HMC8402-SX [ADI]

Low Noise Amplifier;
HMC8402-SX
型号: HMC8402-SX
厂家: ADI    ADI
描述:

Low Noise Amplifier

射频 微波
文件: 总15页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz to 30 GHz, GaAs, pHEMT, MMIC,  
Low Noise Amplifier  
Data Sheet  
HMC8402  
FEATURES  
GENERAL DESCRIPTION  
Output power for 1 dB compression (P1dB): 21.5 dBm typical  
Saturated output power (PSAT): 22 dBm typical  
Gain: 13.5 dB typical  
Noise figure: 2 dB  
Output third order intercept (IP3): 26 dBm typical  
Supply voltage: 7 V at 68 mA  
The HMC8402 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic microwave  
integrated circuit (MMIC), low noise amplifier which operates  
between 2 GHz and 30 GHz. The amplifier provides 13.5 dB of  
gain, 2 dB noise figure, 26 dBm output IP3, and 21.5 dBm of  
output power at 1 dB gain compression while requiring 68 mA  
from a 7 V supply. The HMC8402 is self biased with only a single  
positive supply needed to achieve a drain current IDQ of 68 mA.  
50 Ω matched input/output  
Die size: 2.7 mm × 1.35 mm × 0.05 mm  
The HMC8402 amplifier input/outputs are internally matched to  
50 Ω facilitating integration into multichip modules (MCMs). All  
data is taken with the chip connected via two 0.025 mm (1 mil)  
wire bonds of minimal length 0.31 mm (12 mils).  
APPLICATIONS  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military and space  
Telecommunications infrastructure  
Fiber optics  
FUNCTIONAL BLOCK DIAGRAM  
3
HMC8402  
4
RFOUT  
V
2
GG  
2
1
RFIN  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC8402  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Applications Information.............................................................. 13  
Biasing Procedures..................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
2 GHz to 18 GHz Frequency Range........................................... 3  
18 GHz to 26 GHz Frequency Range......................................... 3  
26 GHz to 30 GHz Frequency Range......................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 13  
Typical Application Circuit....................................................... 14  
Assembly Diagram ..................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
REVISION HISTORY  
4/2018—Rev. B to Rev. A  
Updated Outline Dimensions ....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
10/2017—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
Changes to Table 5, Figure 3, and Figure 6 ................................... 6  
Added Figure 34; Renumbered Sequentially .............................. 11  
10/2016—Rev. 0 to Rev. A  
Change to Table 4 ............................................................................. 5  
Changes to Figure 8.......................................................................... 7  
Updated Outline Dimensions ....................................................... 15  
7/2016—Revision 0: Initial Version  
Rev. C | Page 2 of 15  
 
Data Sheet  
HMC8402  
SPECIFICATIONS  
2 GHz TO 18 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7 V, IDQ = 74 mA.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
2
18  
11.5 13.5  
0.005  
dB/°C  
Input  
Output  
10  
12  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
19  
45  
21  
22  
26  
2.5  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 0 dBm  
Nominal voltage (VDD) = 7 V  
NF  
5
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
VDD = 5 V  
IDQ  
IDQ  
68  
85  
mA  
62  
65  
68  
72  
7
mA  
mA  
mA  
mA  
V
VDD = 6 V  
VDD = 7 V  
VDD = 8 V  
SUPPLY VOLTAGE  
VDD  
5
8
18 GHz TO 26 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7 V, IDQ = 74 mA.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
RETURN LOSS  
18  
26  
11.5 13.5  
0.006  
dB/°C  
Input  
Output  
17  
14  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
17  
45  
20  
21  
24  
2.5  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 0 dBm  
Nominal voltage (VDD) = 7 V  
NF  
4
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
VDD = 5 V  
IDQ  
IDQ  
68  
85  
mA  
62  
65  
68  
72  
7
mA  
mA  
mA  
mA  
V
VDD = 6 V  
VDD = 7 V  
VDD = 8 V  
SUPPLY VOLTAGE  
VDD  
5
8
Rev. C | Page 3 of 15  
 
