HMC8410CHIPS-SX [ADI]

Low noise figure: 1.1 dB typical;
HMC8410CHIPS-SX
型号: HMC8410CHIPS-SX
厂家: ADI    ADI
描述:

Low noise figure: 1.1 dB typical

射频 微波
文件: 总16页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC,  
Low Noise Amplifier  
Data Sheet  
HMC8410CHIPS  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Low noise figure: 1.1 dB typical  
High gain: 19.5 dB typical  
2
RFOUT/V  
DD  
High output third-order intercept (IP3): 33 dBm typical  
Die size: 0.95 mm × 0.61 × 0.102 mm  
1
RFIN/V  
1
GG  
HMC8410CHIPS  
APPLICATIONS  
Figure 1.  
Software defined radios  
Electronics warfare  
Radar applications  
GENERAL DESCRIPTION  
The HMC8410CHIPS is a gallium arsenide (GaAs), monolithic  
microwave integrated circuit (MMIC), pseudomorphic high  
electron mobility transistor (pHEMT), low noise wideband ampli-  
fier that operates from 0.01 GHz to 10 GHz. The HMC8410CHIPS  
provides a typical gain of 19.5 dB, a 1.1 dB typical noise figure,  
and a typical output IP3 of 33 dBm, requiring only 65 mA from  
a 5 V supply voltage. The saturated output power (PSAT) of  
22.5 dBm enables the low noise amplifier (LNA) to function as a  
local oscillator (LO) driver for many of Analog Devices, Inc.,  
balanced, I/Q or image rejection mixers.  
The HMC8410CHIPS also features inputs/outputs (I/Os) that are  
internally matched to 50 Ω, making it ideal for surface-mounted  
technology (SMT)-based, high capacity microwave radio  
applications.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC8410CHIPS  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Applications Information.............................................................. 13  
Recommended Bias Sequencing .............................................. 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Electrical Specifications................................................................... 3  
0.01 GHz to 3 GHz Frequency Range........................................ 3  
3 GHz to 8 GHz Frequency Range............................................. 3  
8 GHz to 10 GHz Frequency Range........................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Mounting and Bonding Techniques for Millimeterwave GaAs  
MMICs......................................................................................... 13  
Application Circuits ....................................................................... 15  
Assembly Diagram ..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
10/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
HMC8410CHIPS  
SPECIFICATIONS  
0.01 GHz TO 3 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, and IDQ = 65 mA, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
0.01  
17.5  
Typ  
Max  
Unit  
GHz  
dB  
dB/°C  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
3
GAIN  
19.5  
0.01  
1.1  
Gain Variation Over Temperature  
NOISE FIGURE  
1.6  
RETURN LOSS  
Input  
Output  
15  
24  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY  
P1dB  
PSAT  
IP3  
19.0  
21.0  
22.5  
33  
dBm  
dBm  
dBm  
Current  
Voltage  
IDQ  
VDD  
65  
5
80  
6
mA  
V
Adjust VGG1 to achieve IDQ = 65 mA typical  
2
3 GHz TO 8 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, and IDQ = 65 mA, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
3
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
8
GAIN  
15.5  
18  
Gain Variation Over Temperature  
0.01  
1.4  
dB/°C  
dB  
NOISE FIGURE  
1.9  
RETURN LOSS  
Input  
Output  
12  
12  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY  
P1dB  
PSAT  
IP3  
17.5  
20.5  
22.5  
31.5  
dBm  
dBm  
dBm  
Current  
Voltage  
IDQ  
VDD  
65  
5
80  
6
mA  
V
Adjust VGG1 to achieve IDQ = 65 mA typical  
2
Rev. 0 | Page 3 of 16  
 
 
 
HMC8410CHIPS  
Data Sheet  
8 GHz TO 10 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, and IDQ = 65 mA, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
8
Typ  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
10  
GAIN  
13  
16  
Gain Variation Over Temperature  
0.01  
1.7  
dB/°C  
dB  
NOISE FIGURE  
2.2  
RETURN LOSS  
Input  
Output  
6
10  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY  
P1dB  
PSAT  
IP3  
17.5  
19.5  
21.5  
33  
dBm  
dBm  
dBm  
Current  
Voltage  
IDQ  
VDD  
65  
5
80  
6
mA  
V
Adjust VGG1 to achieve IDQ = 65 mA typical  
2
Rev. 0 | Page 4 of 16  
 
