LTC3600 [ADI]

Quad 17V, 1.25A Parallelable Synchronous Step-Down Regulator with Ultralow Quiescent Current;
LTC3600
型号: LTC3600
厂家: ADI    ADI
描述:

Quad 17V, 1.25A Parallelable Synchronous Step-Down Regulator with Ultralow Quiescent Current

文件: 总20页 (文件大小:1547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3644/LTC3644-2  
Quad 17V, 1.25A Parallelable Synchronous Step-  
Down Regulator with Ultralow Quiescent Current  
FEATURES  
DESCRIPTION  
n
n
n
n
Quad Step-down Outputs: 1.25A per Channel  
Wide V Range: 2.7V to 17V  
The LTC®3644/LTC3644-2 is a quad 1.25A output, high  
efficiencysynchronousmonolithicstep-downregulatorcapable  
of operating from input supplies up to 17V. The switching  
frequency is internally fixed to 1MHz or 2.25MHz with a 50%  
synchronizationrange.Theregulatorfeaturesultralowquiescent  
IN  
Wide V  
Range: 0.6V to V  
OUT  
IN  
1.25A/2.5A/3.75A/5A I  
Configurable with  
OUT  
One Inductor  
n
n
n
Integrated 300mΩ P-Channel/80mΩ N-Channel  
MOSFETs Provide Up to 93% Efficiency  
current and high efficiency over a wide V and V range.  
IN OUT  
The step-down regulator operates from an input voltage  
range of 2.7V to 17V and provides an adjustable output  
No-Load Burst Mode Operation I < 10µA with All  
Q
Channels Enabled  
range from 0.6V to V while delivering up to 1.25A of  
IN  
Constant Frequency (1MHz/2.25MHz) with 50%  
Frequency Synchronization Range  
1% Output Voltage Accuracy  
output current per channel. LTC3644/LTC3644-2 can be  
configuredforquad1.25Aoutputs,triple2.5A/1.25A/1.25A  
outputs, dual 2.5A outputs, or dual 3.75A/1.25A outputs. A  
user selectable mode input is provided to allow the user to  
trade off ripple noise for light load efficiency; Burst Mode®  
operationprovidesthehighestefficiencyatlightloads,while  
forced-continuous mode provides the lowest ripple noise.  
The regulators can be synchronized to an external clock.  
n
n
Current Mode Operation for Excellent Line and Load  
Transient Response  
Full Dropout Operation (100% Duty Cycle)  
Phase Shift Programmable with External Clock  
5mm × 5mm × 1.72mm BGA Package  
n
n
n
LTC3644 Options  
APPLICATIONS  
PART NAME  
LTC3644  
FREQUENCY  
1.00MHz  
V
OUT  
n
Battery Powered Systems  
Adjustable  
Adjustable  
n
Point-of-Load Supplies  
LTC3644-2  
2.25MHz  
n
Portable – Handheld Scanners and Cameras  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. patents, including 5481178, 6580258, 6498466, 6611131, 5705919.  
TYPICAL APPLICATION  
4-Channel 1.25A Quad-Output 1MHz Step-Down Regulator  
Efficiency and Power Loss vs Load  
at 1MHz in Burst Mode Operation  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢃ ꢄꢅꢁ  
ꢃꢃꢄꢅ  
ꢆꢇ  
ꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢁꢀꢀ  
ꢂ.ꢃꢄꢅ  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢀꢁ  
ꢁ.ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ.ꢆꢀ ꢇꢃ ꢄ.ꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢅ.ꢆꢀ ꢇꢃ ꢅ.ꢈꢉꢇ  
ꢁꢁꢂ  
Rꢀ  
Rꢀ  
ꢁꢁꢂ  
ꢃꢃꢄꢁ  
ꢂꢃꢄꢅꢅ  
ꢃꢃꢄꢁ  
ꢁꢀꢂꢃ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅꢆꢇꢈ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢈ  
ꢁꢂꢃꢄ  
ꢀ ꢁ.0 ꢃ ꢄ ꢀ ꢅ.ꢆꢇꢈ  
ꢀ ꢁ.ꢁ ꢃ ꢄ ꢀ ꢅ.ꢆꢇꢈ  
ꢀ ꢁ.ꢂ ꢄ ꢅ ꢀ ꢆ.ꢆꢇꢈ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
ꢁ0ꢂꢃ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
0.00  
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
ꢀ.00  
ꢀ.ꢁꢂ  
ꢁꢂꢃꢄ  
ꢅ.ꢅꢀ ꢆꢃ ꢇ.ꢄꢈꢆ  
ꢁꢂꢃꢄ  
ꢅꢀ ꢆꢃ ꢇ.ꢈꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢁꢁꢂ  
ꢁꢁꢂ  
ꢂꢂꢃꢁ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢃꢃꢄꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅꢆꢇꢈ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢀꢁ.ꢂꢃ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅꢆ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTC3644/LTC3644-2  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢟꢝꢍ ꢜꢛꢁꢚ  
V
, V , V , V , SV .......................... –0.3V to 17V  
IN  
IN1 IN2 IN3 IN4  
RUN1, RUN2, RUN3, RUN4.................0.3V to SV + 0.3V  
MODE/SYNC, FB1, FB2, FB3, FB4 ....–0.3V to INTV + 0.3V  
IN  
CC  
ꢀꢁꢂ ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ  
ꢀꢁꢂ  
ꢄꢄ  
ꢂꢃ  
PGOOD1, PGOOD2, PGOOD3, PGOOD4, PHASE .. –0.3V to 6V  
Operating Junction Temperature Range  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Peak Solder Reflow Body Temperature.................260°C  
ꢁꢂꢃ  
ꢀꢁꢂꢂꢃꢄ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢂꢃꢄ ꢀ  
ꢁꢂꢃ  
ꢀꢁꢂ Rꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ Rꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂꢃꢄꢅꢆꢇꢈ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ ꢀꢁꢂ  
ꢁꢂꢃ  
ꢀꢁꢂꢂꢃꢄ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢂꢃꢄ ꢀ  
ꢁꢂꢃ  
ꢀꢁꢂ Rꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ Rꢀꢁꢂ ꢀꢁꢂ  
ꢃꢌꢂ ꢍꢂꢄꢎꢂꢌꢁ  
ꢉꢋꢏꢃꢂꢐꢐ ꢑꢊꢒꢒ ꢓ ꢊꢒꢒ ꢓ ꢇ.ꢔꢆꢒꢒꢕ  
θ
ꢖꢂ  
ꢗ ꢆꢊꢘꢄꢙꢚ  
θ
ꢅꢁRꢛꢜꢁꢅ ꢀRꢝꢞ ꢄꢉꢋꢈꢈ ꢅꢁꢞꢝ ꢃꢝꢂRꢅ  
ꢖꢂ  
θ
ꢗ ꢆꢣ.ꢤꢘꢄꢙθ  
ꢗ ꢋ.ꢇꢘꢄꢙꢚ  
ꢖꢄꢠꢡꢢ  
ꢖꢄꢦꢡꢠꢠꢡꢒ  
θ
ꢂꢧꢅ θ  
ꢂRꢁ ꢅꢁꢟꢁRꢞꢛꢧꢁꢅ ꢃꢨ ꢩꢛꢞꢪꢐꢂꢟꢛꢝꢧ ꢍꢁR  
ꢖꢁꢩꢅꢊꢇ ꢄꢝꢧꢅꢛꢟꢛꢝꢧ  
ꢖꢄꢠꢡꢢ  
ꢖꢄꢦꢡꢠꢠꢡꢒ  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
TEMPERATURE RANGE  
PART NUMBER  
TERMINAL FINISH  
SAC305(RoHS)  
SAC305(RoHS)  
SAC305(RoHS)  
SAC305(RoHS)  
DEVICE  
3644Y  
FINISH CODE  
RATING  
(SEE NOTE 2)  
LTC3644EY#PBF  
LTC3644IY#PBF  
LTC3644EY-2#PBF  
LTC3644IY-2#PBF  
e1  
e1  
e1  
e1  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
3644Y  
3644Y2  
3644Y2  
• Device temperature grade is indicated by a label on the shipping container.  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
BGA Package and Tray Drawings  
This product is moisture sensitive. For more information, go  
to Recommended BGA PCB Assembly and Manufacturing  
Procedures.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). SVIN = VIN1 = VIN2 = VIN3 = VIN4 = 12V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
UNITS  
V
V
, SV  
Operating Voltage  
Output Voltage  
17  
V
V
INX  
IN  
0.6  
V
IN  
OUT  
I
Q
Input Quiescent Current  
Forced Continuous Mode (Note 3)  
Burst Mode, No Load  
5
10  
0.1  
8
14  
1
mA  
µA  
µA  
Shutdown Mode; V  
= V  
= V  
RUN2 RUN3  
RUN1  
= V  
= 0V  
RUN4  
l
V
Regulated Feedback Voltage  
