IRF7811 [ADI]

Synchronous Buck Controller; 同步降压控制器
IRF7811
型号: IRF7811
厂家: ADI    ADI
描述:

Synchronous Buck Controller
同步降压控制器

控制器
文件: 总40页 (文件大小:2501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Synchronous Buck Controller with  
Constant On Time and Valley Current Mode  
Data Sheet  
ADP1878/ADP1879  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
V
= 2.95V TO 20V  
IN  
Power input voltage range: 2.95 V to 20 V  
On-board bias regulator  
Minimum output voltage: 0.6 V  
VIN  
C
C
ADP1878/  
ADP1879  
0.6 V reference voltage with 1.0% accuracy  
Supports all N-channel MOSFET power stages  
Available in 300 kHz, 600 kHz, and 1.0 MHz options  
No current sense resistor required  
Power saving mode (PSM) for light loads (ADP1879 only)  
Resistor programmable current limit  
Power good with internal pull-up resistor  
Externally programmable soft start  
Thermal overload protection  
C
C
IN  
C2  
R
C
COMP  
BST  
DRVH  
SW  
C
10k  
Q1  
BST  
V
L
REG  
EN  
FB  
R
V
TOP  
OUT  
V
OUT  
C
Q2  
OUT  
R
BOT  
LOAD  
GND  
DRVL  
C
VREG2  
VREG  
C
VREG  
R
PGD  
PGOOD  
SS  
V
EXT  
RES  
R
RES  
C
SS  
PGND  
Short-circuit protection  
Standalone precision enable input  
Integrated bootstrap diode for high-side drive  
Starts into a precharged output  
Figure 1.  
Available in a 14-lead LFCSP_WD package  
APPLICATIONS  
Telecommunications and networking systems  
Mid-to-high end servers  
Set-top boxes  
DSP core power supplies  
conditions. The low-side current sense, current gain scheme and  
integration of a boost diode, together with the PSM/forced  
pulse-width modulation (PWM) option, reduce the external  
device count and improve efficiency.  
GENERAL DESCRIPTION  
The ADP1878/ADP1879 are versatile current-mode, synchronous  
step-down controllers. They provide superior transient response,  
optimal stability, and current-limit protection by using a constant  
on time, pseudo fixed frequency with a programmable current-limit,  
current control scheme. These devices offer optimum performance  
at low duty cycles by using a valley, current-mode control architec-  
ture allowing the ADP1878/ADP1879 to drive all N-channel power  
stages to regulate output voltages to as low as 0.6 V.  
The ADP1878/ADP1879 operate over the −40°C to +125°C  
junction temperature range and are available in a 14-lead  
LFCSP_WD package.  
100  
V
= 5V (PSM)  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
The ADP1879 is the power saving mode (PSM) version of the  
device and is capable of pulse skipping to maintain output  
regulation while achieving improved system efficiency at light  
loads (see the ADP1879 Power Saving Mode (PSM) section for  
more information).  
V
= 16.5V  
IN  
V
= 13V  
IN  
V
= 13V (PSM)  
IN  
Available in three frequency options (300 kHz, 600 kHz, and  
1.0 MHz) plus the PSM option, the ADP1878/ADP1879 are well  
suited for a wide range of applications that require a single input  
power supply range from 2.95 V to 20 V. Low voltage biasing is  
supplied via a 5 V internal low dropout regulator (LDO). In  
addition, soft start programmability is included to limit input  
inrush current from the input supply during startup and to  
provide reverse current protection during precharged output  
T
= 25°C  
A
V
= 1.8V  
OUT  
f
SW  
= 300kHz  
V
= 16.5V (PSM)  
IN  
WÜRTH INDUCTOR:  
744325120, L = 1.2µH, DCR = 1.8m  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
10  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 2. ADP1878/ADP1879 Efficiency vs. Load Current (VOUT = 1.8 V, 300 kHz)  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP1878/ADP1879  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pseudo Fixed Frequency............................................................ 22  
Power-Good Monitoring........................................................... 23  
Applications Information.............................................................. 24  
Feedback Resistor Divider ........................................................ 24  
Inductor Selection...................................................................... 24  
Output Ripple Voltage (ΔVRR) .................................................. 24  
Output Capacitor Selection....................................................... 24  
Compensation Network ............................................................ 25  
Efficiency Consideration........................................................... 26  
Input Capacitor Selection.......................................................... 27  
Thermal Considerations............................................................ 27  
Design Example.......................................................................... 29  
External Component Recommendations.................................... 31  
Layout Considerations................................................................... 33  
IC Section (Left Side of Evaluation Board)............................. 35  
Power Section ............................................................................. 35  
Differential Sensing.................................................................... 36  
Typical Application Circuits ......................................................... 37  
12 A, 300 kHz High Current Application Circuit.................. 37  
5.5 V Input, 600 kHz Current Application Circuit................ 37  
300 kHz High Current Application Circuit............................ 38  
Packaging and Ordering Information ......................................... 39  
Outline Dimensions................................................................... 39  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings ....................................................... 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 17  
Block Diagram ............................................................................ 17  
Startup.......................................................................................... 18  
Soft Start ...................................................................................... 18  
Precision Enable Circuitry ........................................................ 18  
Undervoltage Lockout ............................................................... 18  
On-Board Low Dropout (LDO) Regulator............................. 18  
Thermal Shutdown..................................................................... 19  
Programming Resistor (RES) Detect Circuit.......................... 19  
Valley Current-Limit Setting .................................................... 19  
Hiccup Mode During Short Circuit......................................... 21  
Synchronous Rectifier................................................................ 21  
ADP1879 Power Saving Mode (PSM)...................................... 21  
Timer Operation......................................................................... 22  
REVISION HISTORY  
6/12—Rev. 0 to Rev. A  
Changes to Table 1.............................................................................3  
7/11—Revision 0: Initial Version  
Rev. A | Page 2 of 40  
 
Data Sheet  
ADP1878/ADP1879  
SPECIFICATIONS  
All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). VREG = 5 V,  
BST − SW = VREG − VRECT_DROP (see Figure 40 to Figure 42). VIN = 12 V. The specifications are valid for TJ = −40°C to +125°C,  
unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY CHARACTERISTICS  
High Input Voltage Range  
VIN  
CVIN = 22 μF(25 V rating) right at Pin 1 to PGND (Pin 11)  
ADP1878ACPZ-0.3-R7/ADP1879ACPZ-0.3-R7 (300 kHz)  
ADP1878ACPZ-0.6-R7/ADP1879ACPZ-0.6-R7 (600 kHz)  
ADP1878ACPZ-1.0-R7/ADP1879ACPZ-1.0-R7 (1.0 MHz)  
FB = 1.5 V, no switching  
2.95  
2.95  
3.25  
12  
12  
12  
1.1  
20  
20  
20  
V
V
V
mA  
Quiescent Current  
Shutdown Current  
IQ_REG  
IQ_BST  
IREG,SD  
IBST,SD  
UVLO  
+
+
EN < 600 mV  
140  
225  
μA  
Undervoltage Lockout  
UVLO Hysteresis  
Rising VIN (see Figure 35 for temperature variation)  
Falling VIN from operational state  
2.65  
178  
V
mV  
INTERNAL REGULATOR  
CHARACTERISTICS  
Do not load VREG externally because it is intended to  
bias internal circuitry only  
VREG Operational Output Voltage VREG  
CVREG = 4.7 μF to PGND, 0.22 μF to GND, VIN = 2.95 V to 20 V  
ADP1878ACPZ-0.3-R7/ADP1879ACPZ-0.3-R7 (300 kHz)  
ADP1878ACPZ-0.6-R7/ADP1879ACPZ-0.6-R7 (600 kHz)  
ADP1878ACPZ-1.0-R7/ADP1879ACPZ-1.0-R7 (1.0 MHz)  
VIN = 7 V, 100 mA  
2.75  
2.75  
3.05  
4.82  
4.83  
5
5
5
5.5  
5.5  
5.5  
V
V
V
V
VREG Output in Regulation  
Load Regulation  
4.981 5.16  
4.982 5.16  
VIN = 12 V, 100 mA  
0 mA to 100 mA, VIN = 7 V  
V
32  
34  
1.8  
2.0  
306  
229  
mV  
mV  
mV  
mV  
mV  
mA  
0 mA to 100 mA, VIN = 20 V  
Line Regulation  
VIN = 7 V to 20 V, 20 mA  
VIN = 7 V to 20 V, 100 mA  
VIN to VREG Dropout Voltage  
Short VREG to PGND  
SOFT START  
Soft Start Period Calculation  
ERROR AMPLIFER  
100 mA out of VREG, VIN ≤ 5 V  
VIN = 20 V  
415  
320  
Connect external capacitor from SS pin to GND,  
CSS = 10 nF/ms  
10  
nF/ms  
FB Regulation Voltage  
VFB  
TJ = 25°C  
TJ = −40°C to +85°C  
TJ = −40°C to +125°C  
600  
600  
594.2 600  
mV  
mV  
605.8 mV  
596  
604  
Transconductance  
FB Input Leakage Current  
CURRENT SENSE AMPLIFIER GAIN  
Programming Resistor (RES)  
Value from RES to PGND  
Gm  
IFB, LEAK  
320  
496  
1
670  
50  
μS  
nA  
FB = 0.6 V, EN = VREG  
RES = 47 kΩ 1%  
2.7  
3
3.3  
V/V  
RES = 22 kΩ 1%  
RES = none  
RES = 100 kΩ 1%  
5.5  
11  
22  
6
12  
24  
6.5  
13  
26  
V/V  
V/V  
V/V  
SWITCHING FREQUENCY  
Typical values measured at 50% time points with 0 nF at  
DRVH and DRVL; maximum values are guaranteed by  
bench evaluation1  
ADP1878ACPZ-0.3-R7/  
ADP1879ACPZ-0.3-R7  
300  
kHz  
On Time  
Minimum On Time  
Minimum Off Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
84% duty cycle (maximum)  
1120 1200 1345 ns  
145  
340  
190  
400  
ns  
ns  
Rev. A | Page 3 of 40  
 
ADP1878/ADP1879  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADP1878ACPZ-0.6-R7/  
ADP1879ACPZ-0.6-R7  
600  
kHz  
On Time  
Minimum On Time  
Minimum Off Time  
ADP1878ACPZ-1.0-R7/  
ADP1879ACPZ-1.0-R7  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V, VOUT = 0.8 V  
65% duty cycle (maximum)  
500  
540  
82  
340  
1.0  
605  
110  
400  
ns  
ns  
ns  
MHz  
On Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
45% duty cycle (maximum)  
285  
312  
52  
340  
360  
85  
400  
ns  
ns  
ns  
Minimum On Time  
Minimum Off Time  
OUTPUT DRIVER CHARACTERISTICS  
High-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 59)  
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 60)  
2.20  
0.72  
25  
3
1
Ω
Ω
ns  
ns  
tr, DRVH  
tf, DRVH  
Fall Time2  
11  
Low-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
VREG = 5.0 V, CIN = 4.3 nF (see Figure 60)  
1.5  
0.7  
18  
2.2  
1
Ω
Ω
ns  
ns  
tr,DRVL  
tf,DRVL  
Fall Time2  
VREG = 5.0 V, CIN = 4.3 nF (see Figure 59)  
16  
Propagation Delays  
DRVL Fall to DRVH Rise2  
DRVH Fall to DRVL Rise2  
SW Leakage Current  
Integrated Rectifier  
Channel Impedance  
PRECISION ENABLE THRESHOLD  
Logic High Level  
ttpdhDRVH  
ttpdhDRVL  
ISWLEAK  
BST − SW = 4.4 V (see Figure 59)  
BST − SW = 4.4 V (see Figure 60)  
BST = 25 V, SW = 20 V, VREG = 5 V  
15.7  
16  
ns  
ns  
μA  
110  
663  
ISINK = 10 mA  
22.3  
Ω
VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V  
VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V  
605  
634  
31  
mV  
mV  
Enable Hysteresis  
COMP VOLTAGE  
COMP Clamp Low Voltage  
VCOMP(LOW) Tie EN pin to VREG to enable device  
(2.75 V ≤ VREG ≤ 5.5 V)  
0.47  
V
COMP Clamp High Voltage  
COMP Zero Current Threshold  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
CURRENT LIMIT  
VCOMP(HIGH) (2.75 V ≤ VREG ≤ 5.5 V)  
2.55  
V
V
VCOMP_ZCT  
TTMSD  
(2.75 V ≤ VREG ≤ 5.5 V)  
Rising temperature  
1.10  
155  
15  
°C  
°C  
Hiccup Current-Limit Timing  
COMP = 2.4 V  
6
ms  
OVERVOLTAGE AND POWER-  
GOOD THRESHOLDS  
PGOOD  
FBPGD  
FB Power-Good Threshold  
FB Power-Good Hysteresis  
FB Overvoltage Threshold  
FB Overvoltage Hysteresis  
PGOOD Low Voltage During Sink  
PGOOD Leakage Current  
VFB rising during system power up  
542  
34  
691  
35  
143  
1
566  
55  
710  
55  
200  
100  
mV  
mV  
mV  
mV  
mV  
nA  
FBOV  
VFB rising during overvoltage event, IPGOOD = 1 mA  
VPGOOD  
IPGOOD = 1 mA  
PGOOD = 5 V  
1 The maximum specified values are with the closed loop measured at 10% to 90% time points (see Figure 59 and Figure 60), CGATE = 4.3 nF, and the high- and low-side  
MOSFETs being Infineon BSC042N03MS G.  
2 Not automatic test equipment (ATE) tested.  
Rev. A | Page 4 of 40  
 
Data Sheet  
ADP1878/ADP1879  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Rating  
VREG to PGND, GND  
VIN, EN, PGOOD to PGND  
FB, COMP, RES, SS to GND  
DRVL to PGND  
SW to PGND  
BST to SW  
BST to PGND  
DRVH to SW  
PGND to GND  
−0.3 V to +6 V  
−0.3 V to +28 V  
−0.3V to (VREG + 0.3 V)  
−0.3V to (VREG + 0.3 V)  
−2.0 V to +28 V  
−0.6 V to (VREG + 0.3 V)  
−0.3V to +28 V  
−0.3 V to VREG  
0.3 V  
Boundary Condition  
In determining the values given in Table 2 and Table 3, natural  
convection is used to transfer heat to a 4-layer evaluation board.  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
θJA (14-Lead LFCSP_WD)  
4-Layer Board  
30  
°C/W  
PGOOD Input Current  
θJA (14-Lead LFCSP_WD)  
4-Layer Board  
35 mA  
ESD CAUTION  
30°C/W  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
Maximum Soldering Lead Temperature 300°C  
(10 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all other voltages are  
referenced to PGND.  
Rev. A | Page 5 of 40  
 
 
 
 
 
