OP181GP [ADI]

Ultralow Power, Rail-to-Rail Output Operational Amplifiers; 超低功耗,轨到轨输出运算放大器
OP181GP
型号: OP181GP
厂家: ADI    ADI
描述:

Ultralow Power, Rail-to-Rail Output Operational Amplifiers
超低功耗,轨到轨输出运算放大器

运算放大器
文件: 总16页 (文件大小:450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Power, Rail-to-Rail Output  
Operational Amplifiers  
a
OP181/OP281/OP481  
FEATURES  
PIN CONFIGURATIONS  
Low Supply Current: 4 A/Amplifier max  
Single-Supply Operation: 2.7 V to 12 V  
Wide Input Voltage Range  
Rail-to-Rail Output Swing  
Low Offset Voltage: 1.5 mV  
No Phase Reversal  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy DIP  
(P Suffix)  
NC  
1
8
NULL  
–IN A  
+IN A  
V–  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
OP181  
V+  
OUT A  
NULL  
OP181  
4
5
OUT A  
NULL  
APPLICATIONS  
NC = NO CONNECT  
Comparator  
Battery Powered Instrumentation  
Safety Monitoring  
Remote Sensors  
Low Voltage Strain Gage Amplifiers  
NC = NO CONNECT  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy DIP  
(P Suffix)  
1
8
V+  
OUT A  
–IN A  
+IN A  
V–  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP281  
OUT B  
–IN B  
+IN B  
OP281  
OUT B  
–IN B  
+IN B  
4
5
GENERAL DESCRIPTION  
8-Lead TSSOP  
(RU Suffix)  
The OP181, OP281 and OP481 are single, dual and quad  
ultralow power, single-supply amplifiers featuring rail-to-rail  
outputs. All operate from supplies as low as 2.0 V and are  
specified at +3 V and +5 V single supply as well as ±5 V dual  
supplies.  
1
8
OP281  
4
5
Fabricated on Analog Devices’ CBCMOS process, the OP181  
family features a precision bipolar input and an output that  
swings to within millivolts of the supplies and continues to sink  
or source current all the way to the supplies.  
14-Lead Epoxy DIP  
(P Suffix)  
14-Lead  
Narrow-Body SO  
(S Suffix)  
1
14  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
13  
Applications for these amplifiers include safety monitoring,  
portable equipment, battery and power supply control, and  
signal conditioning and interface for transducers in very low  
power systems.  
–IN A  
+IN A  
V+  
–IN D  
OP481  
12 +IN D  
11 V–  
OP481  
The output’s ability to swing rail-to-rail and not increase supply  
current, when the output is driven to a supply voltage, enables  
the OP181 family to be used as comparators in very low power  
systems. This is enhanced by their fast saturation recovery time.  
Propagation delays are 250 µs.  
8
7
10 +IN C  
+IN B  
–IN B  
OUT B  
9
8
–IN C  
14-Lead TSSOP  
(RU Suffix)  
OUT C  
1
14  
The OP181/OP281/OP481 are specified over the extended  
industrial (–40°C to +85°C) temperature range. The OP181,  
single, and OP281, dual, amplifiers are available in 8-pin plastic  
DIPs and SO surface mount packages. The OP281 is also  
available in 8-lead TSSOP. The OP481 quad is available in 14-  
pin DIPs, narrow 14-pin SO and TSSOP packages.  
OP481  
NOTE: PIN ORIENTATION IS EQUIVALENT FOR  
EACH PACKAGE VARIATION  
7
8
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1996  
OP181/OP281/OP481–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS(@ VS = +3.0 V, VCM = 1.5 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
Note 1  
1.5  
2.5  
10  
7
mV  
mV  
nA  
nA  
V
–40°C TA +85°C  
–40°C TA +85°C  
–40°C TA +85°C  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
IB  
IOS  
3
0.1  
0
2
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.0 V,  
–40°C TA +85°C  
RL = 1 M, VO = 0.3 V to 2.7 V  
–40°C TA +85°C  
65  
5
2
95  
13  
dB  
Large Signal Voltage Gain  
V/mV  
V/mV  
µV/°C  
pA/°C  
pA/°C  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
VOS/T  
IB/T  
IOS/T  
10  
20  
2
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 100 kto GND,  
–40°C TA +85°C  
RL = 100 kto V+,  
–40°C TA +85°C  
2.925  
2.96  
V
Output Voltage Low  
Short Circuit Limit  
25  
±1.1  
75  
mV  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V  
–40°C TA +85°C  
VO = 0 V  
76  
95  
3
dB  
µA  
µA  
Supply Current/Amplifier  
4
5
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Turn On Time  
SR  
RL = 100 k, CL = 50 pF  
AV = 1, VO = 1  
AV = 20, VO = 1  