Data Sheet  
HMC8410CHIPS  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
θJC is the junction to case thermal resistance, channel to bottom  
of die.  
Parameter1  
Rating  
Drain Bias Voltage (VDD  
Radio Frequency (RF) Input Power (RFIN)  
Continuous Power Dissipation (PDISS), T = 85°C  
(Derate 13.23 mW/°C Above 85°C)  
)
7 V dc  
20 dBm  
1.2 W  
Table 5. Thermal Resistance  
Package Type  
θJC  
Unit  
C-2-3  
75.57  
°C/W  
Channel Temperature  
175°C  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity  
−65°C to +150°C  
−55°C to +85°C  
ESD CAUTION  
Human Body Model (HBM)  
Class 1B passed  
500 V  
1 When referring to a single function of a multifunction pin in the parameters,  
only the portion of the pin name that is relevant to the specification is listed.  
For the full pin names of multifunction pins, refer to the Pin Configuration  
and Function Descriptions section.  
2 See the Ordering Guide section for more information.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 5 of 16  
 
 
HMC8410CHIPS  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC8410CHIPS  
2
RFOUT/V  
DD  
TOP VIEW  
(Not to Scale)  
1
RFIN/V  
1
GG  
Figure 2. Pad Configuration  
Table 6. Pad Function Descriptions  
Pin No.  
Mnemonic Description  
1
RFIN/VGG  
1
RF Input (RFIN). This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the interface schematic.  
Gate Bias of the Amplifier (VGG1). This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the interface  
schematic.  
2
RFOUT/VDD RF Output (RFOUT). This pin is ac-coupled and matched to 50 Ω. See Figure 5 for the interface schematic.  
Drain Bias for Amplifier (VDD). This pin is ac-coupled and matched to 50 Ω. See Figure 5 for the interface  
schematic.  
Die Bottom GND  
Ground. Die bottom must be connected to RF/dc ground.  
INTERFACE SCHEMATICS  
RFOUT/V  
DD  
GND  
Figure 5. RFOUT/VDD Interface Schematic  
Figure 3. GND Interface Schematic  
RFIN/V  
1
GG  
Figure 4. RFIN/VGG1 Interface Schematic  
Rev. 0 | Page 6 of 16  
 
 
 
 
Data Sheet  
HMC8410CHIPS  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
20  
15  
10  
5
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–55°C  
0
–5  
–10  
–15  
–20  
S11  
S21  
S22  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Gain and Return Loss vs. Frequency  
Figure 9. Gain vs. Frequency for Various Temperatures  
0
–2  
0
–5  
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
–4  
–10  
–15  
–20  
–25  
–30  
–35  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Input Return Loss vs. Frequency for Various Temperatures  
Figure 10. Output Return Loss vs. Frequency for Various Temperatures  
4.0  
15  
+85°C  
+25°C  
+85°C  
14  
+25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–55°C  
–55°C  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Noise Figure vs. Frequency for Various Temperatures  
Figure 11. Noise Figure vs. Frequency for Various Temperatures,  
10 MHz to 1 GHz  
Rev. 0 | Page 7 of 16  
 