ADP1878/ADP1879  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP1878/ADP1879  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN  
COMP  
EN  
BST  
SW  
DRVH  
PGND  
DRVL  
PGOOD  
SS  
FB  
GND  
RES  
8
VREG  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO THE  
ANALOG GROUND PIN (GND).  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin  
No.  
Mnemonic Description  
1
VIN  
High-Side Input Voltage. Connect VIN to the drain of the high-side MOSFET.  
2
COMP  
Output of the Error Amplifier. Connect compensation network between this pin and AGND to achieve stability (see  
the Compensation Network section).  
3
4
5
EN  
FB  
GND  
IC Enable. Connect EN to VREG to enable the IC. When pulled down to AGND externally, EN disables the IC.  
Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected.  
Analog Ground Reference Pin of the IC. Connect all sensitive analog components to this ground plane (see the Layout  
Considerations section).  
6
7
RES  
VREG  
Current Sense Gain Resistor (External). Connect a resistor between the RES pin and GND (Pin 5).  
Internal Regulator Supply Bias Voltage for the ADP1878/ADP1879 Controller (Includes the Output Gate Drivers).  
Connecting a bypass capacitor of 1 μF directly from this pin to PGND and a 0.1 μF capacitor across VREG and GND are  
recommended.  
8
SS  
Soft Start Input. Connect an external capacitor to GND to program the soft start period. There is a capacitance value  
of 10 nF for every 1 ms of soft start delay.  
9
PGOOD  
DRVL  
Open-Drain Power-Good Output. PGOOD sinks current when FB is out of regulation or during thermal shutdown.  
Connect a 3 kΩ resistor between PGOOD and VREG. Leave PGOOD unconnected if it is not used.  
Drive Output for the External Low-Side, N-Channel MOSFET. This pin also serves as the current sense gain setting pin  
(see Figure 69).  
10  
11  
12  
13  
14  
PGND  
DRVH  
SW  
Power Ground. Ground for the low-side gate driver and low-side N-channel MOSFET.  
Drive Output for the External High-Side N-Channel MOSFET.  
Switch Node Connection.  
Bootstrap for the High-Side N-Channel MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected  
between VREG and BST. A capacitor from BST to SW is required. An external Schottky diode can also be connected  
between VREG and BST for increased gate drive capability.  
BST  
EP  
Exposed Pad. Connect the exposed pad to the analog ground pin (GND).  
Rev. A | Page 6 of 40  
 
Data Sheet  
ADP1878/ADP1879  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
95  
90  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 13V  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 13V (PSM)  
IN  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 16.5V  
IN  
V
= 13V  
IN  
T
V
= 25°C  
= 0.8V  
= 300kHz  
T = 25°C  
A
V
= 16.5V (PSM)  
A
IN  
V
= 0.8V  
= 600kHz  
OUT  
OUT  
V
= 16.5V  
(PSM)  
IN  
f
f
SW  
SW  
WÜRTH INDUCTOR:  
744325072, L = 0.72µH, DCR = 1.3m  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744355147, L = 0.47µH, DCR = 0.67mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
0
10  
100  
1k  
10k  
100k  
100k  
100k  
10  
100  
1k  
10k  
100k  
100k  
100k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Efficiency—300 kHz, VOUT = 0.8 V  
Figure 7. Efficiency—600 kHz, VOUT = 0.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V (PSM)  
IN  
V
= 13V  
IN  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 13V (PSM)  
IN  
V
= 13V  
IN  
V
= 16.5V  
IN  
V
= 16.5V (PSM)  
IN  
V
= 16.5V (PSM)  
IN  
T
V
= 25°C  
= 1.8V  
= 300kHz  
T
= 25°C  
A
= 1.8V  
= 600kHz  
A
V
f
OUT  
OUT  
f
SW  
SW  
WÜRTH INDUCTOR:  
744325120, L = 1.2µH, DCR = 1.8mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744325072, L = 0.72µH, DCR = 1.3mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
10  
0
10  
100  
1k  
10k  
100  
1k  
10k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. Efficiency—300 kHz, VOUT = 1.8 V  
Figure 8. Efficiency—600 kHz, VOUT = 1.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 16.5V (PSM)  
V
= 13V (PSM)  
IN  
IN  
V
= 16.5V (PSM)  
IN  
V
= 13V (PSM)  
IN  
V
= 13V  
IN  
V
= 16.5V  
IN  
V
= 16.5V  
IN  
V
= 20V (PSM)  
IN  
V
= 20V  
IN  
T
V
= 25°C  
= 7V  
= 300kHz  
T = 25°C  
A
A
V
= 5V  
= 600kHz  
OUT  
OUT  
f
f
SW  
SW  
WÜRTH INDUCTOR:  
7443551200, L = 2.0µH, DCR = 2.6mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744318180, L = 1.4µH, DCR = 3.2mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
10  
0
10  
100  
1k  
LOAD CURRENT (mA)  
10k  
100  
1k  
10k  
LOAD CURRENT (mA)  
Figure 6. Efficiency—300 kHz, VOUT = 7 V  
Figure 9. Efficiency—600 kHz, VOUT = 5 V  
Rev. A | Page 7 of 40  
 
ADP1878/ADP1879  
Data Sheet  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
0.793  
0.792  
V
= 13V  
IN  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
T
V
= 25°C  
A
= 0.8V  
OUT  
= 1.0MHz  
V
= 16.5V (PSM)  
IN  
f
SW  
WÜRTH INDUCTOR:  
744303012, L = 0.12µH, DCR = 0.33m  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
V
= 13V  
V
= 16.5V  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
0
10  
100  
1k  
10k  
100k  
0
2000  
4000  
6000  
8000  
10,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Efficiency—1.0 MHz, VOUT = 0.8 V  
Figure 13. Output Voltage Accuracy—300 kHz, VOUT = 0.8 V  
1.821  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 13V  
IN  
1.816  
1.811  
1.806  
1.801  
1.796  
1.791  
1.786  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 16.5V (PSM)  
IN  
T
V
f
= 25°C  
A
= 1.8V  
OUT  
= 1.0MHz  
SW  
V
= 5.5V  
V
= 13V  
V
= 16.5V  
IN  
WÜRTH INDUCTOR:  
744303022, L = 0.22µH, DCR = 0.33mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
0
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
10  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 14. Output Voltage Accuracy—300 kHz, VOUT = 1.8 V  
Figure 11. Efficiency—1.0 MHz, VOUT = 1.8 V  
7.100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
7.095  
7.090  
7.085  
7.080  
7.075  
7.070  
7.065  
7.060  
7.055  
7.050  
7.045  
7.040  
7.035  
7.030  
7.025  
7.020  
7.015  
7.010  
7.005  
7.000  
V
= 13V (PSM)  
IN  
V
= 13V  
IN  
V
= 16.5V (PSM)  
IN  
V
= 16.5V  
IN  
T
V
= 25°C  
= 5V  
= 1.0MHz  
A
OUT  
f
SW  
WÜRTH INDUCTOR:  
744355090, L = 0.9µH, DCR = 1.6mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
IN  
IN  
0
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
LOAD CURRENT (mA)  
10  
100  
1k  
LOAD CURRENT (mA)  
10k  
100k  
Figure 15. Output Voltage Accuracy—300 kHz, VOUT = 7 V  
Figure 12. Efficiency—1.0 MHz, VOUT = 5 V  
Rev. A | Page 8 of 40  
Data 4heet  
ADP1878/ADP1879  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.807  
0.805  
0.803  
0.801  
0.799  
0.797  
0.795  
0.793  
0.791  
0.789  
0.787  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
IN  
IN  
0.792  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
2000  
4000  
6000  
8000  
10,000  
LOAD CURRENT (mA)  
Figure 16. Output Voltage Accuracy—600 kHz, VOUT = 0.8 V  
Figure 19. Output Voltage Accuracy—1.0 MHz, VOUT = 0.8 V  
1.820  
1.818  
1.816  
1.814  
1.812  
1.810  
1.808  
1.806  
1.804  
1.802  
1.800  
1.798  
1.796  
1.794  
1.792  
1.790  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
1.776  
1.774  
1.772  
1.770  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
V
= 13V  
V
= 16.5V  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
IN  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
00  
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
1500  
3000  
4500  
6000  
7500  
9000 10,500 12,000  
LOAD CURRENT (mA)  
Figure 17. Output Voltage Accuracy—600 kHz, VOUT = 1.8 V  
Figure 20. Output Voltage Accuracy—1.0 MHz, VOUT = 1.8 V  
5.030  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
V
= 13V  
V
= 16.5V  
IN  
IN  
4.92  
4.91  
4.90  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
V
V
V
= 13V  
= 16.5V  
= 20V  
IN  
IN  
IN  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
Figure 18. Output Voltage Accuracy—600 kHz, VOUT = 5 V  
Figure 21. Output Voltage Accuracy—1.0 MHz, VOUT = 5 V  
Rev. A | Page 9 of 40  
ADP1878/ADP1879  
Data 4heet  
601.0  
900  
880  
860  
840  
820  
800  
780  
760  
740  
720  
700  
+125°C  
+25°C  
–40°C  
600.5  
V
= 5V, V = 20V  
IN  
REG  
600.0  
599.5  
599.0  
598.5  
598.0  
597.5  
597.0  
V
= 5V, V = 13V  
IN  
REG  
–40.0  
–7.5  
25.0  
57.5  
90.0  
122.5  
13.0  
13.5  
14.0  
14.5  
15.0  
(V)  
15.5  
16.0  
16.5  
V
TEMPERATURE (°C)  
IN  
Figure 22. Feedback Voltage vs. Temperature  
Figure 25. Switching Frequency vs. High Input Voltage, 1.0 MHz,  
VIN Range = 13 V to 16.5 V  
280  
325  
315  
305  
295  
285  
275  
265  
255  
V
V
V
= 13V  
= 20V  
= 16.5V  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
NO LOAD  
IN  
IN  
IN  
265  
250  
235  
220  
205  
190  
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2  
0
2000  
4000  
6000  
8000  
10,000  
V
(V)  
LOAD CURRENT (mA)  
IN  
Figure 26. Frequency vs. Load Current, 300 kHz, VOUT = 0.8 V  
Figure 23. Switching Frequency vs. High Input Voltage, 300 kHz, 10% of 12 V  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
650  
V
V
V
= 20V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
NO LOAD  
IN  
IN  
IN  
600  
550  
500  
450  
400  
13.0 13.4 13.8 14.2 14.6 15.0 15.4 15.8 16.2  
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
V
(V)  
IN  
Figure 27. Frequency vs. Load Current, 300 kHz, VOUT = 1.8 V  
Figure 24. Switching Frequency vs. High Input Voltage, 600 kHz, VOUT = 1.8 V,  
VIN Range = 13 V to 16.5 V  
Rev. A | Page 10 of 40  
 
Data 4heet  
ADP1878/ADP1879  
338  
334  
330  
326  
322  
318  
314  
310  
306  
302  
298  
740  
733  
726  
719  
712  
705  
698  
691  
684  
677  
670  
663  
656  
649  
642  
635  
628  
621  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
IN  
IN  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800  
LOAD CURRENT (mA)  
Figure 28. Frequency vs. Load Current, 300 kHz, VOUT = 7 V  
Figure 31. Frequency vs. Load Current, 600 kHz, VOUT = 5 V  
850  
775  
700  
625  
550  
475  
400  
+125°C  
+25°C  
–40°C  
540  
510  
480  
450  
420  
390  
360  
330  
300  
V
V
= 13V  
= 16.5V  
IN  
IN  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
0
1200 2400 3600 4800 6000 7200 8400 9600 10,800 12,000  
LOAD CURRENT (mA)  
0
2000  
4000  
6000  
8000  
10,000  
12,000  
LOAD CURRENT (mA)  
Figure 29. Frequency vs. Load Current, 600 kHz, VOUT = 0.8 V  
Figure 32. Frequency vs. Load Current, VOUT = 1.0 MHz, 0.8 V  
1225  
1150  
1075  
1000  
925  
675  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
V
V
= 13V  
= 16.5V  
IN  
IN  
655  
635  
615  
595  
575  
555  
535  
515  
495  
850  
775  
700  
+125°C  
+25°C  
–40°C  
625  
550  
0
1200 2400 3600 4800 6000 7200 8400 9600 10,800 12,000  
LOAD CURRENT (mA)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
Figure 30. Frequency vs. Load Current, 600 kHz, VOUT = 1.8 V  
Figure 33. Frequency vs. Load Current, 1.0 MHz, VOUT = 1.8 V  
Rev. A | Page 11 of 40  
ADP1878/ADP1879  
Data 4heet  
1450  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
5.5  
6.7  
7.9  
9.1  
10.3 11.5 12.7 13.9 15.1 16.3  
(V)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000  
LOAD CURRENT (mA)  
V
IN  
Figure 34. Frequency vs. Load Current, 1.0 MHz, VOUT = 5 V  
Figure 37. Maximum Duty Cycle vs. High Voltage Input (VIN)  
680  
2.658  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
REG  
REG  
REG  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
2.657  
2.656  
2.655  
2.654  
2.653  
2.652  
2.651  
2.650  
2.649  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. UVLO vs. Temperature  
Figure 38. Minimum Off Time vs. Temperature  
680  
95  
90  
85  
80  
75  
70  
65  
60  
55  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
300  
400  
500  
600  
700  
800  
900  
1000  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
FREQUENCY (kHz)  
REG  
Figure 36. Maximum Duty Cycle vs. Frequency  
Figure 39. Minimum Off Time vs. VREG (Low Input Voltage)  
Rev. A | Page 12 of 40  
 
 
Data 4heet  
ADP1878/ADP1879  
800  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
+125°C  
+25°C  
–40°C  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
REG  
REG  
REG  
720  
640  
560  
480  
400  
320  
240  
160  
80  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
300  
400  
500  
600  
700  
800  
900  
1000  
FREQUENCY (kHz)  
REG  
Figure 40. Internal Rectifier Drop vs. Frequency  
Figure 43. Low-Side MOSFET Body Diode Conduction Time vs. VREG  
1280  
1200  
1120  
1040  
960  
880  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
1MHz  
T
= 25°C  
IN  
IN  
IN  
A
300kHz  
OUTPUT VOLTAGE  
1
INDUCTOR CURRENT  
2
SW NODE  
3
LOW SIDE  
4
B
CH1 50mV  
CH3 10V  
CH2 5A M400ns  
35.8%  
A
CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
V
4.3  
4.7  
5.1  
5.5  
B
T
CH4 5V  
W
(V)  
REG  
Figure 44. Power Saving Mode (PSM) Operational Waveform, 100 mA  
Figure 41. Internal Boost Rectifier Drop vs. VREG (Low Input Voltage)  
Over VIN Variation  
720  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
OUTPUT VOLTAGE  
640  
560  
480  
400  
320  
240  
160  
80  
1
INDUCTOR CURRENT  
2
SW NODE  
3
LOW SIDE  
4
B
CH1 50mV  
CH3 10V  
CH2 5A M4.0µs  
35.8%  
A
CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
V
4.3  
4.7  
5.1  
5.5  
B
T
CH4 5V  
W
(V)  
REG  
Figure 42. Internal Boost Rectifier Drop vs. VREG  
Figure 45. PSM Waveform at Light Load, 500 mA  
Rev. A | Page 13 of 40  
 