25  
40  
50  
65  
95  
70  
V/ms  
µs  
µs  
µs  
kHz  
Degrees  
Turn On Time  
Saturation Recovery Time  
Gain Bandwidth Product  
Phase Margin  
GBP  
φo  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
10  
75  
<1  
µV p-p  
nV/Hz  
pA/Hz  
NOTES  
1VOS is tested under no load condition.  
Specifications subject to change without notice.  
REV. 0  
–2–  
OP181/OP281/OP481  
ELECTRICAL SPECIFICATIONS (@ VS = +5.0 V, VCM = 2.5 V, TA = +25؇C unless otherwise noted1)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
Note 1  
0.1  
1.5  
2.5  
10  
7
mV  
mV  
nA  
nA  
V
–40°C TA +85°C  
–40°C TA +85°C  
–40°C TA +85°C  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
IB  
IOS  
3
0.1  
0
4
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 4.0 V,  
–40°C TA +85°C  
RL = 1 M, VO = 0.5 V to 4.5 V  
–40°C TA +85°C  
–40°C to +85°C  
65  
5
2
90  
15  
dB  
Large Signal Voltage Gain  
V/mV  
V/mV  
µV/°C  
pA/°C  
pA/°C  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
VOS/T  
IB/T  
IOS/T  
10  
20  
2
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 100 kto GND,  
–40°C TA +85°C  
RL = 100 kto V+,  
–40°C TA +85°C  
4.925  
4.96  
V
Output Voltage Low  
Short Circuit Limit  
25  
±3.5  
75  
mV  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V,  
–40°C TA +85°C  
VO = 0 V  
76  
95  
3.2  
dB  
µA  
µA  
Supply Current/Amplifier  
4
5
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Saturation Recovery Time  
Gain Bandwidth Product  
Phase Margin  
SR  
RL = 100 k, CL = 50 pF  
27  
V/ms  
µs  
kHz  
120  
100  
74  
GBP  
φo  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
10  
75  
<1  
µV p-p  
nV/Hz  
pA/Hz  
NOTES  
1VOS is tested under a no load condition.  
Specifications subject to change without notice.  
REV. 0  
–3–  
OP181/OP281/OP481–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
(@ VS = ±5 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
Note 1  
0.1  
1.5  
2.5  
10  
7
mV  
mV  
nA  
nA  
V
–40°C TA +85°C  
–40°C TA +85°C  
–40°C TA +85°C  
Input Bias Current  
IB  
IOS  
3
0.1  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
–5  
+4  
CMRR  
AVO  
VCM = –5.0 V to +4.0 V,  
–40°C TA +85°C  
RL = 1 M, VO = ±4.0 V,  
–40°C TA +85°C  
–40°C to +85°C  
65  
5
2
95  
13  
dB  
Large Signal Voltage Gain  
V/mV  
V/mV  
µV/°C  
pA/°C  
pA/°C  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
VOS/T  
IB/T  
IOS/T  
10  
20  
2
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
ISC  
RL = 100 kto GND,  
–40°C TA +85°C  
±4.925  
±4.98  
V
Short Circuit Limit  
12  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±1.35 V to ±6 V,  
–40°C TA +85°C  
VO = 0 V  
76  
95  
3.3  
dB  
µA  
µA  
Supply Current/Amplifier  
5
6
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
±SR  
GBP  
φo  
RL = 100 k, CL = 50 pF  
28  
105  
75  
V/ms  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
10  
85  
75  
<1  
µV p-p  
nV/Hz  
nV/Hz  
pA/Hz  
in  
NOTES  
1VOS is tested under no load condition.  
Specifications subject to change without notice.  
REV. 0  
–4–  
OP181/OP281/OP481  
ABSOLUTE MAXIMUM RATINGS  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +16 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . Gnd to VS + 10 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±3.5 V  
Output Short-Circuit Duration to Gnd . . . . . . . . . . Indefinite  
Storage Temperature Range  
P, S, RU Package . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP181/OP281/OP481G . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
OP181GP  
OP181GS  
OP281GP  
OP281GS  
–40°C to +85°C 8-Pin Plastic DIP  
–40°C to +85°C 8-Pin SOIC  
–40°C to +85°C 8-Pin Plastic DIP  
–40°C to +85°C 8-Pin SOIC  
N-8  
SO-8  
N-8  
SO-8  
RU-8  
OP281GRU –40°C to +85°C 8-Pin TSSOP  
OP481GP  
OP481GS  
–40°C to +85°C 14-Pin Plastic DIP N-14  
–40°C to +85°C 14-Pin SOIC  
OP481GRU –40°C to +85°C 14-Pin TSSOP  
P, S, RU Package . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . +300°C  
SO-14  
RU-14  
Package Type  
JA*  
JC  
Units  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
8-Pin TSSOP (RU)  
14-Pin Plastic DIP (P)  