 
 
HMC8402  
Data Sheet  
26 GHz TO 30 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 7 V, IDQ = 74 mA.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
26  
Typ  
Max  
Unit  
GHz  
dB  
FREQUENCY RANGE  
GAIN  
30  
11  
13  
Gain Variation Over Temperature  
RETURN LOSS  
0.009  
dB/°C  
Input  
Output  
10  
10  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
IP3  
15  
45  
19  
20.5  
23  
dBm  
dBm  
dBm  
dB  
Measurement taken at POUT/tone = 0 dBm  
Nominal voltage (VDD) = 7 V  
NF  
3.0  
4.5  
85  
SUPPLY CURRENT  
Total Supply Current  
Total Supply Current vs. VDD  
VDD = 5 V  
IDQ  
IDQ  
68  
mA  
62  
65  
68  
72  
7
mA  
mA  
mA  
mA  
V
VDD = 6 V  
VDD = 7 V  
VDD = 8 V  
SUPPLY VOLTAGE  
VDD  
5
8
Rev. C | Page 4 of 15  
 
Data Sheet  
HMC8402  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 4.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Drain Bias Voltage (VDD  
)
10 V  
Gate Bias Voltage (VGG2)  
RF Input Power (RFIN)  
Channel Temperature  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 17.2 mW/°C Above 85°C)  
−2.6 V to +3.6 V  
20 dBm  
175°C  
1.55 W  
Thermal Resistance, θJC (Channel to  
Bottom Die)  
58°C/W  
ESD CAUTION  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity, Human Body Model (HBM)  
−65°C to +150°C  
−55°C to +85°C  
Class 1A (250 V)  
Rev. C | Page 5 of 15  
 
 
HMC8402  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC8402  
3
4
2
1
ADI2014  
Figure 2. Pad Configuration  
Table 5. Pad Function Descriptions  
Pad No.  
Mnemonic  
Description  
1
RFIN  
Radio Frequency (RF) Input. This pad is ac-coupled and matched to 50 Ω, and has a large value resistor to  
GND for ESD protection. See Figure 3 for the interface schematic.  
2
3
4
VGG  
2
Gain Control. This pad is dc-coupled and is used to accomplish gain control by bringing this voltage  
lower and becoming more negative. See Figure 4 for the interface schematic.  
Power Supply Voltage for the Amplifier. Connect a dc bias to provide drain current (IDQ). See Figure 5 for  
the interface schematic.  
RF Output. This pad is ac-coupled and matched to 50 Ω, and has a large value resistor to GND for ESD  
protection. See Figure 6 for the interface schematic.  
VDD  
RFOUT  
Die Bottom GND  
Die bottom must be connected to RF/dc ground. See Figure 7 for the interface schematic.  
INTERFACE SCHEMATICS  
V
DD  
RFIN  
Figure 5. VDD Interface Schematic  
Figure 3. RFIN Interface Schematic  
RFOUT  
V
2
GG  
Figure 6. RFOUT Interface Schematic  
GND  
Figure 4. VGG2 Interface Schematic  
Figure 7. GND Interface Schematic  
Rev. C | Page 6 of 15  
 
 
 
 
 
 
 
Data Sheet  
HMC8402  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
16  
15  
14  
13  
12  
11  
10  
9
+85°C  
+25°C  
–55°C  
15  
10  
INPUT RETURN LOSS  
5
0
GAIN  
OUTPUT RETURN LOSS  
–5  
–10  
–15  
–20  
–25  
–30  
8
7
6
2
6
10  
14  
18  
22  
26  
30  
0
4
8
12  
16  
20  
24  
28  
32  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Response Gain and Return Loss vs. Frequency  
Figure 11. Gain vs. Frequency at Various Temperatures  
0
–2  
0
–2  
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
2
6
10  
14  
18  
22  
26  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Output Return Loss vs. Frequency at Various Temperatures  
Figure 9. Input Return Loss vs. Frequency at Various Temperatures  
6
6
+85°C  
+25°C  
–55°C  
5
5V  
6V  
7V  
5
8V  
4
3
2
1
0
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Noise Figure vs. Frequency at Various Temperatures  
Figure 13. Noise Figure vs. Frequency at Various Supply Voltages  
Rev. C | Page 7 of 15  
 
