SSM2135S [ADI]

Dual Single-Supply Audio Operational Amplifier; 双路单电源音频运算放大器
SSM2135S
型号: SSM2135S
厂家: ADI    ADI
描述:

Dual Single-Supply Audio Operational Amplifier
双路单电源音频运算放大器

运算放大器
文件: 总12页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Single-Supply  
Audio Operational Amplifier  
a
SSM2135  
P IN CO NNECTIO NS  
FEATURES  
Excellent Sonic Characteristics  
High Output Drive Capability  
5.2 nV/ Hz Equivalent Input Noise @ 1 kHz  
0.001% THD+N (VO = 2.5 V p-p @ 1 kHz)  
3.5 MHz Gain Bandw idth  
Unity-Gain Stable  
8-Lead Epoxy D IP  
(P -Suffix)  
8-Lead Narrow-Body SO IC  
(S Suffix)  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
V+  
OUT A  
–IN A  
V+  
Low Cost  
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
SSM2135  
+IN A  
APPLICATIONS  
+IN A  
V–/GND  
Multim edia Audio System s  
Microphone Pream plifier  
Headphone Driver  
V–/GND  
SSM2135  
Differential Line Receiver  
Balanced Line Driver  
Audio ADC Input Buffer  
Audio DAC l-V Converter and Filter  
Pseudo-Ground Generator  
under moderate load conditions. Under severe loading, the  
SSM2135 still maintains a wide output swing with ultralow  
distortion.  
Particularly well suited for computer audio systems and  
portable digital audio units, the SSM2135 can perform  
preamplification, headphone and speaker driving, and balanced  
line driving and receiving. Additionally, the device is ideal for  
input signal conditioning in single-supply sigma-delta analog-  
to-digital converter subsystems such as the AD1878/AD1879.  
GENERAL D ESCRIP TIO N  
T he SSM2135 Dual Audio Operational Amplifier permits  
excellent performance in portable or low power audio systems,  
with an operating supply range of +4 V to +36 V or ±2 V to  
±18 V. T he unity gain stable device has very low voltage noise  
of 4.7 nV/Hz, and total harmonic distortion plus noise below  
0.01% over normal signal levels and loads. Such characteristics  
are enhanced by wide output swing and load drive capability. A  
unique output stage* permits output swing approaching the rail  
T he SSM2135 is available in 8-lead plastic DIP and SOIC  
packages, and is guaranteed for operation over the extended  
industrial temperature range of –40°C to +85°C.  
*Protected by U. S. Patent No. 5,146,181.  
FUNCTIO NAL BLO CK D IAGRAM  
V+  
OUT  
+IN  
9V  
9V  
–IN  
V–/GND  
REV. D  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(V = +5 V, 40؇C < T < +85؇C unless otherwise noted.  
S
A
SSM2135–SPECIFICATIONS  
Typical specifications apply at T = +25؇C.)  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
AUDIO PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Signal-T o-Noise Ratio  
Headroom  
en  
in  
f = 1 kHz  
f = 1 kHz  
5.2  
0.5  
121  
5.3  
nV/Hz  
pA/Hz  
dBu  
SNR  
HR  
T HD+N  
20 Hz to 20 kHz, 0 dBu = 0.775 V rms  
Clip Point = 1% THD+N, f = 1 kHz, RL = 10 kΩ  
AV = +1, VO = 1 V p-p, f = 1 kHz, 80 kHz LPF  
RL = 10 kΩ  
dBu  
T otal Harmonic Distortion  
0.003  
0.005  
%
%
RL = 32 Ω  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling T ime  
SR  
GBW  
tS  
RL = 2 k, T A = +25°C  
0.6  
0
0.9  
3.5  
5.8  
V/µs  
MHz  
µs  
to 0.1%, 2 V Step  