14-Pin SOIC (S)  
103  
158  
240  
76  
120  
240  
43  
43  
43  
33  
36  
43  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
14-Pin TSSOP (RU)  
*θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP packages; θJA is specified for device soldered in circuit board for TSSOP  
and SOIC packages.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP181/OP281/OP481 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precau-  
tions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
OP181/OP281/OP481–Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2000  
1800  
1600  
1400  
1200  
1000  
800  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
T
= +2.7V  
= +25؇C  
V
= +5V  
S
= +25؇C  
S
T
V
= +5V  
A
A
S
600  
400  
200  
0
0
0
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
–40 –20  
0
20 40 60 80 100 120  
INPUT OFFSET VOLTAGE – mV  
INPUT OFFSET VOLTAGE – mV  
TEMPERATURE – ؇C  
Figure 1. Input Offset Voltage  
Distribution  
Figure 2. Input Offset Voltage  
Distribution  
Figure 3. Input Offset Voltage vs.  
Temperature  
0
1.0  
0.5  
0.4  
–0.5  
V
= +5V  
S
= +25؇C  
0.5  
0.0  
V
= +5V  
S
T
V
= +5V  
A
S
–1.0  
–1.5  
0.3  
–0.5  
–1.0  
–1.5  
0.2  
0.1  
0
–2.0  
–2.5  
–3.0  
–3.5  
–2.0  
–2.5  
–3.0  
–3.5  
–0.1  
–0.2  
–0.3  
–0.4  
–4.0  
–4.5  
–5.0  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE – ؇C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON-MODE VOLTAGE – Volts  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE – ؇C  
Figure 4. Input Bias Current vs.  
Temperature  
Figure 5. Input Bias Current vs.  
Common-Mode Voltage  
Figure 6. Input Offset Current vs.  
Temperature  
10,000  
1,000  
1,000  
V
T
= +3V  
= +25؇C  
V
T
= +5V  
= +25؇C  
V
T
= ±5V  
= +25؇C  
S
A
S
A
S
A
1,000  
100  
100  
100  
SOURCE  
SOURCE  
SOURCE  
10  
10  
SINK  
SINK  
SINK  
10  
1.0  
1.0  
1.0  
0.1  
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT – µA  
LOAD CURRENT – µA  
LOAD CURRENT – µA  
Figure 7. Output Voltage to Supply  
Rail vs. Load Current  
Figure 8. Output Voltage to Supply  
Rail vs. Load Current  
Figure 9. Output Voltage to Supply  
Rail vs. Load Current  
REV. 0  
–6–  
OP181/OP281/OP481  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
V
T
R
= +5V  
= +25؇C  
= 100kΩ  
V
T
R
= +3V  
= +25؇C  
= 100k  
V
= +2.7V  
= +25؇C  
= 100kΩ  
S
A
S
A
S
60  
50  
40  
30  
20  
10  
0
T
A
R
L
L
L
0
0
0
45  
45  
45  
90  
90  
90  
135  
180  
225  
270  
135  
180  
225  
270  
135  
180  
225  
270  
–10  
–10  
–10  
–20  
–30  
–20  
–30  
–20  
–30  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 10. Open-Loop Gain and Phase  
vs. Frequency  
Figure 11. Open-Loop Gain and Phase Figure 12. Open-Loop Gain and Phase  
vs. Frequency  
vs. Frequency  
70  
60  
50  
V
T
R
= +5V  
= +25؇C  
= INFINITE  
V
T
R
= ±5V  
= +25؇C  
= 100kTO GROUND  
S
S
60  
50  
40  
30  
20  
10  
0
A
A
L
V
T
= +5V  
= +25؇C  
40  
L
S
A
0
30  
MARKER @ 67nV/Hz  
45  
20  
90  
10  
135  
180  
225  
270  
0
–10  
–20  
–30  
–40  
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
0
2k  
4k  
6k  
8k  
10k  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 13. Open-Loop Gain and Phase  
vs. Frequency  
Figure 14. Closed-Loop Gain vs.  
Frequency  
Figure 15. Voltage Noise Density vs.  
Frequency  
90  
160  
50  
T
= +25؇C  
V
= ±5V  
A
S
V
T
R
= ±5V, +5V, +3V, +2.7V  
= +25؇C  
= INFINITE  
V
V
R
= +5V  
S
S
140  
120  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
= ±50mV  
= 100kΩ  
= +25؇C  
A
IN  
V
= +5V  
S
L
–OS  
L
T
A
+OS  
V
= +3V  
S
60  
40  
20  
0
–20  
–40  
–10  
0
10  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
CAPACITANCE – pF  
1000  
FREQUENCY – Hz  
Figure 16. CMRR vs. Frequency  
Figure 17. PSRR vs. Frequency  
Figure 18. Small Signal Overshoot vs.  
Load Capacitance  
REV. 0  
–7–  
OP181/OP281/OP481  
3
2
5
4.0  
3.5  
V
V
R
= +3V  
V
= +3V  
S
S
= 2Vp–p  
= INFINITE  
= +25؇C  
IN  
L
4
T
A
3.0  
2.5  
V
V
R
= +5V  
S
= 4Vp–p  
= INFINITE  
= +25؇C  
IN  
3
2
1
0
L
2.0  
1.5  
T
A
1
0
1.0  
0.5  
0
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE – ؇C  