 
ADP1878/ADP1879  
Data Sheet  
OUTPUT VOLTAGE  
2
4
OUTPUT VOLTAGE  
INDUCTOR CURRENT  
12A NEGATIVE STEP  
SW NODE  
1
3
1
3
SW NODE  
LOW SIDE  
4
B
CH1 5A  
CH3 10V  
M400ns  
30.6%  
A
CH3  
2.20V  
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
T 48.2%  
A
CH1  
3.40A  
W
B
T
CH4 100mV  
W
Figure 46. CCM Operation at Heavy Load, 12 A  
(See Figure 95 for Application Circuit)  
Figure 49. Negative Step During Heavy Load Transient Behavior—PSM Enabled,  
12 A (See Figure 95 Application Circuit)  
OUTPUT VOLTAGE  
2
4
OUTPUT VOLTAGE  
12A STEP  
12A STEP  
1
2
LOW SIDE  
1
3
SW NODE  
SW NODE  
LOW SIDE  
4
3
B
CH1 10A  
CH3 20V  
CH2 5V  
CH4 200mV  
M2ms  
15.6%  
A
CH1  
6.20A  
CH1 10A  
CH3 20V  
CH2 200mV  
CH4 5V  
M2ms  
A
CH1  
3.40A  
W
B
T
T
75.6%  
W
Figure 47. Load Transient Step—PSM Enabled, 12 A  
(See Figure 95 Application Circuit)  
Figure 50. Load Transient Step—Forced PWM at Light Load, 12 A  
(See Figure 95 Application Circuit)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
4
2
12A POSITIVE STEP  
12A POSITIVE STEP  
SW NODE  
1
2
3
LOW SIDE  
1
3
SW NODE  
LOW SIDE  
4
B
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
A
CH1  
3.40A  
CH1 10A CH2 5V  
M20µs  
43.8%  
A
CH1  
6.20A  
W
B
T
30.6%  
T
W
CH3 20V  
CH4 200mV  
Figure 48. Positive Step During Heavy Load Transient Behavior—PSM Enabled,  
12 A, VOUT = 1.8 V (See Figure 95 Application Circuit)  
Figure 51. Positive Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 12 A, VOUT = 1.8 V (See Figure 95 Application Circuit)  
Rev. A | Page 14 of 40  
Data Sheet  
ADP1878/ADP1879  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
INDUCTOR CURRENT  
12A NEGATIVE STEP  
2
4
1
SW NODE  
LOW SIDE  
3
SW NODE  
B
LOW  
SIDE  
3
4
B
CH1 10A CH2 200mV  
M10µs  
A
CH1  
5.60A  
CH1 2V  
CH2 5A  
CH4 5V  
M2ms  
32.8%  
A
CH1  
720mV  
W
W
T
23.8%  
T
CH3 20V  
CH4 5V  
CH3 10V  
Figure 52. Negative Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 12 A (See Figure 95 Application Circuit)  
Figure 55. Start-Up Behavior at Heavy Load, 12 A, 300 kHz  
(See Figure 95 Application Circuit)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
1
INDUCTOR CURRENT  
2
INDUCTOR CURRENT  
LOW SIDE  
LOW SIDE  
2
4
4
SW NODE  
SW NODE  
3
3
B
B
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
49.4%  
A
CH1  
920mV  
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
41.6%  
A
CH1  
720mV  
W
W
T
T
Figure 53. Output Short-Circuit Behavior Leading to Hiccup Mode  
Figure 56. Power-Down Waveform During Heavy Load  
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
2
SW NODE  
SW NODE  
3
3
4
LOW SIDE  
LOW SIDE  
4
B
B
CH1 5V  
CH3 10V  
CH2 10A  
CH4 5V  
M10µs  
36.2%  
A
CH2  
8.20A  
CH1 50mV  
CH2 5A  
CH4 5V  
M2µs  
35.8%  
A
CH2  
3.90A  
W
W
B
T
T
CH3 10V  
W
Figure 54. Magnified Waveform During Hiccup Mode  
Figure 57. Output Voltage Ripple Waveform During PSM Operation  
at Light Load, 2 A  
Rev. A | Page 15 of 40  
ADP1878/ADP1879  
Data Sheet  
V
V
V
= 5.5V  
= 3.6V  
= 2.7V  
REG  
REG  
REG  
T
= 25°C  
A
LOW SIDE  
570  
550  
530  
510  
490  
470  
450  
430  
4
HIGH SIDE  
SW NODE  
3
M
HS MINUS  
SW  
CH2 5V  
CH4 2V  
M40ns  
29.0%  
A
CH2  
4.20V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
T
CH3 5V  
MATH 2V 40ns  
TEMPERATURE (°C)  
Figure 61. Transconductance vs. Temperature  
Figure 58. Output Drivers and SW Node Waveforms  
680  
630  
580  
530  
480  
430  
380  
330  
T
= 25°C  
+125°C  
+25°C  
–40°C  
A
LOW SIDE  
16ns (t ,DRVL)  
f
4
22ns (  
t
)
pdhDRVH  
HIGH SIDE  
25ns (  
t
)
,DRVH  
r
SW NODE  
3
HS MINUS  
SW  
M
CH2 5V  
CH4 2V  
M40ns  
29.0%  
A
CH2  
4.20V  
2.7  
3.0  
3.3  
3.6  
3.9  
V
4.2  
(V)  
4.5  
4.8  
5.1  
5.4  
T
CH3 5V  
MATH 2V 40ns  
REG  
Figure 62. Transconductance vs. VREG  
Figure 59. High-Side Driver Rising and Low-Side Falling Edge Waveforms (CIN =  
4.3 nF (High-/Low-Side MOSFET), QTOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
1.30  
18ns (  
t
)
,DRVL  
LOW SIDE  
r
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
+125°C  
+25°C  
–40°C  
4
HIGH SIDE  
24ns (  
t
)
pdh,DRVL  
HS MINUS  
SW  
11ns (t ,DRVH  
f
)
SW NODE  
3
M
T
= 25°C  
A
CH2 5V  
CH4 2V  
M20ns  
A
CH2  
4.20V  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
T
39.2%  
CH3 5V  
MATH 2V 20ns  
REG  
Figure 63. Quiescent Current vs. VREG  
Figure 60. High-Side Driver Falling and Low-Side Rising Edge Waveforms (CIN =  
4.3 nF (High-/Low-Side MOSFET), QTOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
Rev. A | Page 16 of 40  
 
 
Data Sheet  
ADP1878/ADP1879  
THEORY OF OPERATION  
BLOCK DIAGRAM  
PGOOD  
690mV  
FB  
600mV  
ADP1878/ADP1879  
530mV  
VREG  
tON TIMER  
VIN  
PRECISION  
ENABLE  
C
EN  
TO ENABLE  
ALL BLOCKS  
THRESHOLD/  
HYSTERESIS  
I
630mV  
SW  
INFORMATION  
LDO  
VREG  
R (TRIMMED)  
tON = 2RC(V  
/V  
)
OUT IN  
REF  
SW FILTER  
VREG  
BST  
BIAS BLOCK  
AND REFERENCE  
STATE  
MACHINE  
REF_ZERO  
TON  
I
SS  
DRVH  
BG_REF  
SS  
COMP  
SS  
PSM  
300k  
IN_PSM  
HS_0  
LEVEL  
HS  
IN_SS  
HS  
SW  
SHIFT  
IN_HICCUP  
SS_REF  
SW  
LS  
COMP  
FB  
COMP  
PWM  
8kΩ  
VREG  
LS_0  
IREV  
LS  
DRVL  
ERROR  
AMP  
800kΩ  
PGND  
PWM  
0.6V  
IREV  
COMP  
CS  
AMP  
LOWER  
COMP  
CLAMP  
RES DETECT AND  
GAIN SET  
REF_ZERO  
ADC  
CS GAIN SET  
0.4V  
GND  
RES  
Figure 64. ADP1878/ADP1879 Block Diagram  
The ADP1878/ADP1879 are versatile current-mode, synchronous  
step-down controllers that provide superior transient response,  
optimal stability, and current-limit protection by using a constant  
on time, pseudo fixed frequency with a programmable current  
sense gain, current control scheme. In addition, these devices offer  
optimum performance at low duty cycles by using a valley, current-  
mode control architecture. This allows the ADP1878/ADP1879  
to drive all N-channel power stages to regulate output voltages  
to as low as 0.6 V.  
Rev. A | Page 17 of 40  
 
 
ADP1878/ADP1879  
Data Sheet  
STARTUP  
PRECISION ENABLE CIRCUITRY  
Each ADP1878/ADP1879 has an internal regulator (VREG)  
for biasing and supplying power for the integrated N-channel  
MOSFET drivers. Place a bypass capacitor directly across the  
VREG (Pin 7) and PGND (Pin 13) pins. Included in the power-  
up sequence is the biasing of the current sense amplifier, the  
current sense gain circuit (see the Programming Resistor (RES)  
Detect Circuit section), the soft start circuit, and the error  
amplifier.  
The ADP1878/ADP1879 have precision enable circuitry. The  
precision enable threshold is 630 mV including 30 mV of  
hysteresis (see Figure 66). Connecting the EN pin to GND  
disables the ADP1878/ADP1879, reducing the supply current  
of the device to approximately 140 μA.  
V
REG  
10k  
PRECISION  
ENABLE COMP.  
EN  
The current sense blocks provide valley current information  
(see the Programming Resistor (RES) Detect Circuit section)  
and they are a variable of the compensation equation for loop  
stability (see the Compensation Network section). In a process  
performed by the RES detect circuit, the valley current informa-  
tion is extracted by forcing 0.4 V across the RES and PGND pins  
generating current. The current through the RES resistor is used  
to set the current sense amplifier gain (see the Programming  
Resistor (RES) Detect Circuit section). This process takes approx-  
imately 800 μs, after which time the drive signal pulses appear at  
the DRVL and DRVH pins synchronously, and the output voltage  
begins to rise in a controlled manner through the soft start  
sequence.  
TO ENABLE  
ALL BLOCKS  
630mV  
Figure 66. Connecting EN Pin to VREG via a Pull-Up Resistor to Enable the  
ADP1878/ADP1879  
UNDERVOLTAGE LOCKOUT  
The undervoltage lockout (UVLO) feature prevents the device  
from operating both the high- and low-side N-channel MOSFETs  
at extremely low or undefined input voltage (VIN) ranges.  
Operation at an undefined bias voltage can result in the  
incorrect propagation of signals to the high-side power switches.  
This, in turn, results in invalid output behavior that can cause  
damage to the output devices, ultimately destroying the device  
tied at the output. The UVLO level is set at 2.65 V (nominal).  
The soft start and error amplifier blocks determine the rise time  
of the output voltage (see the Soft Start section). At the beginning  
of a soft start, the error amplifier charges the external compensa-  
tion capacitor, causing the COMP pin to rise (see Figure 65).  
Tying the VREG pin to the EN pin via a pull-up resistor causes  
the voltage at the EN pin to rise above the enable threshold of  
630 mV, thereby enabling the ADP1878/ADP1879.  
COMP  
ON-BOARD LOW DROPOUT (LDO) REGULATOR  
The ADP1878/ADP1879 use an on-board LDO to bias the  
internal digital and analog circuitry. With proper bypass  
capacitors connected to the VREG pin (output of the internal  
LDO), this pin also provides power for the internal MOSFET  
drivers. It is recommended to float VREG if VIN is used for  
greater than 5.5 V operation. The minimum voltage at which  
bias is guaranteed to operate is 2.75 V at VREG (see Figure 67).  
ON-BOARD REGULATOR  
>2.4V  
2.4V  
HICCUP MODE INITIALIZED  
MAXIMUM CURRENT (UPPER CLAMP)  
VREG  
VIN  
1.0V  
ZERO CURRENT  
USABLE RANGE ONLY AFTER SOFT START  
PERIOD IF CONTINUOUS CONDUCTION  
MODE OF OPERATION IS SELECTED.  
REF  
500mV  
LOWER CLAMP  
Figure 67. On-Board Regulator  
For applications where VIN is decoupled from VREG, the  
minimum voltage at VIN must be 2.9 V. It is recommended to tie  
VIN and VREG together if the VIN pin is subjected to a 2.75 V rail.  
0V  
Figure 65. COMP Voltage Range  
SOFT START  
The ADP1878 employs externally programmable, soft start  
circuitry that charges up a capacitor tied to the SS pin to GND.  
This prevents input inrush current through the external MOSFET  
from the input supply (VIN). The output tracks the ramping voltage  
by producing PWM output pulses to the high-side MOSFET. The  
purpose is to limit the inrush current from the high voltage  
input supply (VIN) to the output (VOUT).  
Rev. A | Page 18 of 40  
 
 
 
 
 
 
 
 
Data Sheet  
ADP1878/ADP1879  
Table 5. Power Input and LDO Output Configurations  
SW  
CS  
VIN  
VREG  
Comments  
AMP  
PGND  
>5.5 V  
<5.5 V  
Float  
Must use the LDO  
ADC  
Connect to VIN  
LDO drop voltage is not  
realized (that is, if VIN = 2.75 V,  
then VREG = 2.75 V)  
CS GAIN  
SET  
0.4V  
<5.5 V  
Float  
LDO drop is realized  
VIN ranging Float  
above and  
below 5.5 V  
LDO drop is realized, minimum  
VIN recommendation is 2.95 V  
RES  
Figure 69. RES Detect Circuit for Current Sense Gain Programming  
THERMAL SHUTDOWN  
Table 6. Current Sense Gain Programming  
Thermal shutdown is a protection feature that prevents the IC  
from damage caused by a very high operating junction temper-  
ature. If the junction temperature of the device exceeds 155°C,  
the device enters the thermal shutdown state. In this state, the  
device shuts off both the high- and low-side MOSFETs and disables  
the entire controller immediately, thus reducing the power con-  
sumption of the IC. The device resumes operation after the  
junction temperature of the device cools to less than 140°C.  
Resistor  
ACS  
47 kΩ  
22 kΩ  
Open  
100 kΩ  
3 V/V  
6 V/V  
12 V/V  
24 V/V  
VALLEY CURRENT-LIMIT SETTING  
The architecture of the ADP1878/ADP1879 is based on valley  
current-mode control. The current limit is determined by three  
components: the RON of the low-side MOSFET, the output voltage  
swing of the current sense amplifier, and the current sense gain.  
The output range of the current sense amplifier is internally  
fixed at 1.4 V. The current sense gain is programmable via an  
external resistor at the RES pin (see the Programming Resistor  
(RES) Detect Circuit section). The RON of the low-side MOSFET  
can vary over temperature and usually has a positive TC (meaning  
that it increases with temperature); therefore, it is recommended to  
program the current sense, gain resistor based on the rated RON of  
the MOSFET at 125°C.  
PROGRAMMING RESISTOR (RES) DETECT CIRCUIT  
Upon startup, one of the first blocks to become active is the RES  
detect circuit. This block powers up before soft start begins. It  
forces a 0.4 V reference value at the RES pin (see Figure 68) and is  
programmed to identify four possible resistor values: 47 kΩ, 22 kΩ,  
open, and 100 kΩ.  
The RES detect circuit digitizes the value of the resistor at the  
RES pin (Pin 6). An internal ADC outputs a 2-bit digital code  
that is used to program four separate gain configurations in the  
current sense amplifier (see Figure 69). Each configuration corre-  
sponds to a current sense gain (ACS) of 3 V/V, 6 V/V, 12 V/V, or  
24 V/V, respectively (see Table 6 and Table 7). This variable is used  
for the valley current-limit setting, which sets up the appropriate  
current sense gain for a given application and sets the compensation  
necessary to achieve loop stability (see the Valley Current-Limit  
Setting section and the Compensation Network section).  
Because the ADP1878/ADP1879 are based on valley current  
control, the relationship between ICLIM and ILOAD is  
ꢁꢂꢃꢄ ꢅ ꢀꢂꢆꢇꢈ ꢉ ꢊ1 ꢋ ꢍ  
2
where:  
KI is the ratio between the inductor ripple current and the  
desired average load current (see Figure 70).  
Q1  
DRVH  
I
I
CLIM is the desired valley current limit.  
LOAD is the current load.  
SW  
Q2  
DRVL  
Establishing KI helps to determine the inductor value (see the  
Inductor Selection section), but in most cases, KI = 0.33.  
RES  
CS GAIN  
PROGRAMMING  
Figure 68. Programming Resistor Location  
I
LOAD  
3
RIPPLE CURRENT =  
LOAD CURRENT  
VALLEY CURRENT LIMIT  
Figure 70. Valley Current Limit to Average Current Relation  
Rev. A | Page 19 of 40  
 