FB Input Current  
0.594  
0.6  
0.606  
10  
V
nA  
FB  
I
FB  
Reference Voltage Line Regulation  
Output Voltage Load Regulation  
SV = 2.7V to 17V (Note 4)  
0.01  
0.1  
0.025  
0.3  
%/V  
IN  
(Note 4)  
%
Rev. 0  
2
For more information www.analog.com  
LTC3644/LTC3644-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). SVIN = VIN1 = VIN2 = VIN3 = VIN4 = 12V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NMOS Switch Leakage  
PMOS Switch Leakage  
0.1  
0.1  
1
1
µA  
µA  
R
NMOS On Resistance  
PMOS On Resistance  
80  
300  
mΩ  
mΩ  
DS(ON)  
t
Minimum On Time  
(Note 6)  
60  
ns  
V
ON(MIN)  
V
RUN Input High  
RUN Input Low  
1.0  
RUN  
0.35  
1.0  
RUN Input Current  
V
RUN  
= 12V  
0.1  
10  
nA  
V
Pulse-Skipping Mode  
Forced Continuous Mode  
Burst Mode Operation  
0.3  
V
V
V
MODE/SYNC  
V
V
– 1.2  
INTVCC  
V
V
– 0.4  
+ 0.3V  
INTVCC  
INTVCC  
MODE/SYNC Input Current  
PHASE Input Threshold  
0.1  
100  
nA  
Input Low  
Input High  
0.4  
V
V
– 0.4  
INTVCC  
PHASE Input Current  
Internal Soft Start Time  
Peak Current Limit  
V
= 6V  
0.1  
1.1  
100  
nA  
PHASE  
t
I
ms  
SS  
1.25A Regulator  
2.5A Regulator (2-Channel Combined)  
3.75A Regulator (3-Channel Combined)  
1.8  
2.2  
4.4  
6.6  
2.6  
A
A
A
LIM  
V
Undervoltage Lockout  
SV Ramping Up  
IN  
2.35  
18  
2.5  
250  
19  
2.65  
20  
V
mV  
V
INTVCC  
V
Undervoltage Lockout Hysteresis  
INTVCC  
l
V
V
Overvoltage Lockout Rising  
IN  
IN  
Overvoltage Lockout Hysteresis  
400  
mV  
l
l
f
Oscillator Frequency  
LTC3644-2  
LTC3644  
1.8  
0.82  
2.25  
1.00  
2.60  
1.16  
MHz  
MHz  
OSC  
SYNC Capture Range  
% of Programmed Frequency  
50  
150  
%
V
V
V
Voltage  
SV > 5.5V  
IN  
5
INTVCC  
INTVCC  
Power Good Range  
Power Good Resistance  
PGOOD Delay  
7.5  
275  
%
Ω
R
350  
PGOOD  
t
PGOOD Low to High  
PGOOD High to Low  
0
32  
Cycles  
Cycles  
PGOOD  
Phase Shift Between Channel 1/2 and  
Channel 3/4  
V
PHASE  
V
PHASE  
= 0V  
0
180  
Deg  
Deg  
= INTV , V  
= 0V  
CC MODE/SYNC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
(T , in °C) is calculated from the ambient temperature (T , in °C) and  
J A  
power dissipation (P , in Watts) according to the formula:  
D
T = T + (P • θ ),  
J
A
D
JA  
where θ (in °C/W) is the package thermal impedance.  
JA  
Note 2: The LTC3644/LTC3644-2 is tested under pulsed load conditions  
Note 3: The quiescent current in active mode does not include switching  
loss of the power FETs.  
such that T ≈ T . The LTC3644E is guaranteed to meet specified  
J
A
performance from 0°C to 85°C. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3644I is guaranteed over the –40°C to 125°C operating junction  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
impedance, and other environmental factors. The junction temperature  
Note 4: The LTC3644 is tested in a proprietary test mode that connects  
V
to the output of error amplifier.  
FB  
Note 5: This IC includes overtemperature protection that is intended to protect the  
device during momentary overload conditions. Junction temperature will exceed  
125°C when overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device reliability.  
Note 6: The minimum on-time is determined by the speed of the top  
switch driver and peak current comparator. The typical value listed here is  
guaranteed by design.  
Rev. 0  
3
For more information www.analog.com  
LTC3644/LTC3644-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current in  
Burst Mode Operation  
Efficiency vs Load Current in  
Burst Mode Operation  
Efficiency vs Load Current in  
Burst Mode Operation  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ.ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ ꢄꢅꢆꢇꢅ ꢈ ꢉ ꢊ ꢋ.ꢌꢍꢎ  
ꢀ.ꢁ0ꢂ ꢃꢄꢅꢆꢄ ꢇ ꢈ ꢉ ꢀ.ꢀꢊꢋ  
ꢀ.ꢁꢂꢃ ꢄꢅꢆꢇꢅ ꢈ ꢉ ꢊ ꢋ.ꢌꢍꢎ  
ꢀ.ꢁꢂꢃ ꢄꢅꢆꢇꢅ ꢈ ꢉ ꢊ ꢁ.ꢁꢋꢌ  
ꢀ.ꢁ0ꢂ ꢃꢄꢅꢆꢄ ꢇ ꢈ ꢉ ꢊ.ꢀꢋꢌ  
ꢀ.ꢁꢂꢃ ꢄꢅꢆꢇꢅ ꢈ ꢉ ꢊ 0.ꢋꢌꢍꢎ  
ꢀ ꢁ.0 ꢃ ꢄ ꢀ ꢅ.ꢅꢆꢇ  
ꢀ ꢁ.ꢁ ꢃ ꢄ ꢀ ꢅ.ꢆꢇꢈ  
ꢀ ꢁ.ꢂ ꢄ ꢅ ꢀ ꢆ.ꢁꢇꢈ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0  
0.00ꢀ  
0.0ꢀ  
0.ꢀ  
ꢀ0  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢀ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Phase Shift with External Clock  
Frequency Sync  
180° Phase Operation  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢂ ꢃ0ꢂ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ.ꢂꢃ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ ꢆ ꢀ ꢁ.ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ.ꢁ ꢃ ꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁ.ꢁ ꢃ ꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ ꢆ ꢀ ꢁ.ꢁꢂꢃ  
ꢊꢊ  
ꢊꢊ  
ꢀꢁꢂꢃꢄ ꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ ꢉ ꢃꢊꢋ ꢈꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ ꢉ ꢊ.ꢋꢌ  
SW Leakage Current vs  
Temperature  
IQ vs Temperature  
RDS(ON) vs Temperature  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈꢉ  
ꢀꢁ ꢂꢃꢄꢄꢅ  
ꢀꢁ ꢄ ꢅꢆꢁ  
ꢂꢃ  
ꢃ ꢄꢅꢀ  
ꢁꢂ  
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀꢁꢂꢂ ꢃ0ꢁ  
Rev. 0  
4
For more information www.analog.com  
LTC3644/LTC3644-2  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Oscillator Frequency vs  
Peak Current Limit vs  
RDS(ON) vs Input Voltage  
Temperature  
Temperature  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.0  
0.ꢀ  
0.ꢀ  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
0
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
0
ꢀ0 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂ ꢃꢄꢄ  
ꢀꢁꢂꢂ ꢃꢄ0  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Reference Voltage vs  
Temperature  
Line Regulation, No Load  
Load Regulation  
ꢀ0ꢁ.0  
ꢀ0ꢁ.ꢂ  
ꢀ0ꢁ.0  
ꢀ00.ꢁ  
ꢀ00.0  
ꢀꢁꢁ.ꢀ  
ꢀꢁꢁ.0  
ꢀꢁꢂ.ꢀ  
ꢀꢁꢂ.0  
ꢀꢁꢂ.ꢀ  
ꢀꢁꢂ.0  
0.ꢀ0  
0.ꢀ  
0.ꢀ  
ꢀꢁ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
0.ꢀꢁ ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
0.ꢀ  
0
ꢀ0.ꢁꢂ  
ꢀ0.ꢁ0  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
0
0.ꢀꢁ  
0.ꢀ0  
0.ꢀꢁ  
ꢀ.ꢁꢂ  
0 0ꢀꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢂ  
ꢀꢁꢂꢂ ꢃꢄꢀ  
Rev. 0  
5
For more information www.analog.com  
LTC3644/LTC3644-2  
TA = 25°C, unless otherwise noted.  
Start-Up Operation  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Step at 1MHz  