HMC8402  
Data Sheet  
26  
24  
22  
20  
18  
16  
14  
26  
24  
22  
20  
18  
16  
14  
12  
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
12  
2
6
10  
14  
18  
22  
26  
30  
30  
30  
2
6
10  
14  
18  
22  
26  
30  
30  
8
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. P1dB vs. Frequency at Various Temperatures  
Figure 17. PSAT vs. Frequency at Various Temperatures  
26  
24  
22  
20  
18  
16  
14  
12  
26  
24  
22  
20  
18  
16  
14  
12  
5V  
5V  
6V  
7V  
8V  
6V  
7V  
8V  
2
6
10  
14  
18  
22  
26  
2
6
10  
14  
18  
22  
26  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. P1dB vs. Frequency at Various Supply Voltages  
Figure 18. PSAT vs. Frequency at Various Supply Voltages  
60  
55  
50  
45  
40  
35  
30  
25  
20  
32  
+85°C  
+25°C  
–55°C  
30  
28  
26  
24  
22  
20  
18  
16  
14  
4GHz  
6GHz  
10GHz  
16GHz  
20GHz  
24GHz  
26GHz  
0
1
2
3
4
5
6
7
2
6
10  
14  
18  
22  
26  
P
/TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 16. Output IP3 vs. Frequency for Various Temperatures at  
POUT = 0 dBm/Tone  
Figure 19. Output Third Order Intermodulation (IM3) vs. POUT/Tone for  
Various Frequencies at VDD = 6 V  
Rev. C | Page 8 of 15  
Data Sheet  
HMC8402  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
4GHz  
4GHz  
6GHz  
6GHz  
30  
25  
20  
10GHz  
16GHz  
20GHz  
24GHz  
26GHz  
10GHz  
16GHz  
20GHz  
24GHz  
26GHz  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
P
/TONE (dBm)  
P
/TONE (dBm)  
OUT  
OUT  
Figure 23. Output (IM3) vs. POUT/Tone for Various Frequencies at VDD = 8 V  
Figure 20. Output (IM3) vs. POUT/Tone for Various Frequencies at VDD = 7 V  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
0
+85°C  
+25°C  
–55°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
P
OUT  
GAIN  
PAE  
I
DD  
0
–10  
60  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
2
6
10  
14  
18  
22  
26  
30  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 24. Power Compression at 16 GHz  
Figure 21. Reverse Isolation vs. Frequency at Various Temperatures  
16  
1.2  
1.1  
1.0  
0.9  
0.8  
5V  
6V  
7V  
8V  
15  
14  
13  
12  
11  
10  
9
0.7  
4GHz  
6GHz  
0.6  
0.5  
10GHz  
16GHz  
8
20GHz  
7
24GHz  
26GHz  
6
0.4  
–10  
0
5
10  
15  
20  
25  
30  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 25. Gain vs. Frequency at Various Supply Voltages  
Figure 22. Power Dissipation vs. Input Power at Various Frequencies, TA = 85°C  
Rev. C | Page 9 of 15  
HMC8402  
Data Sheet  
0
0
–2  
5V  
6V  
7V  
8V  
–2.6V  
–2.4V  
–2.2V  
–2.0V  
–1.8V  
–1.6V  
–1.4V  
–0.8V  
0V  
–2  
+1.0V  
+1.4V  
+2.6V  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Input Return Loss vs. Frequency at Various Supply Voltages  
Figure 29. Input Return Loss vs. Frequency at Various VGG2 Voltages  
0
0
5V  
–2.6V  
–2.4V  
–2.2V  
–2.0V  
–1.8V  
–1.6V  
–1.4V  
–0.8V  
0V  
–2  
–4  
6V  
7V  
8V  
–2  
–4  
+1.0V  
+1.4V  
+2.6V  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 30. Output Return Loss vs. Frequency at Various VGG2 Voltages  
Figure 27. Output Return Loss vs. Frequency at Various Supply Voltages  
15  
10  
5
20  
15  
10  
5
0
0
–5  
–10  
–15  
–5  
–10  
–20  
–25  
–30  
–2.6V  
–2.4V  
–2.2V  