 
 
 
 
 
 
ADP1878/ADP1879  
Data Sheet  
When the desired valley current limit (ICLIM) has been determined,  
the current sense gain can be calculated as follows:  
The valley current limit is programmed as listed in Table 7 and  
shown in Figure 71. The inductor that is chosen must be rated  
to handle the peak current, which is equal to the valley current  
from Table 7 plus the peak-to-peak inductor ripple current (see  
the Inductor Selection section). In addition, the peak current  
value must be used to compute the worst-case power dissipation  
in the MOSFETs (see Figure 72).  
1.4ꢆV  
ꢁꢈ ꢉ ꢊꢋꢌ  
ꢁꢂꢃꢄ  
where:  
ON is the channel impedance of the low-side MOSFET.  
R
ACS is the current sense gain multiplier (see Table 6 and Table 7).  
49A  
Although the ADP1878/ADP1879 have only four discrete current  
sense gain settings for a given RON variable, Table 7 and Figure 71  
outline several available options for the valley current setpoint  
based on various RON values.  
MAXIMUM DC LOAD  
CURRENT  
CURRENT  
39.5A  
SENSE  
I = 65%  
OF 37A  
INDUCTOR  
CURRENT  
AMPLIFIER  
OUTPUT  
37A  
35A  
I = 45%  
OF 32.25A  
Table 7. Valley Current Limit Program (See Figure 71)  
32.25A  
I = 33%  
OF 30A  
Valley Current Level (A)1  
30A  
47 kΩ,  
(mΩ) ACS = 3 V/V  
22 kΩ,  
ACS = 6 V/V  
Open,  
ACS = 12 V/V  
100 kΩ,  
ACS = 24 V/V  
38.9  
29.2  
23.3  
19.5  
16.7  
13  
11.7  
10.6  
5.83  
7.5  
3.25  
RON  
2.4V  
VALLEY CURRENT-LIMIT  
THRESHOLD (SET FOR 25A)  
1.5  
2
2.5  
3
3.5  
4.5  
5
5.5  
10  
CS AMP  
OUTPUT  
SWING  
39.0  
33.4  
26.0  
23.4  
21.25  
11.7  
7.75  
6.5  
0A  
1V  
Figure 72. Valley Current-Limit Threshold in Relation to Inductor Ripple Current  
23.3  
15.5  
13.0  
15  
18  
31.0  
26.0  
1 Blank cells are not applicable.  
39  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
RES = 47k  
= 3V/V  
A
CS  
RES = 22kΩ  
= 6V/V  
A
RES = NO RES  
= 12V/V  
CS  
A
CS  
RES = 100kΩ  
9
7
5
3
A
= 24V/V  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
(m)  
R
ON  
Figure 71. Valley Current-Limit Value vs. RON of the Low-Side MOSFET  
for Each Programming Resistor (RES)  
Rev. A | Page 20 of 40  
 
 
 
 
Data Sheet  
ADP1878/ADP1879  
REPEATED CURRENT-LIMIT  
VIOLATION DETECTED  
HS  
A PREDETERMINED NUMBER SOFT START IS  
OF PULSES IS COUNTED TO REINITIALIZED TO  
ALLOW THE CONVERTER MONITOR IF THE  
CLIM  
TO COOL DOWN  
VIOLATION  
STILL EXISTS  
ZERO  
CURRENT  
Figure 73. Idle Mode Entry Sequence Due to Current-Limit Violation  
HICCUP MODE DURING SHORT CIRCUIT  
HS  
tON  
A current-limit violation occurs when the current across the  
source and drain of the low-side MOSFET exceeds the current-  
limit setpoint. When 32 current-limit violations are detected,  
the controller enters idle mode and turns off the MOSFETs for  
6 ms, allowing the converter to cool down. Then, the controller  
reestablishes soft start and begins to cause the output to ramp  
up again (see Figure 73). While the output ramps up, the current  
sense amplifier output is monitored to determine if the violation is  
still present. If it is still present, the idle event occurs again, followed  
by the full chip, power-down sequence. This cycle continues  
until the violation no longer exists. If the violation disappears,  
the converter is allowed to switch normally, maintaining  
regulation.  
HS AND LS ARE OFF  
OR IN IDLE MODE  
LS  
tOFF  
AS THE INDUCTOR  
CURRENT APPROACHES  
ZERO CURRENT, THE STATE  
MACHINE TURNS OFF THE  
LOWER-SIDE MOSFET.  
I
LOAD  
0A  
Figure 74. Discontinuous Mode of Operation (DCM)  
SYNCHRONOUS RECTIFIER  
To minimize the chance of negative inductor current buildup,  
an on-board zero-cross comparator turns off all high- and low-  
side switching activities when the inductor current approaches  
the zero current line, causing the system to enter idle mode,  
where the high- and low-side MOSFETs are turned off. To ensure  
idle mode entry, a 10 mV offset, connected in series at the SW  
node, is implemented (see Figure 75).  
The ADP1878/ADP1879 employ internal MOSFET drivers for  
the external high- and low-side MOSFETs. The low-side  
synchronous rectifier not only improves overall conduction  
efficiency, but it also ensures proper charging of the bootstrap  
capacitor located at the high-side driver input. This is beneficial  
during startup to provide sufficient drive signal to the external  
high-side MOSFET and to attain fast turn-on response, which is  
essential for minimizing switching losses. The integrated high-  
and low-side MOSFET drivers operate in complementary  
fashion with built-in anti cross conduction circuitry to prevent  
unwanted shoot through current that may potentially damage the  
MOSFETs or reduce efficiency because of excessive power loss.  
ZERO-CROSS  
COMPARATOR  
SW  
10mV  
I
Q2  
Q2  
LS  
ADP1879 POWER SAVING MODE (PSM)  
Figure 75. Zero-Cross Comparator with 10 mV of Offset  
A power saving mode is provided in the ADP1879. The ADP1879  
operates in the discontinuous conduction mode (DCM) and  
pulse skips at light to medium load currents. The controller outputs  
pulses as necessary to maintain output regulation. Unlike the  
continuous conduction mode (CCM), DCM operation prevents  
negative current, thus allowing improved system efficiency at  
light loads. Current in the reverse direction through this pathway,  
however, results in power dissipation and, therefore, a decrease in  
efficiency.  
As soon as the forward current through the low-side MOSFET  
decreases to a level where  
10 mV = IQ2 × RON(Q2)  
the zero-cross comparator (or IREV comparator) emits a signal to  
turn off the low-side MOSFET. From this point, the slope of the  
inductor current ramping down becomes steeper (see Figure 76)  
as the body diode of the low-side MOSFET begins to conduct  
current and continues conducting current until the remaining  
energy stored in the inductor has been depleted.  
Rev. A | Page 21 of 40  
 
 
 
 
 
ADP1878/ADP1879  
Data Sheet  
ANOTHER tON EDGE IS  
TRIGGERED WHEN V  
FALLS BELOW REGULATION  
The tON timer uses a feedforward technique that, when applied  
to the constant on-time control loop, makes it a pseudo fixed  
frequency to a first-order approximation.  
OUT  
SW  
tON  
Second-order effects, such as dc losses in the external power  
MOSFETs (see the Efficiency Consideration section), cause some  
variation in frequency vs. load current and line voltage. These  
effects are shown in Figure 23 to Figure 34. The variations in  
frequency are much reduced compared with the variations  
generated if the feedforward technique is not used.  
HS AND LS  
IN IDLE MODE  
LS  
The feedforward technique establishes the following relationship:  
ZERO-CROSS COMPARATOR  
DETECTS 10mV OFFSET AND  
TURNS OFF LS  
I
LOAD  
0A  
1
ꢋꢌ  
where fSW is the controller switching frequency (300 kHz,  
600 kHz, and 1.0 MHz).  
10mV = R  
× I  
LOAD  
ON  
Figure 76. 10 mV Offset to Ensure Prevention of Negative Inductor Current  
The system remains in idle mode until the output voltage drops  
below regulation. Next, a PWM pulse is produced, turning on the  
high-side MOSFET to maintain system regulation. The ADP1879  
does not have an internal clock; it switches purely as a hysteretic  
controller, as described in this section.  
The tON timer senses VIN and VOUT to minimize frequency  
variation as previously explained. This provides pseudo fixed  
frequency as explained in the Pseudo Fixed Frequency section.  
To allow headroom for VIN and VOUT sensing, adhere to the  
following equations:  
V
V
REG VIN/8 + 1.5  
REG VOUT/4  
TIMER OPERATION  
The ADP1878/ADP1879 employ a constant on-time architecture,  
which provides a variety of benefits, including improved load  
and line transient response when compared with a constant  
(fixed) frequency current-mode control loop of comparable  
loop design. The constant on-time timer, or tON timer, senses  
For typical applications where VREG is 5 V, these equations are  
not relevant; however, for lower VREG inputs, care may be required.  
PSEUDO FIXED FREQUENCY  
The ADP1878/ADP1879 employ a constant on-time control  
scheme. During steady state operation, the switching frequency  
stays relatively constant, or pseudo fixed. This is due to the one  
shot tON timer that produces a high-side PWM pulse with a  
fixed duration, given that external conditions such as input  
voltage, output voltage, and load current are also at steady state.  
During load transients, the frequency momentarily changes for  
the duration of the transient event so that the output comes  
back within regulation quicker than if the frequency were fixed,  
or if it were to remain unchanged. After the transient event is  
complete, the frequency returns to a pseudo fixed value.  
the high-side input voltage (VIN) and the output voltage (VOUT  
)
using SW waveform information to produce an adjustable one  
shot PWM pulse. The pulse varies the on-time of the high-side  
MOSFET in response to dynamic changes in input voltage, output  
voltage, and load current conditions to maintain output regula-  
tion. The timer generates an on-time (tON) pulse that is inversely  
proportional to VIN.  
ꢁꢇꢈ  
ꢁꢂ ꢃ ꢄ ꢅ  
ꢉꢂ  
where K is a constant that is trimmed using an RC timer product  
for the 300 kHz, 600 kHz, and 1.0 MHz frequency options.  
To illustrate this feature more clearly, this section describes one  
such load transient event—a positive load step—in detail. During  
load transient events, the high-side driver output pulse width  
stays relatively consistent from cycle to cycle; however, the off  
time (DRVL on time) dynamically adjusts according to the  
instantaneous changes in the external conditions mentioned.  
V
IN  
VREG  
tON  
C
I
SW  
INFORMATION  
When a positive load step occurs, the error amplifier (out of phase  
with the output, VOUT) produces new voltage information at its  
output (COMP). In addition, the current sense amplifier senses  
new inductor current information during this positive load  
transient event. The output voltage reaction of the error amplifier is  
compared with the new inductor current information that sets  
the start of the next switching cycle. Because current information  
is produced from valley current sensing, it is sensed at the down  
ramp of the inductor current, whereas the voltage loop information  
R (TRIMMED)  
Figure 77. Constant On-Time Time  
The constant on-time (tON) is not strictly constant because it  
varies with VIN and VOUT. However, this variation occurs in such  
a way as to keep the switching frequency virtually independent  
of VIN and VOUT  
.
Rev. A | Page 22 of 40  
 
 
 
Data Sheet  
ADP1878/ADP1879  
is sensed through the counter action upswing of the output  
(COMP) of the error amplifier.  
the internal switch is turned on, PGOOD is internally pulled low  
when the output voltage via the FB pin is outside this regulation  
window.  
The result is a convergence of these two signals (see Figure 78),  
which allows an instantaneous increase in switching frequency  
during the positive load transient event. In summary, a positive  
load step causes VOUT to transient down, which causes COMP to  
transient up and, therefore, shortens the off time. This resulting  
increase in frequency during a positive load transient helps to  
quickly bring VOUT back up in value and within the regulation  
window.  
The power-good window is defined with a typical upper speci-  
fication of +90 mV and a lower specification of −70 mV below  
the FB voltage of 600 mV. When an overvoltage event occurs at the  
output, there is a typical propagation delay of 12 μs prior to the  
deassertion (logic low) of the PGOOD pin. When the output  
voltage reenters the regulation window, there is a propagation  
delay of 12 μs prior to PGOOD reasserting back to a logic high  
state. When the output is outside the regulation window, the  
PGOOD open-drain switch is capable of sinking 1 mA of  
current and providing 140 mV of drop across this switch. The  
user is free to tie the external pull-up resistor (RRES) to any  
voltage rail up to 20 V. The following equation provides the  
proper external pull-up resistor value:  
Similarly, a negative load step causes the off time to lengthen in  
response to VOUT rising. This effectively increases the inductor  
demagnetizing phase, helping to bring VOUT within regulation.  
In this case, the switching frequency decreases, or experiences a  
foldback, to help facilitate output voltage recovery.  
Because the ADP1878/ADP1879 have the ability to respond rapidly  
to sudden changes in load demand, the recovery period in which  
the output voltage settles back to its original steady state operating  
point is much quicker than it would be for a fixed frequency  
equivalent. Therefore, using a pseudo fixed frequency results in  
significantly better load transient performance compared to  
using a fixed frequency.  
ꢆꢇꢈ ꢉ 140ꢊmV  
ꢁꢂꢃ  
where:  
R
V
1ꢊmA  
PGD is the PGOOD external resistor.  
EXT is a user chosen voltage rail.  
V
EXT  
R
1mA  
PGOOD  
PGD  
+
690mV  
140mV  
LOAD CURRENT  
DEMAND  
FB  
600mV  
CS AMP  
OUTPUT  
530mV  
ERROR AMP  
OUTPUT  
VALLEY  
TRIP POINTS  
Figure 79. Power Good, Output Voltage Monitoring Circuit  
OUTPUT OVERVOLTAGE  
PGOOD DEASSERT  
PWM OUTPUT  
fSW  
>fSW  
690mV  
PGOOD  
HYSTERESIS (50mV)  
REASSERT  
640mV  
FB  
600mV  
Figure 78. Load Transient Response Operation  
530mV  
PGOOD  
ASSERTION  
AT POWER-UP  
PGOOD  
DEASSERTION  
AT POWER-DOWN  
POWER-GOOD MONITORING  
0V  
SOFT START  
The ADP1878/ADP1879 power-good circuitry monitors the  
output voltage via the FB pin. The PGOOD pin is an open-  
drain output that can be pulled up by an external resistor to a  
voltage rail that does not necessarily have to be VREG. When  
the internal NMOS switch is in high impedance (off state), this  
means that the PGOOD pin is logic high and the output voltage  
via the FB pin is within the specified regulation window. When  
V
EXT  
tPGD  
tPGD  
tPGD  
PGOOD  
tPGD  
0V  
Figure 80. Power-Good Timing Diagram, tPGD = 12 μs (Diagram May Look  
Disproportionate For Illustration Purposes)  
Rev. A | Page 23 of 40  
 
