7  
D6  
D0  
SDATA  
SLEN  
Figure 29. SPI Timing Diagram, Read Operation  
1
2
3
4
5
24  
16  
17  
18  
SCLK  
WRITE  
X
W1  
W0  
A12 A11  
A0  
D7  
D6  
D0  
SDATA  
SLEN  
Figure 30. SPI Timing Diagram, Write Operation  
Rev. B | Page 27 of 43  
 
 
 
 
 
HMC7043  
Data Sheet  
CONTROL REGISTERS  
CONTROL REGISTER MAP  
Table 20. Control Register Map  
Default  
Value  
Address  
(Hex)  
Register Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
(Hex)  
Global Control  
0x0000  
Global soft reset  
control  
Reserved  
Soft reset  
0x00  
0x00  
0x0001  
Global request  
and mode  
control  
Reseed  
request  
High performance Reserved  
distribution path  
Reserved Mute output Pulse  
drivers  
Restart  
generator dividers/  
Sleep mode  
request  
FSMs  
0x0002  
0x0003  
Reserved  
Multislip Reserved  
request  
0x00  
0x34  
Global enable  
control  
Reserved  
RF  
Reserved  
SYSREF  
timer  
enable  
Reserved Reserved  
reseeder  
enable  
0x0004  
0x0005  
Reserved  
Seven Pairs of 14-Channel Outputs Enable[6:0]  
Reserved  
0x7F  
0x0F  
Global mode  
and enable  
control  
0x0006  
Global clear  
alarms  
Reserved  
Clear alarms  
0x00  
0x0007  
Global  
miscellaneous  
control  
Reserved  
Reserved (scratchpad)  
Reserved  
0x00  
0x00  
0x00  
0x0008  
0x0009  
Input Buffer  
0x000A  
CLKIN0  
CLKIN0/  
input buffer  
control  
Reserved  
Input Buffer Mode[3:0]  
Input Buffer Mode[3:0]  
Buffer enable  
Buffer enable  
0x07  
0x07  
0x000B  
CLKIN1  
CLKIN1/  
Reserved  
input buffer  
control  
GPIO/SDATA Control  
0x0046  
0x0050  
GPI control  
Reserved  
GPI Selection [2:0]  
GPO Selection[4:0]  
GPI enable  
GPO enable  
0x00  
0x37  
GPO control  
Reserved  
GPO  
mode  
0x0054  
SDATA control  
Reserved  
SDATA  
mode  
SDATA enable 0x03  
SYSREF/SYNC  
0x005A  
Pulse generator  
control  
Reserved  
Reserved  
Pulse Generator Mode Selection[2:0]  
0x00  
0x04  
0x005B  
SYNC control  
SYNC  
retime  
Reserved SYNC invert  
polarity  
0x005C  
0x005D  
SYSREF timer  
control  
SYSREF Timer[7:0] (LSB)  
0x00  
0x01  
Reserved  
SYSREF Timer[11:8](MSB)  
Clock Distribution Network  
0x0064  
Clock input  
control  
Reserved  
Divide  
by 2 on  
clock  
Low  
frequency  
clock input  
0x00  
input  
0x0065  
Analog delay  
common  
control  
Reserved  
Analog delay  
low power  
mode  
0x00  
Alarm Masks Register  
0x0071 Alarm mask  
control  
Reserved  
Sync  
request  
mask  
Reserved  
Clock  
SYSREF  
sync  
status  
mask  
Reserved  
0x10  
outputs  
phase  
status  
mask  
Product ID Registers  
0x0078  
0x0079  
0x007A  
Product ID  
Product ID Value[7:0] (LSB)  
Product ID Value[15:8] (Mid)  
Product ID Value[23:16] (MSB)  
Rev. B | Page 28 of 43  
 