HMC8410CHIPS  
Data Sheet  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–55°C  
+85°C  
+25°C  
–55°C  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
11  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output IP2 vs. Frequency for Various Temperatures at POUT/Tone =  
5 dBm  
Figure 12. P1dB vs. Frequency for Various Temperatures  
0
25  
+85°C  
+25°C  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
–55°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
+85°C  
+25°C  
–55°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Reverse Isolation vs. Frequency for Various Temperatures  
Figure 13. PSAT vs. Frequency for Various Temperatures  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–55°C  
0dBm
5dBm
10dBm
5
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Output IP3 vs. Frequency for Various Temperatures,  
Output Power (POUT)/Tone = 5 dBm  
Figure 17. Output IP3 vs. Frequency for Various POUT/Tone  
Rev. 0 | Page 8 of 16  
Data Sheet  
HMC8410CHIPS  
40  
35  
30  
25  
20  
15  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
P
PAE  
GAIN  
P1dB  
SAT  
OUTPUT IP3  
SAT  
P
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. Gain, P1dB, PSAT, and Output IP3 vs. Frequency  
Figure 21. PSAT and PAE vs. Frequency  
40  
35  
30  
25  
20  
15  
10  
5
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
P1dB  
PAE  
1GHz  
3GHz  
5GHz  
7GHz  
9GHz  
0
–10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
0
1
2
3
4
5
6
7
8
9
10  
11  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 22. Power Dissipation vs. Input Power for Various Frequencies, TA = 85°C  
Figure 19. P1dB and Power Added Efficiency (PAE) vs. Frequency  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
22  
5mA  
45mA  
65mA  
70mA  
80mA  
15mA  
25mA  
35mA  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
P
OUT  
GAIN  
PAE  
I
DD  
0
–10  
–5  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
11  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 20. POUT, Gain, PAE, and Supply Current with RF Applied (IDD) vs.  
Input Power at 5 GHz  
Figure 23. Gain vs. Frequency for Various Supply Currents, VDD = 5 V  
Rev. 0 | Page 9 of 16  
HMC8410CHIPS  
Data Sheet  
4.0  
40  
35  
30  
25  
20  
15  
10  
5
5mA  
15mA  
25mA  
35mA  
45mA  
65mA  
70mA  
75mA  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5mA  
15mA  
35mA  
65mA  
75mA  
25mA  
45mA  
70mA  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 27. Output IP3 vs. Frequency for Various Supply Currents (IDQ),  
OUT/Tone = 5 dBm, VDD = 5 V  
Figure 24. Noise Figure vs. Frequency for Various Supply Currents (IDQ),  
VDD = 5 V  
P
22  
20  
18  
16  
14  
12  
10  
8
25  
3V  
4V  
5V  
6V  
7V  
20  
5mA  
15  
15mA  
25mA  
35mA  
45mA  
65mA  
10  
70mA  
75mA  
80mA  
5
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Gain vs. Frequency for Various Supply Voltages, IDQ = 65 mA  
Figure 25. P1dB vs. Frequency for Various Supply Currents (IDQ), VDD = 5 V  
4.0  
3V  
4V  
25  
24  
23  
22  
5V  
6V  
7V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
21  
5mA  
15mA  
25mA  
20  
35mA  
45mA  
65mA  
70mA  
75mA  
80mA  
19  
18  
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10  
11  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 29. Noise Figure vs. Frequency for Various Supply Voltages, IDQ = 65 mA  
Figure 26. PSAT vs. Frequency for Various Supply Currents (IDQ), VDD = 5 V  
Rev. 0 | Page 10 of 16  
 
Data Sheet  
HMC8410CHIPS  
25  
23  
21  
19  
17  
15  
13  
11  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3V  
4V  
5V  
6V  
7V  
0
1
2
3
4
5
6
7
8
9
10  
11  
–0.90 –0.85 –0.80 –0.75 –0.70 –0.65 –0.60 –0.55 –0.50 –0.45  
FREQUENCY (GHz)  
V 1 (V)  
GG  
Figure 33. Supply Current with RF Applied (IDD) vs. VGG1, VDD = 5 V,  
Representative of a Typical Device  
Figure 30. P1dB vs. Frequency for Various Supply Voltages, IDQ = 65 mA  
120  
100  
80  
27  
25  
23  
21  
19  
17  
60  
5mA  
15mA  
40  
25mA  
35mA  
45mA  
3V  
4V  
65mA  
20  
15  
70mA  
75mA  
80mA  
5V  
6V  
7V  
0
–10  
13  
–5  
0
5
10  
15  
0
2
4
6
8
10  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 34. Supply Current with RF Applied (IDD) vs. Input Power for  
Various Supply Currents (IDQ), VDD = 5 V  
Figure 31. PSAT vs. Frequency for Various Supply Voltages, IDQ = 65 mA  
20  
18  
16  
14  
40  
35  
30  
25  
20  
15  
12  
5mA  
15mA  
25mA  
10  
35mA  
45mA  
65mA  
10  
3V  
4V  
8
70mA  
75mA  
80mA  
5V  
6V  
7V  
5
6
0
–10  
–5  
0
5
10  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 35. Gain vs. Input Power for Various Supply Currents (IDQ) at 5 GHz,  
DD = 5 V  
Figure 32. Output IP3 vs. Frequency for Various Supply Voltages,  
POUT/Tone = 5 dBm  
V
Rev. 0 | Page 11 of 16  
 