Load Step at 2.25MHz  
Rꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀ00ꢁꢂꢃꢄꢅꢂ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ00ꢂꢃ ꢄꢅ ꢁ.ꢁꢃ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ00ꢂꢃ ꢄꢅ ꢁ.ꢁꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂ.ꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Burst Mode Operation  
Pulse-Skipping Operation  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀ0ꢁꢂꢃꢄꢁ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ0ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢀ ꢁ ꢂ.ꢃꢄꢅ  
PIN FUNCTIONS  
FB1(A6):FeedbackInputtotheErrorAmplifierofChannel  
1 Step-Down Regulator. Connect resistor divider tap to  
this pin. The output voltage can be adjusted from 0.6V to  
FB3 (F1): Feedback Input to the Error Amplifier of Channel  
3Step-DownRegulator.Connectresistordividertaptothis  
pin. The output voltage can be adjusted from 0.6V to V  
IN  
V by: V  
= 0.6V • [1 + (R2/R1)].  
by: V  
= 0.6V • [1 + (R2/R1)]. Connecting this pin to  
IN  
OUT  
OUT  
INTV turnsthischannelintoaslavechanneltochannel4.  
CC  
FB2 (F6): Feedback Input to the Error Amplifier of Channel  
2Step-DownRegulator.Connectresistordividertaptothis  
FB4(A1):FeedbackInputtotheErrorAmplifierofChannel  
4Step-DownRegulator.Connectresistordividertaptothis  
pin. The output voltage can be adjusted from 0.6V to V  
IN  
by: V  
= 0.6V • [1 + (R2/R1)]. Connecting this pin to  
pin. The output voltage can be adjusted from 0.6V to V  
OUT  
IN  
INTV turnsthischannelintoaslavechanneltochannel1.  
by: V  
= 0.6V • [1 + (R2/R1)]. Connecting this pin to  
CC  
OUT  
INTV turnsthischannelintoaslavechanneltochannel1.  
CC  
Rev. 0  
6
For more information www.analog.com  
LTC3644/LTC3644-2  
PIN FUNCTIONS  
INTV (A2): Low Dropout Regulator. Bypass with a low  
RUN1 (C5): Logic Controlled RUN Input to Channel 1.  
Do not leave this pin floating. Logic High activates the  
step-down regulator.  
CC  
ESR ceramic cap of at least 4.7µF to ground.  
MODE/SYNC (D2): Burst Mode Select and External Clock  
Synchronization of the Step-Down Regulator. Tie MODE/  
RUN2 (F5): Logic Controlled RUN Input to Channel 2.  
Do not leave this pin floating. Logic High activates the  
step-down regulator.  
SYNC to INTV for Burst Mode operation with a 550mA  
CC  
peak current clamp. Tie MODE/SYNC to GND for pulse  
skipping operation, and tie MODE/SYNC to a voltage  
RUN3 (F2): Logic Controlled RUN Input to Channel 3.  
Do not leave this pin floating. Logic High activates the  
step-down regulator.  
between1VandINTV 1.2Vforforcedcontinuousmode.  
CC  
Furthermore, connecting this pin to an external clock will  
synchronize the switch clock to the external clock and put  
the part in forced continuous mode.  
RUN4 (C2): Logic Controlled RUN Input to Channel 4.  
Do not leave this pin floating. Logic High activates the  
step-down regulator.  
GND (A3, A4, B3, B4, C3, C4, D3, D4, E3, E4, F3, F4):  
Groundbackplaneforpowerandsignalground.Thesepins  
must be soldered to PCB ground for electrical contact and  
ratedthermalperformance.ConnectallGNDpinstogether  
with solid ground plane.  
SV (A5): Signal V Pin. This input powers the INTV  
IN  
IN  
CC  
LDO. May be a different voltage than V , V , V  
IN1  
IN2  
IN3  
or V  
Connect SV to whichever V is highest; for  
IN4.  
IN INX  
applications where it is not known which V is highest,  
IN  
PHASE (D5): Phase Select Pin. Do not leave this pin  
floating. Tie this pin to GND to run the regulators in phase  
(0 degrees phase shift) between the SW rising edge of  
connect external diode between SV to all V to ensure  
IN  
INX  
that SV is less than a diode drop from the highest V .  
IN  
IN  
SW1 (C6): Switch Node Connection to the Inductor of  
Channel 1 Step-Down Regulator.  
channel 1/2 and channel 3/4. Tie this pin to INTV to  
CC  
set 180 degrees phase shift between channel 1/2 and  
channel 3/4. When this pin is high, the phase shift may  
also be set by modulating the duty cycle of external clock  
on the MODE/SYNC pin (channel 1/2 edge synced to  
rising edge of clock, channel 3/4 edge synced to falling  
edge of clock). For 5A output configuration, this pin  
must be tied to ground. See the Applications Information  
section for more details.  
SW2 (D6): Switch Node Connection to the Inductor of  
Channel 2 Step-Down Regulator.  
SW3 (D1): Switch Node Connection to the Inductor of  
Channel 3 Step-Down Regulator.  
SW4 (C1): Switch Node Connection to the Inductor of  
Channel 4 Step-Down Regulator.  
PGOOD1 (B5): Open Drain Power Good Indicator for  
Channel 1.  
V
(B6):InputVoltageofChannel1Step-DownRegulator.  
IN1  
May be a different voltage than other channels’ V .  
IN  
PGOOD2 (E5): Open Drain Power Good Indicator for  
Channel 2.  
V
(E6):InputVoltageofChannel2Step-DownRegulator.  
IN2  
May be a different voltage than other channels’ V .  
IN  
PGOOD3 (E2): Open Drain Power Good Indicator for  
Channel 3.  
V
(E1):InputVoltageofChannel3Step-DownRegulator.  
IN3  
May be a different voltage than other channels’ V .  
IN  
PGOOD4 (B2): Open Drain Power Good Indicator for  
Channel 4.  
V
(B1):InputVoltageofChannel4Step-DownRegulator.  
IN4  
May be a different voltage than other channels’ V .  
IN  
Rev. 0  
7
For more information www.analog.com  
LTC3644/LTC3644-2  
BLOCK DIAGRAM  
Rev. 0  
8
For more information www.analog.com  
LTC3644/LTC3644-2  
OPERATION  
The LTC3644/LTC3644-2 is a quad high efficiency  
monolithic step-down regulator, which uses a constant  
frequency, peak current mode architecture. It operates  
Tooptimizeefficiency,BurstModeoperationcanbeselected  
by tying the MODE/SYNC pin to INTV . In Burst Mode  
CC  
operation, the peak inductor current is set to be at least  
550mA, even if the output of the error amplifier demands  
less.Thus,whentheswitcherisonatrelativelylightoutput  
loads, FB voltage will rise and cause the ITH voltage to  
drop. Once the ITH voltage goes below 0.2V, the switcher  
goes into sleep mode with both power switches off. The  
switchers remain in this sleep state until the external load  