 
Data Sheet  
HMC7043  
Default  
Value  
(Hex)  
Address  
(Hex)  
Register Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Alarm Readback Status Registers  
0x007B  
Readback  
register  
Reserved  
Sync  
Alarm signal  
Reserved  
0x007D  
Alarm readback  
Reserved  
Reserved  
Clock  
SYSREF  
sync  
status  
request  
status  
outputs  
phases  
status  
0x007F  
Alarm readback  
Reserved  
SYSREF Status Register  
0x0091  
SYSREF status  
register  
Reserved  
Channel  
outputs  
FSM busy  
SYSREF FSM State[3:0]  
0x00  
Other Controls  
0x0098  
0x0099  
0x009D  
0x009E  
0x009F  
0x00A0  
0x00A2  
0x00A3  
0x00A4  
0x00AD  
0x00B5  
0x00B6  
0x00B7  
0x00B8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0xAA  
0xAA  
0x55  
0x56  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Clock Distribution  
0x00C8  
Channel  
Output 0  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
enable enable  
0xF3  
0x00C9  
0x00CA  
0x00CB  
0x00CC  
0x00CD  
0x00CE  
0x00CF  
0x00D0  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x04  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Reserved  
Dynamic  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x00D2  
Channel  
Output 1  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x00D3  
0x00D4  
0x00D5  
0x00D6  
0x00D7  
0x00D8  
0x00D9  
0x00DA  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Driver Impedance[1:0] 0x30  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
driver  
enable  
Rev. B | Page 29 of 43  
HMC7043  
Data Sheet  
Default  
Value  
(Hex)  
Address  
(Hex)  
Register Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
0x00DC  
Channel  
Output 2  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x00DD  
0x00DE  
0x00DF  
0x00E0  
0x00E1  
0x00E2  
0x00E3  
0x00E4  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x08  
0x00  
0x00  
0x0  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
0x00  
0x00  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x00E6  
Channel  
Output 3  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x00E7  
0x00E8  
0x00E9  
0x00EA  
0x00EB  
0x00EC  
0x00ED  
0x00EE  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x30  
driver  
enable  
0x00F0  
Channel  
Output 4  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x00F1  
0x00F2  
0x00F3  
0x00F4  
0x00F5  
0x00F6  
0x00F7  
0x00F8  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x00FA  
Channel  
Output 5  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x00FB  
0x00FC  
0x00FD  
0x00FE  
0x00FF  
0x0100  
0x0101  
0x0102  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Driver Impedance[1:0] 0x30  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
driver  
enable  
Rev. B | Page 30 of 43  
Data Sheet  
HMC7043  
Default  
Value  
(Hex)  
Address  
(Hex)  
Register Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
0x0104  
Channel  
Output 6  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x0105  
0x0106  
0x0107  
0x0108  
0x0109  
0x010A  
0x010B  
0x010C  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x010E  
Channel  
Output 7  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x010F  
0x0110  
0x0111  
0x0112  
0x0113  
0x0114  
0x0115  
0x0116  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x30  
driver  
enable  
0x0118  
Channel  
Output 8  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x0119  
0x011A  
0x011B  
0x011C  
0x011D  
0x011E  
0x011F  
0x0120  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x0122  
Channel  
Output 9  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x0123  
0x0124  
0x0125  
0x0126  
0x0127  
0x0128  
0x0129  
0x012A  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Driver Impedance[1:0] 0x30  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
driver  
enable  
Rev. B | Page 31 of 43  
HMC7043  
Data Sheet  
Default  
Value  
(Hex)  
Address  
(Hex)  
Register Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
0x012C  
Channel  
Output 10  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x012D  
0x012E  
0x012F  
0x0130  
0x0131  
0x0132  