 
HMC8410CHIPS  
Data Sheet  
THEORY OF OPERATION  
The HMC8410CHIPS is a GaAs, MMIC, pHEMT, low noise  
wideband amplifier.  
The HMC8410CHIPS has single-ended input and output ports  
whose impedances are nominally equal to 50 Ω over the 0.01 GHz  
to 10 GHz frequency range. Consequently, it can directly insert  
into a 50 Ω system with no required impedance matching  
circuitry, which also means that multiple HMC8410CHIPS  
amplifiers can be cascaded back to back without the need for  
external matching circuitry.  
The cascode amplifier uses a fundamental cell of two field effect  
transistors (FETs) in series, source to drain. The basic schematic  
for the cascode cell is shown in Figure 36, which forms a low  
noise amplifier operating from 0.01 GHz to 10 GHz with excellent  
noise figure performance.  
RFOUT/V  
The input and output impedances are sufficiently stable vs.  
variations in temperature and supply voltage so that no impedance  
matching compensation is required.  
DD  
To achieve optimal performance from the HMC8410CHIPS and  
prevent damage to the device, do not exceed the absolute  
maximum ratings.  
RFIN/V  
1
GG  
Figure 36. Basic Schematic for the Cascode Cell  
Rev. 0 | Page 12 of 16  
 
 
Data Sheet  
HMC8410CHIPS  
APPLICATIONS INFORMATION  
Figure 39 shows the basic connections for operating the  
HMC8410CHIPS. The data taken herein used wideband bias  
tees on the input and output ports to provide both ac coupling and  
the necessary supply voltages to the RFIN/VGG1 and RFOUT/VDD  
pins. A 5 V dc drain bias is supplied to the amplifier through  
the choke inductor connected to the RFOUT/VDD pin, and the  
−2 V gate bias voltage is supplied to the RFIN/VGG1 pin through  
the choke inductor. The RF signal must be ac-coupled to prevent  
disrupting the dc bias applied to RFIN/VGG1 and RFOUT/VDD.  
The nonideal characteristics of ac coupling capacitors and  
choke inductors (for example, self resonance) can introduce  
performance trade-offs that must be considered when using a  
single application circuit across a very wide frequency range.  
MOUNTING AND BONDING TECHNIQUES FOR  
MILLIMETERWAVE GaAs MMICS  
Attach the die directly to the ground plane eutectically or with  
conductive epoxy (see the Handling Precautions section).  
To bring the radio frequency to and from the chip, implementing  
50 Ω transmission lines using a microstrip or coplanar waveguide  
on 0.127 mm (5 mil) thick alumina, thin film substrates is recom-  
mended (see Figure 37). When using 0.254 mm (10 mil) thick  
alumina, it is recommended that the die be raised to ensure that  
the die and substrate surfaces are coplanar. Raise the die 0.150 mm  
(6 mil) to ensure that the surface of the die is coplanar with the  
surface of the substrate. To accomplish this, attach the 0.102 mm  
(4 mil) thick die to a 0.150 mm (6 mil) thick, molybdenum (Mo)  
heat spreader (moly tab), which can then be attached to the  
ground plane (see Figure 37 and Figure 38).  
RECOMMENDED BIAS SEQUENCING  
The recommended bias sequence during power-up is as follows:  
1. Connect to GND.  
0.102mm (0.004") THICK GaAs MMIC  
2. Set RFIN/VGG1 to −2 V.  
3. Set RFOUT/VDD to 5 V.  
4. Increase RFIN/VGG1 to achieve a typical supply current  
(IDQ) = 65 mA.  
WIRE BOND  
0.076mm  
(0.003")  
5. Apply the RF signal.  
The recommended bias sequence during power-down is as  
follows:  
RF GROUND PLANE  
1. Turn off the RF signal.  
2. Decrease RFIN/VGG1 to −2 V to achieve a typical IDQ = 0 mA.  
3. Decrease RFOUT/VDD to 0 V.  
0.127mm (0.005") THICK ALUMINA  
THIN FILM SUBSTRATE  
4. Increase RFIN/VGG1 to 0 V.  
Figure 37. Die Without the Moly Tab  
The bias conditions previously listed (RFOUT/VDD = 5 V and  
I
DQ = 65 mA) are the recommended operating conditions to  
0.102mm (0.004") THICK GaAs MMIC  
achieve optimum performance. The data used in this data sheet  
was taken with the recommended bias conditions. When using  
the HMC8410CHIPS with different bias conditions, different  
performance than that shown in the Typical Performance  
Characteristics section may result.  
WIRE BOND  
0.076mm  
(0.003")  
Figure 29, Figure 30, and Figure 31 show that increasing the  
voltage from 3 V to 7 V typically increases P1dB and PSAT at the  
expense of power consumption with minor degradation on  
noise figure (NF).  
RF GROUND PLANE  
0.150mm (0.005") THICK  
MOLY TAB  
0.254mm (0.010") THICK ALUMINA  
THIN FILM SUBSTRATE  
Figure 38. Die With the Moly Tab  
Place microstrip substrates as close to the die as possible to  
minimize bond wire length. Typical die to substrate spacing is  
0.076 mm to 0.152 mm (3 mil to 6 mil).  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
HMC8410CHIPS  
Data Sheet  
Handling Precautions  
Follow ESD precautions to protect against ESD strikes.  
While bias is applied, suppress instrument and bias supply  
transients. Use shielded signal and bias cables to minimize  
inductive pickup.  
Handle the chip along the edges with a vacuum collet or  
with a sharp pair of bent tweezers. The surface of the chip  
may have fragile air bridges and must not be touched with  
a vacuum collet, tweezers, or fingers.  
To avoid permanent damage, follow these storage, cleanliness,  
static sensitivity, transient, and general handling precautions:  
Place all bare die in either waffle or gel-based ESD  
protective containers and then seal the die in an ESD  
protective bag for shipment. After the sealed ESD  
protective bag is opened, store all die in a dry nitrogen  
environment.  
Handle the chips in a clean environment. Do not attempt  
to clean the chip using liquid cleaning systems.  
Rev. 0 | Page 14 of 16  
 
Data Sheet  
HMC8410CHIPS  
APPLICATION CIRCUIT  
V
1
V
DD  
GG  
RFIN  
1
2
RFOUT  
EXTERNAL BIAS TEE  
EXTERNAL BIAS TEE  
Figure 39. Application Circuit  
ASSEMBLY DIAGRAM  
3mil NOMINAL GAP  
50Ω  
TRANSMISSION  
LINE  
RFOUT/V  
DD  
RFIN/V  
1
GG  
Figure 40. Assembly Diagram  
Rev. 0 | Page 15 of 16  
 
 
 
HMC8410CHIPS  
Data Sheet  
OUTLINE DIMENSIONS  
0.950  
0.159  
0.630  
0.102  
ADI 2015  
0.162  
0.248  
0.186  
0.610  
2
0.162  
0.165  
1
0.099  
SIDE VIEW  
TOP VIEW  
0.779  
0.078  
Figure 41. 2-Pad Bare Die [CHIP]  
(C-2-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−55°C to +85°C  
−55°C to +85°C  
Package Description  
2-Pad Bare Die [CHIP]  
2-Pad Bare Die [CHIP]  
Package Option  
HMC8410CHIPS  
HMC8410CHIPS-SX  
C-2-3  
C-2-3  
1 The HMC8410CHIPS and HMC8410CHIPS-SX are RoHS Compliant Parts.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15093-0-10/16(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

HMC8410LP2FE

0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier
ADI

HMC8410LP2FETR

Low Noise Amplifier
ADI

HMC8410_17

Low Noise Amplifier
ADI

HMC8411LP2FE

Low Noise Amplifier, 0.01 GHz to 10 GHz
ADI

HMC8411LP2FETR

Low Noise Amplifier, 0.01 GHz to 10 GHz
ADI

HMC8412

Low Noise Amplifier, 0.4 GHz to 11 GHz
ADI

HMC8412LP2FE

Low Noise Amplifier, 0.4 GHz to 11 GHz
ADI

HMC8412LP2FETR

Low Noise Amplifier, 0.4 GHz to 11 GHz
ADI

HMC8413

Low Noise Amplifier, 0.01 GHz to 9 GHz
ADI

HMC8413LP2FE

Low Noise Amplifier, 0.01 GHz to 9 GHz
ADI

HMC8413LP2FETR

Low Noise Amplifier, 0.01 GHz to 9 GHz
ADI

HMC8415LP6GE

40 W (46 dBm), 9 GHz to 10.5 GHz, GaN Power Amplifier
ADI