pulls the output voltage below its regulation point. When  
all channels are in sleep mode, the part draws an ultralow  
through a wide V range and regulates with ultralow  
IN  
quiescent current. The operation frequency is set at either  
1MHz or 2.25MHz and can be synchronized to an external  
oscillator 50% of the inherent frequency. To suit a variety  
of applications, the selectable MODE/SYNC pin allows the  
user to trade off output ripple for efficiency.  
For each channel, the output voltage is set by an external  
dividerreturnedtotheFBpin. Anerroramplifiercompares  
the divided output voltage with a reference voltage of  
0.6V and adjusts the peak inductor current accordingly.  
Overvoltage and undervoltage comparators pull the  
PGOOD output low if the output voltage is not within 7.5%  
of the programmed value. The PGOOD output goes high  
immediately after achieving regulation and goes low 32  
clock cycles after falling out of regulation.  
10µA of quiescent current from SV .  
IN  
To minimize V  
ripple, pulse-skipping mode can be  
OUT  
selected by grounding the MODE/SYNC pin. In LTC3644,  
pulse-skipping mode is implemented similarly to Burst  
Mode operation with the peak inductor current set to be at  
least90mA. ThisresultsinlowerripplethaninBurstMode  
operation with the trade-off of slightly lower efficiency.  
Main Control Loop  
Forced Continuous Mode Operation  
Duringnormaloperation,thetoppowerswitch(P-channel  
MOSFET)isturnedonatthebeginningofaclockcycle.The  
inductorcurrentisallowedtorampuptoapeaklevel.Once  
the level is reached, the top power switch is turned off and  
the bottom switch (N-channel MOSFET) is turned on until  
the next clock cycle. The peak current level is controlled  
by the internally compensated ITH voltage, which is the  
output of the error amplifier. This amplifier compares the  
FB voltage to the 0.6V internal reference. When the load  
current increases, the FB voltage decreases slightly below  
the reference, which causes the error amplifier to increase  
the ITH voltage until the average inductor current matches  
the new load current.  
The LTC3644 also has the ability to operate in the forced  
continuous mode by setting the MODE/SYNC voltage  
between1VandV  
1.2V.Inforcedcontinuousmode,  
INTVCC  
the switcher switches cycle by cycle regardless of what  
the output load current is. If forced continuous mode is  
selected, the minimum peak current is set to be –250mA  
in order to ensure that the part can operate continuously  
at zero output load.  
High Duty Cycle/Dropout Operation  
Whentheinputsupplyvoltagedecreasestowardstheoutput  
voltage, the duty cycle increases and slope compensation  
is required to maintain the fixed switching frequency. The  
LTC3644 has internal circuitry to accurately maintain the  
The main control loop is shut down by pulling the RUN  
pin to ground.  
peak current limit (I ) of 2.2A even at high duty cycles.  
LIM  
As the duty cycle approaches 100%, the LTC3644 enters  
dropoutoperation.Duringdropout,thetopPMOSswitchis  
turnedoncontinuously,andallactivecircuitryiskeptalive.  
Low Current Operation  
Twodiscontinuousconductionmodes(DCM)areavailable  
to control the operation of the LTC3644 at low currents.  
Both modes, Burst Mode operation and pulse-skipping  
mode, automatically switch from continuous operation to  
the selected mode when the load current is low.  
Rev. 0  
9
For more information www.analog.com  
LTC3644/LTC3644-2  
OPERATION  
V Overvoltage Protection  
IN  
(channel 1,2 edge synced to the rising edge of the external  
clock, channel 3,4 edge synced to the falling edge of the  
external clock), while keeping the PHASE pin voltage tied  
In order to protect the internal power MOSFET devices  
against transient voltage spikes, the LTC3644 constantly  
to INTV . Figure 2 shows a 90° phase shift between  
CC  
monitors the V  
pins for an overvoltage condition.  
INX  
channels 1, 2 and channels 3,4. Table 1 shows the phase  
options set by the PHASE and MODE/SYNC pins.  
When V rises above 19V, the corresponding regulator  
INX  
suspends operation by shutting off both power MOSFETs.  
Once V drops below 18.6V, the regulator immediately  
INX  
resumes normal operation. The regulators execute soft-  
ꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢁ  
start function when exiting an overvoltage condition.  
Low Supply Operation  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
To ensure that the regulators will operate properly, the  
LTC3644incorporatesanundervoltagelockoutcircuitthat  
ꢀꢁꢂ  
ꢀ0ꢁꢂꢃꢄꢁ  
shuts down all channels if SV drops below 2.25V. Once  
IN  
ꢀꢁꢂꢂ ꢃ0ꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
SV rises above this lower limit, all switchers will resume  
IN  
normal operation if their respective RUN pins are enabled.  
Figure 2. 90° Phase Shift Set by External Clock  
However, the R  
of the top and bottom switch of each  
DS(ON)  
Table 1. Phase Selection  
channels will be slightly higher than that specified in the  
No External CLK  
External CLK  
electrical characteristics due to lack of gate drive. Refer  
PHASE = 0  
0 degrees phase shift  
180 degrees phase shift  
0 degrees phase shift  
to graph of R  
versus V for more details.  
IN  
DS(ON)  
PHASE = INTV  
Phase shift determined by  
clock edges  
CC  
Phase Selection  
Channels1,2andchannels3,4oftheLTC3644canoperate  
in phase or 180° out-of-phase (anti-phase) depending on  
whether the PHASE pin is low or high, respectively. Anti-  
phase generally reduces input voltage and current ripple.  
Crosstalk between switch nodes SWx and components  
or sensitive lines connected to FBx can sometimes cause  
unstable switching waveforms and unexpectedly large  
input and output voltage ripple.  
Soft-Start  
The LTC3644 has an internal 1.1ms soft-start ramp for  
each channel. During soft-start operation, the switcher  
operates in pulse-skipping mode regardless of the mode  
programmed on the MODE/SYNC pin. Once the soft start  
period is complete, the part will transition into the desired  
mode of operation.  