0x0133  
0x0134  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x0136  
Channel  
Output 11  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x0137  
0x0138  
0x0139  
0x013A  
0x013B  
0x013C  
0x013D  
0x013E  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x30  
driver  
enable  
0x0140  
Channel  
Output 12  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode[1:0]  
Multislip Channel  
0xF3  
enable  
enable  
0x0141  
0x0142  
0x0143  
0x0144  
0x0145  
0x0146  
0x0147  
0x0148  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x10  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multi-Slip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
Driver Impedance[1:0]  
0x01  
driver  
enable  
0x014A  
Channel  
Output 13  
control  
High  
performance  
mode  
SYNC enable  
Slip enable Reserved  
Start-Up Mode [1:0]  
Multislip Channel  
0xFD  
enable  
enable  
0x014B  
0x014C  
0x014D  
0x014E  
0x014F  
0x0150  
0x0151  
0x0152  
12-Bit Channel Divider[7:0] (LSB)  
12-Bit Channel Divider[11:8] (MSB)  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Fine Analog Delay[4:0]  
Coarse Digital Delay[4:0]  
12-Bit Multislip Digital Delay[7:0] (LSB)  
Reserved  
12-Bit Multislip Digital Delay[11:8] (MSB)  
Reserved  
Output Mux Selection[1:0] 0x00  
Driver Impedance[1:0] 0x30  
Idle at Zero[1:0]  
Dynamic  
Driver Mode[1:0]  
Reserved  
driver  
enable  
Rev. B | Page 32 of 43  
Data Sheet  
HMC7043  
CONTROL REGISTER MAP BIT DESCRIPTIONS  
Global Control (Register 0x0000 to Register 0x0009)  
Table 21. Global Soft Reset Control  
Address  
Bits Bit Name  
Settings  
Description  
Access  
0x0000  
[7:1] Reserved  
Reserved  
RW  
0
Soft reset  
Resets all registers, dividers, and FSMs to default values  
Table 22. Global Request and Mode Control  
Address Bits  
Bit Name  
Settings Description  
Access  
0x0001  
7
Reseed request  
Requests the centralized resync timer and FSM to reseed any of the output  
dividers that are programmed to pay attention to sync events. This signal is  
rising edge sensitive, and is only acknowledged if the resync FSM has  
completed all events (has finished any previous pulse generator and/or  
sync events, and is in the done state (SYSREF FSM State[3:0] = 0010).  
RW  
6
High performance  
distribution path  
High performance distribution path select. The clock distribution path  
has two modes.  
0
1
Power priority.  
Noise priority. Provides the option for better noise floors on the divided  
output signals.  
5
Reserved  
Reserved.  
4
Reserved  
Reserved.  
3
Mute output drivers  
Pulse generator request  
Restart dividers/FSMs  
Sleep mode  
Mutes the output drivers (dividers still run in the background).  
Asks for a pulse stream (see the Typical Programming Sequence section).  
Resets all dividers and FSMs. Does not affect configuration registers.  
Forces shutdown. Output network, and I/O buffers are disabled.  
Reserved.  
2
1
0
0x0002  
[7:2]  
1
Reserved  
RW  
Multislip request  
Requests a slip or multislip event from all divider channels that are  
sensitive to slip or multislip commands. The dividers are rising edge  
sensitive and take some time to process the request, after which the  
phase synchronization alarm is asserted.  
0
Reserved  
Reserved.  
Table 23. Global Enable Control  
Address  
Bits  
[7:6]  
5
Bit Name  
Settings  
Description  
Access  
0x0003  
Reserved  
Reserved  
RW  
RF reseeder enable  
Reserved  
Enable RF reseed for SYSREF  
Reserved  
[4:3]  
2
SYSREF timer enable  
Reserved  
Enable internal SYSREF time reference  
Reserved  
1
0
Reserved  
Reserved  
0x0004  
7
Reserved  
Reserved  
RW  
[6:0]  
Seven Pairs of 14-Channel Outputs Enable[6:0]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
Enable Channel 0 and 1  
Enable Channel 2 and 3  
Enable Channel 4 and 5  
Enable Channel 6 and 7  
Enable Channel 8 and 9  
Enable Channel 10 and 11  
Enable Channel 12 and 13  
Table 24. Global Mode and Enable Control  
Address Bits Bit Name  
0x0005 [7:0] Reserved  
Settings Description  
Access  
Reserved  
RW  
Rev. B | Page 33 of 43  
 