 
ADP1878/ADP1879  
Data Sheet  
APPLICATIONS INFORMATION  
FEEDBACK RESISTOR DIVIDER  
Table 8. Recommended Inductors  
L
DCR  
ISAT  
Dimensions  
(mm)  
Model  
Number  
The required resistor divider network can be determined for a  
given VOUT value because the internal band gap reference (VREF  
is fixed at 0.6 V. Selecting values for RT and RB determine the  
minimum output load current of the converter. Therefore, for a  
given value of RB, the RT value can be determined through the  
following expression:  
(μH) (mΩ) (A)  
Manufacturer  
)
0.12  
0.22  
0.47  
0.72  
0.9  
0.33  
0.33  
0.8  
55  
30  
50  
35  
32  
25  
16  
24  
23  
27.5  
10.2 × 7  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Sumida  
744303012  
744303022  
744355147  
744325072  
744318120  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-0R8  
10.2 × 7  
14.2 × 12.8  
10.5 × 10.2  
14 × 12.8  
10.5 × 10.2  
10.2 × 10.2  
14 × 12.8  
10.2 × 10.2  
1.65  
1.6  
1.2  
1.8  
ꢇꢈꢁ ꢉ 0.6ꢊV  
ꢂ ꢀꢄ  
1.0  
3.8  
0.6 V  
1.4  
3.2  
INDUCTOR SELECTION  
2.0  
2.6  
0.8  
The inductor value is inversely proportional to the inductor  
ripple current. The peak-to-peak ripple current is given by  
OUTPUT RIPPLE VOLTAGE (ΔVRR)  
ꢍꢇꢐꢑ  
∆ꢌꢂ ꢎꢄ ꢌꢍꢇꢐꢑ  
where KI is typically 0.33.  
The equation for the inductor value is given by  
The output ripple voltage is the ac component of the dc output  
voltage during steady state. For a ripple error of 1.0%, the output  
capacitor value needed to achieve this tolerance can be determined  
using the following equation. (Note that an accuracy of 1.0% is  
possible during steady state conditions only, not during load  
transients.)  
3
ꢏꢔ ꢇꢈꢁ  
ꢇꢈꢁ  
ꢓ ꢂ  
∆ꢌꢄ ꢕ  
ꢏꢔ  
ꢖꢗ  
ΔVRR = (0.01) × VOUT  
where:  
VIN is the high voltage input.  
OUT is the desired output voltage.  
SW is the controller switching frequency (300 kHz, 600 kHz, and  
OUTPUT CAPACITOR SELECTION  
V
f
The primary objective of the output capacitor is to facilitate the  
reduction of the output voltage ripple; however, the output capacitor  
also assists in the output voltage recovery during load transient  
events. For a given load current step, the output voltage ripple  
generated during this step event is inversely proportional to the  
value chosen for the output capacitor. The speed at which the  
output voltage settles during this recovery period depends on  
where the crossover frequency (loop bandwidth) is set. This  
crossover frequency is determined by the output capacitor, the  
equivalent series resistance (ESR) of the capacitor, and the  
compensation network.  
1.0 MHz).  
When selecting the inductor, choose an inductor saturation  
rating that is above the peak current level, and then calculate  
the inductor current ripple (see the Valley Current-Limit  
Setting section and Figure 81).  
52  
50  
I = 50%  
I = 40%  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
To calculate the small signal voltage ripple (output ripple voltage) at  
the steady state operating point, use the following equation:  
I = 33%  
1
ꢇꢈꢁ ꢂ ∆ꢌꢄ ꢙ  
ꢋꢠ  
8 ꢄ ꢖꢗ ꢄ ∆ꢛꢏꢜꢜꢍꢝ ꢉ ∆ꢌꢄ ꢞꢟꢀ  
where ESR is the equivalent series resistance of the output  
capacitors.  
To calculate the output load step, use the following equation:  
6
8
10 12 14 16 18 20 22 24 26 28 30  
VALLEY CURRENT LIMIT (A)  
∆ꢌꢍꢇꢐꢑ  
ꢇꢈꢁ ꢂ 2 ꢄ  
ꢅ ꢋ  
ꢖꢗ ꢄ ꢢ∆ꢑꢛꢇꢇꢜ ꢉ ∆ꢌꢍꢇꢐꢑ ꢄ ꢞꢟꢀ ꢣ  
Figure 81. Peak Inductor Current vs. Valley Current Limit for 33%, 40%, and  
50% of Inductor Ripple Current  
where ΔVDROOP is the amount that VOUT is allowed to deviate for  
a given positive load current step (ΔILOAD).  
Rev. A | Page 24 of 40  
 
 
 
 
 
 
Data Sheet  
ADP1878/ADP1879  
Ceramic capacitors are known to have low ESR. However, there  
is a trade-off in using the popular X5R capacitor technology  
because as much as 80% of its capacitance may be lost due to  
derating as the voltage applied across the capacitor is increased  
(see Figure 82). Although X7R series capacitors can also be  
used, the available selection is limited to 22 μF maximum.  
20  
Error Amplifier Output Impedance (ZCOMP  
)
Assuming CC2 is significantly smaller than CCOMP, CC2 can be  
omitted from the output impedance equation of the error  
amplifier. The transfer function simplifies to  
ꢅꢋꢃꢏ  
ꢅꢋꢃꢏ ꢄ  
ꢓ ꢚ  
ꢅꢈꢋꢆꢆ ꢝꢉꢈꢋ  
ꢅꢈꢋꢆꢆ  
and  
10  
X7R (50V)  
0
1
ꢅꢈꢋꢆꢆ  
ꢄ ꢚ  
ꢆꢞ  
–10  
–20  
–30  
–40  
12  
where fZERO, the zero frequency, is set to be 1/4th of the crossover  
frequency for the ADP1878.  
Error Amplifier Gain (Gm)  
The error amplifier gain (transconductance) is  
Gm = 500 μA/V (μs)  
–50  
X5R (25V)  
–60  
–70  
X5R (16V)  
–80  
10µF TDK 25V, X7R, 1210 C3225X7R1E106M  
22µF MURATA 25V, X7R, 1210 GRM32ER71E226KE15L  
47µF MURATA 16V, X5R, 1210 GRM32ER61C476KE15L  
Current-Sense Loop Gain (GCS)  
The current-sense loop gain is  
1
–90  
–100  
0
5
10  
15  
20  
25  
30  
DC VOLTAGE (V  
)
DC  
ꢘ ⁄ ꢙ  
ꢟ ꢇ  
ꢅꢆ  
ꢅꢆ ꢄ ꢒꢋꢠ  
Figure 82. Capacitance vs. DC Voltage Characteristics for Ceramic Capacitors  
where:  
Electrolytic capacitors satisfy the bulk capacitance requirements  
for most high current applications. However, because the ESR of  
electrolytic capacitors is much higher than that of ceramic capaci-  
tors, mount several MLCCs in parallel with the electrolytic  
capacitors to reduce the overall series resistance.  
ACS (V/V) is programmable for 3 V/V, 6 V/V, 12 V/V, and 24 V/V  
(see the Programming Resistor (RES) Detect Circuit and Valley  
Current-Limit Setting sections).  
R
ON is the channel impedance of the low-side MOSFET.  
Crossover Frequency  
COMPENSATION NETWORK  
The crossover frequency is the frequency at which the overall  
loop (system) gain is 0 dB (H = 1 V/V). It is recommended for  
current-mode converters, such as the ADP1878, that the user set  
the crossover frequency between 1/10th and 1/15th of the switching  
frequency.  
Due to its current-mode architecture, the ADP1878/ADP1879  
require Type II compensation. To determine the component  
values needed for compensation (resistance and capacitance  
values), it is necessary to examine the overall loop gain (H) of the  
converter at the unity-gain frequency (fSW/10) when H = 1 V/V:  
1
ꢈꢉꢊ  
ꢆꢞ  
ꢅꢈꢋꢆꢆ  
ꢀ ꢁ 1 V V ꢁ ꢂꢄ ꢂꢅꢆ  
ꢄ ꢎꢅꢋꢃꢏ ꢄ ꢎꢊꢐꢑꢍ  
12  
ꢋꢌꢍ  
The relationship between CCOMP and fZERO (zero frequency) is as  
follows:  
Examining each variable at high frequency enables the unity-  
gain transfer function to be simplified to provide expressions  
for the RCOMP and CCOMP component values.  
1
ꢝꢉꢈꢋ  
2ꢡ ꢄ ꢒꢅꢋꢃꢏ ꢄ ꢗꢅꢋꢃꢏ  
Output Filter Impedance (ZFILT  
)
The zero frequency is set to 1/4th of the crossover frequency.  
Examining the transfer function of the filter at high frequencies  
simplifies to  
Combining all of the above parameters results in  
ꢅꢋꢃꢏ  
1 ꢓ ꢔ ꢄ ꢕꢖꢒ ꢄ ꢗꢋꢌꢍ  
ꢊꢐꢑꢍꢉꢈ ꢁ ꢒꢄ  
ꢛ1 ꢓ ꢘꢔ ꢒꢓ ꢕꢖꢒ ꢋꢌꢢ  
1
ꢅꢈꢋꢆꢆ  
1 ꢓ ꢔ ꢓ ꢕꢖꢒ ꢋꢌꢍ  
ꢓ ꢚ  
ꢛ1ꢓ ꢘꢔ ꢄ ꢕꢖꢒ ꢄ ꢗꢋꢌꢢ  
ꢑ  
ꢅꢈꢋꢆꢆ  
ꢝꢉꢈꢋ  
at the crossover frequency (s = 2πfCROSS). ESR is the equivalent  
series resistance of the output capacitors.  
1
ꢋꢌꢍ ꢄ  
ꢈꢉꢊ ꢅꢆ  
where ESR is the equivalent series resistance of the output  
capacitors.  
1
ꢅꢋꢃꢏ  
2 ꢄ ꢡ ꢄ ꢒꢅꢋꢃꢏ ꢄ ꢚ  
ꢝꢉꢈꢋ  
Rev. A | Page 25 of 40  
 
 
ADP1878/ADP1879  
Data Sheet  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
EFFICIENCY CONSIDERATION  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
REG  
REG  
REG  
An important criteria to consider in constructing a dc-to-dc  
converter is efficiency. By definition, efficiency is the ratio of the  
output power to the input power. For high power applications at  
load currents of up to 20 A, the following are important MOSFET  
parameters that aid in the selection process:  
VGS (TH) is the MOSFET voltage applied between the gate  
and the source that starts channel conduction.  
RDS (ON) is the on resistance of the MOSFET during channel  
conduction.  
QG is the total gate charge.  
+125°C  
+25°C  
–40°C  
CN1 is the input capacitance of the high-side switch.  
N2 is the input capacitance of the low-side switch.  
C
300  
400  
500  
600  
700  
800  
900  
1000  
SWITCHING FREQUENCY (kHz)  
The following are the losses experienced through the external  
component during normal switching operation:  
Figure 83. Internal Rectifier Voltage Drop vs. Switching Frequency  
MOSFET Switching Loss  
Channel conduction loss (both of the MOSFETs).  
MOSFET driver loss.  
MOSFET switching loss.  
Body diode conduction loss (low-side MOSFET).  
Inductor loss (copper and core loss).  
The SW node transitions due to the switching activities of the  
high- and low-side MOSFETs. This causes removal and reple-  
nishing of charge to and from the gate oxide layer of the MOSFET,  
as well as to and from the parasitic capacitance associated with  
the gate oxide edge overlap and the drain and source terminals.  
The current that enters and exits these charge paths presents  
additional loss during these transition times. This can be approxi-  
mately quantified by using the following equation, which represents  
the time in which charge enters and exits these capacitive regions:  
Channel Conduction Loss  
During normal operation, the bulk of the loss in efficiency is due  
to the power dissipated through MOSFET channel conduction.  
Power loss through the high-side MOSFET is directly proportional  
to the duty cycle (D) for each switching period, and the power  
loss through the low-side MOSFET is directly proportional to  
1 − D for each switching period. The selection of MOSFETs is  
governed by the maximum dc load current that the converter is  
expected to deliver. In particular, the selection of the low-side  
MOSFET is dictated by the maximum load current because a  
typical high current application employs duty cycles of less than  
50%. Therefore, the low-side MOSFET is in the on state for  
most of the switching period.  
t
SW-TRANS = RGATE × CTOTAL  
where:  
TOTAL is the CGD + CGS of the external MOSFET.  
GATE is the gate input resistance of the external MOSFET.  
C
R
The ratio of this time constant to the period of one switching cycle  
is the multiplying factor to be used in the following expression:  
ꢓꢔ-TRANS  
ꢉ ꢏꢄꢋꢐꢑ ꢗꢁ ꢉ 2  
ꢓꢔꢂꢄꢋꢓꢓꢅ  
ꢓꢔ  
1,ꢁ2ꢂꢃꢄꢅ ꢆ ꢇꢈ ꢉ ꢊ1 ꢋꢁꢅ ꢌ 1 ꢍ ꢈ ꢉ ꢊ2ꢂꢋꢁꢅꢎ ꢉ ꢏꢒ  
ꢄꢋꢐꢑ  
or  
MOSFET Driver Loss  
P
SW(LOSS) = fSW × RGATE × CTOTAL × ILOAD × VIN × 2  
Other dissipative elements are the MOSFET drivers. The con-  
tributing factors are the dc current flowing through the driver  
during operation and the QGATE parameter of the external MOSFETs.  
Body Diode Conduction Loss  
The ADP1878/ADP1879 employ anti cross conduction circuitry  
that prevents the high- and low-side MOSFETs from conducting  
current simultaneously. This overlap control is beneficial, avoiding  
large current flow that may lead to irreparable damage to the  
external components of the power stage. However, this blanking  
period comes with the trade-off of a diode conduction loss  
occurring immediately after the MOSFETs change states and  
continuing well into idle mode.  
P
DR(LOSS) = [VDR × (fSWCupperFET  
(fSWClowerFETVREG + IBIAS)]  
where:  
VDR + IBIAS)] + [VREG ×  
CupperFET is the input gate capacitance of the high-side MOSFET.  
ClowerFET is the input gate capacitance of the low-side MOSFET.  
I
V
BIAS is the dc current flowing into the high- and low-side drivers.  
DR is the driver bias voltage (that is, the low input voltage (VREG  
minus the rectifier drop (see Figure 83)).  
REG is the bias voltage.  
)
V
Rev. A | Page 26 of 40  
 