–2.0V  
–1.8V  
–1.6V  
–1.4V  
–0.8V  
0V  
+1.0V  
+1.4V  
+2.6V  
–15  
2.6 2.2 1.8 1.4 1.0 0.6 0.2 –0.2 –0.6 –1.0 –1.4 –1.8 –2.2 –2.6  
0
5
10  
15  
20  
25  
30  
V
2 (V)  
FREQUENCY (GHz)  
GG  
Figure 31. Gain vs. VGG  
2
Figure 28. Gain vs. Frequency at Various VGG2 Voltages  
Rev. C | Page 10 of 15  
Data Sheet  
HMC8402  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
–1.8V  
–1.4V  
–1.0V  
–0.6V  
–0.4V  
–0.2V  
0V  
+0.8V  
+1.4V  
+2.0V  
+2.6V  
+0.4V  
–2.4V  
–2.0V  
–1.8V  
–1.6V  
–1.4V  
–1.2V  
–1.0V  
–0.6V  
0V  
+1.0V  
+2.0V  
+2.6V  
0
0
2
6
10  
14  
18  
22  
26  
30  
2
6
10  
14  
18  
22  
26  
30  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 35. P1dB vs. Frequency at Various VGG2 Voltages  
Figure 32. Output IP3 vs. Frequency at Various VGG2 Voltages  
30  
25  
20  
15  
10  
5
26  
24  
22  
20  
18  
16  
14  
12  
10  
–1.8V  
–1.4V  
–1.0V  
–0.6V  
–0.4V  
–0.2V  
0V  
+0.8V  
+1.4V  
+2.0V  
+2.6V  
+0.4V  
0
2.6 2.2 1.8 1.4 1.0 0.6 0.2 –0.2 –0.6 –1.0 –1.4 –1.8 –2.2 –2.6  
2
6
10  
14  
18  
22  
26  
30  
V
2 (V)  
FREQUENCY (GHz)  
GG  
Figure 36. PSAT vs Frequency at Various VGG2 Voltages  
Figure 33. Output IP3 vs. VGG2 at 16 GHz  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
0 dBm/TONE  
2 dBm/TONE  
4 dBm/TONE  
6 dBm/TONE  
8 dBm/TONE  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
FREQUENCY (GHz)  
Figure 34. OIP2 vs. Frequency for Various POUT/Tone Levels  
Rev. C | Page 11 of 15  
HMC8402  
Data Sheet  
THEORY OF OPERATION  
The HMC8402 is a GaAs, pHEMT, MMIC low noise amplifier.  
Its basic architecture is that of a single supply biased cascode  
distributed amplifier with an integrated RF choke for the drain.  
The cascode distributed architecture uses a fundamental cell  
consisting of a stack of two field effect transistors (FETs) with the  
source of the upper FET connected to the drain of the lower FET.  
The fundamental cell is then duplicated several times, with an  
RFIN transmission line interconnecting the gates of the lower  
FETs and an RFOUT transmission line interconnecting the  
drains of the upper FETs.  
Though the gate bias voltages of the upper FETs are set internally  
by a resistive voltage divider tapped off of VDD, the VGG2 pad is  
provided to allow the user an optional means of changing the  
gate bias of the upper FETs. Adjustment of the VGG2 voltage  
across the range of −2 V to +2.6 V changes the gate bias of the  
upper FETs, thus affecting gain changes of approximately 6 dB,  
depending on frequency. Increasing the voltage applied to VGG2  
increases the gain, whereas decreasing the voltage decreases the  
gain. For the nominal VDD = 7.0 V, the resulting VGG2 open-  
circuit voltage is approximately 3.18 V.  
Additional circuit design techniques are used around each cell  
to optimize the overall bandwidth and noise figure. The major  
benefit of this architecture is that a low noise figure is maintained  
across a bandwidth far greater than what a single instance of the  
fundamental cell provides. A simplified schematic of this  
architecture is shown in Figure 37.  
V
DD  
T-LINE  
RFOUT  
V
2
GG  
T-LINE  
RFIN  
ACG ACG  
Figure 37. Architecture and Simplified Schematic  
Rev. C | Page 12 of 15  
 