Crosstalk can generally be avoided by carefully choosing  
the phase shift such that the SW edges do not coincide.  
Depending on the duty cycle of the two channels, choose  
the phase option that keeps the SWx edges as far away  
from each other as possible. However, there are often  
situations where this is unavoidable, such as when all  
channels are operating at near 50% duty cycle. In such  
cases, the optimized phase shift can be set by modulating  
the duty cycle of an external clock on the MODE/SYNC pin  
Regulators with Combined Power Stages  
The LTC3644 can be configured as quad 1.25A outputs,  
triple 2.5A/1.25A/1.25A outputs, dual 2.5A outputs using  
onlyoneinductorperoutput,ordual3.75A/1.25Aoutputs.  
ByconnectingV  
andV  
together,SW1,2andSW3,4  
IN1,2  
IN3,4  
together, andconnectingFB2andFB3toINTV , LTC3644  
CC  
supports dual 2.5A outputs using only one inductor per  
output.Evenmore,byconnectingV  
together,SW1,2,4  
IN1,2,4  
together, and FB2, FB4 to INTV , LTC3644 supports  
CC  
3.75A/1.25A outputs.  
Rev. 0  
10  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
Output Voltage Programming  
performance.FortheLTC3644/LTC3644-2,aminimumC  
OUT  
of4FisrecommendedtoensureloopstabilityforV lower  
OUT  
The output voltage is set by external resistive divider  
according to the following equation:  
than2V.Forgoodstartingvalues,seetheTypicalApplication  
section.  
R2  
R1  
VOUT = 0.6V • 1+  
Use X5R or X7R types. This choice will provide low  
output ripple and good transient response. Transient  
performance can be improved with a higher value output  
capacitor and the addition of a feedforward capacitor  
The resistive divider allows the FB pin to sense a fraction  
of the output voltage as shown in Figure 3.  
placed between V  
and FB. Increasing the output  
OUT  
ꢁꢂꢃ  
capacitance will also decrease the output voltage ripple.  
A lower value of output capacitor can be used to save  
space and cost but transient performance will suffer and  
may cause loop instability. See the Typical Applications  
in this data sheet for suggested capacitor values.  
Rꢆ  
Rꢇ  
ꢅꢅ  
ꢅꢋ  
ꢄꢈꢉꢊꢊ  
ꢌꢍꢎ  
When choosing a capacitor, special attention should be  
giventothedatasheettocalculatetheeffectivecapacitance  
undertherelevantoperatingconditionsofvoltagebiasand  
temperature. A physically larger capacitor or one with a  
higher voltage rating may be required.  
ꢈꢉꢊꢊ ꢅ0ꢈ  
Figure 3. Setting the Output Voltage  
Input Capacitor (C ) Selection  
IN  
The LTC3644 has individual input supply pins for each  
Ceramic Capacitors  
buck switching regulator and a separate SV pin that  
IN  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
when used with the LTC3644 due to their piezoelectric  
nature. When in Burst Mode operation, the LTC3644’s  
switching frequency depends on the load current, and  
at very light loads the LTC3644 can excite the ceramic  
capacitor at audio frequencies, generating audible noise.  
SincetheLTC3644operatesatalowercurrentlimitduring  
Burst Mode operation, the noise is typically very quiet to a  
casual ear. If this is unacceptable, use a high performance  
tantalum or electrolytic capacitor at the output. Low noise  
ceramic capacitors are also available.  
supplies power to all top level control and logic. Each of  
these pins must be decoupled with low ESR capacitors  
to GND. These capacitors must be placed as close to  
the pins as possible. Ceramic dielectric capacitors are a  
good compromise between high dielectric constant and  
stability versus temperature and DC bias. Note that the  
capacitance of a capacitor deteriorates at higher DC bias.  
It is important to consult manufacturer data sheets and  
obtain the true capacitance of a capacitor at the DC bias  
voltage it will be operated at. For this reason, avoid the  
use of Y5V dielectric capacitors. The X5R/X7R dielectric  
capacitors offer good overall performance.  
Output Power Good  
Output Capacitor (C ) Selection  
OUT  
WhentheLTC3644’soutputvoltagesarewithinthe 7.5%  
windowoftheregulationpoint,theoutputvoltagesaregood  
andthePGOODpinsarepulledhighwithexternalresistors.  
Otherwise, internal open-drain pull-down devices (275Ω)  
willpullthePGOODpinslow.TopreventunwantedPGOOD  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated by the  
LTC3644toproducetheDCoutput. Inthisroleitdetermines  
the output ripple, thus low impedance at the switching  
frequency is important. The second function is to store  
energy in order to satisfy transient loads and stabilize the  
LTC3644’s control loop. Ceramic capacitors have very low  
equivalentseriesresistance(ESR)andprovidethebestripple  
glitches during transients or dynamic V  
changes, the  
OUT  
LTC3644’s PGOOD falling edge includes a blanking delay  
of approximately 32 switching cycles.  
Rev. 0  
11  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
Frequency Sync Capability  
inductor ripple current and consequently output voltage  
ripple. Do not allow the core to saturate!  
The LTC3644 has the capability to sync to a 50% range  
of the internal programmed frequency. Once engaged in  
sync, the LTC3644 immediately runs at the external clock  
frequency in forced continuous mode.  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
Toroid or shielded pot cores in ferrite or permalloy  
materials are small and don’t radiate much energy, but  
generally cost more than powdered iron core inductors  
with similar characteristics. The choice of which style  
inductor to use mainly depends on the price versus size  
requirements and any radiated field/EMI requirements.  
New designs for surface mount inductors are available  
fromCoilcraft,Murata,Vishay,TDKandWürthElektronik.  
Refer to Table 2 to Table 4 for more details.  
Inductor Selection  
Given the desired input and output voltages, the inductor  
valueandoperatingfrequencydeterminetheripplecurrent:  
VOUT  
f•L  
VOUT  
ΔIL =  
1−  
V
IN(MAX)  
Lower ripple current reduces power losses in the inductor,  
ESR losses in the output capacitors and output voltage  
ripple. Highest efficiency operation is obtained at low  