 
 
Data Sheet  
ADP1878/ADP1879  
The amount of loss through the body diode of the low-side  
MOSFET during the anti overlap state is given by the following  
expression:  
capacitors have such high ESR that they cause undesired input  
voltage ripple magnitudes and are generally not effective at high  
switching frequencies.  
ꢁꢂꢃꢄꢅꢆꢂꢇꢇꢈ  
If bulk electrolytic capacitors are used, it is recommended to use  
multilayered ceramic capacitors (MLCC) in parallel due to their  
low ESR values. This dramatically reduces the input voltage ripple  
amplitude as long as the MLCCs are mounted directly across the  
drain of the high-side MOSFET and the source terminal of the  
low-side MOSFET (see the Layout Considerations section).  
Improper placement and mounting of these MLCCs may cancel  
their effectiveness due to stray inductance and an increase in  
trace impedance.  
ꢁꢂꢃꢄꢅꢆꢂꢇꢇꢈ  
ꢌ ꢍꢆꢂꢎꢃ ꢌ 2  
ꢇꢋ  
where:  
BODY(LOSS) is the body conduction time (refer to Figure 84 for  
dead time periods).  
SW is the period per switching cycle.  
t
t
VF is the forward drop of the body diode during conduction.  
(Refer to the selected external MOSFET data sheet for more  
information about the VF parameter.)  
80  
ꢂꢣꢤ ꢞꢟ ꢂꢣꢤ  
+125°C  
+25°C  
–40°C  
1MHz  
300kHz  
ꢑꢞꢟ,ꢒꢠꢇ ꢉ ꢍꢆꢂꢎꢃ,ꢠꢎꢡ  
72  
64  
56  
48  
40  
32  
24  
16  
8
ꢂꢣꢤ  
The maximum input voltage ripple and maximum input capacitor  
rms current occur at the end of the duration of 1 − D while the  
high-side MOSFET is in the off state. The input capacitor rms  
current reaches its maximum at time D. When calculating the  
maximum input voltage ripple, account for the ESR of the input  
capacitor as follows:  
V
MAX,RIPPLE = VRIPP + (ILOAD,MAX × ESR)  
where:  
V
RIPP is usually 1% of the minimum voltage input.  
I
LOAD,MAX is the maximum load current.  
2.7  
3.4  
4.1  
4.8  
5.5  
V
(V)  
ESR is the equivalent series resistance rating of the input capacitor.  
REG  
Figure 84. Body Diode Conduction Time vs. Low Voltage Input (VREG  
)
Inserting VMAX,RIPPLE into the charge balance equation to  
calculate the minimum input capacitor requirement gives  
Inductor Loss  
ꢆꢂꢎꢃ,ꢠꢎꢡ  
ꢓ 1 ꢥ ꢓ  
During normal conduction mode, further power loss is caused  
by the conduction of current through the inductor windings,  
which have dc resistance (DCR). Typically, larger sized inductors  
have smaller DCR values.  
ꢞꢟ,ꢠꢞꢟ  
ꢠꢎꢡ,ꢒꢞꢦꢦꢆꢧ  
ꢇꢋ  
or  
ꢆꢂꢎꢃ,ꢠꢎꢡ  
4ꢇꢋꢠꢎꢡ,ꢒꢞꢦꢦꢆꢧ  
ꢞꢟ,ꢠꢞꢟ  
The inductor core loss is a result of the eddy currents generated  
within the core material. These eddy currents are induced by the  
changing flux, which is produced by the current flowing through  
the windings. The amount of inductor core loss depends on the  
core material, the flux swing, the frequency, and the core volume.  
Ferrite inductors have the lowest core losses, whereas powdered iron  
inductors have higher core losses. It is recommended to use shielded  
ferrite core material type inductors with the ADP1878/ADP1879  
for a high current, dc-to-dc switching application to achieve  
minimal loss and negligible electromagnetic interference (EMI).  
where D = 50%.  
THERMAL CONSIDERATIONS  
The ADP1878/ADP1879 are used for dc-to-dc, step down, high  
current applications that have an on-board controller, an on-board  
LDO, and on-board MOSFET drivers. Because applications may  
require up to 20 A of load current and be subjected to high ambient  
temperature, the selection of external high- and low-side MOSFETs  
must be associated with careful thermal consideration to not  
exceed the maximum allowable junction temperature of 125°C.  
To avoid permanent or irreparable damage, if the junction temper-  
ature reaches or exceeds 155°C, the part enters thermal shutdown,  
turning off both external MOSFETs, and is not reenabled until  
the junction temperature cools to 140°C (see the On-Board Low  
Dropout (LDO) Regulator section).  
ꢃꢑꢒꢅꢆꢂꢇꢇꢈ ꢉ ꢓꢔꢕ ꢌ ꢍꢂꢎꢃ ꢗ ꢔꢘꢙꢚꢛꢜꢘꢝꢝ  
INPUT CAPACITOR SELECTION  
The goal in selecting an input capacitor is to reduce or minimize  
input voltage ripple and to reduce the high frequency source  
impedance, which is essential for achieving predictable loop  
stability and transient performance.  
In addition, it is important to consider the thermal impedance  
of the package. Because the ADP1878/ADP1879 employ an  
on-board LDO, the ac current (fxCxV) consumed by the internal  
drivers to drive the external MOSFETs, adds another element of  
The problem with using bulk capacitors, other than their physical  
geometries, is their large equivalent series resistance (ESR) and  
large equivalent series inductance (ESL). Aluminum electrolytic  
Rev. A | Page 27 of 40  
 
 
 
ADP1878/ADP1879  
Data Sheet  
power dissipation across the internal LDO. Equation 3 shows the  
power dissipation calculations for the integrated drivers and for  
the internal LDO. Table 9 lists the thermal impedance for the  
ADP1878/ADP1879, which are available in a 14-lead LFCSP_WD.  
The rise in package temperature is directly proportional to its  
thermal impedance characteristics. The following equation  
represents this proportionality relationship:  
TR = θJA × PDR(LOSS)  
where:  
(2)  
Table 9. Thermal Impedance for 14-Lead LFCSP_WD  
θJA is the thermal resistance of the package from the junction to  
Package  
Thermal Impedance  
the outside surface of the die, where it meets the surrounding air.  
14-Lead LFCSP_WD θJA  
4-Layer Board  
P
DR(LOSS) is the overall power dissipated by the IC.  
30°C/W  
The bulk of the power dissipated is due to the gate capacitance of  
the external MOSFETs and current running through the on-board  
LDO. The power loss equations for the MOSFET drivers and  
internal low dropout regulator (see the MOSFET Driver Loss  
section and the Efficiency Consideration section) are:  
Figure 85 specifies the maximum allowable ambient temperature  
that can surround the ADP1878/ADP1879 IC for a specified  
high input voltage (VIN). Figure 85 illustrates the temperature  
derating conditions for each available switching frequency for  
low, typical, and high output setpoints for the 14-lead LFCSP_WD  
package. All temperature derating criteria are based on a  
maximum IC junction temperature of 125°C.  
P
DR(LOSS) = [VDR × (fSWCupperFET  
[VREG × (fSWClowerFET REG + IBIAS)]  
where:  
VDR + IBIAS)] +  
V
(3)  
130  
C
C
upperFET is the input gate capacitance of the high-side MOSFET.  
lowerFET is the input gate capacitance of the low-side MOSFET.  
120  
110  
100  
I
BIAS is the dc current (2 mA) flowing into the high- and low-  
side drivers.  
DR is the driver bias voltage (the low input voltage (VREG) minus  
the rectifier drop (see Figure 83)).  
REG is the LDO output/bias voltage.  
DISS(LDO) = PDR(LOSS) + (VIN VREG) × (fSW × CTOTAL  
REG + IBIAS  
where PDISS(LDO) is the power dissipated through the pass device  
in the LDO block across VIN and VREG  
DR(LOSS) is the MOSFET driver loss.  
VIN is the high voltage input.  
REG is the LDO output voltage and bias voltage.  
TOTAL is the CGD + CGS of the external MOSFET.  
BIAS is the dc input bias current.  
V
V
P
×
300kHz  
600kHz  
1MHz  
V
V
V
= 0.8V  
= 1.8V  
= HIGH SETPOINT  
V
(4)  
OUT  
OUT  
OUT  
90  
5.5  
.
7.0  
8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0  
(V)  
V
IN  
P
Figure 85. Ambient Temperature vs. VIN,  
4-Layer Evaluation Board, CIN = 4.3 nF (High-/Low-Side MOSFET)  
V
C
I
The maximum junction temperature allowed for the ADP1878/  
ADP1879 IC is 125°C. This means that the sum of the ambient  
temperature (TA) and the rise in package temperature (TR), which is  
caused by the thermal impedance of the package and the internal  
power dissipation, should not exceed 125°C, as dictated by the  
following expression:  
For example, if the external MOSFET characteristics are θJA  
(14-lead LFCSP_WD) = 30°C/W, fSW = 300 kHz, IBIAS = 2 mA,  
C
upperFET = 3.3 nF, ClowerFET = 3.3 nF, VDR = 4.62 V, and VREG = 5.0 V,  
then the power loss is  
TJ = TR × TA  
where:  
TJ is the maximum junction temperature.  
TR is the rise in package temperature due to the power  
dissipated from within.  
(1)  
P
DR(LOSS) = [VDR × (fSWCupperFET  
V
DR + IBIAS)] +  
[VREG × (fSWClowerFETVREG + IBIAS)]  
= (4.62 × (300 × 103 × 3.3 × 10−9 × 4.62 + 0.002)) +  
(5.0 × (300 × 103 × 3.3 × 10−9 × 5.0 + 0.002))  
= 57.12 mW  
TA is the ambient temperature.  
P
DISS(LDO) = (VIN VREG) × (fSW × CTOTAL × VREG + IBIAS) =  
(13 V – 5 V) × (300 × 103 × 3.3 × 10−9 × 5 + 0.002)  
= 55.6 mW  
P
DISS(TOTAL) = PDISS(LDO) + PDR(LOSS)  
= 77.13 mW + 55.6 mW  
= 132.73 mW  
Rev. A | Page 28 of 40  
 
 
Data Sheet  
ADP1878/ADP1879  
The rise in package temperature (for a 14-lead LFCSP_WD) is  
TR = θJA × PDR(LOSS)  
Current-Limit Programming  
The valley current is approximately  
15 A − (5 A × 0.5) = 12.5 A  
= 30°C × 132.05 mW  
Assuming a low-side MOSFET RON of 4.5 mΩ and 13 A, as the  
valley current limit from Table 7 and Figure 71 indicate, a pro-  
gramming resistor (RES) of 100 kΩ corresponds to an ACS  
of 24 V/V.  
= 4.0°C  
Assuming a maximum ambient temperature environment of 85°C,  
TJ = TR × TA = 4.0°C + 85°C = 89.0°C,  
which is below the maximum junction temperature of 125°C.  
DESIGN EXAMPLE  
Choose a programmable resistor of RRES = 100 kꢀ for a current  
sense gain of 24 V/V.  
Output Capacitor  
The ADP1878/ADP1879 are easy to use, requiring only a few  
design criteria. For example, the example outlined in this section  
uses only four design criteria: VOUT = 1.8 V, ILOAD = 15 A (pulsing),  
VIN = 12 V (typical), and fSW = 300 kHz.  
Assume that a load step of 15 A occurs at the output and no more  
than 5% output deviation is allowed from the steady state operating  
point. In this case, the advantage of the ADP1878 is that because  
the frequency is pseudo fixed, the converter is able to respond  
quickly because of the immediate, though temporary, increase  
in switching frequency.  
Input Capacitor  
The maximum input voltage ripple is usually 1% of the  
minimum input voltage (11.8 V × 0.01 = 120 mV).  
ΔVDROOP = 0.05 × 1.8 V = 90 mV  
V
V
RIPP = 120 mV  
Assuming the overall ESR of the output capacitor ranges from  
5 mΩ to 10 mΩ,  
MAX,RIPPLE = VRIPP − (ILOAD,MAX × ESR)  
= 120 mV − (15 A × 0.001) = 45 mV  
∆ꢅꢆꢇꢈꢉ  
ꢆꢇꢈꢉ,ꢃꢈꢊ  
15ꢒA  
ꢇꢙꢚ ꢄ 2 ꢓ  
ꢁꢂ,ꢃꢁꢂ  
ꢌꢍ ꢓ ∆ꢉꢏꢇꢇꢐ  
4ꢌꢍꢃꢈꢊ,ꢏꢁꢐꢐꢆꢑ 4ꢒ ꢓ ꢒ300ꢒ 10ꢔꢒ ꢓ ꢒ105ꢒmV  
15ꢒA  
ꢄ 2 ꢓ  
= 120 μF  
300 ꢓ 10 ꢓ 90ꢒmV  
Choose five 22 μF ceramic capacitors. The overall ESR of five  
22 μF ceramic capacitors is less than 1 mΩ.  
= 1.11 mF  
Therefore, an appropriate inductor selection is five 270 μF  
polymer capacitors with a combined ESR of 3.5 mΩ.  
I
RMS = ILOAD/2 = 7.5 A  
CIN = (IRMS)2 × ESR = (7.5 A)2 × 1 mΩ = 56.25 mW  
P
Assuming an overshoot of 45 mV, determine if the output  
capacitor that was calculated previously is adequate  
Inductor  
Determining inductor ripple current amplitude:  
ꢒꢒꢆꢇꢈꢉꢟ  
ꢖ ꢓ ꢅ  
ꢇꢙꢚ  
ꢇꢙꢚ ꢘ ∆ꢇꢣꢌꢤꢘ ꢞꢇꢙꢚ  
1 ꢓ 10ꢥꢦ ꢓ ꢞ15ꢒAꢢ  
ꢞ1.8 ꢘ 45ꢒmVꢘ ꢞ1.8ꢟꢢ  
= 1.4 mF  
Choose five 270 μF polymer capacitors.  
The rms current through the output capacitor is  
ꢟ  
ꢆꢇꢈꢉ  
∆ꢅꢕ  
ꢄ 5ꢒA  
3
Then, calculating for the inductor value  
ꢁꢂ,ꢃꢈꢊ ꢇꢙꢚ  
∆ꢅꢆ  
ꢇꢙꢚ  
ꢖ ꢄ  
ꢁꢂ,ꢃꢈꢊ  
13.2ꢒVꢒ– ꢒ1.8ꢒV  
1.8ꢒV  
5ꢒV ꢓ 300 ꢓ 1013.2ꢒV  
1
2
1 ꢗꢁꢂ,ꢃꢈꢊ ꢇꢙꢚ  
ꢇꢙꢚ  
= 1.03 μH  
ꢏꢃꢌ  
ꢖ ꢓ ꢋ  
ꢁꢂ,ꢃꢈꢊ  
3
ꢌꢍ  
The inductor peak current is approximately  
15 A + (5 A × 0.5) = 17.5 A  
1
1
13.2ꢒVꢒ–ꢒ1.8ꢒV  
1.8ꢒV  
ꢄ1.49ꢒAꢒ  
2
1ꢒμFꢓ300ꢓ103 13.2ꢒV  
3
Therefore, an appropriate inductor selection is 1.0 μH with  
DCR = 3.3 mΩ (Würth Elektronik 7443552100) with a peak  
current handling of 20 A.  
The power loss dissipated through the ESR of the output  
capacitor is  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mΩ = 3.15 mW  
ꢉꢝꢏꢞꢆꢇꢌꢌꢟ ꢄ ꢠꢀꢡ ꢓ ꢅꢢ  
= 0.003 × (15 A)2 = 675 mW  
Rev. A | Page 29 of 40  
 