HMC7043  
Data Sheet  
Table 25. Global Clear Alarms  
Address Bits Bit Name  
Settings Description  
Access  
0x0006  
[7:1] Reserved  
Clear alarms  
Reserved  
Clear latched alarms  
RW  
0
Table 26. Global Miscellaneous Control  
Address Bits Bit Name  
Settings  
Description  
Reserved.  
Access  
0x0007  
0x0008  
[7:0] Reserved  
[7:0] Reserved (scratchpad)  
RW  
Reserved. The user can write/read to this register to confirm input/outputs RW  
to the HMC7043. This register does not affect device operation.  
0x0009  
[7:0] Reserved  
Reserved.  
RW  
Input Buffer (Register 0x000A to Register 0x000B)  
CLKIN  
RFSYNCIN  
Input Buffer Control  
Table 27. CLKIN/  
Address  
and RFSYNCIN/  
Bits Bit Name  
Settings Description  
Access  
0x000A, 0x000B  
[7:5] Reserved  
Reserved  
RW  
[4:1] Input Buffer Mode[3:0]  
Input buffer control  
[0]  
[1]  
[2]  
[3]  
Enable internal 100 Ω termination  
Enable ac coupling input mode  
Enable LVPECL input mode  
High-Z input enable  
0
Buffer enable  
Enable input buffer  
GPIO/SDATA Control (Register 0x0046 to Register 0x0054)  
Table 28. GPI Control  
Address Bits Bit Name  
Settings Description  
Access  
0x0046  
[7:4] Reserved  
Reserved  
RW  
[3:1] GPI Selection[2:0]  
Select the GPI functionality, Bits[2:0]  
Select the GPI functionality, Bits[2:0]  
Reserved  
Put the chip into sleep mode  
Issue a mute  
Issue a pulse generator request  
Issue a reseed request  
Issue a restart request  
Reserved  
Issue a slip request  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved.  
Reserved  
Reserved.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
GPI enable  
GPI function enable. Before changing the function of the pin, disable it first,  
and then reenable it after the function change.1  
1 Note that it is possible to have a GPIO delete pin configured as both an output and an input.  
Rev. B | Page 34 of 43  
 