 
Data Sheet  
HMC8402  
APPLICATIONS INFORMATION  
To minimize bond wire length, place microstrip substrates as  
close to the die as possible. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
BIASING PROCEDURES  
Capacitive bypassing is required for VDD, as shown in the typical  
application circuit in Figure 39. Gain control is possible through  
Handling Precautions  
the application of a dc voltage to VGG2. If gain control is used, VGG  
2
must be bypassed by 100 pF, 0.01 µF, and 4.7 µF capacitors. If gain  
control is not used, VGG2 can be either left open or capacitively  
bypassed as described.  
To avoid permanent damage, adhere to the following precautions:  
All bare die ship in either waffle or gel-based ESD protective  
containers, sealed in an ESD protective bag. After the sealed  
ESD protective bag is opened, store all die in a dry nitrogen  
environment.  
The recommended bias sequence during power-up is as follows:  
1. Set VDD to 7 V (this results in an IDQ near its specified  
typical value).  
2. If the gain control function is to be used, apply to VGG2 a  
voltage within the range of −2 V to +2.6 V until the desired  
gain is achieved.  
Handle the chips in a clean environment. Never use liquid  
cleaning systems to clean the chip.  
Follow ESD precautions to protect against ESD strikes.  
While bias is applied, suppress instrument and bias supply  
transients. To minimize inductive pickup, use shielded  
signal and bias cables.  
3. Apply the RF input signal.  
The recommended bias sequence during power-down is as follows:  
Handle the chip along the edges with a vacuum collet or  
with a sharp pair of bent tweezers. The surface of the chip  
may have fragile air bridges and must not be touched with  
vacuum collet, tweezers, or fingers.  
1. Turn off the RF input signal.  
2. Remove the VGG2 voltage or set it to 0 V.  
3. Set VDD to 0 V.  
Unless otherwise noted, all measurements and data shown were  
taken using the typical application circuit (see Figure 39), configured  
as shown on the assembly diagram (see Figure 40) and biased  
per the conditions in the Specifications section. The bias conditions  
shown in the Specifications section are the operating points  
recommended to optimize the overall performance. Operation  
using other bias conditions may provide performance that differs  
from what is shown in this data sheet. To obtain the best  
performance while not damaging the device, follow the  
recommended biasing sequence outlined in this section.  
Mounting  
The chip is back metallized and can be die mounted with gold/tin  
(AuSn) eutectic preforms or with electrically conductive epoxy.  
The mounting surface must be clean and flat.  
Eutectic Die Attach  
It is best to use an 80% gold/20% tin preform with a work surface  
temperature of 255°C and a tool temperature of 265°C. When  
hot 90% nitrogen/10% hydrogen gas is applied, maintain tool tip  
temperature at 290°C. Do not expose the chip to a temperature  
greater than 320°C for more than 20 sec. No more than 3 sec of  
scrubbing is required for attachment.  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GaAs MMICs  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy. To bring RF to and from the chip, use 50 Ω  
microstrip transmission lines on 0.127 mm (5 mil) thick alumina  
thin film substrates (see Figure 38).  
Epoxy Die Attach  
ABLETHERM 2600BT is recommended for die attachment.  
Apply a minimum amount of epoxy to the mounting surface so  
that a thin epoxy fillet is observed around the perimeter of the  
chip after placing it into position. Cure the epoxy per the schedule  
provided by the manufacturer.  
0.051mm (0.002") THICK GaAs MMIC  
WIRE BOND  
0.076mm  
(0.003")  
Wire Bonding  
RF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-  
mended for the RF ports. These bonds must be thermosonically  
bonded with a force of 40 g to 60 g. DC bonds of 1 mil (0.025 mm)  
diameter, thermosonically bonded, are recommended. Create ball  
bonds with a force of 40 g to 50 g and wedge bonds with a force  
of 18 g to 22 g. Create all bonds with a nominal stage temperature  
of 150°C. Apply a minimum amount of ultrasonic energy to  
achieve reliable bonds. Keep all bonds as short as possible, less  
than 12 mil (0.31 mm).  
RF GROUND PLANE  
0.150mm  
0.254mm (0.010") THICK ALUMINA  
THIN FILM SUBSTRATE  
(0.005”) THICK  
MOLY TAB  
Figure 38. Routing RF Signals  
Rev. C | Page 13 of 15  
 