Figure 20. Maximum Output Swing  
vs. Frequency  
Figure 21. Supply Current/Amplifier  
vs. Temperature  
Figure 19. Maximum Output Swing  
vs. Frequency  
3.50  
4.5  
T
= +25؇C  
3.25  
3.00  
V
= +5V  
A
S
4.0  
3.5  
V
= ±2.5V  
= 1  
= 100kΩ  
= 50pF  
= +25؇C  
S
A2  
0mV  
A
R
C
T
2.75  
2.50  
2.25  
V
L
L
100  
90  
3.0  
2.5  
2.0  
A
2.00  
1.75  
1.50  
1.25  
1.00  
1.5  
10  
1.0  
0.5  
0
0.75  
0.50  
0%  
50mV  
100µs  
0.25  
0.00  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
–40 –20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE – ±Volts  
TEMPERATURE – ؇C  
Figure 23. Supply Current/Amplifier  
vs. Supply Voltage  
Figure 24. Small Signal Transient  
Response  
Figure 22. Supply Current/Amplifier  
vs. Temperature  
VS = +5V  
AV = 1  
RL = 100k  
CL = 50pF  
TA = +25؇C  
VS = +2.7V  
AV = 1  
RL = 100kΩ  
CL = 50pF  
V
= ±1.35V  
= 1  
= 100kΩ  
= 50pF  
= +25؇C  
A2  
A2  
S
2.50V  
A2  
0mV  
0.50V  
A
R
C
T
V
L
L
100  
90  
100  
100  
90  
90  
TA = +25؇C  
A
10  
10  
10  
0%  
0%  
0%  
500mV  
1V  
100µs  
100µs  
50mV  
100µs  
Figure 26. Large Signal Transient  
Response  
Figure 27. Large Signal Transient  
Response  
Figure 25. Small Signal Transient  
Response  
REV. 0  
–8–  
OP181/OP281/OP481  
120  
105  
90  
V
T
R
=
=
=
+5V  
+25؇C  
S
VS = ؎1.35V  
RL =  
VIN = ؎1Vp-p  
AT 2kHz  
V
T
= +5V  
= +25؇C  
A2  
2.50V  
A2  
0.00V  
S
A
A
L
100  
90  
100  
90  
75  
60  
45  
30  
15  
10  
10  
0%  
0%  
0
1V  
1V  
200µs  
–15  
500mV 500mV  
50µs  
–30  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
Figure 28. No Phase Reversal  
Figure 29. Channel Separation vs.  
Frequency  
Figure 30. Saturation Recovery Time  
VS = ؎2.5V  
RL = ∞  
A2  
0.00V  
CIRCUIT = AVOL  
TA = +25؇C  
100  
90  
10  
0%  
1V  
500mV  
100µs  
Figure 31. Saturation Recovery Time  
REV. 0  
–9–  
OP181/OP281/OP481  
APPLICATIONS  
THEORY OF OPERATION  
where: VEE is the negative power supply for the amplifier, and  
IN, MIN is the lowest input voltage excursion expected  
V
The OPx81 family of op amps is comprised of extremely low  
powered, rail-to-rail output amplifiers, requiring less than 4 µA  
of quiescent current per amplifier. Many other competitors’  
devices may be advertised as low supply current amplifiers but  
draw significantly more current as the outputs of these devices  
are driven to a supply rail. The OPx81’s supply current remains  
under 4 µA even with the output driven to either supply rail.  
Supply currents should meet the specification as long as the inputs  
and outputs remain within the range of the power supplies.  
For example, an OP181 is to be used with a single supply volt-  
age of 5 V where the input signal could possibly go as low as  
–1.0 V. Because the amplifier is powered from a single supply,  
VEE is ground, so the necessary series resistance should be 2 k.  
Input Offset Voltage Nulling  
The OPx81 family of op amps was designed for low offset  
voltages less than 1 mV. The single OP181 does provide two  
offset adjust terminals, should the user require greater precision.  
In general, these terminals should be used only to zero amplifier  
offsets and should not be used to adjust system offset voltages.  
Figure 32 shows a simplified schematic of the OP181. A bipolar  
differential pair is used in the input stage. PNP transistors are  
used to allow the input stage to remain linear with the common-  
mode range extending to ground. This is an important consider-  
ation for single supply applications. The bipolar front end also  
contributes less noise than a MOS front end with only nano-  
amps of bias currents. The output of the op amp consists of a  
pair of CMOS transistors in a common source configuration.  
This setup allows the output of the amplifier to swing to within  
millivolts of either supply rail. The headroom required by the  
output stage is limited by the amount of current being driven  
into the load. The lower the output current, the closer the  
output can go to either supply rail. Figures 7, 8 and 9 show the  
output voltage headroom versus load current. This behavior is  