ADP1878/ADP1879  
Data Sheet  
Feedback Resistor Network Setup  
Loss Calculations  
Choosing RB = 1 kΩ as an example. Calculate RT as follows:  
Duty cycle = 1.8/12 V = 0.15  
1.8ꢃV ꢆ 0.6ꢃV  
R
ON(N2) = 5.4 mΩ  
ꢂ 1ꢃkΩ ꢄ  
ꢂ 2ꢃkΩ  
0.6ꢃV  
tBODY(LOSS) = 20 ns (body conduction time)  
Compensation Network  
VF = 0.84 V (MOSFET forward voltage)  
To calculate RCOMP, CCOMP, and CPAR, the transconductance  
parameter and the current sense gain variable are required. The  
transconductance parameter (Gm) is 500 μA/V, and the current  
sense loop gain is  
CIN = 3.3 nF (MOSFET gate input capacitance)  
Q
N1,N2 = 17 nC (total MOSFET gate charge)  
RGATE = 1.5 Ω (MOSFET gate input resistance)  
1
1
1,ꢍꢗꢅꢉꢙꢇ ꢂ ꢥꢦ ꢄ ꢀ1ꢅꢌꢍꢇ ꢔ 1 ꢆ ꢦ ꢄ ꢀꢍꢗꢅꢌꢍꢇꢧ ꢄ ꢨꢌꢩꢪ  
= (0.15 × 0.0054 + 0.85 × 0.0054) × (15 A)2  
= 1.215 W  
ꢉꢊ  
ꢂ 8.33ꢃA/V  
ꢉꢊꢌꢍ 24 ꢄ 0.005  
where ACS and RON are taken from setting up the current limit  
(see the Programming Resistor (RES) Detect Circuit section  
and the Valley Current-Limit Setting section).  
The crossover frequency is 1/12th of the switching frequency:  
ꢫꢌꢪꢬꢅꢙꢌꢊꢊꢇ  
ꢫꢌꢪꢬꢅꢙꢌꢊꢊꢇ  
ꢄ ꢨꢙꢌꢩꢪ ꢄ 2  
ꢊꢮ  
= 20 ns × 300 × 103 × 15 A × 0.84 × 2  
= 151.2 mW  
300 kHz/12 = 25 kHz  
The zero frequency is 1/4th of the crossover frequency:  
25 kHz/4 = 6.25 kHz  
P
SW(LOSS) = fSW × RGATE × CTOTAL × ILOAD × VIN × 2  
= 300 × 103 × 1.5 ꢀ × 3.3 × 10−9 × 15 A × 12 × 2  
= 534.6 mW  
ꢉꢌꢎꢏ  
ꢒ1 ꢔ ꢅꢘ ꢀꢔ ꢚꢛꢀ ꢌꢝꢗ  
P
DR(LOSS) = [VDR × (fSWCupperFET  
VDR + IBIAS)] + [VREG ×  
ꢉꢑꢌꢊꢊ  
ꢔ ꢐ  
(fSWClowerFET REG +IBIAS)]  
V
ꢒ1ꢔ ꢅꢘ ꢄ ꢚꢛꢀ ꢄ ꢜꢌꢝꢗ  
ꢉꢑꢌꢊꢊ  
ꢕꢖꢑꢌ  
=(4.62 × (300 ×103 × 3.3 × 10−9 × 4.62 + 0.002)) +  
(5.0 × (300 × 103 × 3.3 × 10−9 × 5.0 + 0.002))  
= 57.12 mW  
1
ꢌꢝꢁ  
1
ꢑꢖꢟ ꢉꢊ  
25ꢃkΩ  
√25ꢃkΩꢔ 6.25ꢃkΩꢗ  
ꢉꢌꢎꢏ  
P
DISS(LDO) = (VIN VREG) × (fSW × CTOTAL × VREG + IBIAS)  
ꢒ1 ꢔ ꢅ2π ꢄ 25ꢃkΩ ꢄ ꢅ 1.8/15 ꢔ 0.0035ꢇ ꢄ 0.0011ꢇ  
= (13 V – 5 V) × (300 × 103 × 3.3 × 10−9 × 5 + 0.002)  
= 55.6 mW  
ꢒ1ꢔ ꢅ2π ꢄ 25ꢃkΩ ꢄ 0.0035 ꢄ 0.0011ꢇꢗ  
1.8  
1
15  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mΩ = 3.15 mW  
0.6 500 ꢄ 10ꢠꢡ ꢄ 8.3 1.8  
= 60.25 kΩ  
= 0.003 × (15 A)2 = 675 mW  
PDCR(LOSS) DCRIL2OAD  
1
P
P
CIN = (IRMS)2 × ESR = (7.5 A)2 × 1 mΩ = 56.25 mW  
ꢉꢌꢎꢏ  
2ꢢꢀꢉꢌꢎꢏ  
ꢕꢖꢑꢌ  
LOSS = PN1,N2 + PBODY(LOSS) + PSW + PDCR + PDR + PDISS(LDO) + PCOUT  
1
+ PCIN = 1.215 W + 151.2 mW + 534.6 mW + 57.12 mW +  
55.6 + 3.15 mW + 675 mW + 56.25 mW = 2.655 W  
2 ꢄ 3.14 ꢄ 60.25 ꢄ 10ꢄ 6.25 ꢄ 10ꢣ  
= 423 pF  
Rev. A | Page 30 of 40  
Data Sheet  
ADP1878/ADP1879  
EXTERNAL COMPONENT RECOMMENDATIONS  
The configurations listed in Table 10 are with fCROSS = 1/12 × fSW, fZERO = ¼ × fCROSS, RRES = 100 kΩ, RBOT = 1kΩ, RON = 5.4 mꢀ (BSC042N03MS G),  
VREG = 5 V (float), and a maximum load current of 14 A. The ADP1879 models listed in Table 10 are the PSM versions of the device.  
Table 10. External Component Values  
VOUT  
(V)  
VIN  
(V)  
13  
13  
13  
13  
13  
13  
13  
16.5  
16.5  
16.5  
16.5  
16.5  
16.5  
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
16.5  
16.5  
16.5  
16.5  
16.5  
16.5  
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
CIN  
(μF)  
L1  
(μH)  
0.72  
1.0  
1.2  
1.53  
2.0  
3.27  
3.44  
1.0  
RC  
(kΩ)  
CCOMP  
(pF)  
CPAR  
(pF)  
RTOP  
(kΩ)  
Model  
COUT (μF)  
5 × 5603  
4 × 5603  
4 × 2704  
3 × 2704  
2 × 3305  
3305  
222 + ( 4 × 476)  
4 × 5603  
4 × 2704  
4 × 2704  
2 × 3305  
2 × 1507  
222 + 4 × 476  
4 × 5603  
4 × 2704  
3 × 2704  
3 × 1808  
5 × 2704  
3 × 3305  
3 × 2704  
2 × 2704  
1507  
4 × 2704  
2 × 3305  
3 × 2704  
3305  
4 × 476  
3 × 476  
4 × 2704  
2 × 3305  
3 × 1808  
2704  
ADP1878ACPZ-0.3-R7/  
ADP1879ACPZ-0.3-R7  
0.8  
1.2  
1.8  
2.5  
3.3  
5
5 × 222  
5 × 222  
4 × 222  
4 × 222  
5 × 222  
4 × 222  
4 × 222  
4 × 222  
3 × 222  
3 × 222  
3 × 222  
3 × 222  
3 × 222  
5 × 222  
5 × 222  
5 × 222  
5 × 222  
3 × 222  
5 × 109  
5 × 109  
5 × 109  
5 × 109  
3 × 109  
4 × 109  
4 × 109  
4 × 109  
4 × 109  
4 × 109  
5 × 222  
5 × 222  
3 × 222  
3 × 222  
3 × 109  
4 × 109  
4 × 109  
5 × 109  
4 × 109  
3 × 109  
3 × 109  
4 × 109  
4 × 109  
3 × 109  
3 × 109  
56.9  
56.9  
56.9  
57.6  
56.9  
40.7  
40.7  
56.9  
56.9  
57.6  
56.9  
41.2  
40.7  
56.2  
56.9  
56.9  
56.9  
56.9  
56.2  
57.6  
57.6  
40.7  
56.9  
53.6  
57.6  
53.0  
41.2  
40.7  
54.9  
49.3  
56.9  
54.9  
53.6  
56.9  
54.9  
56.2  
40.7  
56.9  
56.9  
56.9  
56.2  
40.7  
40.7  
620  
620  
470  
470  
470  
680  
680  
620  
470  
470  
510  
680  
680  
300  
270  
220  
220  
360  
270  
240  
240  
360  
300  
270  
270  
270  
360  
300  
200  
220  
130  
130  
200  
180  
180  
180  
220  
270  
220  
200  
180  
220  
180  
62  
62  
47  
47  
47  
68  
68  
62  
47  
47  
51  
68  
68  
300  
27  
22  
22  
36  
27  
24  
24  
36  
30  
27  
27  
27  
36  
30  
20  
22  
13  
13  
20  
18  
18  
18  
22  
27  
22  
20  
18  
22  
18  
0.3  
1.0  
2.0  
3.2  
4.5  
7.3  
10.7  
1.0  
2.0  
3.2  
4.5  
7.3  
10.7  
0.3  
1.0  
2.0  
3.2  
1.0  
2.0  
3.2  
4.5  
7.3  
1.0  
2.0  
3.2  
4.5  
7.3  
10.7  
0.3  
1.0  
2.0  
3.2  
1.0  
2.0  
3.2  
4.5  
7.3  
1.0  
2.0  
3.2  
4.5  
7.3  
10.7  
7
1.2  
1.8  
2.5  
3.3  
5
1.0  
1.67  
2.00  
3.84  
4.44  
0.22  
0.47  
0.47  
0.47  
0.47  
0.47  
0.90  
1.00  
1.76  
0.47  
0.72  
0.90  
1.0  
7
ADP1878ACPZ-0.6-R7/  
ADP1879ACPZ-0.6-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
1.2  
1.8  
2.5  
3.3  
5
2.0  
2.0  
7
ADP1878ACPZ-1.0-R7/  
ADP1879ACPZ-1.0-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
0.22  
0.22  
0.22  
0.22  
0.22  
0.47  
0.47  
0.72  
1.0  
0.47  
0.47  
0.72  
0.72  
1.2  
3 × 3305  
3 × 2704  
2704  
2704  
3 × 476  
4 × 2704  
3 × 2704  
3 × 1808  
2704  
3 × 476  
222 + 476  
1.2  
1.8  
2.5  
3.3  
5
16.5  
16.5  
16.5  
16.5  
16.5  
16.5  
7
1.2  
1 See the Inductor Selection section and Table 11.  
2 22 μF Murata 25 V, X7R, 1210 GRM32ER71E226KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
3 560 μF Panasonic (SP-series) 2 V, 7 mΩ, 3.7 A EEFUE0D561LR (4.3 mm × 7.3 mm × 4.2 mm).  
4 270 μF Panasonic (SP-series) 4 V, 7 mΩ, 3.7 A EEFUE0G271LR (4.3 mm × 7.3 mm × 4.2 mm).  
5 330 μF Panasonic (SP-series) 4 V, 12 mΩ, 3.3 A EEFUE0G331R (4.3 mm × 7.3 mm × 4.2 mm).  
6 47 μF Murata 16 V, X5R, 1210 GRM32ER61C476KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
7 150 μF Panasonic (SP-series) 6.3 V, 10 mΩ, 3.5 A EEFUE0J151XR (4.3 mm × 7.3 mm × 4.2 mm).  
8 180 μF Panasonic (SP-series) 4 V, 10 mΩ, 3.5 A EEFUE0G181XR (4.3 mm × 7.3 mm × 4.2 mm).  
9 10 μF TDK 25 V, X7R, 1210 C3225X7R1E106M.  
Rev. A | Page 31 of 40  
 
 
 
 
 
ADP1878/ADP1879  
Data Sheet  
Table 11. Recommended Inductors  
L (μH)  
0.12  
0.22  
0.47  
0.72  
0.9  
1.2  
1.0  
1.4  
2.0  
DCR (mΩ)  
0.33  
0.33  
0.8  
1.65  
1.6  
1.8  
3.8  
3.2  
2.6  
ISAT (A)  
Dimension (mm)  
10.2 × 7  
10.2 × 7  
14.2 × 12.8  
10.5 × 10.2  
14 × 12.8  
10.5 × 10.2  
10.2 × 10.2  
14 × 12.8  
Manufacturer  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Sumida  
Model Number  
55  
30  
50  
35  
32  
25  
16  
24  
744303012  
744303022  
744355147  
744325072  
744318120  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-0R8  
23  
27.5  
10.2 × 10.2  
0.8  
Table 12. Recommended MOSFETs  
VGS = 4.5 V  
RON (mΩ)  
ID (A) VDS (V) CIN (nF) QTOTAL (nC)  
Package  
PG-TDSON8  
PG-TDSON8  
SO-8  
Manufacturer  
Model Number  
High-Side MOSFET  
(Q1/Q2)  
5.4  
10.2  
6.0  
47  
53  
19  
14  
47  
82  
19  
30  
30  
30  
30  
30  
30  
30  
3.2  
1.6  
20  
10  
35  
25  
20  
10  
35  
Infineon  
Infineon  
Vishay  
International Rectifier  
Infineon  
BSC042N03MS G  
BSC080N03MS G  
Si4842DY  
9
2.4  
3.2  
1.6  
SO-8  
IRF7811  
Low-Side MOSFET  
(Q3/Q4)  
5.4  
10.2  
6.0  
PG-TDSON8  
PG-TDSON8  
SO-8  
BSC042N03MS G  
BSC080N03MS G  
Si4842DY  
Infineon  
Vishay  
Rev. A | Page 32 of 40  
 
Data Sheet  
ADP1878/ADP1879  
LAYOUT CONSIDERATIONS  
The performance of a dc-to-dc converter depends highly on  
how the voltage and current paths are configured on the printed  
circuit board (PCB). Optimizing the placement of sensitive  
analog and power components are essential to minimize output  
ripple, maintain tight regulation specifications, and reduce  
PWM jitter and electromagnetic interference.  
Figure 86 shows the schematic of a typical ADP1878/ADP1879  
used for a high current application. Blue traces denote high current  
pathways. VIN, PGND, and VOUT traces should be wide and  
possibly replicated, descending down into the multiple layers.  
Vias should populate, mainly around the positive and negative  
terminals of the input and output capacitors, alongside the source  
of Q1/Q2, the drain of Q3/Q4, and the inductor.  
HIGH VOLTAGE INPUT  
V
= 12V  
IN  
JP3  
C
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
N/A  
C9  
N/A  
VIN  
22µF  
C
430pF  
R
57k  
C
ADP1878/  
ADP1879  
C
100nF  
BST  
C
53pF  
PAR  
C
1
2
3
14  
Q1  
Q3  
Q2  
VIN  
BST  
COMP  
EN  
SW 13  
1.0µH  
V
= 1.8V, 15A  
+
C23  
OUT  
R7 10kΩ  
2kΩ  
V
12  
11  
DRVH  
PGND  
REG  
+
+
+
R
C20  
270µF  
C21  
270µF  
C22  
270µF  
SNB  
2Ω  
R
TOP  
270µF  
V
Q4  
4
5
FB  
OUT  
C
SNB  
1.5nF  
R
BOT  
1kΩ  
GND  
DRVL 10  
+
+
+
+
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
5kΩ  
6
7
9
8
RES  
PGOOD  
SS  
V
REG  
R
RES  
100kΩ  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
VREG  
C
SS  
C2  
0.1µF  
C1  
1µF  
PANASONIC: (OUTPUT CAPACITORS)  
270µF, SP-SERIES, 4V, 7m, EEFUE0G271LR  
34nF  
INFINEON FETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
1µH, 3.8m, 16A, 7443552100  
Figure 86. ADP1878 High Current Evaluation Board Schematic (Blue Traces Indicate High Current Paths)  
SENSITIVE ANALOG  
COMPONENTS  
LOCATED FAR  
FROM NOISY  
POWER SECTION  
SEPARATE ANALOG  
OUTPUT  
GROUND PLANE FOR  
CAPACITORS  
COMPENSATION AND  
FEEDBACK RESISTORS  
ARE MOUNTED  
AT RIGHTMOST  
AREA OF  
EVALUATION  
BOARD  
INPUT CAPACITORS  
ARE MOUNTED CLOSE  
TO DRAIN OF Q1/Q2  
AND SOURCE OF Q3/Q4  
Figure 87. Overall Layout of the ADP1878/ADP1879 High Current Evaluation Board  
Rev. A | Page 33 of 40  
 
 
 
ADP1878/ADP1879  
Data Sheet  
Figure 88. Layer 2 of Evaluation Board  
TOP RESISTOR  
FEEDBACK TAP  
VOUT SENSE TAP LINE  
EXTENDING BACK TO THE  
TOP RESISTOR IN THE  
FEEDBACK DIVIDER  
NETWORK. THIS OVERLAPS  
WITH PGND SENSE TAP  
LINE EXTENDING TO THE  
ANALOG GROUND PLANE  
Figure 89. Layer 3 of Evaluation Board  
Rev. A | Page 34 of 40  
 
Data Sheet  
ADP1878/ADP1879  
BOTTOM  
RESISTOR TAP  
TO ANALOG  
GROUND PLANE  
PGND SENSE TAP FROM  
NEGATIVE TERMINALS OF  
THE OUTPUT BULK  
CAPACITORS. THIS  
TRACK PLACEMENT  
SHOULD BE DIRECTLY  
BELOW THE VOUT SENSE  
LINE OF LAYER 3.  
Figure 90. Layer 4 (Bottom Layer) of Evaluation Board  
(yellow arrow) is maintained as Q1/Q2 turns off and Q3/Q4 turns  
on. When Q3/Q4 turns on, the current direction continues to be  
maintained (red arrow) as it circles from the power ground  
terminal of the bulk capacitor to the output capacitors, through  
the Q3/Q4. Arranging the power planes in this manner minimizes  
the area in which changes in flux occur if the current through  
Q1/Q2 stops abruptly. Sudden changes in flux, usually at the  
source terminals of Q1/Q2 and the drain terminal of Q3/Q4,  
cause large dV/dt at the SW node.  
IC SECTION (LEFT SIDE OF EVALUATION BOARD)  
A dedicated plane for the analog ground plane (GND) should  
be separate from the main power ground plane (PGND). With  
the shortest path possible, connect the analog ground plane to  
the GND pin (Pin 5). Place this plane on the top layer only of  
the evaluation board. To avoid crosstalk interference, do not  
allow any other voltage or current pathway directly below this  
plane on Layer 2, Layer 3, or Layer 4. Connect the negative  
terminals of all sensitive analog components to the analog  
ground plane. Examples of such sensitive analog components  
include the bottom resistor of the resistor divider, the high  
frequency bypass capacitor for biasing (0.1 μF), and the  
compensation network.  
The SW node is near the top of the evaluation board. The SW  
node should use the least amount of area possible and be away  
from any sensitive analog circuitry and components. This is  
because the SW node is where most sudden changes in flux  
density occur. When possible, replicate this pad onto Layer 2  
and Layer 3 for thermal relief and eliminate any other voltage and  
current pathways directly beneath the SW node plane. Populate  
the SW node plane with vias, mainly around the exposed pad of  
the inductor terminal and around the perimeter of the source of  
Q1/Q2 and the drain of Q3/Q4.  
Mount a 1 μF bypass capacitor directly across the VREG pin  
(Pin 7) and the PGND pin (Pin 11). In addition, tie a 0.1 μF  
across the VREG pin (Pin 7) and the GND pin (Pin 5).  
POWER SECTION  
As shown in Figure 87, an appropriate configuration to localize  
large current transfer from the high voltage input (VIN) to the  
output (VOUT) and then back to the power ground is to put the  
VIN plane on the left, the output plane on the right, and the main  
power ground plane in between the two. Current transfers from  
the input capacitors to the output capacitors, through Q1/Q2,  
during the on state (see Figure 91). The direction of this current  
The output voltage power plane (VOUT) is at the rightmost end of  
the evaluation board. This plane should be replicated, descending  
down to multiple layers with vias surrounding the inductor  
terminal and the positive terminals of the output bulk capacitors.  
Ensure that the negative terminals of the output capacitors are  
placed close to the main power ground (PGND), as previously  
mentioned. All of these points form a tight circle (component  
geometry permitting) that minimizes the area of flux change as  
the event switches between D and 1 − D.  
Rev. A | Page 35 of 40  
 
 
 
ADP1878/ADP1879  
Data Sheet  
SW  
PGND  
LAYER 1: SENSE LINE FOR SW  
(DRAIN OF LOWER MOSFET)  
LAYER 1: SENSE LINE FOR PGND  
(SOURCE OF LOWER MOSFET)  
Figure 92. Drain/Source Tracking Tapping of the Low-Side MOSFET for CS  
Amp Differential Sensing (Yellow Sense Line on Layer 2)  
Figure 91. Primary Current Pathways During the On State of the High-Side  
MOSFET (Left Arrow) and the On State of the Low-Side MOSFET (Right Arrow)  
In addition, employ differential sensing between the outermost  
output capacitor and the feedback resistor divider (see Figure 89  
and Figure 90). Connect the positive terminal of the output  
capacitor to the top resistor (RT). Connect the negative terminal  
of the output capacitor to the negative terminal of the bottom  
resistor, which connects to the analog ground plane as well.  
Keep both of these track lines, as previously mentioned, narrow  
and away from any other active device or voltage/ current path.  
DIFFERENTIAL SENSING  
Because the ADP1878/ADP1879 operate in valley current-mode  
control, a differential voltage reading is taken across the drain  
and source of the low-side MOSFET. Connect the drain of the  
low-side MOSFET s as close as possible to the SW pin (Pin 13) of  
the IC. Likewise, connect the source as close as possible to the  
PGND pin (Pin 11) of the IC. When possible, keep both of  
these track lines narrow and away from any other active device  
or voltage/current path.  
Rev. A | Page 36 of 40  
 
 
Data Sheet  
ADP1878/ADP1879  
TYPICAL APPLICATION CIRCUITS  
12 A, 300 kHz HIGH CURRENT APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 12V  
V
IN  
JP3  
C
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
N/A  
C9  
N/A  
VIN  
22µF  
C
560pF  
R
C
ADP1878/  
ADP1879  
C
100nF  
BST  
C
56pF  
PAR  
C
1
2
3
14  
13  
12  
Q1  
Q3  
Q2  
VIN  
BST  
49.3k  
COMP  
EN  
SW  
1.2µH  
V
= 1.8V, 12A  
+
C23  
OUT  
R7 10kΩ  
2kΩ  
V
DRVH  
REG  
+
+
+
R
C20  
270µF  
C21  
270µF  
C22  
270µF  
SNB  
2Ω  
R
TOP  
270µF  
V
Q4  
4
5
11  
10  
FB  
PGND  
DRVL  
OUT  
C
SNB  
1.5nF  
R
BOT  
1kΩ  
GND  
+
+
+
+
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
5kΩ  
6
7
9
8
RES  
PGOOD  
SS  
V
REG  
R
RES  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
100kΩ  
VREG  
C
SS  
PANASONIC: (OUTPUT CAPACITORS)  
270µF (SP-SERIES), 4V, 7m, EEFUE0G271LR  
C2  
0.1µF  
C1  
1µF  
34nF  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
1.2µH, 2m, 20A, 744325120  
Figure 93. Application Circuit for 12 V Input, 1.8 V Output, 12 A, 300 kHz (Q2/Q4 No Connect)  
5.5 V INPUT, 600 kHz CURRENT APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 5.5V  
V
IN  
JP3  
C
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
N/A  
C9  
N/A  
VIN  
22µF  
C
220pF  
R
C
ADP1878/  
ADP1879  
C
100nF  
BST  
C
22pF  
F
C
1
2
3
14  
Q1  
Q3  
Q2  
VIN  
BST  
56.9k  
COMP  
EN  
SW 13  
0.47µH  
V
= 2.5V, 12A  
+
C23  
OUT  
R7 10kΩ  
32kΩ  
V
12  
11  
DRVH  
PGND  
REG  
+
+
+
R
C20  
180µF  
C21  
180µF  
C22  
180µF  
SNB  
2Ω  
R
TOP  
N/A  
V
Q4  
4
5
FB  
OUT  
C
SNB  
1.5nF  
R
BOT  
1kΩ  
GND  
DRVL 10  
+
+
+
+
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
5kΩ  
6
7
9
8
RES  
PGOOD  
SS  
V
REG  
R
RES  
MURATA: (INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
100kΩ  
VREG  
C
SS  
PANASONIC: (OUTPUT CAPACITORS)  
180µF (SP-SERIES), 4V, 10m, EEFUE0G181XR  
C2  
0.1µF  
C1  
1µF  
34nF  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
0.47µH, 0.8m, 30A, 744355147  
Figure 94. Application Circuit for 5.5 V Input, 2.5 V Output, 12 A, 600 kHz (Q2/Q4 No Connect)  
Rev. A | Page 37 of 40  
 
 
 
ADP1878/ADP1879  
Data Sheet  
300 kHz HIGH CURRENT APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 13V  
V
IN  
JP3  
C
22µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
N/A  
C9  
N/A  
VIN  
C
560pF  
R
C
ADP1878/  
ADP1879  
C
100nF  
BST  
C
56pF  
PAR  
C
1
2
3
14  
13  
12  
Q1  
Q3  
Q2  
VIN  
BST  
49.3k  
COMP  
EN  
SW  
1.2µH  
V
= 1.8V, 12A  
+
C23  
OUT  
R7 10kΩ  
2kΩ  
V
DRVH  
REG  
+
+
+
R
C20  
270µF  
C21  
270µF  
C22  
270µF  
SNB  
2Ω  
R
TOP  
270µF  
V
Q4  
4
5
11  
10  
FB  
PGND  
DRVL  
OUT  
C
SNB  
1.5nF  
R
BOT  
1kΩ  
GND  
+
+
+
+
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
5kΩ  
6
7
9
8
RES  
PGOOD  
SS  
V
REG  
R
RES  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
100kΩ  
VREG  
C
SS  
PANASONIC: (OUTPUT CAPACITORS)  
270µF (SP-SERIES), 4V, 7m, EEFUE0G271LR  
C2  
0.1µF  
C1  
1µF  
34nF  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
1.2µH, 2m, 20A, 744325120  
Figure 95. Application Circuit for 13 V Input, 1.8 V Output, 12 A, 300 kHz (Q2/Q4 No Connect)  
Rev. A | Page 38 of 40  
 
 
Data Sheet  
ADP1878/ADP1879  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
3.40  
3.30  
3.15  
4.10  
4.00  
3.90  
0.10  
REF  
0.20 MIN  
8
7
14  
0.90  
3.10  
3.00  
2.90  
1.80  
1.70  
1.55  
EXPOSED  
PAD  
REF  
PIN 1 INDICATOR  
(LASER MARKING)  
0.30  
REF  
1
0.50  
0.40  
0.30  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
END VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.15 REF  
0.30  
0.50 BSC  
0.25  
0.20  
COMPLIANT TO JEDEC STANDARDS MO-229-WEGD  
Figure 96. 14-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
4 mm × 3 mm Body, Very Very Thin Dual  
(CP-14-2)  
Dimensions shown in millimeters  
Rev. A | Page 39 of 40  
 
 
ADP1878/ADP1879  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-14-2  
CP-14-2  
ADP1878ACPZ-0.3-R7  
ADP1878ACPZ-0.6-R7  
ADP1878ACPZ-1.0-R7  
ADP1878-0.3-EVALZ  
ADP1878-0.6-EVALZ  
ADP1878-1.0-EVALZ  
ADP1879ACPZ-0.3-R7  
ADP1879ACPZ-0.6-R7  
ADP1879ACPZ-1.0-R7  
ADP1879-0.3-EVALZ  
ADP1879-0.6-EVALZ  
ADP1879-1.0-EVALZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
Evaluation Board  
Evaluation Board  
Evaluation Board  
CP-14-2  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
14-Lead Frame Chip Scale Package [LFCSP_WD]  
Evaluation Board  
Evaluation Board  
Evaluation Board  
CP-14-2  
CP-14-2  
CP-14-2  
1 Z = RoHS Compliant Part.  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09441-0-6/12(A)  
www.analog.com/ADP1878/ADP1879  
Rev. A | Page 40 of 40  
 
 

相关型号:

IRF7811A

Chipset for DC-DC Converters
INFINEON

IRF7811APBF

HEXFET Power MOSFET
INFINEON

IRF7811ATR

PROVISIONAL DATASHEET
INFINEON

IRF7811AV

N-Channel Application-Specific MOSFETs
INFINEON

IRF7811AVPBF

N-Channel Application-Specific MOSFETs
INFINEON

IRF7811AVPBF-1

Small Signal Field-Effect Transistor,
INFINEON

IRF7811AVTRPBF

N-Channel Application-Specific MOSFETs
INFINEON

IRF7811AVTRPBF-1

Small Signal Field-Effect Transistor
INFINEON

IRF7811AVUPBF

Power Field-Effect Transistor, 10.8A I(D), 30V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, MS-012AA, SOP-8
INFINEON

IRF7811AVUTRPBF

Power Field-Effect Transistor, 10.8A I(D), 30V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, MS-012AA, SOP-8
INFINEON

IRF7811AV_05

N-Channel Application-Specific MOSFETs
INFINEON

IRF7811W

Power MOSFET for DC-DC Converters
INFINEON