frequency with small ripple current. However, achieving  
this requires a large inductor. There is a trade-off between  
component size, efficiency and operating frequency.  
Efficiency Considerations  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Percent efficiency can  
be expressed as:  
A reasonable starting point is to choose a ripple current  
this is about 40% of I  
. When calculating the  
OUT(MAX)  
refers to the maximum output  
ripple current, I  
OUT(MAX)  
% Efficiency = 100% - (L1 + L2 + L3 + …)  
current of the regulator, not the maximum load current of  
the intended application. To guarantee that ripple current  
does not exceed a specified maximum, the inductance  
should be chosen according to:  
where L1, L2 etc. are the individual losses as a percentage  
of input power. Although all dissipative elements in the  
circuitproducelosses, threemainsourcesintheLTC3644  
2
circuit are: 1) I R losses, 2) switching and biasing losses,  
VOUT  
f•ΔIL(MAX)  
VOUT  
V
IN(MAX)  
3) other losses.  
L =  
1−  
2
1. I R losses are calculated from the DC resistances  
of the internal switches, R , and external inductor,  
SW  
Once the value for L is known, the type of inductor must  
be selected. Actual core loss is independent of core size  
for a fixed inductor value, but is very dependent on the  
inductance selected. As the inductance or frequency  
in-creases, core loss decrease. Unfortunately, increased  
inductance requires more turns of wire and therefore  
copper losses increase.  
R . In continuous mode, the average output current  
L
flows through inductor L but is “chopped” between  
theinternaltopandbottompowerMOSFETs.Thus,the  
series resistance looking into the SW pin is a function  
of both the top and bottom MOSFET R  
duty cycle (DC) as follows:  
and the  
DS(ON)  
R
= (R  
)(DC)+(R  
)(1 – DC)  
SW  
DS(ON)TOP  
DS(ON)BOT  
Ferritedesignshaveverylowcorelossesandarepreferred  
at high switching frequencies, so design goals can  
concentrate on copper loss and preventing saturation.  
Ferrite core material saturates “hard,” which means that  
the inductance collapses abruptly when the peak design  
current is exceeded. This results in an abrupt increase in  
TheR  
forboththetopandbottomMOSFETscanbe  
DS(ON)  
obtainedfromtheTypicalPerformanceCharacteristics  
2
curves. Thus to obtain I R losses:  
2
2
I R losses = I  
(R + R )  
SW L  
OUT  
Rev. 0  
12  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
Table 2. Recommended Inductors for 1.25A Buck Regulators  
PART NUMBER  
L (μH)  
1.5  
MAX DCR (mΩ)  
MAX I (A)  
SIZE IN mm (L × W × H)  
MANUFACTURER  
Murata  
DC  
DFE201612E1R5MP2  
74438356015  
72  
15  
3.2  
5.8  
3.3  
5.6  
5.5  
3.6  
5.2  
2 × 1.6 × 1.2  
4.1 × 4.1 × 2.1  
3 × 3 × 0.8  
1.5  
Wurth Elektronik  
Vishay  
IHLP1212BZER2R2M11  
XAL4020222ME  
2.2  
42.9  
35.2  
26  
2.2  
4 × 4 × 2.1  
Coilcraft  
XAL4030332ME  
3.3  
4 × 4 × 3.1  
Coilcraft  
74438356033  
3.3  
39.9  
54  
4.1 × 4.1 × 2.1  
5.2 × 5.2 × 3  
Wurth Elektronik  
Vishay  
IHLP2020CZER4R7M11  
4.7  
Table 3. Recommended Inductors for 2.5A Buck Regulators  
PART NUMBER  
XAL4020102ME  
74437324010  
L (μH)  
1
MAX DCR (mΩ)  
MAX I (A)  
SIZE IN mm (L × W × H)  
4 × 4 × 2.1  
MANUFACTURER  
Coilcraft  
DC  
13.25  
27  
8.7  
5
1
4.5 × 4.1 × 1.8  
4 × 4 × 2.1  
Wurth Elektronik  
Coilcraft  
XAL4020152ME  
74438356022  
1.5  
2.2  
2.2  
3.3  
21.45  
29  
7.1  
4.7  
5.5  
7.3  
4.1 × 4.1 × 2.1  
5.2 × 5.2 × 3  
Wurth Elektronik  
Vishay  
IHLP2020CZER2R2M11  
SPM6530T3R3M  
22.5  
27  
7.1 × 6.5 × 3  
TDK  
Table 4. Recommended Inductors for 3.75A Buck Regulators  
PART NUMBER  
L (μH)  
0.6  
0.68  
0.82  
1
MAX DCR (mΩ)  
MAX I (A)  
SIZE IN mm (L × W × H)  
4 × 4 × 2.1  
MANUFACTURER  
Coilcraft  
DC  
XAL4020601ME  
744383560068  
9.5  
7.5  
10.4  
9.4  
4.1 × 4.1 × 2.1  
4 × 4 × 2.1  
Wurth Elektronik  
Coilcraft  
XEL4020821ME  
IHLP2020CZER1E0M11  
FDV0530H1R0M  
SPM5030T2R2MHZ  
11.8  
10  
10.2  
6.5  
5.2 × 5.2 × 3  
6.2 × 5.8 × 3  
5.2 × 5 × 3  
Vishay  
1
11.2  
19.3  
8.4  
Murata  
2.2  
8.5  
TDK  
2. The switching current is the sum of the MOSFET  
driverandcontrolcurrents.ThepowerMOSFETdriver  
current results from switching the gate capacitance of  
the power MOSFETs. Each time a power MOSFET gate  
is switched from low to high to low again, a packet of  
The gate charge loss is proportional to V and f  
IN OSC  
and thus their effects will be more pronounced at  
higher supply voltages and higher frequencies.  
3. Otherhiddenlossessuchastransitionlossandcopper  
trace and internal load resistances can account for  
additional efficiency degradations in the overall power  
system. It is very important to include these “system”  
level losses in the design of a system. Transition loss  
arises from the brief amount of time the top power  
MOSFET spends in the saturated region during  
switch node transitions. The LTC3644 internal power  
devices switch quickly enough that these loses are not  
significant compared to other sources. These losses  
plus other losses, including diode conduction losses  
charge dQ moves from V to ground. The resulting  
IN  
dQ/dt is a current out of V that is typically much  
IN  
larger than the DC control bias current. In continuous  
mode, I  
= f (Q + Q ), where Q and Q are  
GATECHG OSC  
the gate charges of the internal top and bottom power  
T B T B  
MOSFETs and f is the switching frequency. The  
power loss is thus:  
OSC  
Switching Loss = I  
• V  
GATECHG  
IN  
Rev. 0  
13  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
during dead-time and inductor core losses, generally  
account for less than 2% total additional loss.  
For the BGA package, the θ is 25°C/W as measured  
JA  
on the LTC3644 demo board. Therefore, the junction  
temperature of the regulator operating at 25°C ambient  
temperature is approximately:  
Thermal Conditions  
In a majority of applications, the LTC3644 does not  
dissipate much heat due to its high efficiency. However,  
in applications where the LTC3644 is running at high  
T = 349mW • 25°C/W + 25°C = 33.7°C  