INPUT CHARACT ERIST ICS  
Input Voltage Range  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
VCM  
VOS  
IB  
+4.0  
2.0  
750  
50  
V
mV  
nA  
VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
0.2  
300  
IOS  
nA  
Differential Input Impedance  
Common-Mode Rejection  
Large Signal Voltage Gain  
ZIN  
CMR  
AVO  
4
112  
MΩ  
dB  
V/µV  
0 V VCM 4 V, f = dc  
0.01 V VOUT 3.9 V, RL = 600 Ω  
87  
2
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
VOL  
ISC  
RL = 100 kΩ  
RL = 600 Ω  
RL = 100 kΩ  
RL = 600 Ω  
4.1  
3.9  
V
V
mV  
mV  
mA  
Output Voltage Swing Low  
Short Circuit Current Limit  
3.5  
3.0  
±30  
POWER SUPPLY  
Supply Voltage Range  
VS  
Single Supply  
Dual Supply  
VS = +4 V to +6 V, f = dc  
VOUT = 2.0 V, No Load  
VS = +5 V  
+4  
±2  
90  
+36  
±18  
V
V
dB  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
ISY  
120  
2.8  
3.7  
6.0  
7.6  
mA  
mA  
VS = ±18 V, VOUT = 0 V, No Load  
TH ERMAL CH ARACTERISTICS  
ABSO LUTE MAXIMUM RATINGS  
T hermal Resistance1  
Supply Voltage  
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36 V  
Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 10 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range . . . . . . . . . . . –40°C to +85°C  
Junction T emperature Range (TJ) . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . +300°C  
8-Lead Plastic DIP  
θJA  
103°C/W  
θJC  
θJA  
θJC  
43°C/W  
158°C/W  
43°C/W  
8-Lead SOIC  
1θJA is specified for worst case conditions, i.e., θJA is specified for device in  
socket for P-DIP and device soldered in circuit board for SOIC package.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
ESD RATINGS  
883 (Human Body) Model . . . . . . . . . . . . . . . . . . . . . . . 1 kV  
EIAJ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 V  
Model  
SSM2135P –40°C to +85°C  
SSM2135S –40°C to +85°C  
8-Lead Plastic DIP N-8  
8-Lead SOIC SO-8  
–2–  
REV. D  
SSM2135  
10  
1
+5V  
VS = +5V  
AV = +1, ƒ = 1kHz  
VIN = 1Vp-p  
500µF  
+
RL = 10kΩ  
WITH 80kHz FILTER  
RL  
0.1  
0.01  
+2.5Vdc  
Figure 1. Test Circuit for Figures 2–4  
0.001  
10  
100  
1k  
10k  
LOAD RESISTANCE – Ω  
Figure 4. THD+N vs. Load (See Test Circuit)  
1
V
= +5V  
S
R
V
= 100kΩ  
L
NONINVERTING  
= 2.5Vp-p  
OUT  
ƒ = 1kHz  
WITH 80kHz FILTER  
0.1  
0.01  
INVERTING  
Figure 2. THD+N vs. Am plitude (See Test Circuit; AV = +1,  
VS = +5 V, f = 1 kHz, with 80 kHz Low-Pass Filter)  
0.001  
0
20  
40  
60  
10  
30  
50  
GAIN – dB  
Figure 5. THD+N vs. Gain  
1
V
= +5V  
S
A
V
= +1, ƒ = 1kHz  
= 1Vp-p  
V
IN  
R
= 10kΩ  
L
WITH 80kHz FILTER  
0.1  
0.01  
Figure 3. THD+N vs. Frequency (See Test Circuit;  
AV = +1, VIN = 1 V p-p, with 80 kHz Low-Pass Filter)  
0.001  
5
10  
15  
20  
25  
30  
SUPPLY VOLTAGE – V  
Figure 6. THD+N vs. Supply Voltage  
REV. D  
–3–  
SSM2135  
5
4
3
2
VS = +5V  
A = +25°C  
T
1
0
1
10  
100  
FREQUENCY – Hz  
1k  
Figure 7. SMPTE Interm odulation Distortion (AV = +1,  
Figure 10. Current Noise Density vs. Frequency  
VS = +5 V, f = 1 kHz, RL = 10 k)  
1s  
100  
90  
10  
0%  
Figure 8. Input Voltage Noise (20 nV/div)  
Figure 11. Frequency Response (AV = +1, VS = +5 V,  
VIN = 1 V p-p, RL = 10 k)  
30  
VS = +5V  
A = +25°C  
25  
T
100  
90  
20  
15  
10  
5
10  
0%  
500m V  
1µS  
0
1
10  
100  
FREQUENCY – Hz  
1k  
Figure 9. Voltage Noise Density vs. Frequency  
Figure 12. Square Wave Response (VS = +5 V, AV = +1,  
RL = )  
–4–  
REV. D  
SSM2135  
60  
40  
50  
40  
30  
20  
10  
0
V
T
= +5V  
VS = +5V  
S
TA = +25°C  
= +25°C  
A
20  
0
A
= +100  
= +10  
= +1  
V
–20  
–40  
–60  
–80  
–100  
–120  
A
A
V
V
105  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 13. Crosstalk vs. Frequency (RL = 10 k)  
Figure 16. Closed-Loop Gain vs. Frequency  
140  
100  
80  
V
= +5V  
V
T
= +5V  
S
S
T
= +25°C  
= +25°C  
A
A
120  
100  
80  
0
45  
90  
60  
GAIN  
40  
PHASE  
60  
θm = 57°  
135  
180  
225  
20  
0
40  
20  
0
–20  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
FREQUENCY – Hz  
Figure 14. Com m on-Mode Rejection vs. Frequency  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
140  
50  
V
= +5V  
S
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= +5V  
= +1  
R
V
= 2kΩ  
S
L
120  
100  
80  
A
T
= 100mVp–p  
V
IN  
A
= +25°C  
A
T
= +25  
= +1  
°C  
A
V
NEGATIVE  
EDGE  
60  
–PSRR  
+PSRR  
40  
POSITIVE  
EDGE  
20  
0
0
–20  
100  
200  
300  
400  
500  
0
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
LOAD CAPACITANCE – pF  
Figure 15. Power Supply Rejection vs. Frequency  
Figure 18. Sm all Signal Overshoot vs. Load Capacitance  
REV. D  
–5–  
SSM2135  
40  
35  
30  
25  
20  
15  
10  
5
50  
V
= +5V  
= +1  
VS = +5V  
S
45  
40  
35  
30  
25  
20  
15  
10  
5
A
R
TA = +25°C  
V
= 10k  
L
ƒ = 1kHz  
THD+N = 1%  
T
= +25°C  
AVCL = +100  
A
AVCL = +10  
AVCL = +1  
100k 1M  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
10  
100  
1k  
10k  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
Figure 22. Output Swing vs. Supply Voltage  
Figure 19. Output Im pedance vs. Frequency  
5.0  
2.0  
1.5  
1.0  
0.5  
0
5
VS = +5.0V  
V
= +5V  
= +25°C  
= +1  
S
T
A
4
3
2
1
0
A
V
4.5  
4.0  
3.5  
3.0  
ƒ = 1kHz  
THD+N = 1%  
+SWING  
RL= 2kΩ  
–SWING  
RL= 2kΩ  
+SWING  
RL= 600Ω  
–SWING  
RL= 600Ω  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE – Ω  
TEMPERATURE –  
°
C
Figure 20. Maxim um Output Voltage vs. Load Resistance  
Figure 23. Output Swing vs. Tem perature and Load  
6
2.0  
V
= +5V  
V
= +5V  
S
S
R
T
= 2kΩ  
+0.5V V  
+4.0V  
L
OUT  
5
4
3
= +25°C  
= +1  
A
A
V
1.5  
1.0  
0.5  
0
+SLEW RATE  
–SLEW RATE  
2
1
0
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 21. Maxim um Output Swing vs. Frequency  
Figure 24. Slew Rate vs. Tem perature  
–6–  
REV. D  
SSM2135  
5
4
3
2
1
0
20  
18  
16  
14  
12  
10  
8
V
V
= +5.0V  
= 3.9V  
S
O
R
R
= 2kΩ  
L
V
= ±18V  
S
V
= ±15V  
S
V
= +5.0V  
S
= 600Ω  
L
6
4
2
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 25. Open-Loop Gain vs. Tem perature  
Figure 27. Supply Current vs. Tem perature  
70  
65  
60  
55  
50  
5
4
3
2
1
500  
400  
V
= +5V  
S
V
= +5.0V  
S
GBW  
300  
200  
100  
0
V
= ±15V  
S
θm  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
C
100  
125  
TEMPERATURE –  
°
C
TEMPERATURE –  
°
Figure 26. Gain Bandwidth Product and Phase Margin vs.  
Tem perature  
Figure 28. Input Bias Current vs. Tem perature  
AP P LICATIO N INFO RMATIO N  
T he SSM2135 is fully protected from phase reversal for inputs  
going to the negative supply rail. However, an internal ESD  
protection diodes will turn “on” when either input is forced  
more than 0.5 V below the negative rail. Under this condition,  
input current in excess of 2 mA may cause erratic output  
behavior, in which case a current limiting resistor should be  
included in the offending input if phase integrity is required  
with excessive input voltages. A 500 or higher series input  
resistor will prevent phase inversion even with the input pulled 1  
volt below the negative supply.  
T he SSM2135 is a low voltage audio amplifier that has  
exceptionally low noise and excellent sonic quality even when  
driving loads as small as 25 . Designed for single supply use,  
the SSM2135s inputs common-mode and output swing to zero  
volts. T hus with a supply voltage at +5 V, both the input and  
output will swing from 0 V to +4 V. Because of this, signal  
dynamic range can be optimized if the amplifier is biased to a  
+2 V reference rather than at half the supply voltage.  
T he SSM2135 is unity-gain stable, even when driving into a fair  
amount of capacitive load. Driving up to 500 pF does not cause  
any instability in the amplifier. However, overshoot in the  
frequency response increases slightly.  
“Hot” plugging the input to a signal generally does not present a  
problem for the SSM2135, assuming the signal does not have  
any voltage exceeding the device’s supply voltage. If so, it is  
advisable to add a series input resistor to limit the current, as  
well as a Zener diode to clamp the input to a voltage no higher  
than the supply.  
T he SSM2135 makes an excellent output amplifier for +5 V  
only audio systems such as a multimedia workstation, a CD  
output amplifier, or an audio mixing system. T he amplifier has  
large output swing even at this supply voltage because it is  
designed to swing to the negative rail. In addition, it easily  
drives load impedances as low as 25 with low distortion.  
REV. D  
–7–  
SSM2135  
AP P LICATIO N CIRCUITS  
A Low Noise Micr ophone P r eam plifier  
A Low Noise Ster eo H eadphone D r iver Am plifier  
Figure 29 shows the SSM2135 used in a stereo headphone  
driver for multimedia applications with the AD1848, a 16-bit  
stereo codec. T he SSM2135 is equally well suited for the serial-  
bused AD1849 stereo codec. T he headphone’s impedance can  
be as low as 25 , which covers most commercially available high  
fidelity headphones. Although the amplifier can operate at up to  
±18 V supply, it is just as efficient powered by a single +5 V. At  
this voltage, the amplifier has sufficient output drive to deliver  
distortion-free sound to a low impedance headphone.  
T he SSM2135s 4.7 nV/Hz input noise in conjunction with  
low distortion makes it an ideal device for amplifying low level  
signals such as those produced by microphones. Figure 31 illus-  
trates a stereo microphone input circuit feeding a multimedia  
sound codec. As shown, the gain is set at 100 (40 dB), although  
it can be set to other gains depending on the microphone output  
levels. Figure 32 shows the preamplifier’s harmonic distortion  
performance with 1 V rms output while operating from a single  
+5 V supply.  
T he SSM2135 is biased to 2.25 V by the VREF pin of the  
AD1848 codec. T he same voltage is buffered by the 2N4124  
transistor to provide “phantom power” to the microphone. A  
typical electret condenser microphone with an impedance range  
of 100 to 1 kworks well with the circuit. T his power booster  
circuit may be omitted for dynamic microphone elements.  
10kΩ  
8.66kΩ  
40  
L
OUT  
35/36  
2
3
470µF  
+5V  
V
CC  
1
0.1µF  
34/37  
32  
1/2  
SSM2135  
10µF  
GND  
L CH  
R CH  
V
REF  
10kΩ  
0.1µF  
10µF  
8
4
0.1µF  
7
+5V  
5
6
AGND  
10µF  
AD1848  
100Ω  
L CHANNEL  
MIC IN  
2
3
8
1/2  
SSM2135  
470µF  
29  
1
10µF  
LMIC  
1/2  
SSM2135  
35/36  
+5V  
V
4
CC  
8.66kΩ  
10kΩ  
41  
2kΩ  
10kΩ  
R
OUT  
0.1µF  
34/37  
32  
+5V  
GND  
2N4124  
V
REF  
Figure 29. A Stereo Headphone Driver for Multim edia  
Sound Codec  
10µF  
R CHANNEL  
MIC IN  
0.1µF  
AD1848  
RMIC  
10kΩ  
2kΩ  
5
6
Figure 30 shows the total harmonic distortion characteristics  
versus frequency driving into a 32 load, which is a very typical  
impedance for a high quality stereo headphone. T he SSM2135  
has excellent power supply rejection, and as a result, is tolerant  
of poorly regulated supplies. However, for best sonic quality, the  
power supply should be well regulated and heavily bypassed to  
minimize supply modulation under heavy loads. A minimum of  
10 µF bypass is recommended.  
28  
7
10µF  
1/2  
SSM2135  
100Ω  
10kΩ  
Figure 31. Low Noise Microphone Pream p for Multim edia  
Sound Codec  
Figure 32. MIC Pream p THD+N Perform ance (VS = +5 V,  
AV = 40 dB, VOUT = 1 V rm s, with 80 kHz Low-Pass Filter)  
Figure 30. Headphone Driver THD+N vs. Frequency into a  
32 Load (VS = +5 V, with 80 kHz Low-Pass Filter)  
–8–  
REV. D  
SSM2135  
An 18-Bit Ster eo CD -D AC O utput Am plifier  
A Single Supply D iffer ential Line Receiver  
T he SSM2135 makes an ideal single supply stereo output  
amplifier for audio D/A converters because of its low noise and  
distortion. Figure 33 shows the implementation of an 18-bit ste-  
reo DAC channel. T he output amplifier also provides low-pass  
filtering for smoothing the oversampled audio signal. T he filter’s  
cutoff frequency is set at 22.5 kHz and it has a maximally flat  
response from dc to 20 kHz.  
Receiving a differential signal with minimum distortion is  
achieved using the circuit in Figure 35. Unlike a difference  
amplifier (a subtractor), the circuit has a true balanced input  
impedance regardless of input drive levels. T hat is, each input  
always presents a 20 kimpedance to the source. For best  
common-mode rejection performance, all resistors around the  
differential amplifier must be very well matched. Best results  
can be achieved using a 10 kprecision resistor network.  
As mentioned above, the amplifier’s outputs can drive directly  
into a stereo headphone that has impedance as low as 25 with  
no additional buffering required.  
10kΩ  
+5V  
10µF+0.1µF  
+5V SUPPLY  
20kΩ  
1/2  
SSM2135  
2
3
8
1
18-BIT  
DAC  
VBL  
VL  
LL  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1/2  
8
4
220µF  
47kΩ  
3
2
LEFT  
CHANNEL  
OUTPUT  
10kΩ  
DIFFERENTIAL  
AUDIO IN  
SSM2135  
4
1
20kΩ  
18-BIT  
SERIAL  
REG.  
7.68kΩ  
9.76kΩ  
DL  
CK  
DR  
LR  
VOL  
330pF  
20kΩ  
6
5
VREF  
10µF  
10Ω  
7
AUDIO  
OUT  
7.68kΩ  
7.68kΩ  
100pF  
AGND  
AD1868  
1/2  
SSM2135  
+5V  
18-BIT  
SERIAL  
REG.  
VREF  
2.0V  
1µF  
VOR  
VS  
7.5kΩ  
DGND  
VBR  
3
2
8
1
+5V  
100pF  
7
100Ω  
7.68kΩ  
9.76kΩ  
18-BIT  
DAC  
220µF  
47kΩ  
6
5
RIGHT  
CHANNEL  
OUTPUT  
330pF  
5kΩ  
4
0.1µF  
1/2  
1/2  
SSM2135  
SSM2135  
2.5kΩ  
Figure 33. +5 V Stereo 18-Bit DAC  
A Single Supply D iffer ential Line D r iver  
Signal distribution and routing is often required in audio  
systems, particularly portable digital audio equipment for  
Figure 35. Single Supply Balanced Differential Line  
Receiver  
A P seudo-Refer ence Voltage Gener ator  
professional applications. Figure 34 shows a single supply line  
driver circuit that has differential output. T he bottom amplifier  
provides a 2 V dc bias for the differential amplifier in order to  
maximize the output swing range. T he amplifier can output a  
maximum of 0.8 V rms signal with a +5 V supply. It is capable  
of driving into 600 line termination at a reduced output  
amplitude.  
For single supply circuits, a reference voltage source is often  
required for biasing purposes or signal offsetting purposes. T he  
circuit in Figure 36 provides a supply splitter function with low  
output impedance. T he 1 µF output capacitor serves as a charge  
reservoir to handle a sudden surge in demand by the load as  
well as providing a low ac impedance to it. T he 0.1 µF feedback  
capacitor compensates the amplifier in the presence of a heavy  
capacitive load, maintaining stability.  
1kΩ  
T he output can source or sink up to 12 mA of current with  
+5 V supply, limited only by the 100 output resistor. Reduc-  
ing the resistance will increase the output current capability.  
Alternatively, increasing the supply voltage to 12 V also  
improves the output drive to more than 25 mA.  
+5V  
10µF+0.1µF  
2
8
1
100µF  
3
AUDIO  
IN  
1/2  
4
DIFFERENTIAL  
AUDIO OUT  
SSM2135  
1kΩ  
1kΩ  
+
V
= +5V +12V  
S
R3  
2.5kΩ  
6
5
7
10kΩ  
C1  
0.1µF  
1/2  
SSM2135  
2.0V  
2.5kΩ  
R1  
5kΩ  
+5V  
8
+5V  
7.5kΩ  
2
R4  
100Ω  
0.1µF  
100Ω  
+
8
2
3
1/2  
SSM2135  
V
S
1
OUTPUT  
1
2
C2  
3
1µF  
4
1/2  
SSM2135  
1µF  
R2  
5kΩ  
4
5kΩ  
Figure 36. Pseudo-Reference Generator  
Figure 34. Single Supply Differential Line Driver  
REV. D  
–9–  
SSM2135  
A D igital Volum e Contr ol Cir cuit  
A Logar ithm ic Volum e Contr ol Cir cuit  
Working in conjunction with the AD7528/PM7528 dual 8-bit  
D/A converter, the SSM2135 makes for an efficient audio  
attenuator, as shown in Figure 37. T he circuit works off a single  
+5 V supply. T he DAC’s are biased to a 2 V reference level  
which is sufficient to keep the DACs internal R-2R ladder  
switches operating properly. T his voltage is also the optimal  
midpoint of the SSM2135’s common-mode and output swing  
range. With the circuit as shown, the maximum input and  
output swing is 1.25 V rms. T otal harmonic distortion measures  
a respectable 0.01% at 1 kHz and 0.1% at 20 kHz. T he fre-  
quency response at any attenuation level is flat to 20 kHz.  
Figure 38 shows a logarithmic version of the volume control  
function. Similar biasing is used. With an 8-bit bus, the  
AD7111 provides an 88.5 dB attenuation range. Each bit  
resolves a 0.375 dB attenuation. Refer to AD7111 data sheet for  
attenuation levels for each input code.  
+5V  
0.1µF  
+5V  
10µF+0.1µF  
3
14  
16  
FB  
OUTA  
1
2
2
3
47µF  
10  
8
47µF  
DGND  
V
15  
DD  
1
L AUDIO  
IN  
L AUDIO  
OUT  
V
IN  
1/2  
AGND  
AD7111  
SSM2135  
4
Each DAC can be controlled independently via the 8-bit parallel  
data bus. T he attenuation level is linearly controlled by the  
binary weighting of the digital data input. T otal attenuation  
ranges from 0 dB to 48 dB.  
+5V  
0.1µF  
1/2  
SSM2135  
3
14  
16  
47µF  
15  
6
5
1
2
47µF  
FB  
OUTA  
DGND  
V
DD  
R AUDIO  
IN  
7
R AUDIO  
OUT  
V
IN  
AGND  
AD7111  
2kΩ  
3
10  
10  
+5V  
AD/PM-7528  
+5V  
10µF+0.1µF  
0.1µF  
DATA IN &  
CONTROL  
+5V  
8
2
3
2
2
3
4
8
7.5kΩ  
5kΩ  
FB  
OUTA  
47µF  
100Ω  
L AUDIO  
IN  
1
REF A  
1
L AUDIO  
OUT  
2.0V  
1µF  
47µF  
4
1/2  
DAC A  
4
SSM2135  
1/2  
SSM2135  
DATA IN  
6
DACA/  
19  
DACB  
CS  
Figure 38. Single Supply Logarithm ic Volum e Control  
CONTROL  
SIGNAL  
15  
16  
1/2  
SSM2135  
WR  
6
5
20  
1
18  
47µF  
FB  
OUTB  
47µF  
R AUDIO  
IN  
REF B  
7
R AUDIO  
OUT  
DAC B  
2kΩ  
V
DGND  
DD  
+5V  
0.1µF  
17  
5
+5V  
8
0.1µF  
2
7.5kΩ  
100Ω  
1
2.0V  
3
2.0V  
+5V  
4
1µF  
5kΩ  
1/2  
SSM2135  
Figure 37. Digital Volum e Control  
–10–  
REV. D  
SSM2135  
* CMRR ST AGE & POLE AT 6 kHZ  
SP ICE MACRO MO D EL  
ECM  
CCM  
RCM1 50  
50  
50  
4
POLY(2)  
26.5E–12  
1E6  
3
60  
2
60  
0
1.6 1.6  
*
*
SSM2135 SPICE Macro-Model  
9/92, Rev. A  
JCB/ADI  
51  
51  
4
*Copyright 1993 by Analog Devices, Inc.  
*
RCM2 51  
1
*
*
*Node Assignments  
*
OUT PUT ST AGE  
R12 37 36 1E3  
R13 38 36 500  
*
*
*
*
*
Noninverting Input  
Inverting Input  
Positive Supply  
Negative Supply  
C4 37  
6
20E–12  
C5 38 39 20E–12  
Output  
M1 39 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
M2 45 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
.SUBCKT SSM2135  
3
2
7
4
6
5
39 47 DX  
*
D6 47 45 DX  
* INPUT ST AGE  
Q3 39 40 41 QPA 8  
R3  
R4  
C1  
I1  
4
4
19  
7
2
19  
20  
20  
18  
3
1.5E3  
1.5E3  
5.311E–12  
106E–6  
VB  
R14 7 41 375  
Q4 41 43 QNA 1  
R17 7 43 15  
7
40 DC 0.861  
7
IOS  
25E–09  
Q5 43 39  
Q6 46 45  
6
6
15  
4
QNA 20  
QPA 20  
EOS 12  
5
3
12  
2
1
1
2
2
3
POLY(1)  
51  
4
25E–06  
1
Q1  
Q2  
CIN  
D1  
19  
20  
3
18  
18  
PNP1  
PNP1  
R18 46  
4
Q7 36 46  
QNA 1  
3E–12  
DY  
DY  
22  
25  
28  
M3  
*
6
36 4 4 MN L=9E–6 W=2000E–6 AD=30E–9 AS=30E–9  
3
D2  
2
* NONLINEAR MODELS USED  
EN  
GN1  
GN2  
*
5
0
0
0
0
0
1
*
1E–5  
1E–5  
.MODEL DX D (IS=1E–15)  
.MODEL DY D (IS=1E–15 BV=7)  
.MODEL PNP1 PNP (BF=220)  