typical of rail-to-rail output amplifiers.  
A 20 kpotentiometer connected to the offset adjust terminals,  
with the wiper connected to VEE, can be used to reduce the  
offset voltage of the amplifier. The OP181 should be connected  
in the unity-gain configuration (as shown in Figure 33) or in a  
gain configuration. The potentiometer should be adjusted until  
VOUT is minimized. The wiper of the potentiometer must be  
connected to VEE; connecting it to the positive supply rail could  
damage the device.  
+5V  
7
2
OP181  
6
V
OUT  
4
V
CC  
3
5
1
20k  
POT.  
V
= –5V  
EE  
OUT  
Figure 33. Offset Voltage Nulling Circuit  
Input Common-Mode Voltage Range  
+IN  
–IN  
The OPx81 is rated with an input common-mode voltage range  
from VEE to 1 volt under VCC. However, the op amp can still  
operate even with a common-mode voltage that is slightly less  
than VEE. Figure 34 shows an OP181 configured as a difference  
amplifier with a single supply voltage of +3 V. Negative dc  
voltages are applied at both input terminals creating a common-  
mode voltage that is less than ground. A 400 mV p-p input  
signal is then applied to the noninverting input. Figure 35 shows  
a picture of the input and output waves. Notice how the output  
of the amplifier also drops slightly negative without distortion.  
V
EE  
Figure 32. Simplified Schematic of the OP181  
Input Overvoltage Protection  
The input stage to the OPx81 family of op amps consists of a  
PNP differential pair. If the base voltage of either of these input  
transistors drops to more than 0.6 V below the negative supply,  
the input ESD protection diodes will become forward biased,  
and large currents will begin to flow. In addition to possibly  
damaging the device, this will create a phase reversal effect at  
the output. To prevent these effects from happening, the input  
current should be limited to less than 0.5 mA.  
100k  
+3V  
100kΩ  
V
100kΩ  
OUT  
–0.27V  
OP181  
V
= 1kHz AT  
IN  
400mV p-p  
100kΩ  
This can be done quite easily by placing a resistor in series with  
the input to the device. The size of the resistor should be pro-  
portional to the lowest possible input signal excursion and can  
be found using the following formula:  
–0.1V  
Figure 34. OP181 Configured as a Difference Amplifier  
Operating at VCM < 0 V  
VEE VIN, MIN  
R =  
0.5 ×103  
REV. 0  
–10–  
OP181/OP281/OP481  
0.2ms  
100  
90  
100  
90  
V
OUT  
0V  
V
IN  
10  
10  
0%  
0%  
0.1V  
Figure 37. Ringing and Overshoot of the Output of the  
Amplifier  
Figure 35. Input and Output Signals with VCM < 0 V  
Overdrive Recovery Time  
A Micropower Reference Voltage Generator  
Many single supply circuits are configured with the circuit  
biased to 1/2 of the supply voltage. In these cases, a false-  
ground reference can be created by using a voltage divider  
buffered by an amplifier. Figure 38 shows the schematic for  
such a circuit.  
The amount of time it takes for an amplifier to recover from  
saturation can be an important consideration when using an  
amplifier as a comparator or when outputs can be driven to the  
supplies. The overdrive recovery time for the OP181 is 50 µs  
with the amplifier running from a 3 volt supply and increases  
to 100 µs with a 10 volt supply. Figure 36 shows the result of  
the OP181 running from a 3 V supply with its output being  
overdriven.  
The two 1 Mresistors generate the reference voltage while  
drawing only 1.5 µA of current from a 3 V supply. A capacitor  
connected from the inverting terminal to the output of the op  
amp provides compensation to allow for a bypass capacitor to be  
connected at the reference output. This bypass capacitor helps  
establish an ac ground for the reference output. The entire  
reference generator draws less than 5 µA from a 3 V supply  
source.  
0.2ms  
V
IN  
100  
SCALE 0.1V 90  
V
S
= +3V  
A
V
= +100  
0V  
V
OUT  
+3V TO +12V  
SCALE 1V  
10  
0%  
0V  
10kΩ  
0.1V  
0.022µF  
Figure 36. Output of the Op Amp Recovering from  
Saturation  
7
2
Capacitive Loading  
100Ω  
1MΩ  
OP181  
6
Most low supply current amplifiers have difficulty driving  
capacitive loads due to the higher currents required from the  
output stage for such loads. Higher capacitance at the output  
will increase the amount of overshoot and ringing in the  
amplifier’s step response and could even affect the stability of  
the device. However, through careful design of the output stage  
and its high phase margin, the OPx81 family can tolerate some  
degree of capacitive loading. Figure 37 shows the step response  
of an OP181 with a 10 nF capacitor connected at the output.  
Notice that the overshoot of the output does not exceed more  
than 10% with such a load, even with a supply voltage of only  
+3 V.  
V
REF  
+1.5V TO +6V  
3
1µF  
4
1MΩ  
1µF  
Figure 38. A Micropower Bias Voltage Generator  
A Window Comparator  
The extremely low power supply current demands of the OPx81  
family make it ideal for use in long life battery powered applica-  
tions such as a monitoring system. Figure 39 shows a circuit  
that uses the OP281 as a window comparator.  
REV. 0  
–11–  
OP181/OP281/OP481  
+3V  
creates a very small voltage drop. The voltage at the inverting  
terminal becomes equal to the voltage at the noninverting  
terminal through the feedback of Q1, which is a 2N2222 or  
equivalent NPN transistor. This makes the voltage drop across  
R1 equal to the voltage drop across RSENSE. Therefore, the  
current through Q1 becomes directly proportional to the current  
through RSENSE, and the output voltage is given by:  
+3V  
+3V  
5.1kΩ  
V
OUT  
R1  
V
H
D1  
10kΩ  
Q1  
A1  
R2  
OP281-A  
5.1kΩ  
V
IN  
2kΩ  
R2  
R1  
+3V  
A2  
+3V  
VOUT = VEE  
× RSENSE × IL  
D2  
R3  
R4  
V
The voltage drop across R2 increases with IL increasing, so  
OUT decreases with higher supply current being sensed. For  
the element values shown, the VOUT transfer characteristic is  
L
OP281-B  
V
–2.5 V/A, decreasing from VEE  
.
+5V  
Figure 39. Using the OP281 as a Window Comparator  
The threshold limits for the window are set by VH and VL,  
provided that VH > VL. The output of A1 will stay at the  
negative rail, in this case ground, as long as the input voltage is  
less than VH. Similarly, the output of A2 will stay at ground as  
long the input voltage is higher than VL. As long as VIN remains  
between VL and VH, the outputs of both op amps will be 0 V.  
With no current flowing in either D1 or D2, the base of Q1 will  
stay at ground, putting the transistor in cutoff and forcing VOUT  
to the positive supply rail. If the input voltage rises above VH,  
the output of A2 stays at ground, but the output of A1 will go to  
the positive rail, and D1 will conduct current. This creates a  
base voltage that will turn on Q1 and drive VOUT low. The same  
condition occurs if VIN falls below VL with A2’s output going  
high, and D2 conducting current. Therefore, VOUT will be high  
if the input voltage is between VL and VH, and VOUT will be low  
if the input voltage moves outside of that range.  
R2  
2.49kΩ  
V
OUT  
Q1  
+5V  
R1  
100Ω  
OP181  
0.1Ω  
RETURN TO  
GROUND  
R
SENSE  
Figure 40. A Low-Side Load Current Monitor  
Low Voltage Half-Wave and Full-Wave Rectifiers  
Because of its quick overdrive recovery time, an OP281 can be  
configured as a full-wave rectifier for low frequency (<500 Hz)  
applications. Figure 41 shows the schematic.  
The R1 and R2 voltage divider sets the upper window voltage,  
and the R3 and R4 voltage divider sets the lower voltage for the  
window. For the window comparator to function properly, VH  
must be a greater voltage than VL.  
R1 = 100k  
R2 = 100kΩ  
+3V  
+3V  
R2  
R1+ R2  
2kΩ  
= 2V p-p  
FULL-WAVE  
RECTIFIED  
OUTPUT  
VH  
VL  
=
A2  
A1  
V
IN  
OP281-B  
OP281-A  
R4  
R3 + R4  
=
HALF-WAVE  
RECTIFIED  
OUTPUT  
The 2 kresistor connects the input voltage to the input termi-  
nals to the op amps. This protects the OP281 from possible  
excess current flowing into the input stages of the devices. D1  
and D2 are small-signal switching diodes (1N4446 or equiva-  
lent), and Q1 is a 2N2222 or equivalent NPN transistor.  
Figure 41. Single Supply Full- and Half-Wave Rectifiers  
Using an OP281  
A Low-Side Current Monitor  
100  
In the design of power supply control circuits, a great deal of  
design effort is focused on ensuring a pass transistor’s long-term  
reliability over a wide range of load current conditions. As a  
result, monitoring and limiting device power dissipation is of  
prime importance in these designs. Figure 40 shows an example  
of a +5 V, single-supply current monitor that can be incorpo-  
rated into the design of a voltage regulator with fold-back  
current limiting or a high current power supply with crowbar  
protection. The design capitalizes on the OP181’s common-  
mode range that extends to ground. Current is monitored in the  
SCALE 0.1V/DIV  
90  
10  
SCALE 0.1ms/DIV  
0%  
Figure 42. Full-Wave Rectified Signal  
power supply return path where a 0.1 shunt resistor, RSENSE  
,
REV. 0  
–12–  
OP181/OP281/OP481  
The OP281-B amplifier can provide up to 15 dB of gain for the  
headset speaker. Incoming audio signals are ac coupled to a  
10 kpotentiometer that is used to adjust the volume. Again,  
two 1 Mresistors provide the dc offset with a 1 µF capacitor  
establishing an ac ground for the volume control potentiometer.  
Because the OP281 is a rail-to-rail output amplifier, it would  
have difficulty driving a 600 speaker directly. Here, a class AB  
buffer is used to isolate the load from the amplifier and also  
provide the necessary current drive to the speaker. By placing  
the buffer in the feedback loop of the op amp, crossover  
distortion can be minimized. Q1 and Q2 should have minimum  
betas of 100. The 600 speaker is ac coupled to the emitters to  
prevent any quiescent current from flowing in the speaker. The  
1 µF coupling capacitor makes an equivalent high pass filter  
cutoff at 265 Hz with a 600 load attached. Again, this does  
not pose a problem, as it is outside the frequency range for  
telephone audio signals.  
Amplifier A1 is used as a voltage follower that will only track the  
input voltage when it is greater than 0 V. This provides a half-  
wave rectification of the input signal to the noninverting  
terminal of amplifier A2. When A1’s output is following the  
input, the inverting terminal of A2 will also follow the input  
from the virtual ground between the inverting and noninverting  
terminals of A2. With no potential difference across R1, no  
current flows through either R1 or R2, therefore the output of  
A2 will also follow the input. Now, when the input voltage goes  
below 0 V, the noninverting terminal of A2 becomes 0 V. This  
makes A2 work as an inverting amplifier with a gain of 1 and  
provides a full-wave rectified version of the input signal. A 2 kΩ  
resistor in series with A1’s noninverting input protects the  
device when the input signal becomes less than ground.  
A Battery Powered Telephone Headset Amplifier  
Figure 43 shows how the OP281 can be used as a two-way  
amplifier in a telephone headset. One side of the OP281 can be  
used as an amplifier for the microphone, while the other side  
can be used to drive the speaker. A typical telephone headset  
uses a 600 speaker and an electret microphone that requires a  
supply voltage and a biasing resistor.  
The circuit in Figure 43 draws around 250 µA of current. The  
class AB buffer has a quiescent current of 140 µA while roughly  
100 µA is drawn by the microphone itself. A CR2032 3 V  
lithium battery has a life expectancy of 160 mA hours, which  
means this circuit could run continuously for 640 hours on a  
single battery.  
0.1µF  
11kΩ  
300kΩ  
SPICE Macro-Model  
+3V  
+3V  
+3V  
* OP181 SPICE Macro-model  
* 9/96, Ver. 1  
1µF  
2.2kΩ  
1MΩ  
1µF  
MIC OUT  
*
OP281-A  
ELECTRET  
MIC  
* Copyright 1996 by Analog Devices  
*
1MΩ  
* Refer to “README.DOC” file for License Statement. Use of this  
* model indicates your acceptance of the terms and provisions in  
1µF  
10kΩ  
50kΩ  
* the License Statement.  
*
+3V  
* Node Assignments  
*
noninverting input  
20kΩ  
*
*
*
*
*
*
|
|
|
|
|
|
1
inverting input  
+3V  
Q1  
|
|
|
|
|
2
positive supply  
1µF  
INPUT  
+3V  
1µF  
|
|
|
negative supply  
|
|
output  
|
|
10kΩ  
POT.  
OP281-B  
Q2  
600Ω  
|
|
1MΩ  
1µF  