J
Remembering that the above junction temperature is  
obtained from an R  
at 25°C, we might recalculate  
DS(ON)  
ambient temperature, high V , high switching frequency,  
IN  
the junction temperature based on a higher R  
since  
DS(ON)  
andmaximumoutputcurrentload,theheatdissipatedmay  
exceed the maximum junction temperature of the part. If  
the junction temperature reaches approximately 160°C,  
all power switches will be turned off until the temperature  
drops about 15°C cooler.  
it increases with temperature. Redoing the calculation  
assuming that R increased 5% at 33.7°C yields a new  
SW  
junction temperature of 34.1°C. If the application calls  
for a higher ambient temperature and/or higher switching  
frequency, care should be takentoreducethe temperature  
rise of the part by using a heat sink or airflow.  
To avoid the LTC3644 from exceeding the maximum  
junction temperature, the user need to do some thermal  
analysis. The goal of the thermal analysis is to determine  
whether the power dissipated exceeds the maximum  
junction temperature of the part. The temperature rise is  
given by:  
Board Layout Considerations  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of  
the LTC3644 (refer to Figure 4). Check the following in  
the layout:  
T
RISE  
= P θ  
D JA  
As an example, consider the case when the LTC3644 is  
used in applications whereV = 12V, I = I = I  
1. Do the capacitors C connect to the V and GND as  
IN IN  
close as possible? These capacitors provide the AC  
currenttotheinternalpowerMOSFETsandtheirdrivers.  
IN  
OUT1 OUT2 OUT3  
= 1.8V. The equivalent  
= I  
= 0.8A, f = 1MHz, V  
OUT4  
OUT  
power MOSFET resistance R is:  
Does C connect to INTV as close as possible?  
VCC CC  
SW  
2. Are C  
and L closely connected? The (–) plate of  
VOUT  
VOUT  
OUT  
R
SW =RDS(ON)TOP  
+RDS(ON)BOT • 1−  
C
returns current to GND and the (–) plate of C .  
OUT  
IN  
V
V
IN  
IN  
3. The resistive divider, R1 and R2, must be connected  
1.8V  
12V  
1.8V  
12V  
= 300mΩ•  
=113mΩ  
+80mΩ• 1−  
between the (+) plate of C  
and a ground line  
OUT  
terminated near GND. The feedback signal V should  
FB  
be routed away from noisy components and traces,  
such as the SW line, and its trace length should be  
minimized. Keep R1 and R2 close to the IC.  
The active current through V at 1MHz without load is  
IN  
about 5mA, which includes switching and internal biasing  
currentloss,andtransitionloss.Therefore,thetotalpower  
dissipated by the part is:  
4. KeepsensitivecomponentsawayfromtheSWpin.The  
input capacitor, C , feedback resistors, and INTV  
IN  
CC  
bypass capacitors should be routed away from the  
2
P = 4 • I  
• R + V • I  
SW IN IN(Q)  
D
OUT  
SW trace and the inductor.  
2
= 4 • 0.8A • 113mΩ + 12V • 5mA  
= 349mW  
5. Agroundplaneispreferred.Useseveralviasconnected  
to ground on the component side.  
6. Flood all unused areas on all layers with copper, which  
reduces the temperature rise of power components.  
These copper areas should be connected to GND.  
Rev. 0  
14  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
Design Example  
Using standard values of L1 = 6.8µH, L2 = 4.7µH, L3 =  
3.3µH and L4 = 3.3µH for inductors results in maximum  
ripple currents of:  
As a design example, consider using the LTC3644 in an  
application with the following specifications:  
5V  
5V  
13.2V  
SV = V = V = V = V = 10.8V to 13.2V  
ΔIL1=  
1−  
= 0.46A  
= 0.53A  
= 0.61A  
= 0.47A  
IN  
IN1  
IN2  
IN3  
IN4  
1MHz 6.8µH⎠  
V
= 5V, V  
= 3.3V, V  
= 2.5V, V  
= 1.8V  
=1 A,  
OUT1  
OUT2  
OUT3  
OUT4  
3.3V  
1MHz 4.7µH⎠  
3.3V  
13.2V  
ΔIL2  
ΔIL3  
ΔIL4  
=
=
=
1−  
1−  
1−  
I
= I  
= 400mA, I  
LOAD3(MAX)  
LOAD1(MAX)  
LOAD4(MAX)  
LOAD2(MAX)  
= 1.25A  
I
I
I
f
2.5V  
1MHz 3.3µH  
2.5V  
13.2V  
= 1.25A  
OUT(MAX)  
OUT(MIN)  
1.8V  
1.8V  
13.2V  
= 0  
1MHz 3.3µH⎠  
= 1MHz  
SW  
Because efficiency is important at both high and low load  
current, Burst Mode operation will be utilized.  
C
will be selected based on the ESR that is required  
OUT  
to satisfy the output voltage ripple requirement and the  
bulk capacitance needed for loop stability. For this design,  
47µF ceramic capacitors will be used.  
To reduce input voltage and current ripple on the common  
inputsupply,thePHASEpinistiedtoINTV foranti-phase  
CC  
operation between channels 1,2 and channels 3,4.  
To prevent large voltage transients, C should be sized  
IN  
Given the internal oscillator of 1MHz, we can calculate the  
based on the maximum RMS current:  
inductorsvalueforabout40%ripplecurrentatmaximumV :  
IN  
VOUT  
V
IN  
VOUT  
5V  
5V  
13.2V  
⎞ ⎛  
I
RMS IOUT(MAX)  
1  
L1=  
L2=  
L3=  
L4=  
1−  
1−  
1−  
= 6.21µH  
= 4.95µH  
= 4.05µH  
= 3.11µH  
⎟ ⎜  
⎠ ⎝  
V
1MHz 0.5A  
IN  
3.3V  
1MHz 0.5A  
3.3V  
13.2V  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
5V  
13.2V  
13.2V  
5V  
IRMS1=1.25A  
IRMS2 =1.25A  
IRMS3 =1.25A  
IRMS4 =1.25A  
1= 0.606A  
2.5V  
1MHz 0.5A  
2.5V  
13.2V  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
3.3V  
13.2V  
13.2  
3.3V  
1= 0.541A  
1= 0.490A  
1= 0.429A  
1.8V  
1MHz 0.5A  
1.8V  
13.2V  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
2.5V  
13.2V  
13.2  
2.5V  
1−  
1.8V  
13.2V  
13.2  
1.8V  
IRMS =IRMS1+IRMS2 +IRMS3 +IRMS4 = 2.07A  
DecouplingtheV pinseachwith2Fceramiccapacitors  
INX  
is adequate for most applications.  
Rev. 0  
15  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
ꢌꢂꢍ  
ꢁꢂꢃ  
ꢁꢂꢅ  
ꢁꢂꢅ  
ꢁꢂꢃ  
ꢈꢉꢊꢅ  
ꢈꢉꢊꢃ  
ꢈꢉꢊꢃ  
ꢈꢉꢊꢅ  
ꢈꢉꢊꢆ  
ꢈꢉꢊꢇ  
ꢈꢉꢊꢇ  
ꢈꢉꢊꢆ  
ꢁꢂꢆ  
ꢁꢂꢇ  
ꢁꢂꢇ  
ꢁꢂꢆ  
ꢌꢂꢍ  
ꢀꢁꢂꢂ ꢃ0ꢂ  
Figure 4. Recommended Layout  
Rev. 0  
16  
For more information www.analog.com  
LTC3644/LTC3644-2  
APPLICATIONS INFORMATION  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ ꢃꢄ ꢁꢅꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢃꢃꢄꢅ  
ꢆꢇ  
ꢁꢂ  
ꢂ.ꢃꢄꢅ  
ꢁꢀꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢂꢃꢄꢅꢅ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁ  
ꢁ.ꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ.ꢆꢀ ꢇꢃ ꢅ.ꢈꢉꢇ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅ.ꢆꢀ ꢇꢃ ꢈ.ꢉꢆꢇ  