* VOLT AGE NOISE SOURCE WIT H FLICKER NOISE  
.MODEL DEN D(IS=1E–12 RS=1016 KF=3.278E–15 AF=1)  
.MODEL DIN D(IS=1E–12 RS=100019 KF=4.173E–15 AF=1)  
.MODEL QNA NPN(IS=1.19E–16 BF=253 VAF=193 VAR=15 RB=2.0E3  
+ IRB=7.73E–6 RBM=132.8 RE=4 RC=209 CJE=2.1E–13 VJE=0.573  
+ MJE =0.364 CJC=1.64E–13 VJC=0.534 MJC=0.5 CJS=1.37E–12  
+ VJS=0.59 MJS=0.5 T F=0.43E–9 PT F=30)  
DN1 21  
DN2 22  
VN1 21  
22  
23  
0
DEN  
DEN  
DC 2  
DC 2  
VN2  
*
0
23  
* CURRENT NOISE SOURCE WIT H FLICKER NOISE  
.MODEL QPA PNP(IS=5.21E–17 BF=131 VAF=62 VAR=15 RB=1.52E3  
+ IRB=1.67E 5–RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E–13  
+ VJE=0.745 MJE=0.33 CJC=2.37E–13 VJC=0.762 MJC=0.4  
+ CJS=7.11E–13 VJS=0.45 MJS=0.412 T F=1.0E–9 PT F=30)  
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3 TOX=8.5E–8  
+ LD=1.48E–6WD=1E–6 NSUB=1.53E16UO=650 DELTA= 10VMAX=2E5  
+ XJ=1.75E–6 KAPPA=0.8 ETA=0.066 THET A=0.01T PG=1 CJ=2.9E–4  
+ PB=0.837 MJ=0.407 CJSW=0.5E–9 MJSW=0.33)  
*
DN3 24  
DN4 25  
VN3 24  
25  
26  
0
DIN  
DIN  
DC 2  
DC 2  
VN4  
*
0
26  
* SECOND CURRENT NOISE SOURCE  
DN5 27  
DN6 28  
VN5 27  
28  
29  
0
DIN  
DIN  
DC 2  
DC 2  
.ENDS SSM-2135  
VN6  
*
0
29  
* GAIN ST AGE & DOMINANT POLE AT .2000E+01 HZ  
G2  
R7  
V3  
D4  
VB2  
*
34  
34  
35  
36  
34  
36  
36  
4
35  
4
19  
39E+06  
DC  
DX  
1.6  
20 2.65E–04  
6
* SUPPLY/2 GENERAT OR  
ISY  
R10  
R11  
C3  
*
7
7
60  
60  
4
60  
4
0.2E–3  
40E+3  
40E+3  
1E–9  
0
REV. D  
–11–  
SSM2135  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead P lastic D IP (N-8)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
1
0.070 (1.77)  
0.045 (1.15)  
0.430 (10.92)  
0.348 (8.84)  
0.325 (8.25)  
0.300 (7.62)  
0.015  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
(0.381) TYP  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
0°- 15°  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
8-Lead Narrow-Body (SO -8)  
8
1
5
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
4
0.0196 (0.50)  
0.0099 (0.25)  
0.1968 (5.00)  
0.1890 (4.80)  
× 45°  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0°- 8°  
0.0500 (1.27)  
0.0160 (0.41)  
0.0098 (0.25)  
0.0075 (0.19)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500 (1.27) BSC  
SEATING  
PLANE  
–12–  
REV. D  

相关型号:

SSM2135S-REEL

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2135S-REEL7

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2135SZ

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2135SZ

DUAL OP-AMP, 2000 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

SSM2135SZ-REEL7

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2135SZ-REEL7

DUAL OP-AMP, 2000 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

SSM2135_03

Dual Single-Supply Audio Operational Amplifier
ADI

SSM2139P

Voltage-Feedback Operational Amplifier
ETC

SSM2139S

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 30 MHz BAND WIDTH, PDSO16, SOL-16, Operational Amplifier
ADI

SSM2141

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141P

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141PZ

High Common-Mode Rejection Differential Line Receiver
ADI