Data Sheet  
HMC7043  
Table 29. GPO Control  
Address  
Bits Bit Name  
Reserved  
[6:2] GPO Selection[4:0]  
Settings Description  
Access  
0x0050  
7
Reserved  
RW  
Select the GPO functionality, Bits[4:0]  
Alarm signal  
SDATA from SPI communication  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SYSREF sync status has not synchronized since reset  
Clock outputs phase status  
Sync request status signal  
Channel outputs FSM busy  
SYSREF FSM State 0  
SYSREF FSM State 1  
SYSREF FSM State 2  
SYSREF FSM State 3  
Force Logic 1 to GPO  
Force Logic 0 to GPO  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Pulse generator request status signal  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
0
GPO mode  
GPO enable  
Selects the mode of GPO driver  
Open-drain mode  
CMOS mode  
0
1
GPO driver enable  
Table 30. SDATA Control  
Address  
Bits  
[7:2]  
1
Bit Name  
Reserved  
Settings  
Description  
Access  
0x0054  
Reserved  
RW  
SDATA mode  
Selects the mode of SDATA driver  
Open-drain mode  
CMOS mode  
0
1
0
SDATA enable  
SDATA driver enable  
Rev. B | Page 35 of 43  
HMC7043  
Data Sheet  
SYSREF/SYNC (Register 0x005A to Register 0x005D)  
Table 31. Pulse Generator Control  
Address Bits  
Bit Name  
Settings Description  
Access  
0x005A  
[7:3] Reserved  
Reserved.  
RW  
[2:0] Pulse Generator  
Mode  
SYSREF output enable with pulse generator.  
000  
Level sensitive. When the GPI is configured to issue a pulse generator  
Selection[2:0]  
request (GPI Selection[2:0] = 100), or a pulse generator request is issued  
through the SPI or as a SYNC pin-based pulse generator, run the pulse  
generator. Otherwise, stop the pulse generator.  
001  
010  
011  
100  
101  
110  
111  
1 pulse.  
2 pulses.  
4 pulses.  
8 pulses.  
16 pulses.  
16 pulses.  
Continuous mode (50% duty cycle).  
Table 32. SYNC Control  
Address Bits Bit Name  
Settings Description  
Access  
0x005B  
[7:3] Reserved  
Reserved  
RW  
2
SYNC retime  
0
1
Bypass the retime (non-deterministic SYNC event condition)  
Retime the external SYNC (deterministic SYNC event condition)  
1
0
Reserved  
Reserved  
SYNC polarity  
SYNC polarity (must be 0 if not using CLKIN/CLKIN as the input)  
0
1
Positive  
Negative  
Table 33. SYSREF Timer Control  
Address Bits Bit Name  
Settings Description  
Access  
0x005C  
[7:0] SYSREF Timer[7:0]  
(LSB)  
12-bit SYSREF timer setpoint LSB. This sets the internal beat frequency of  
the master timer, which controls synchronization and pulse generator  
events. Set the 12-bit timer to a submultiple of the lowest output SYSREF  
frequency, and program it to be no faster than 4 MHz.  
RW  
0x005D  
[7:4] Reserved  
Reserved.  
RW  
[3:0] SYSREF Timer[11:8]  
(MSB)  
12-bit SYSREF timer setpoint MSB.  
Clock Distribution Network (Register 0x0064 to Register 0x0065)  
Table 34. Clock Input Control  
Address  
Bits  
Bit Name  
Settings  
Description  
Access  
0x0064  
[7:2] Reserved  
Reserved  
RW  
1
0
Divide by 2 on clock input  
Low frequency clock input  
Use divide by 2 on clock input path  
Changes bias to Class A for low frequency clock input  
Table 35. Analog Delay Common Control  
Address Bits Bit Name  
0x0065 [7:1] Reserved  
Analog delay low  
power mode  
Settings Description  
Access  
Reserved.  
RW  
0
Analog delay is low power mode. Can save power for low settings of analog  
delay, but is not glitchless between setpoints.  
Rev. B | Page 36 of 43  
Data Sheet  
HMC7043  
Alarm Masks Register (Register 0x0071)  
Table 36. Alarm Mask Control Register  
Address Bits Bit Name  
Settings Description  
Access  
0x0071  
[7:5] Reserved  
Reserved  
RW  
4
3
2
Sync request mask  
Reserved  
Clock outputs phase status  
mask  
If set, allow sync request signals to generate an alarm signal  
Reserved  
If set, allow clock output phases status signal to generate an alarm  
signal  
1
0
SYSREF sync status mask  
Reserved  
If set, allow SYSREF sync status signal to generate an alarm signal  
Reserved  
Product ID Registers (Register 0x0078 to 0x007A)  
Table 37. Product ID Registers  
Address  
0x0078  
0x0079  
0x007A  
Bits  
[7:0]  
[7:0]  
[7:0]  
Bit Name  
Settings  
Description  
Access  
Product ID Value[7:0] (LSB)  
Product ID Value[15:8] (Mid)  
Product ID Value[23:16] (MSB)  
24-bit product ID value low  
24-bit product ID value mid  
24-bit product ID value high  
R
R
R
Alarm Readback Status Registers (Register 0x007B to 0x007F)  
Table 38. Alarm Readback Status Registers  
Address Bits Bit Name  
Settings Description  
Access  
0x007B  
0x007D  
[7:1] Reserved  
Reserved.  
R
0
Alarm signal  
Readback alarm status from SPI.  
Reserved.  
[7:5] Reserved  
R
4
3
2
Sync request status  
Unsynchronized.  
Reserved.  
Reserved  
Clock outputs phases  
status  
SYSREF alarm.  
0
1
SYSREF of the HMC7043 is not valid; that is, the phase output is not stable.  
SYSREF of the HMC7043 is valid; that is, the phase output is stable.  
SYSREF SYNC status alarm.  
1
SYSREF sync status  
0
1
1
The HMC7043 has been synchronized with an external sync pulse or a  
sync request from the SPI.  
The HMC7043 never synchronized with an external sync pulse or a sync  
request from the SPI.  
0
Reserved  
Reserved.  
Reserved.  
0x007F  
[7:0] Reserved  
R
Rev. B | Page 37 of 43  
HMC7043  
Data Sheet  
SYSREF Status Register (Register 0x0091)  
Table 39. SYSREF Status  
Address Bits Bit Name  
0x0091 [7:5] Reserved  
Channel outputs  
FSM busy  
Settings Description  
Access  
Reserved.  
R
4
One of clock outputs FSM requested clock, and it is running.  
[3:0] SYSREF FSM  
State[3:0]  
Indicates the current step of the SYSREF reseed process. Note that the three  
different progressions are caused by different trigger events (reseed, pulse  
generator, reserved).  
0000 Reset.  
0010 Done.  
0100 Get ready.  
0101 Get ready.  
0110 Get ready.  
1010 Running (pulse generator).  
1011 Start.  
1100 Power up.  
1101 Power up.  
1110 Power up.  
1111 Clear reset.  
Bias Settings (Register 0x0096 to Register 0x00B8)  
For optimum performance of the chip, Register 0x0098 to Register 0x00B8 must be programmed to a different value than their default value.  
Table 40. Reserved Registers  
Address  
0x0098  
0x0099  
0x009D  
0x009E  
0x009F  
0x00A0  
0x00A2  
0x00A3  
0x00A4  
0x00AD  
0x00B5  
0x00B6  
0x00B7  
0x00B8  
Bits  
Bit Name  
Settings  
Description  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
[7:0] Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Clock output driver low power setting (set to 0x4D instead of default value)  
Clock output driver high power setting (set to 0xDF instead of default value)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev. B | Page 38 of 43  
 
Data Sheet  
HMC7043  
Clock Distribution (Register 0x00C8 to Register 0x0152)  
The bit descriptions in Table 41 apply to all 14 channels.  
Table 41. Channel 0 to Channel 13 Control  
Address  
Bits  
Bit Name  
Settings1 Description  
High performance mode. Adjusts the divider and buffer  
bias to improve swing/phase noise at the expense of  
Access  
0x00C8, 0x00D2, 0x00DC,  
0x00E6, 0x00F0, 0x00FA,  
0x0104, 0x010E, 0x0118,  
0x0122, 0x012C, 0x0136,  
0x0140, 0x014A  
7
High performance  
mode  
RW  
power.  
6
5
SYNC enable  
Slip enable  
Susceptible to SYNC event. The channel can process a  
SYNC event to reset the phase.  
Susceptible to slip event. The channel can process a slip  
request from SPI or GPI. Note that if slip enable is true,  
but multislip is off, a channel slips by 1 clock input cycle  
on an explicit slip request broadcast from the SPI/GPI.  
4
Reserved  
Reserved.  
[3:2]  
Start-Up  
Mode[1:0]  
Configures the channel to normal mode with  
asynchronous startup, or to a pulse generator mode with  
dynamic start-up. Note that this must be set to  
asynchronous mode if the channel is unused.  
00  
01  
10  
11  
Asynchronous.  
Reserved.  
Reserved.  
Dynamic.  
1
Multislip enable  
Channel enable  
Allow multislip operation (default = 0 for SYSREF, 1 for  
DCLK).  
Do not engage automatic multislip on channel startup.  
Multislip events after SYNC or pulse generator request, if  
the slip enable bit = 1.  
0
1
0
Channel enable. If this bit is 0, channel is disabled.  
0x00C9, 0x00D3, 0x00DD,  
0x00E7, 0x00F1, 0x00FB,  
0x0105, 0x010F, 0x0119,  
0x0123, 0x012D, 0x0137,  
0x0141, 0x014B  
[7:0]  
12-Bit Channel  
Divider[7:0] (LSB)  
12-bit channel divider setpoint LSB. The divider supports  
even divide ratios from 2 to 4094. The supported odd  
divide ratios are 1, 3, and 5. All even and odd divide ratios  
have 50.0% duty cycle.  
RW  
RW  
RW  
RW  
0x00CA, 0x00D4, 0x00DE,  
0x00E8, 0x00F2, 0x00FC,  
0x0106, 0x0110, 0x011A,  
0x0124, 0x012E, 0x0138,  
0x0142, 0x014C  
[7:4]  
[3:0]  
Reserved  
Reserved.  
12-Bit Channel  
Divider[11:8]  
(MSB)  
12-bit channel divider setpoint MSB.  
0x00CB, 0x00D5, 0x00DF,  
0x00E9, 0x00F3, 0x00FD,  
0x0107, 0x0111, 0x011B,  
0x0125, 0x012F, 0x0139,  
0x0143, 0x014D  
[7:5]  
[4:0]  
Reserved  
Reserved.  
Fine Analog  
Delay[4:0]  
24 fine delay steps. Step size = 25 ps. Values bigger than  
23 has no effect on analog delay.  
0x00CC, 0x00D6, 0x00E0,  
0x00EA, 0x00F4, 0x00FE,  
0x0108, 0x0112, 0x011C,  
0x0126, 0x0130, 0x013A,  
0x0144, 0x014E  
[7:5]  
[4:0]  
Reserved  
Reserved.  
Coarse Digital  
Delay[4:0]  
17 coarse delay steps. Step size = ½ input clock cycle. This  
flip flop (FF)-based digital delay does not increase noise  
level at the expense of power. Values bigger than 17 have  
no effect on coarse delay.  
0x00CD, 0x00D7, 0x00E1,  
0x00EB, 0x00F5, 0x00FF,  
0x0109, 0x0113, 0x011D,  
0x0127, 0x0131, 0x013B,  
0x0145, 0x014F  
[7:0]  
12-Bit Multislip  
Digital Delay[7:0]  
(LSB)  
12-bit multislip digital delay amount LSB. Step size =  
(delay amount: MSB + LSB) × input clock cycles. If  
multislip enable bit = 1, any slip events (caused by GPI,  
SPI, SYNC, or pulse generator events) repeat the number  
of times set by 12-Bit Multislip Digital Delay[11:0] to  
adjust the phase by step size.  
RW  
Rev. B | Page 39 of 43  
 
HMC7043  
Data Sheet  
Address  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings1 Description  
Access  
0x00CE, 0x00D8, 0x00E2,  
0x00EC, 0x00F6, 0x0100,  
0x010A, 0x0114, 0x011E,  
0x0128, 0x0132, 0x013C,  
0x0146, 0x0150  
Reserved  
Reserved.  
RW  
12-Bit Multislip  
Digital Delay[11:8]  
(MSB)  
12-bit multislip digital delay amount MSB.  
0x00CF, 0x00D9, 0x00E3,  
0x00ED, 0x00F7, 0x0101,  
0x010B, 0x0115, 0x011F,  
0x0129, 0x0133, 0x013D,  
0x0147, 0x0151  
[7:2]  
[1:0]  
Reserved  
Reserved.  
RW  
Output Mux  
Selection[1:0]  
Channel output mux selection.  
Channel divider output.  
Analog delay output.  
00  
01  
10  
11  
Other channel of the clock group pair.  
Input clock (fundamental). Fundamental can also be  
generated with 12-bit channel divider ratio = 1.  
0x00D0, 0x00DA, 0x00E4,  
0x00EE, 0x00F8, 0x0102,  
0x010C, 0x0116, 0x0120,  
0x012A, 0x0134, 0x013E,  
0x0148, 0x0152  
[7:6]  
Idle at Zero[1:0]  
Idle at Logic 0 selection (pulse generator mode only).  
Force to Logic 0 or VCM.  
RW  
00  
01  
10  
11  
Normal mode (selection for DCLK).  
Reserved.  
Force to Logic 0.  
Force outputs to float, goes naturally to VCM.  
Dynamic driver enable (pulse generator mode only).  
Driver is enabled/disabled with channel enable bit.  
Driver is dynamically disabled with pulse generator events.  
Output driver mode selection.  
CML mode.  
LVPECL mode.  
LVDS mode.  
CMOS mode.  
5
Dynamic driver  
enable  
0
1
[4:3]  
Driver Mode[1:0]  
00  
01  
10  
11  
2
Reserved  
Reserved.  
[1:0]  
Driver  
Impedance[1:0]  
Output driver impedance selection for CML mode.  
Internal resistor disable.  
Internal 100 Ω resistor enable per output pin.  
Reserved.  
00  
01  
10  
11  
Internal 50 Ω resistor enable per output pin.  
1 X means don’t care.  
Rev. B | Page 40 of 43  
Data Sheet  
HMC7043  
APPLICATIONS INFORMATION  
60 TO 150  
SECONDS  
RAMP UP  
3°C/SECOND MAX  
EVALUATION PCB AND SCHEMATIC  
260 – 5/0°C  
For the circuit board in this application, use RF circuit design  
techniques. Ensure that signal lines have 50 Ω impedance.  
Connect the package ground leads and exposed paddle directly  
to the ground plane similar to that shown in Figure 32 and  
Figure 33. Use a sufficient number of via holes to connect the  
top and bottom ground planes. The evaluation circuit board is  
available from Analog Devices, Inc., upon request.  
217°C  
150°C TO 200°C  
RAMP DOWN  
6°C/SECOND MAX  
TIME (Second)  
60 TO 180  
SECONDS  
20 TO 40  
SECONDS  
480 SECONDS MAX  
The typical Pb-free reflow solder profile shown in Figure 31 is  
based on JEDEC J-STD-20C.  
Figure 31. Pb-Free Reflow Solder Profile  
Figure 32. Evaluation PCB Layout, Top Side  
Rev. B | Page 41 of 43  
 
 
 
 
HMC7043  
Data Sheet  
Figure 33. Evaluation PCB Layout, Bottom Side  
Rev. B | Page 42 of 43  
 
Data Sheet  
HMC7043  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.31  
0.25  
0.19  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
48  
36  
1
0.50  
BSC  
5.66  
5.60 SQ  
5.54  
EXPOSED  
PAD  
25  
12  
13  
24  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
5.50 REF  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
Figure 34. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.85 mm Package Height  
(HCP-48-1)  
Dimensions shown in millimeters  
NOTE 1  
4.10  
NOTE 6  
2.10  
2.00  
1.90  
12.10  
12.00  
11.90  
4.00  
3.90  
1.85  
1.75  
1.65  
0.35  
0.30  
0.25  
A
Ø 1.5 ~ 1.6  
7.60  
7.50  
7.40  
NOTE 6  
16.30  
16.00  
15.70  
7.35  
7.25  
7.15  
NOTE 4  
1.20  
1.10  
1.00  
TOP VIEW  
A
Ø 1.5 MIN  
7.35  
7.25  
DETAIL A  
NOTE 5  
DIRECTION OF FEED  
7.15  
SECTION A-A  
NOTE 4  
0.25  
NOTES:  
1. 10 SPROCKET HOLE PITCH CUMUL ATIVE TOLERANCE ± 0.20  
2. CAMBER IN COMPLIANCE WITH EIA 481  
3. MATERIAL: CONDUCTIVE BLACK PO LYSTYRENE  
4. MEASURED ON A PLANE 0.30 mm ABOVE THE BOTTOM OF  
THE POCKET  
R 0.25  
DETAIL A  
5. MEASURED FROM A PLANE ON THE INSIDE BOTTOM OF  
THE POCKET TO THE TOP SURFACE OF THE CARRIER  
6. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED  
AS TRUE POSITION OF POCKET, NOT POCKET HOLE  
Figure 35. LFCSP Tape and Reel Outline Dimensions  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Lead Finish  
MSL Rating2 Package Description  
Package Option  
Branding3  
7043  
HMC7043LP7FE  
−40oC to +85°C  
NiPdAu  
MSL-3  
48-Lead Lead Frame Chip HCP-48-1  
Scale Package [LFCSP]  
XXXX  
7043  
XXXX  
HMC7043LP7FETR −40oC to +85°C  
NiPdAu  
MSL-3  
48-Lead Lead Frame Chip HCP-48-1  
Scale Package [LFCSP]  
EK1HMC7043LP7F −40°C to +85°C  
1 E = RoHS Compliant Part.  
Evaluation Kit  
2 The maximum peak reflow temperature is 260°C for the HMC7043LP7FE.  
3 Four-digit lot number represented by XXXX.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13114-0-7/16(B)  
Rev. B | Page 43 of 43  
 
 
 
 

相关型号:

HMC7043LP7FE

High Performance, 3.2 GHz, 14-Output Fanout Buffer with JESD204B/JESD204C
ADI

HMC7043LP7FETR

JEDEC JESD204B support
ADI

HMC7044LP10BE

High Performance, 3.2 GHz, 14-Output Jitter Attenuator with JESD204B / JESD204C
ADI

HMC7044LP10BETR

High Performance, 3.2 GHz, 14-Output Jitter Attenuator with JESD204B / JESD204C
ADI

HMC704LP4E

8 GHz fractionaL-N PLL
HITTITE

HMC7056

Up Converter
HITTITE

HMC7056

Ka-Band Block Upconverter with HPA
ADI

HMC705LP4

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)
HITTITE

HMC705LP4E

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)
HITTITE

HMC705LP4ERTR

Prescaler/Multivibrator,
HITTITE

HMC705LP4ETR

Telecom Circuit, 1-Func, PQCC24, ROHS COMPLIANT, PLASTIC, SMT-24
HITTITE

HMC705LP4RTR

Prescaler/Multivibrator,
HITTITE