ꢃꢃꢄꢁ  
ꢁꢁꢂ  
ꢂꢂꢃꢁ  
ꢁꢁꢂ  
Rꢀ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢁꢀꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅꢆꢇꢈ  
ꢉꢊ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢈ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢁ0ꢂꢃ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 5. Dual 3.75A/1.25A 1MHz Step-Down Regulator with Common Input Supply  
ꢀꢁ  
ꢀꢁꢂꢂꢃꢄ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ0.ꢁꢂ ꢃꢄ ꢀꢅ.ꢆꢂ  
ꢀꢁ  
ꢀꢀꢁꢂ  
ꢃꢄ  
Rꢀ0  
ꢀ00ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢄꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢁ  
ꢀ.ꢁꢂꢃ  
Rꢀ  
ꢁ00ꢂ  
ꢂꢃꢄꢅꢅꢆꢇ  
ꢀꢁꢂꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ ꢃꢄ ꢅ.ꢀꢁꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢃ ꢄ.ꢅꢀꢂ  
ꢀꢀꢁ  
Rꢀ  
ꢁꢀꢂꢃ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ  
Rꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢁꢂꢀꢃ  
ꢁꢂ.ꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢁ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ ꢃꢄ ꢀ.ꢅꢆꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀꢁ ꢂꢃ ꢄ.ꢅꢆꢂ  
Rꢀ  
ꢁꢂꢃꢄ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
R
Rꢀ  
ꢁ0ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢂꢃ ꢄ0ꢁ  
Figure 6. 5V/3.3V/2.5V/1.8V Output 2.25MHz Step-Down Regulator with Common Input Supply and Sequenced Turn-On  
Rev. 0  
17  
For more information www.analog.com  
LTC3644/LTC3644-2  
TYPICAL APPLICATIONS  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢂꢃꢄꢅꢅ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ.ꢀꢁ ꢂꢃ ꢄ.ꢅꢆꢂ  
Rꢀ  
ꢁꢀꢂꢃ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢁ  
ꢁ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁ ꢂꢃ ꢄ.ꢀꢂ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢂ.ꢂꢃꢄ  
Rꢀ  
ꢁꢂ.ꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀ.ꢁꢂ ꢃꢄ ꢀ.ꢅꢆꢃ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
ꢁ0ꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ ꢃ0ꢄ  
Figure 7. 2.5A/1.25A/1.25A 1MHz Step-Down Regulator with Common Input Supply  
Rev. 0  
18  
For more information www.analog.com  
LTC3644/LTC3644-2  
PACKAGE DESCRIPTION  
ꢬ ꢬ ꢛ ꢛ ꢛ ꢡ  
ꢙ . 0  
ꢎ . ꢙ  
0 . ꢋ  
0 . ꢋ  
ꢎ . ꢙ  
ꢙ . 0  
0 . 0 0 0  
ꢮ ꢮ ꢮ ꢡ ꢙ ꢱ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
19  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC3644/LTC3644-2  
TYPICAL APPLICATION  
0.85A/2.5A Series Output 1MHz Step-Down Regulator  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁꢂ  
ꢃꢀ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀ.ꢁꢂꢃ  
Rꢀ  
ꢁ0ꢂ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢂꢃꢄ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢂꢃꢄꢅꢅ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢀꢁ  
ꢁ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢀꢁ ꢂꢃ ꢄ.ꢅꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢃ 0.ꢄꢀꢂ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢀꢁꢂ  
ꢅꢆ  
Rꢀ  
ꢁꢀꢂꢃ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢁꢆꢇꢈꢉꢊ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ  
ꢁꢂ.ꢃꢄ  
Rꢀ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ ꢃꢄ0ꢅ  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
95% Efficiency, V : 2.7V to 17V, V  
LTC3621/  
1A, 17V, 1MHz/2.25MHz, Synchronous  
Step-Down Regulator  
= 0.6V, I = 3.5µA, I < 1µA,  
OUT(MIN) Q SD  
IN  
LTC3621-2  
2mm × 3mm DFN-6, MSOP-8E Packages  
LTC3600  
LTC3601  
LTC3603  
LTC3633A  
LTC3605A  
LTC3604  
1.5A, 15V, 4MHz Synchronous Rail-to-Rail Single  
Resistor Step-Down Regulator  
95% Efficiency, V : 4V to 15V, V  
= 0V, I = 700µA, I < 1µA,  
IN  
OUT(MIN) Q SD  
3mm × 3mm DFN-12, MSOP-12E Packages  
15V, 1.5A (I ) 4MHz Synchronous Step-Down  
95% Efficiency, V : 4.5V to 15V, V  
= 0.6V, I = 300µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
4mm × 4mm QFN-20, MSOP-16E Packages  
15V, 2.5A (I ) 3MHz Synchronous Step-Down  
95% Efficiency, V : 4.5V to 15V, V  
= 0.6V, I = 75µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
4mm × 4mm QFN-20, MSOP-16E Packages  
20V, Dual 3A (I ) 4MHz Synchronous Step-Down  
95% Efficiency, V : 3.6V to 20V, V  
= 0.6V, I = 500µA, I < 15µA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
4mm × 5mm QFN-28, TSSOP-28E Packages. A Version Up to 20V  
IN  
20V, 5A (I ) 4MHz Synchronous Step-Down  
95% Efficiency, V : 4V to 20V, V  
= 0.6V, I = 2mA, I < 15µA,  
OUT(MIN) Q SD  
OUT  
IN  
DC/DC Converter  
4mm × 4mm QFN-24 Package. A Version Up to 20V  
IN  
15V, 2.5A (I ) 4MHz Synchronous Step-Down  
95% Efficiency, V : 3.6V to 15V, V  
= 0.6V, I = 300µA, I < 14µA,  
OUT(MIN) Q SD  
OUT  
IN  
DC/DC Converter  
3mm × 3mm QFN-16, MSOP-16E Packages  
95% Efficiency, V : 2.7V to 17V, V = 0.6V, I = 3.5µA, I < 1µA,  
OUT(MIN) Q SD  
LTC3624/  
LTC3624-2  
2A, 17V, 1MHz/2.25MHz Synchronous Step-Down  
Regulator  
IN  
3mm × 3mm DFN-8, MSOP-12E Packages  
95% Efficiency, V : 2.7V to 17V, V = 0.6V, I = 5µA, I ≤ 1µA,  
OUT(MIN) Q SD  
LTC3622/  
LTC3622-2/  
LTC3622-23/5  
Dual 1A, 17V 1MHz/2.25MHz Synchronous Step-Down  
Regulator  
IN  
3mm × 4mm DFN-14, MSOP-16E Packages  
LTC7124  
Dual Channel 3.5A, 17V Monolithic Synchronous  
Step-Down Regulator  
95% Efficiency, V : 3.1V to 17V, V  
= 0.6V, I < 8μA, I < 1μA,  
OUT(MIN) Q SD  
IN  
3mm × 5mm QFN-24  
Rev. 0  
03/21  
www.analog.com  
20  
ANALOG DEVICES, INC. 2021  

相关型号:

LTC3600EDD#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3600IDD#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3600IMSE#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3601

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601

Dual Channel 3A, 15V Monolithic Synchronous Step-Down Regulator
Linear System

LTC3601

Quad 17V, 1.25A Parallelable Synchronous Step-Down Regulator with Ultralow Quiescent Current
ADI

LTC3601EMSE

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EMSEPBF

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EMSETRPBF

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EUD

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EUDPBF

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EUDTRPBF

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear