OPZ275GPZ [ADI]

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 9 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier;
OPZ275GPZ
型号: OPZ275GPZ
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 9 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier

放大器 光电二极管
文件: 总12页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Bipolar/JFET, Audio  
Operational Amplifier  
OP275  
FEATURES  
PIN CONNECTIONS  
Excellent Sonic Characteristics  
Low Noise: 6 nV/ Hz  
8-Lead Narrow-Body SOIC  
(S Suffix)  
8-Lead PDIP  
(P Suffix)  
Low Distortion: 0.0006%  
High Slew Rate: 22V/s  
Wide Bandwidth: 9 MHz  
Low Supply Current: 5 mA  
Low OffsetVoltage: 1 mV  
Low Offset Current: 2 nA  
Unity Gain Stable  
1
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
V+  
OP275  
8
V+  
1
2
3
4
OUT A  
–IN A  
+IN A  
V–  
2
3
4
OUT B  
–IN B  
+IN B  
OP275  
7
6
5
OUT B  
–IN B  
+IN B  
SOIC-8 Package  
PDIP-8 Package  
APPLICATIONS  
High Performance Audio  
Active Filters  
Fast Amplifiers  
Integrators  
GENERAL DESCRIPTION  
Improved dc performance is also provided with bias and offset  
currents greatly reduced over purely bipolar designs. Input offset  
voltage is guaranteed at 1 mV and is typically less than 200 µV.  
This allows the OP275 to be used in many dc-coupled or sum-  
ming applications without the need for special selections or the  
added noise of additional offset adjustment circuitry.  
The OP275 is the first amplifier to feature the Butler Amplifier  
front end.This new front end design combines both bipolar  
and JFET transistors to attain amplifiers with the accuracy and  
low noise performance of bipolar transistors, and the speed and  
sound quality of JFETs. Total Harmonic Distortion plus Noise  
equals that of previous audio amplifiers, but at much lower  
supply currents.  
The output is capable of driving 600 loads to 10V rms while  
maintaining low distortion.THD + Noise at 3V rms is a low  
0.0006%.  
A very low l/f corner of below 6 Hz maintains a flat noise density  
response.Whether noise is measured at either 30 Hz or 1 kHz,  
The OP275 is specified over the extended industrial (–40°C to  
+85°C) temperature range. OP275s are available in both plas-  
tic DIP and SOIC-8 packages. SOIC-8 packages are available  
in 2500-piece reels. Many audio amplifiers are not offered  
in SOIC-8 surface-mount packages for a variety of reasons;  
however, the OP275 was designed so that it would offer full  
performance in surface-mount packaging.  
it is only 6 nV Hz.The JFET portion of the input stage gives  
the OP275 its high slew rates to keep distortion low, even when  
large output swings are required, and the 22V/µs slew rate of the  
OP275 is the fastest of any standard audio amplifier. Best of all,  
this low noise and high speed are accomplished using less than  
5 mA of supply current, lower than any standard audio amplifier.  
REV.C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed byAnalog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or oth-  
erwise under any patent or patent rights of Analog Devices.Trademarks  
and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
OP275–SPECIFICATIONS  
(@ V = 15.0 V, T = 25C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
AUDIO PERFORMANCE  
THD + Noise  
VIN = 3V rms,  
RL = 2 k, f = 1 kHz  
f = 30 Hz  
f = 1 kHz  
f = 1 kHz  
THD + Noise 0.01%,  
RL = 2 k,VS = ±18V  
0.006  
7
6
%
nV Hz  
nV Hz  
pA Hz  
Voltage Noise Density  
en  
in  
Current Noise Density  
Headroom  
1.5  
>12.9  
dBu  
INPUT CHARACTERISTICS  
OffsetVoltage  
VOS  
IB  
1
mV  
mV  
nA  
nA  
nA  
nA  
V
–40°C TA +85°C  
VCM = 0V  
VCM = 0V, 40°C TA +85°C  
VCM = 0V  
1.25  
350  
400  
50  
100  
+10.5  
Input Bias Current  
Input Offset Current  
100  
100  
2
IOS  
VCM = 0V, 40°C TA +85°C  
2
InputVoltage Range  
VCM  
–10.5  
Common-Mode Rejection Ratio  
CMRR  
VCM = ±10.5V,  
–40°C TA +85°C  
RL = 2 k  
RL = 2 k, –40°C TA +85°C  
RL = 600   
80  
250  
175  
106  
dB  
Large SignalVoltage Gain  
AVO  
V/mV  
V/mV  
V/mV  
µV/°C  
200  
2
OffsetVoltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
OutputVoltage Swing  
VO  
RL = 2 k  
RL = 2 k, –40°C TA +85°C  
RL = 600 ,VS = ±18V  
–13.5  
–13  
±13.9  
±13.9  
+14, –16  
+13.5  
+13  
V
V
V
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±4.5V to ±18V  
VS = ±4.5V to ±18V,  
–40°C TA +85°C  
VS = ±4.5V to ±18V,VO = 0V,  
RL = , –40°C TA +85°C  
VS = ±22V,VO = 0V, RL = ,  
–40°C TA +85°C  
85  
80  
111  
4
dB  
dB  
mA  
Supply Current  
5
5.5  
±22  
mA  
V
SupplyVoltage Range  
VS  
±4.5  
15  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 k  
22  
V/µs  
Full-Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
BWP  
GBP  
Øm  
kHz  
MHz  
Degrees  
9
62  
Overshoot Factor  
VIN = 100 mV, AV = +1,  
RL = 600 , CL = 100 pF  
10  
%
Specifications subject to change without notice.  
–2–  
REV. C  
OP275  
ABSOLUTE MAXIMUM RATINGS1  
SupplyVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22V  
InputVoltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22V  
Differential InputVoltage2 . . . . . . . . . . . . . . . . . . . . . . . ±7.5V  
Output Short-Circuit Duration to GND3 . . . . . . . . . . Indefinite  
StorageTemperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
OperatingTemperature Range  
OP275G . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
JunctionTemperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
LeadTemperature Range (Soldering, 60 sec) . . . . . . . . . .300°C  
4
PackageType  
JA  
JC  
Unit  
8-Lead Plastic DIP (P)  
8-Lead SOIC (S)  
103  
158  
43  
43  
°C/W  
°C/W  
NOTES  
1Absolute maximum ratings apply to packaged parts, unless otherwise noted.  
2For supply voltages greater than ±22V, the absolute maximum input voltage is equal  
to the supply voltage.  
3Shorts to either supply may destroy the device. See data sheet for full details.  
4JA is specified for the worst-case conditions, i.e., JA is specified for device in socket  
for PDIP packages; JA is specified for device soldered in circuit board for SOIC  
packages.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
OP275GP  
OP275GS  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead PDIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
OP275GS-REEL  
OP275GS-REEL7  
OP275GSZ*  
OP275GSZ-REEL*  
OP275GSZ-REEL7*  
*Z = Pb-free part.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate  
on the human body and test equipment and can discharge without detection. Although the OP275 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
REV. C  
–3–  
OP275–Typical Performance Characteristics  
25  
1500  
1250  
1000  
750  
500  
250  
0
T
R
= 25C  
= 2k  
V
V
=
=
15V  
15V  
A
40  
30  
20  
180  
20  
S
L
V
= 15V  
O
S
A
15  
135  
90  
+GAIN  
= 2k  
T
= 25  
C
+VOM  
R
L
10  
5
10  
0
45  
–GAIN  
0
0
R
= 2k  
L
+GAIN  
= 600  
–10  
–20  
–30  
–40  
–45  
–90  
–135  
–5  
R
L
–10  
–15  
–20  
–25  
–VOM  
–GAIN  
= 600  
R
L
–180  
1M  
FREQUENCY – Hz  
10M  
10k  
100k  
–50  
–25  
0
25  
50  
75  
100  
0
5  
10  
15  
20  
25  
TEMPERATURE – C  
SUPPLY VOLTAGE – V  
TPC 2. Open-Loop Gain vs.  
Temperature  
TPC 1. Output Voltage Swing  
vs. Supply Voltage  
TPC 3. Closed-Loop Gain and  
Phase, AV = +1  
50  
40  
60  
50  
MARKER 15 309.059Hz  
MAG (A/H)  
60.115dB  
V
T
=
= 25  
15V  
60  
50  
40  
S
V
T
= 15V  
= 25C  
V
=
15V  
C  
S
S
A
A
A
= +100  
VCL  
A
T
= 25  
C  
30  
A
= +1  
VCL  
40  
30  
20  
10  
0
20  
135  
90  
30  
20  
A
= +10  
A
A
= +10  
= +1  
VCL  
VCL  
VCL  
10  
A
= +100  
VCL  
MARKER 15 309.058Hz  
PHASE (A/R) 90.606Deg  
10  
45  
0
0
0
–10  
–20  
–30  
–10  
–20  
–45  
–90  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
1M  
FREQUENCY – Hz  
10M  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 4. Open-Loop Gain,  
Phase vs. Frequency  
TPC 5. Closed-Loop Gain vs.  
Frequency  
TPC 6. Closed-Loop Output  
Impedance vs. Frequency  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
V
=
= 2k  
= 25C  
15V  
S
V
T
= 15V  
= 25C  
0
S
A
R
T
L
100  
80  
60  
40  
20  
0
GAIN  
+PSRR  
A
60  
45  
40  
90  
Ø
= 58  
m
V
T
=
=
25C  
15V  
S
A
PHASE  
20  
135  
180  
225  
270  
–PSRR  
0
–20  
–40  
–60  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 7. Common-Mode  
Rejection vs. Frequency  
TPC 8. Power Supply Rejection vs.  
Frequency  
TPC 9. Open-Loop Gain,  
Phase vs. Frequency  
–4–  
REV. C  
OP275  
11  
10  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
65  
60  
55  
50  
40  
16  
A
= +1  
VCL  
NEGATIVE EDGE  
14  
12  
–VOM  
Øm  
10  
8
A
= +1  
VCL  
POSITIVE EDGE  
+VOM  
GBW  
6
4
2
0
V
= 15V  
S
8
R
= 2k  
= 100mV p-p  
L
T
V
= 25C  
A
V
IN  
= 15V  
S
7
0
100  
200  
300  
400  
500  
–50  
–25  
0
25  
50  
75  
100  
100  
1k  
LOAD RESISTANCE –   
10k  
LOAD CAPACITANCE – pF  
TEMPERATURE – C  
TPC 11. Small Signal Overshoot vs.  
Load Capacitance  
TPC 10. Gain Bandwidth Product,  
Phase Margin vs.Temperature  
TPC 12. Maximum Output  
Voltage vs. Load Resistance  
30  
25  
20  
15  
5.0  
4.5  
120  
110  
100  
90  
V
= 15V  
S
SINK  
T
T
T
= +85C  
= +25C  
= –40C  
A
80  
4.0  
3.5  
3.0  
A
70  
T
V
A
R
= 25C  
60  
A
S
A
=
= +1  
15V  
10  
5
50  
VCL  
L
= 2k  
40  
SOURCE  
30  
0
20  
–50  
0
5  
10  
15  
20  
25  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
–25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE – V  
TEMPERATURE – C  
TPC 13. Maximum Output  
Swing vs. Frequency  
TPC 14. Supply Current vs.  
Supply Voltage  
TPC 15. Short-Circuit Current  
vs.Temperature  
5
300  
250  
200  
150  
100  
50  
500  
400  
300  
200  
100  
0
V
S
= 15V  
= 25C  
V
=
15V  
V
= ±15V  
S
S
T
A
–40  
C to +85C  
4
3
BASED ON 920 OP AMPS  
2
1
0
–50  
10  
100  
1k  
100k  
–25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY – Hz  
TEMPERATURE – C  
TCV – V/C  
OS  
TPC 16. Input Bias Current vs.  
Temperature  
TPC 17. Current Noise Density  
vs. Frequency  
TPC 18.TCVOS Distribution  
REV. C  
–5–  
OP275  
10  
8
50  
45  
40  
35  
30  
25  
20  
200  
V
=
= 25  
15V  
C  
BASED ON 920 OP AMPS  
T
=
25  
V = 15V  
S
C  
S
A
T
A
160  
120  
80  
6
+0.1%  
+0.01%  
4
2
0
–SR  
+SR  
–2  
–4  
–6  
–8  
–10  
–0.01%  
–0.1%  
40  
0
0
100  
200  
300  
400  
500  
–400–300–200  
–500 –100  
0
100 200  
300  
INPUT OFFSET VOLTAGE – V  
400  
500  
0
100 200 300 400 500 600 700 800 900  
SETTLING TIME – ns  
CAPACITIVE LOAD – pF  
TPC 19. Input Offset (VOS  
Distribution  
)
TPC 20. Step Size vs. Settling  
Time  
TPC 21. Slew Rate vs. Capacitive  
Load  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
V
=
15V  
S
V
R
=
= 2k  
15V  
S
R
= 2k  
L
100  
90  
–SR  
+SR  
L
T
= 25C  
A
20  
15  
10  
5
10  
0%  
5V  
200ns  
0
–50  
–25  
0
25  
50  
75  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
TEMPERATURE –  
C
DIFFERENTIAL INPUT VOLTAGE – V  
TPC 22. Slew Rate vs. Differential  
Input Voltage  
TPC 23. Slew Rate vs.Temperature  
TPC 24. Negative Slew Rate  
RL = 2 k, VS = ±15 V, AV = +1  
CH A: 80.0 V FS  
MKR: 6.23 nV/ Hz  
10.0 V/DIV  
100  
90  
100  
90  
10  
10  
0%  
0%  
0 Hz  
MKR:  
2.5 kHz  
BW: 15.0 MHz  
5V  
50mV  
200ns  
100ns  
1 000 Hz  
TPC 25. Positive Slew Rate  
RL = 2 k, VS = ±15 V, AV = +1  
TPC 26. Small Signal Response  
RL = 2 k, VS = ±5 V, AV = +1  
TPC 27. Voltage Noise Density  
vs. Frequency VS = ±15 V  
–6–  
REV. C  
OP275  
0.010  
APPLICATIONS  
Circuit Protection  
OP275 has been designed with inherent short-circuit protection  
V
R
= 18V  
= 600  
S
L
to ground. An internal 30  
limits the output current at room temperature to ISC+ = 40 mA  
and ISC– = –90 mA, typically, with ±15V supplies.  
resistor, in series with the output,  
0.001  
However, shorts to either supply may destroy the device when  
excessive voltages or currents are applied. If it is possible for a  
user to short an output to a supply for safe operation, the output  
current of the OP275 should be design-limited to ±30 mA, as  
shown in Figure 1.  
0.0001  
0.5  
1
10  
OUTPUT SWING – V rms  
Figure 4. Headroom,THD + Noise vs. Output  
Amplitude (V rms); RLOAD = 600 , VSUP = ±18 V  
Total Harmonic Distortion  
Total Harmonic Distortion + Noise (THD + N) of the OP275 is  
The output of the OP275 is designed to maintain low harmonic  
well below 0.001% with any load down to 600  
. However, this is  
distortion while driving 600  
loads. However, driving 600   
dependent upon the peak output swing. In Figure 2, the THD +  
Noise with 3 V rms output is below 0.001%. In Figure 3, THD +  
loads with very high output swings results in higher distortion if  
clipping occurs. A common example of this is in attempting to  
drive 10V rms into any load with ±15V supplies. Clipping will  
occur and distortion will be very high. To attain low harmonic  
distortion with large output swings, supply voltages may be  
increased. Figure 5 shows the performance of the OP275 driving  
Noise is below 0.001% for the 10 kand 2 kloads but increases  
to above 0.1% for the 600 load condition. This is a result of the  
output swing capability of the OP275. Notice the results in Figure 4,  
showing THD versus VIN (V rms). This figure shows that the THD  
+ Noise remains very low until the output reaches 9.5 V rms. This  
performance is similar to competitive products.  
600  
loads with supply voltages varying from ±18 V to ±20 V.  
Notice that with ±18V supplies the distortion is fairly high, while  
with ±20V supplies it is a very low 0.0007%.  
R
FB  
0.0001  
FEEDBAC  
K
R
X
332   
A1  
V
OUT  
0.001  
+
A1 = 1/2 OP275  
R
= 600  
L
V
= 10V rms @ 1kHz  
OUT  
Figure 1. Recommended Output Short-Circuit Protection  
0.01  
0.1  
0
0.010  
R
= 600, 2k, 10k  
L
V
= 15V  
S
V
A
= 3V rms  
= +1  
IN  
V
17  
18  
19  
20  
21  
22  
SUPPLY VOLTAGE – V  
0.001  
Figure 5.THD + Noise vs. Supply Voltage  
0.0005  
20  
100  
1k  
FREQUENCY – Hz  
10k  
20k  
Noise  
The voltage noise density of the OP275 is below 7 nV/ Hz from  
30 Hz.This enables low noise designs to have good performance  
throughout the full audio range. Figure 6 shows a typical OP275  
with a 1/f corner at 2.24 Hz.  
Figure 2.THD + Noise vs. Frequency vs. RLOAD  
1
600  
CH A: 80.0  
V FS  
MKR: 45.6  
10.0V/DIV  
0.1  
A
= +1  
= 18V  
V
V/ Hz  
V
S
V
= 10V rms  
IN  
80kHz FILTER  
0.010  
0.001  
2k  
10k  
0.0001  
20  
100  
1k  
10k  
20k  
FREQUENCY – Hz  
0Hz  
MKR:  
Figure 3.THD + Noise vs. RLOAD; VIN =10 V rms  
10Hz  
BW: 0.145Hz  
2.24Hz  
Figure 6. 1/f Noise Corner, VS = ±15 V, AV = 1000  
REV. C  
–7–  
OP275  
NoiseTesting  
prevent phase reversal; however, they will not prevent this effect  
from occurring in noninverting applications. For these applications,  
For audio applications, the noise density is usually the most  
important noise parameter. For characterization, the OP275 is  
tested using an Audio Precision, System One. The input signal  
to the Audio Precision must be amplified enough to measure it  
accurately. For the OP275, the noise is gained by approximately  
1020 using the circuit shown in Figure 7. Any readings on the  
Audio Precision must then be divided by the gain. In imple-  
menting this test fixture, good supply bypassing is essential.  
the fix is a simple one and is illustrated in Figure 9. A 3.92 k  
resistor in series with the noninverting input of the OP275 cures  
the problem.  
R
*
FB  
V
OUT  
+
V
IN  
R
R
L
100  
S
3.92k  
2k  
909  
*
R
IS OPTIONAL  
FB  
A
OP37  
Figure 9. Output Voltage Phase Reversal Fix  
Overload or Overdrive Recovery  
OP37  
OP275  
B
OUTPUT  
909  
Overload or overdrive recovery time of an operational amplifier  
is the time required for the output voltage to recover to a rated  
output voltage from a saturated condition. This recovery time  
is important in applications where the amplifier must recover  
quickly after a large abnormal transient event. The circuit shown  
in Figure 10 was used to evaluate the OP275’s overload recovery  
4.42k  
100  
490  
909  
100  
Figure 7. NoiseTest Fixture  
Input Overcurrent Protection  
time. The OP275 takes approximately 1.2 ms to recover to VOUT  
+10 V and approximately 1.5 µs to recover to VOUT = –10 V.  
=
The maximum input differential voltage that can be applied  
to the OP275 is determined by a pair of internal Zener diodes  
connected across its inputs. They limit the maximum differential  
input voltage to ±7.5V.This is to prevent emitter-base junction  
breakdown from occurring in the input stage of the OP275 when  
very large differential voltages are applied. However, to preserve  
the OP275’s low input noise voltage, internal resistances in series  
with the inputs were not used to limit the current in the clamp  
diodes. In small signal applications, this is not an issue; however,  
in applications where large differential voltages can be inadvert-  
ently applied to the device, large transient currents can flow  
through these diodes. Although these diodes have been designed  
to carry a current of ±5 mA, external resistors as shown in Figure 8  
should be used in the event that the OP275’s differential voltage  
were to exceed ±7.5V.  
R1  
1k  
R2  
10k  
2
+
1
A1  
V
OUT  
3
V
IN  
R
R
L
S
4V p-p  
@100Hz  
909k  
2.43k  
A1 = 1/2 OP275  
Figure 10. Overload RecoveryTimeTest Circuit  
Measuring SettlingTime  
The design of OP275 combines a high slew rate and a wide gain  
bandwidth product to produce a fast settling (tS < 1 µs) amplifier  
for 8- and 12-bit applications. The test circuit designed to mea-  
sure the settling time of the OP275 is shown in Figure 11.This  
test method has advantages over false-sum node techniques in  
that the actual output of the amplifier is measured, instead of an  
error voltage at the sum node. Common-mode settling effects are  
exercised in this circuit in addition to the slew rate and band-  
width effects measured by the false-sum node method. Of course,  
a reasonably flat-top pulse is required as the stimulus.  
1.4k  
2
6
OP275  
1.4k  
3
+
Figure 8. Input Overcurrent Protection  
OutputVoltage Phase Reversal  
The output waveform of the OP275 under test is clamped by  
Schottky diodes and buffered by the JFET source follower.  
The signal is amplified by a factor of 10 by the OP260 and  
then Schottky-clamped at the output to prevent overloading the  
oscilloscope’s input amplifier.The OP41 is configured as a fast  
integrator, which provides overall dc offset nulling.  
Since the OP275’s input stage combines bipolar transistors for  
low noise and p-channel JFETs for high speed performance, the  
output voltage of the OP275 may exhibit phase reversal if either  
of its inputs exceeds its negative common-mode input voltage.  
This might occur in very severe industrial applications where  
a sensor or system fault might apply very large voltages on the  
inputs of the OP275. Even though the input voltage range of the  
OP275 is ±10.5V, an input voltage of approximately –13.5V will  
cause output voltage phase reversal. In inverting amplifier con-  
figurations, the OP275’s internal 7.5 V input clamping diodes will  
High Speed Operation  
As with most high speed amplifiers, care should be taken with  
supply decoupling, lead dress, and component placement.  
Recommended circuit configurations for inverting and nonin-  
verting applications are shown in Figures 12 and 13.  
–8–  
REV. C  
OP275  
16V–20V  
+
+15V  
1k  
OUTPUT  
(TO SCOPE)  
0.1F  
R
L
D3  
D4  
+
V+  
1k  
2N4416  
DUT  
1/2 OP260AJ  
+
V–  
1F  
D1  
D2  
0.1F  
R
F
2k  
10k  
10k  
+
+
IC2  
16V–20V  
R
G
222  
5V  
2N2222A  
750  
1N4148  
15k  
SCHOTTKY DIODES D1–D4 ARE  
HEWLETT-PACKARD HP5082-2835  
IC1 IS 1/2 OP260AJ  
–15V  
IC2 IS PMI OP41EJ  
Figure 11. OP275s SettlingTimeTest Fixture  
C
+15V  
FB  
10F  
+
R
FB  
0.1F  
+
2
3
8
V
R
S
C
S
C
OUT  
IN  
1/2  
1
V
OUT  
OP275  
V
IN  
+
R
L
4
0.1F  
2k  
10F  
+
Figure 14. Compensating the Feedback Pole  
Attention to Source Impedances Minimizes Distortion  
–15V  
Since the OP275 is a very low distortion amplifier, careful atten-  
tion should be given to source impedances seen by both inputs.  
As with many FET-type amplifiers, the p-channel JFETs in the  
OP275’s input stage exhibit a gate-to-source capacitance that var-  
ies with the applied input voltage. In an inverting configuration,  
the inverting input is held at a virtual ground and, as such, does  
not vary with input voltage.Thus, since the gate-to-source voltage  
is constant, there is no distortion due to input capacitance modu-  
lation. In noninverting applications, however, the gate-to-source  
voltage is not constant.The resulting capacitance modulation  
can cause distortion above 1 kHz if the input impedance is  
Figure 12. Unity Gain Follower  
+15V  
10  
+
F  
0.1F  
10pF  
V
IN  
4.99k  
4.99k  
2
3
8
1/2  
OP275  
1
greater than 2 k  
and unbalanced.  
V
OUT  
+
2k  
R
4
R
F
G
2.49k  
10F  
0.1F  
+
OP275  
V
R
OUT  
S*  
–15V  
V
+
IN  
*
R = R //R IF R //R > 2k  
S G F G F  
Figure 13. Unity Gain Inverter  
FOR MINIMUM DISTORTION  
In inverting and noninverting applications, the feedback resis-  
tance forms a pole with the source resistance and capacitance  
(RS and CS) and the OP275’s input capacitance (CIN), as shown  
in Figure 14. With RS and RF in the kilohm range, this pole  
can create excess phase shift and even oscillation. A small  
capacitor, CFB, in parallel and RFB eliminates this problem.  
By setting RS (CS + CIN) = RFBCFB, the effect of the feedback  
pole is completely removed.  
Figure 15. Balanced Input Impedance to Minimize  
Distortion in Noninverting Amplifier Circuits  
Figure 15 shows some guidelines for maximizing the distortion  
performance of the OP275 in noninverting applications.The best  
way to prevent unwanted distortion is to ensure that the parallel  
combination of the feedback and gain setting resistors (RF and  
RG) is less than 2 k. Keeping the values of these resistors small  
has the added benefits of reducing the thermal noise of the circuit  
REV. C  
–9–  
OP275  
and dc offset errors. If the parallel combination of RF and RG is  
larger than 2 k, then an additional resistor, RS, should be used  
in series with the noninverting input.The value of RS is deter-  
mined by the parallel combination of RF and RG to maintain the  
low distortion performance of the OP275.  
The design is a transformerless, balanced transmission system  
where output common-mode rejection of noise is of paramount  
importance. Like the transformer based design, either output can  
be shorted to ground for unbalanced line driver applications  
without changing the circuit gain of 1. Other circuit gains can be  
set according to the equation in the diagram. This allows the  
design to be easily set to noninverting, inverting, or differential  
operation.  
Driving Capacitive Loads  
The OP275 was designed to drive both resistive loads to 600  
and capacitive loads of over 1000 pF and maintain stability.While  
there is a degradation in bandwidth when driving capacitive loads,  
the designer need not worry about device stability.The graph in  
Figure 16 shows the 0 dB bandwidth of the OP275 with capaci-  
tive loads from 10 pF to 1000 pF.  
A 3-Pole, 40 kHz Low-Pass Filter  
The closely matched and uniform ac characteristics of the OP275  
make it ideal for use in GIC (Generalized Impedance Converter)  
and FDNR (Frequency-Dependent Negative Resistor) filter  
applications. The circuit in Figure 18 illustrates a linear-phase,  
3-pole, 40 kHz low-pass filter using an OP275 as an inductance  
simulator (gyrator). The circuit uses one OP275 (A2 and A3) for  
the FDNR and one OP275 (A1 and A4) as an input buffer and  
bias current source for A3. Amplifier A4 is configured in a gain  
of 2 to set the pass band magnitude response to 0 dB. The ben-  
efits of this filter topology over classical approaches are that the  
op amp used in the FDNR is not in the signal path and that the  
filter’s performance is relatively insensitive to component varia-  
tions. Also, the configuration is such that large signal levels can  
be handled without overloading any of the filter’s internal nodes.  
As shown in Figure 19, the OP275’s symmetric slew rate and low  
distortion produce a clean, well behaved transient response.  
10  
9
8
7
6
5
4
3
2
1
0
R1  
95.3k  
0
200  
400  
600  
800  
1000  
CLOAD – pF  
C1  
2200pF  
2
3
A1  
+
1
Figure 16. Bandwidth vs. CLOAD  
High Speed, Low Noise Differential Line Driver  
V
IN  
R2  
787  
R6  
4.12k  
5
6
+
The circuit in Figure 17 is a unique line driver widely used in  
industrial applications.With ±18 V supplies, the line driver can  
7
A4  
V
OUT  
C4  
2200pF  
7
C2  
2200pF  
R7  
5
6
+
100k  
deliver a differential signal of 30 V p-p into a 2.5 k  
load.The  
A3  
high slew rate and wide bandwidth of the OP275 combine to  
yield a full power bandwidth of 130 kHz while the low noise  
front end produces a referred-to-input noise voltage spectral  
R3  
1.82k  
R8  
1k  
R9  
1k  
2
3
1
A2  
C3  
2200pF  
+
density of 10 nV/ Hz.  
R3  
R4  
1.87k  
2k  
A1, A4 = 1/2 OP275  
A2, A3 = 1/2 OP275  
R9  
50  
2
3
A2  
+
1
V
R5  
1.82k  
O1  
R11  
1k  
R1  
R7  
2k  
2k  
R4  
Figure 18. A 3-Pole, 40 kHz Low-Pass Filter  
2k  
+
V
– V = V  
O1  
3
2
O2  
IN  
V
IN  
1
P1  
10k  
A1  
R5  
2k  
100  
90  
R6  
2k  
R2  
2k  
R12  
1k  
V
R10  
OUT  
6
5
A3  
+
50  
10V p-p  
10kHz  
7
V
O2  
A1 = 1/2 OP275  
R8  
2k  
A2, A3 = 1/2 OP275  
R3  
GAIN =  
R1  
10  
0%  
SET R2, R4, R5 = R1 AND R6, R7, R8 = R3  
Figure 17. High Speed, Low Noise Differential Line Driver  
SCALE: VERTICAL–2V/ DIV  
HORIZONTAL–10s/ DIV  
Figure 19. Low-Pass FilterTransient Response  
–10–  
REV. C  
OP275  
OP275 SPICE Model  
*
* POLE/ZERO PAIR AT 1.5 MHz/2.7 MHz  
*
* Node assignments  
R8  
R9  
C4  
G2  
*
21 98  
21 22  
22 98  
98 21  
1E-3  
*
noninverting input  
inverting input  
positive supply  
negative supply  
1.25E-3  
47.2E-12  
18  
*
*
*
28  
28  
28  
1E-3  
*
**  
output  
* POLE AT 100 MHz  
*
R10 23 98 1  
.SUBCKT OP275  
*
* INPUT STAGE & POLE AT 100 MHz  
*
R3  
R4  
CIN  
CM1  
CM2  
C2  
1
2
99  
50  
34  
C5  
G3  
*
23 98  
98 23  
1.59E-9  
21  
1
5
6
1
1
2
5
97  
1
9
5
6
7
8
2
1
3
0
0
51  
51  
2
98  
98  
6
4
2
3
2
9
4
4
36  
36  
1
2
1
2.188  
2.188  
* POLE AT 100 MHz  
*
R11 24 98 1  
3.7E-12  
7.5E-12  
7.5E-12  
364E-12  
100E-3  
1E-9  
POLY(1) 26  
7
8
1.672  
1.672  
DZ  
DZ  
10  
C6  
G4  
*
24 98  
98 24  
1.59E-9  
23  
1
I1  
* COMMON-MODE GAIN NETWORK WITH ZERO AT  
IOS  
EOS  
Q1  
Q2  
R5  
R6  
D1  
D2  
EN  
GN1  
GN2  
*
EREF  
EP  
1 kHz  
*
R12 25 26 1E6  
C7 25 26 1.5915E-12  
R13 26 98 1  
28  
0.5E-3 1  
QX  
QX  
E2  
25 98  
POLY(2) 1 98  
2 98  
0
2.50  
2.50  
*
0
0
0
1
1E-3  
1E-3  
* POLE AT 100 MHz  
*
R14 27 98 1  
13  
16  
C8  
G5  
*
27 98  
98 27  
1.59E-9  
24  
98  
97  
51  
0
0
0
28  
99  
50  
0
0
0
1
1
1
28  
1
EM  
*
* OUTPUT STAGE  
*
* VOLTAGE NOISE SOURCE  
*
R15  
R16  
C9  
ISY  
R17  
R18  
L2  
G6  
G7  
G8  
G9  
V4  
V5  
F1  
F2  
D5  
D6  
D7  
D8  
28 99  
28 50  
28 50  
99 50  
29 99  
29 50  
29 34  
32 50  
33 50  
29 99  
50 29  
30 29  
29 31  
100E3  
100E3  
1E-6  
1.85E-3  
100  
100  
1E-9  
27  
29  
99  
27  
1.3  
3.8  
V4  
V5  
DX  
DN1  
DN2  
VN1  
VN2  
*
35 10  
10 11  
DEN  
DEN  
DC  
35  
0
0
11  
2
2
DC  
* CURRENT NOISE SOURCE  
*
29  
27  
27  
50  
10E-3  
10E-3  
10E-3  
10E-3  
DN3  
DN4  
VN3  
VN4  
*
12 13  
13 14  
DIN  
DIN  
DC  
12  
0
0
14  
2
2
DC  
29  
0
0
29  
1
1
* CURRENT NOISE SOURCE  
*
27 30  
31 27  
99 32  
99 33  
50 32  
50 33  
DN5  
DN6  
VN5  
VN6  
*
15 16  
16 17  
DIN  
DIN  
DC  
DX  
DX  
DX  
DY  
15  
0
0
17  
2
2
DC  
D9  
D10  
*
DY  
* GAIN STAGE & DOMINANT POLE AT 32 Hz  
*
* MODELS USED  
*
R7  
C3  
G1  
V2  
V3  
D3  
D4  
18 98  
18 98  
98 18  
97 19  
20 51  
18 19  
20 18  
1.09E6  
4.55E-9  
5
1.35  
1.35  
DX  
.MODEL QX  
.MODEL DX  
.MODEL DY  
.MODEL DZ  
.MODEL DEN  
AF=1)  
PNP(BF=5E5)  
D(IS=1E-12)  
D(IS=1E-15 BV=50)  
D(IS=1E-15 BV=7.0)  
6
4.57E-1  
D(IS=1E-12 RS=4.35K KF=1.95E-15  
DX  
.MODEL DIN  
.ENDS  
D(IS=1E-12 RS=268 KF=1.08E-15 AF=1)  
REV. C  
11–  
OP275  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
(S Suffix)  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8  
0.51 (0.0201)  
0.31 (0.0122)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(P Suffix)  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
2/04—Data Sheet changed from REV. B to REV. C.  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1/03—Data Sheet changed from REV. A to REV. B.  
DeletedWAFERTEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. C  

相关型号:

OPZ27EPZ

OP-AMP, 50uV OFFSET-MAX, 8MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ290GPZ

IC DUAL OP-AMP, 750 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ297FPZ

DUAL OP-AMP, 300uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ297GPZ

DUAL OP-AMP, 400uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ37GPZ

OP-AMP, 220uV OFFSET-MAX, 63MHz BAND WIDTH, PDIP8, PLASTIC, MO-095AA, DIP-8
ADI

OPZ467GPZ

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier
ADI

OPZ90GPZ

IC OP-AMP, 675 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ97EPZ

OP-AMP, 60uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OPZ97FPZ

OP-AMP, 200uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OQ02125100J0G

Strip Terminal Block
AMPHENOL

OQ02125103J0G

Strip Terminal Block
AMPHENOL

OQ02126100J0G

Strip Terminal Block
AMPHENOL