 
 
 
HMC8402  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
V
DD  
4.7µF  
4.7µF  
0.1µF  
0.1µF  
100pF  
100pF  
V
2
2
1
GG  
3
4
RFOUT  
RFIN  
Figure 39. Typical Application Circuit  
ASSEMBLY DIAGRAM  
+
+
TO V SUPPLY  
DD  
0.1µF  
ALL BOND WIRES ARE  
1mil DIAMETER  
0.1µF  
3mil NOMINAL GAP  
100pF  
100pF  
50  
TRANSMISSION LINE  
Figure 40. Assembly Diagram  
Rev. C | Page 14 of 15  
 
 
 
 
Data Sheet  
HMC8402  
OUTLINE DIMENSIONS  
2.700  
0.05  
0.043  
0.175  
0.080 × 0.080  
0.100  
(Pad 2 and Pad 3)  
3
0.080 × 0.200  
0.187  
0.721  
4
1.363  
0.187  
0.107  
2
0.187  
0.543  
0.080 × 0.204  
1
ADI2014  
0.185  
0.084  
0.0152  
0.010  
SIDE VIEW  
0.010  
2.217  
0.1300.162  
0.084  
Figure 41. 4-Pad Bare Die [CHIP]  
(C-4-3)  
Dimensions shown in millimeter  
ORDERING GUIDE  
Model1,2  
HMC8402  
Temperature Range  
−55°C to +85°C  
Package Description  
4-Pad Bare Die [CHIP]  
4-Pad Bare Die [CHIP]  
Package Option  
C-4-3  
C-4-3  
HMC8402-SX  
−55°C to +85°C  
1 The HMC8402-SX is a sample order of two devices.  
2 The HMC8402 and HMC8402-SX are RoHS compliant parts.  
©2016–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13853-0-4/18(C)  
Rev. C | Page 15 of 15  
 
 

相关型号:

HMC840LP6CE

FRACTIONAL-N PLL WITH INTEGRATED VCO 1310 - 1415, 2620 - 2830, 5240 - 5660 MHz
HITTITE

HMC840LP6CE

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Fractional-N PLL with Integrated VCO SMT, 1.31 - 5.66 GHz
ADI

HMC840LP6CETR

Phase Locked Loop
HITTITE

HMC8410

Low Noise Amplifier
ADI

HMC8410CHIPS

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410CHIPS-SX

Low noise figure: 1.1 dB typical
ADI

HMC8410LP2FE

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410LP2FETR

Low Noise Amplifier
ADI

HMC8410_17

Low Noise Amplifier
ADI

HMC8411LP2FE

Low Noise Amplifier, 0.01 GHz to 10 GHz
ADI

HMC8411LP2FETR

Low Noise Amplifier, 0.01 GHz to 10 GHz
ADI