1MΩ  
SPEAKER  
20kΩ  
.SUBCKT OP181  
99  
50  
45  
*
* INPUT STAGE  
*
Figure 43. A Battery Powered Telephone Headset  
Two-Way Amplifier  
Q1  
Q2  
I1  
EOS  
IOS  
RC1  
RC2  
RE1  
RE2  
V1  
4
6
99  
7
1
4
6
3
5
1
7
8
2
2
3
5
PIX  
PIX  
The OP281-A op amp provides about 29 dB of gain for audio  
signals coming from the microphone. The gain is set by the  
300 kand 11 kresistors. The gain bandwidth product of the  
amplifier is 95 kHz, which, for the set gain of 28, yields a –3 dB  
rolloff at 3.4 kHz. This is acceptable since telephone audio is  
band limited for 300 kHz to 3 kHz signals. If higher gain is  
required for the microphone, an additional gain stage should be  
used, as adding any more gain to the OP281 would limit the  
audio bandwidth. A 2.2 kresistor is used to bias the electret  
microphone. This resistor value may vary depending on the  
specifications on the microphone being used. The output of the  
microphone is ac coupled to the noninverting terminal of the op  
amp. Two 1 Mresistors are used to provide the dc offset for  
single supply use.  
1.28E-6  
POLY(1) (12, 98) 80E-6 1  
1E-10  
50 500E3  
50 500E3  
8
8
108  
108  
99 13 DC .9  
99 14 DC .9  
V2  
D1  
D2  
*
3
5
13 DX  
14 DX  
* CMRR76dB, ZERO AT 1kHz  
*
REV. 0  
–13–  
OP181/OP281/OP481  
ECM1 11 98 POLY(2) (1, 98) (2, 98) 0 .5 .5  
R1  
C1  
R2  
*
11 12 1.59E6  
11 12 100E-12  
12 98 283  
* POLE AT 900kHz  
*
EREF 98  
0
(90, 0)  
1
G1  
R3  
C2  
*
98 20 (4, 6)  
20 98 1E6  
20 98 177E-15  
1E-6  
* POLE AT 500kHz  
*
E2  
R4  
C3  
*
21 98 (20, 98)  
21 22 1E6  
22 98 320E-15  
1
* GAIN STAGE  
*
CF  
R5  
G3  
D3  
D4  
V3  
V4  
*
45 40 8. 5E-12  
40 98 65. 65E6  
98 40 (22, 98)  
40 41 DX  
42 40 DX  
99 41 DC 0.5  
42 50 DC 0.5  
4.08E-7  
* OUTPUT STAGE  
*
ISY 99 50 1.375E-6  
RS1 99 90 10E6  
RS2 90 50 10E6  
M1  
M2  
45 46 99 99  
45 47 50 50  
POX L=1.5u W=300u  
NOX L=1.5u W=300u  
EG1 99 46 POLY(1) (98, 40) 0.77  
1
EG2 47 50 POLY(1) (40, 98) 0.77  
1
*
* MODELS  
*
.MODEL POX PMOS (LEVEL=2, KP=25E-6, VTO=-0.75, LAMBDA=0.01)  
.MODEL NOX NMOS (LEVEL=2, KP=25E-6, VTO=0.75, LAMBDA=0.01)  
.MODEL PIX PNP (BF=200)  
.MODEL DX D(IS=1E-14)  
.ENDS  
REV. 0  
–14–  
OP181/OP281/OP481  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Plastic DIP  
(N-14)  
8-Lead Plastic DIP  
(N-8)  
0.795 (20.19)  
0.725 (18.42)  
0.430 (10.92)  
0.348 (8.84)  
14  
1
8
7
8
5
4
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
0.195 (4.95)  
MAX  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.115 (2.93)  
0.160 (4.06)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.100 0.070 (1.77)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
(2.54)  
BSC  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.045 (1.15)  
14-Lead Narrow Body SOIC  
(SO-14)  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.3444 (8.75)  
0.3367 (8.55)  
8
1
5
4
14  
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0196 (0.50)  
x 45°  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
0.0099 (0.25)  
8°  
0°  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
14-Lead TSSOP  
(RU-14)  
8-Lead TSSOP  
(RU-8)  
0.201 (5.10)  
0.193 (4.90)  
0.122 (3.10)  
0.114 (2.90)  
14  
8
7
8
5
1
1
4
PIN 1  
PIN 1  
0.0256 (0.65)  
BSC  
0.006 (0.15)  
0.002 (0.05)  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
REV. 0  
–15–  
–16–  

相关型号:

OP181GS

Ultralow Power, Rail-to-Rail Output Operational Amplifiers
ADI

OP181GS-REEL

IC OP-AMP, 2500 uV OFFSET-MAX, 0.105 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

OP183

5 MHz Single-Supply Operational Amplifiers
ADI

OP183GP

5 MHz Single-Supply Operational Amplifiers
ADI

OP183GS

5 MHz Single-Supply Operational Amplifiers
ADI

OP183GS-REEL

5 MHz Single-Supply Operational Amplifier
ADI

OP183GS-REEL7

5 MHz Single-Supply Operational Amplifier
ADI

OP183GSZ

5 MHz Single-Supply Operational Amplifier
ADI

OP183GSZ-REEL

5 MHz Single-Supply Operational Amplifier
ADI

OP183GSZ-REEL7

5 MHz Single-Supply Operational Amplifier
ADI

OP183_05

5 MHz Single-Supply Operational Amplifier
ADI

OP184

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI