SSM3515_17 [ADI]

Audio Amplifier;
SSM3515_17
型号: SSM3515_17
厂家: ADI    ADI
描述:

Audio Amplifier

文件: 总41页 (文件大小:1030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
31 W, Filterless, Class-D Digital Input  
Audio Amplifier  
Data Sheet  
SSM3515  
FEATURES  
GENERAL DESCRIPTION  
Filterless digital input, mono Class-D amplifier  
Operates from a single 4.5 V to 17 V supply  
The SSM3515 is a fully integrated, high efficiency, mono Class-D  
audio amplifier with digital inputs. The application circuit  
31.3 W output power, 17 V supply, and 4 Ω load at 1% THD + N  
107 dB A-weighted signal-to-noise ratio  
93.3% efficiency into 8 Ω load at 12 V  
requires a minimum of external components and can operate  
from a single 4.5 V to 17 V supply. It can deliver 8.4 W of output  
power into an 8 Ω load or 15.8 W into an 4 Ω load from a 12 V  
power supply, or 31.3 W into an 4 Ω load from a 17 V power  
supply, all with 1% THD + N.  
I2C control with up to 4 pin selectable slots/addresses  
Supports multiple serial data formats up to TDM16  
Digital interface supports sample rates from 8 kHz to 192 kHz  
Flexible digital and analog gain adjustment  
Flexible supply monitoring AGC function  
6.55 mA quiescent current with single 17 V PVDD supply  
Short-circuit and thermal protection, thermal warning  
20-ball, 1.8 mm × 2.2 mm, 0.4 mm pitch WLCSP  
Pop and click suppression  
The SSM3515 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. This scheme  
provides high efficiency even at low output power. It operates  
with 92% efficiency at 7 W into an 8 Ω load or 88% efficiency at  
15 W into 4 Ω from a 12 V supply.  
Spread spectrum pulse density modulation provides lower EMI  
radiated emissions compared with other Class-D architectures,  
particularly above 100 MHz.  
User selectable ultralow EMI emissions mode  
Power-on reset  
The digital input eliminates the need for an external digital-to-  
analog converter (DAC). The SSM3515 has a micropower  
shutdown mode with a typical shutdown current of 39 nA at  
the 12 V PVDD supply. The device also includes pop and click  
suppression circuitry that minimizes voltage glitches at the  
output during turn on and turn off.  
APPLICATIONS  
Notebooks  
Portable electronics  
Home audio  
The SSM3515 operates with or without an I2C control interface.  
The SSM3515 is specified over the commercial temperature range  
(−40C to +85C). It has built in thermal shutdown and output  
short-circuit protection. It is available in a halide-free, 20-ball,  
1.8 mm × 2.2 mm wafer-level chip scale package (WLCSP).  
FUNCTIONAL BLOCK DIAGRAM  
5V  
1.8V  
VREG50/AVDD VREG18/DVDD  
AGND  
REG_EN  
ADDR  
BST+  
SCL  
SDA  
2
I C  
BCLK  
FSYNC  
SDATA  
FULL  
BRIDGE  
POWER  
STAGE  
Σ-∆  
TDM  
2
DAC  
OUT+  
OUT–  
CLASS-D  
VOLUME  
I S  
MODULATOR  
INPUT  
BST–  
SSM3515  
PVDD  
PGND  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
SSM3515  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
EMI Noise.................................................................................... 24  
Output Modulation Description .............................................. 24  
Faults and Limiter Status Reporting ........................................ 25  
VBAT Sensing............................................................................. 25  
Limiter and Battery Tracking Threshold Control.................. 25  
Layout .......................................................................................... 28  
Bootstrap Capacitors.................................................................. 28  
Power Supply Decoupling ......................................................... 28  
Register Summary .......................................................................... 29  
Register Details ............................................................................... 30  
Power Control Register ............................................................. 30  
Gain and Edge Control Register............................................... 30  
DAC Control Register................................................................ 31  
DAC Volume Control Register................................................. 32  
SAI Control 1 Register............................................................... 33  
SAI Control 2 Register............................................................... 34  
Battery Voltage Output Register............................................... 35  
Limiter Control 1 Register ........................................................ 35  
Limiter Control 2 Register ........................................................ 36  
Limiter Control 3 Register ........................................................ 37  
Status Register............................................................................. 37  
Fault Control Register................................................................ 38  
Typical Application Circuit........................................................... 40  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Digital Timing Characteristics ................................................... 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 19  
Overview...................................................................................... 19  
Power Supplies ............................................................................ 19  
Power-Up Sequence ................................................................... 19  
Power-Down Operation ............................................................ 19  
REG_EN Pin Setup and Control.............................................. 19  
ADDR Pin Setup and Control .................................................. 20  
Clocking....................................................................................... 20  
Digital Audio Serial Interface ....................................................... 21  
Stereo (I2S/Left Justified) Operating Mode............................. 21  
TDM Operating Mode............................................................... 21  
I2C Control .................................................................................. 21  
Analog and Digital Gain............................................................ 24  
Pop and Click Suppression........................................................ 24  
REVISION HISTORY  
1/2017—Rev. 0 to Rev. A  
Changes to Figure 2 and Table 5..................................................... 6  
6/2015—Revision 0: Initial Version  
Rev. A| Page 2 of 41  
 
Data Sheet  
SSM3515  
SPECIFICATIONS  
PVDD = 12 V, VREG50/AVDD = 5 V (internal), VREG18/DVDD = 1.8 V (external), RL = 8 Ω + 33 μH, BCLK = 3.072 MHz and FSYNC =  
48 kHz, TA = −40°C to +85°C, unless otherwise noted. The measurements are with a 20 kHz AES17 low-pass filt er. The other load  
impedances used are 4 Ω + 15 μH and 3 Ω +10 μH. Measurements are with a 20 kHz AES17 low-pass filter, unless otherwise noted.  
The sine wave output powers above 20 W in 4 Ω cannot be continuous and may invoke the thermal limit indicator based on the power  
dissipation capability of the board.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power/Channel  
RL = 8 Ω  
POUT  
f = 1 kHz  
THD + N = 1%, PVDD = 17 V  
THD + N = 1%, PVDD = 12 V  
THD + N = 1%, PVDD = 7 V  
16  
8.4  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
%
%
%
%
%
2.8  
1.4  
19.7  
10.5  
3.5  
THD + N = 1%, PVDD = 5 V  
THD + N = 10%, PVDD = 17 V  
THD + N = 10%, PVDD = 12 V  
THD + N = 10%, PVDD = 7 V  
THD + N = 10%, PVDD = 5 V  
THD + N = 1%, PVDD = 17 V  
THD + N = 1%, PVDD = 12 V  
THD + N = 1%, PVDD = 7 V  
1.8  
RL = 4 Ω  
31.3  
15.8  
5.4  
THD + N = 1%, PVDD = 5 V  
2.8  
THD + N = 10%, PVDD = 17 V  
THD + N = 10%, PVDD = 12 V  
THD + N = 10%, PVDD = 7 V  
THD + N = 10%, PVDD = 5 V  
POUT = 9 W, RL = 8 Ω, PVDD = 12 V  
POUT = 9 W, RL = 8 Ω, PVDD = 12 V (low EMI mode)  
POUT = 30 W, RL = 4 Ω, PVDD = 17 V  
POUT = 30 W, RL = 4 Ω, PVDD = 17 V (low EMI mode)  
POUT = 5 W into RL = 8 Ω, f = 1 kHz, PVDD = 16 V  
39.3  
19.7  
6.7  
3.4  
Efficiency  
η
93.3  
93.2  
88  
87.8  
0.004  
Total Harmonic  
THD + N  
Distortion + Noise  
Load Resistance  
Load Inductance  
3
5
μH  
10  
Output FET On Resistance RON  
110  
mΩ  
A peak  
Overcurrent Protection  
Trip Point  
IOC  
5.8  
Average Switching  
Frequency  
Differential Output DC  
Offset Voltage  
fSW  
300  
1
kHz  
mV  
VOOS  
Gain = 12.6 V  
5.0  
POWER SUPPLIES  
Supply Voltage Range  
PVDD  
Guaranteed from PSRR test  
Internal  
4.5  
4.5  
17  
V
V
VREG50/AVDD  
VREG18/DVDD  
PSRRAC  
5.0  
1.80  
87  
5.5  
1.98  
73  
Internal or external  
VRIPPLE = 1 V rms at 1 kHz  
1.62  
V
dB  
AC Power Supply  
Rejection Ratio  
GAIN CONTROL  
Measured with 0 dBFS input at 1 kHz  
Output Voltage Peak  
Analog gain setting = 8.4 V/V with PVDD = 17 V  
Analog gain setting = 12.6 V/V with PVDD = 17 V  
Analog gain setting = 14.0 V/V with PVDD = 17 V  
Analog gain setting = 15.0 V/V with PVDD = 17 V  
8.4  
12.6  
14  
V peak  
V peak  
V peak  
V peak  
15  
Rev. A| Page 3 of 41  
 
SSM3515  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SHUTDOWN CONTROL1  
Tur n On Time, Volume  
Ramp Disabled  
Time from SPWDN = 0 to output switching,  
DAC_HV = 1 or DAC_MUTE = 1, tWU = 4 FSYNC  
cycles to 7 FSYNC cycles + 7.68 ms  
tWU  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
fS = 96 kHz  
8.01  
7.84  
7.76  
7.72  
7.70  
8.27  
7.98  
7.83  
7.76  
7.72  
ms  
ms  
ms  
ms  
ms  
fS = 192 kHz  
Tur n On Time, Volume  
Ramp Enabled  
Time from SPWDN = 0 to full volume output  
switching, DAC_HV = 0 and DAC_MUTE = 0,  
VOL = 0x40  
tWUR  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
Tur n Off Time, Volume  
Ramp Disabled  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 15.83 ms  
tWUR = tWU + 7.92 ms  
tWUR = tWU + 0.99 ms  
Time from SPWDN = 1 to full power-down,  
DAC_HV = 1 or DAC_MUTE = 1  
23.84  
23.67  
23.59  
15.64  
8.69  
24.10  
23.81  
23.66  
15.68  
8.71  
ms  
ms  
ms  
ms  
ms  
µs  
tSD  
100  
Tur n O ff Time, Volume  
Ramp Enabled  
Time from SPWDN = 1 to full power-down,  
DAC_HV = 0 and DAC_MUTE = 0, VOL = 0x40  
tSDR  
fS = 12 kHz  
fS = 24 kHz  
fS = 48 kHz  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 15.83 ms  
tSDR = tSD + 7.92 ms  
tSDR = tSD + 0.99 ms  
15.932  
15.932  
15.932  
8.016  
1.09  
ms  
ms  
ms  
ms  
ms  
kΩ  
fS = 96 kHz  
fS = 192 kHz  
Output Impedance  
NOISE PERFORMANCE2  
Output Voltage Noise  
ZOUT  
en  
100  
f = 20 Hz to 20 kHz, A-weighted, PVDD = 12 V  
f = 20 Hz to 20 kHz, A-weighted, PVDD = 17 V  
POUT = 8.2 W, RL = 8 Ω, A-weighted, PVDD = 12 V  
POUT = 31 W, RL = 4 Ω, A-weighted, PVDD = 17 V  
37.5  
48  
107  
107  
µV rms  
µV rms  
dB  
Signal-to-Noise Ratio  
SNR  
dB  
PVDD ADC PERFORMANCE  
PVDD Sense Full-Scale  
Range  
PVDD Sense Absolute  
Accuracy  
PVDD with full-scale ADC out  
PVDD = 15 V  
3.8  
−8  
−6  
16.2  
+8  
V
LSB  
PVDD = 5 V  
Unsigned 8-bit output with 3.8 V offset  
+6  
LSB  
Bits  
Resolution  
8
DIE TEMPERATURE  
Overtemperature  
Warning  
Overtemperature  
Protection  
117  
145  
°C  
°C  
1 Guaranteed by design.  
2 Noise performance is based on the bench data for TA = −40°C to +85°C.  
Rev. A| Page 4 of 41  
Data Sheet  
SSM3515  
Software master power-down indicates that the clocks are turned off. Auto power-down indicates that there is no dither or zero input  
signal with clocks on; the device enters soft power-down after2048 cyclesof zero input values. Quiescent indicates triangular dither with  
zero input signal. All specifications are typical, with a 48 kHz sample rate, unless otherwise noted.  
Table 2. Power Supply Current Consumption1  
No Load  
IPVDD  
12 V 17 V 1.8 V 5 V  
4 Ω + 15 µH  
IPVDD  
8 Ω + 33 µH  
IPVDD  
Edge Rate  
Control  
Mode  
Test Conditions  
REG_EN Pin PVDD  
IR EG18  
IR EG18  
IR EG18  
5 V  
12 V 17 V 1.8 V 5 V  
12 V 17 V 1.8 V Unit  
Normal  
Low  
Software master  
power-down  
0.01  
0.03  
0.03  
7
0.01  
0.03  
0.03  
7
0.01  
0.03  
0.03  
7
μA  
Auto power-down  
Quiescent  
0.01  
4.10  
0.01  
0.03  
5.00  
0.03  
0.03  
5.60  
0.03  
54  
0.01  
4.10  
0.01  
0.03  
5.12  
0.03  
0.03  
5.90  
0.03  
54  
0.01  
4.10  
0.01  
0.03  
5.10  
0.03  
0.03  
5.80  
0.03  
54  
μA  
mA  
μA  
0.48  
N/A  
0.48  
N/A  
0.48  
N/A  
PVDD  
Low  
Software master  
power-down  
Auto power-down  
310  
4.64  
0.01  
310  
5.60  
0.03  
316  
6.26  
0.03  
N/A  
N/A  
7
310  
4.74  
0.01  
310  
5.85  
0.03  
316  
6.55  
0.03  
N/A  
N/A  
7
310  
4.74  
0.01  
310  
5.85  
0.03  
316  
6.55  
0.03  
N/A  
N/A  
7
μA  
mA  
μA  
Quiescent  
Low EMI  
Software master  
power-down  
Auto power-down  
Quiescent  
0.01  
4.00  
0.03  
4.95  
0.03  
5.54  
54  
0.48  
0.01  
4.70  
0.03  
3.99  
0.03  
5.59  
54  
0.48  
0.01  
4.02  
0.03  
4.98  
0.03  
5.63  
54  
0.48  
μA  
mA  
PVDD  
Software master  
power-down  
0.01  
0.03  
0.03  
N/A  
0.01  
0.03  
0.03  
N/A  
0.01  
0.03  
0.03  
N/A  
μA  
Auto power-down  
Quiescent  
310  
310  
316  
N/A  
N/A  
310  
310  
316  
N/A  
N/A  
310  
310  
316  
N/A  
N/A  
μA  
4.60  
5.60  
6.17  
4.60  
5.65  
6.35  
4.60  
5.60  
6.40  
mA  
1 N/A means not applicable.  
Table 3. Power-Down Current  
Parameter  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
POWER-DOWN CURRENT  
VREG18/DVDD = 1.8 Vexternal, softwar e master power-down, no BCLK/FSYNC  
IPVDD  
PVDD = 5 V  
PVDD = 12 V  
PVDD = 17 V  
VREG18/DVDD = 1.8 V external  
27  
30  
30  
38  
39  
39  
7
95  
nA  
100 nA  
152 nA  
27  
IDVDD  
μA  
Table 4. Digital Input/Output  
Parameter  
Min  
Typ  
Max  
Unit  
Test Comments/Comments  
INPUT VOLTAGE1  
High (VIH)  
BCLK, FSYNC, SCL, SDA  
SDATA, ADDR  
1.13  
5.5  
1.98  
V
V
0.7 × VREG18/DVDD  
Low (VIL)  
BCLK, FSYNC, SDATA, SCL, SDA  
ADDR  
−0.3  
−0.3  
+0.54  
+1.98  
V
V
INPUT LEAKAGE  
High (IIH)  
Low (IIL)  
INPUT CAPACITANCE  
OUTPUT VOLTAGE (SDATA)  
1
1
5
µA  
µA  
pF  
High (VOH  
Low (VOL)  
)
1.17  
V
V
0.45  
OUTPUT DRIVE STRENGTH1  
SDA  
SDATA  
BCLK Frequency (BCLK)  
Sample Rate (FSYNC)  
3
2
5
24  
24.576  
192  
mA  
mA  
MHz  
kHz  
2.048  
8
1 The pull-up resistor for SCL and SDA must be scaled according to the external pull-up voltage in the system. The typical value for a pull-up resistor for 1.8 V is 2.2 kΩ.  
Rev. A| Page 5 of 41  
SSM3515  
Data Sheet  
DIGITAL TIMING CHARACTERISTICS  
All timing specifications are given for the default setting (I2S mode) of the serial input port.  
Table 5. I2C Port Timing  
Limit  
Parameter  
I2C PORT  
fSCL  
tSCLH  
tSCLL  
tSCS  
Min  
Max  
Unit  
Description  
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
SCL frequency  
SCL high  
SCL low  
Setup time; relevant for repeated start condition  
Hold time; after this period, the first clock is generated  
Data setup time  
SCL rise time  
SCL fall time  
0.6  
1.3  
0.6  
0.6  
100  
tSCH  
tDS  
tSCR  
tSCF  
300  
300  
300  
300  
tR  
tF  
tBFT  
tHOLD  
SDA rise time, not shown in Figure 2  
SDA fall time, not shown in Figure 2  
Bus-free time (time between stop and start)  
SCL falling to SDA rising  
SCL falling to SDA falling  
0.6  
0
140  
Table 6. Digital Input Timing  
Limit  
TMAX  
Parameter  
TMIN  
Unit  
Description  
SERIAL PORT  
tBIL  
tBIH  
tSIS  
tSIH  
tLIS  
tLIH  
tBP  
15  
15  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK low pulse width  
BCLK high pulse width  
SDATA se t up, time to BCLK rising  
SDATA ho l d, time from BCLK rising  
FSYNC setup time to BCLK rising  
FSYNC hold time to BCLK rising  
Minimum BCLK period  
6
10  
5
40  
Digital Timing Diagrams  
tDS  
tSCH  
tSCH  
SDA  
tSCLH  
tSCS  
tSCR  
SCL  
tSCLL  
tSCF  
tHOLD  
tBFT  
START  
CONDITION  
STOP  
CONDITION  
Figure 2. I2C Port Timing  
Rev. A| Page 6 of 41  
 
 
Data Sheet  
SSM3515  
tBIH  
tBP  
BCLK  
tBIL  
tLIS  
tLIH  
FSYNC  
tSIS  
SDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
tSIH  
MSB – 1  
tSIS  
MSB  
tSIH  
SDATA  
2
I C-JUSTIFIED  
MODE  
tSIS  
tSIS  
LSB  
SDATA  
RIGHT-JUSTIFIED  
MODE  
MSB  
tSIH  
tSIH  
Figure 3. Serial Input Port Timing  
PVDD  
tWU  
PVDD/2  
OUTPUT  
0V  
2
I C POWER-UP COMMAND  
Figure 4. Turn On Hard Volume  
tSD  
PVDD  
OUTPUT  
0V  
2
I C POWER-DOWN COMMAND  
Figure 5. Turn Off Hard Volume  
Rev. A| Page 7 of 41  
SSM3515  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at TA = 25°C, unless otherwise  
noted.  
THERMAL RESISTANCE  
θJA (junction to air) is specified for worst case conditions, that is,  
a device soldered in a circuit board for surface-mount packages. θJA  
and θJB are determined according to JESD51-9 on a 4-layer  
printed circuit board (PCB) with natural convection cooling.  
Table 7.  
Parameter  
Rating  
PVDD Supply Voltage  
−0.3 V to +18 V  
−0.3 V to +1.98 V  
−0.3 V to +5.5 V  
0.3 V  
−0.3 V to +1.98 V  
−0.3 V to +5.5 V  
−0.3 V to +18 V  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
VREG18/DVDD Supply Voltage  
VREG50/AVDD Supply Voltage  
PGND and AGND Differential  
ADDR, SDATA Input Voltage  
SCL, SDA, BCLK, FSYNC Input Voltage  
REG_EN Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Table 8. Thermal Resistance  
Package Type  
θJA  
Unit  
20-Ball, 1.8 mm × 2.2 mm WLCSP  
55.5  
°C/W  
ESD CAUTION  
Lead Temperature Range  
(Soldering, 60 sec)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A| Page 8 of 41  
 
 
 
Data Sheet  
SSM3515  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
VREG50/  
AVDD  
A
AGND  
PGND  
BST–  
SDA  
SCL  
ADDR  
REG_EN  
FSYNC  
BCLK  
OUT–  
B
OUT–  
PVDD  
OUT+  
PGND  
C
D
PVDD  
OUT+  
BST+  
VREG18/  
DVDD  
E
SDATA  
Figure 6. Pin Configuration (Top Side View)  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic  
Type1 Description  
VREG50/AVDD AOUT 5 V Regulator Output.  
A1  
A2  
A3  
AGND  
PGND  
PWR  
PWR  
Analog Ground. It is recommended to connect the AGND pin to a single ground plane on the board.  
Power Stage Ground. The PGND pin is shorted internally. It is recommended to connect PGND to a  
single ground plane on the board.  
A4  
B1  
B2  
B3  
B4  
C1  
C2  
C3  
C4  
D1  
D2  
D3  
D4  
E1  
E2  
E3  
BST−  
SDA  
ADDR  
OUT−  
OUT−  
SCL  
REG_EN  
PVDD  
PVDD  
AIN  
DIO  
DIN  
Bootstrap Capacitor for OUT−.  
I2C Serial Data.  
I2C Address Selection.  
AOUT Power Stage Inverting Output.  
AOUT Power Stage Inverting Output.  
DIN  
AIN  
PWR  
PWR  
I2C Clock.  
Regulator Enable Tie to PVDD to Enable Regulators.  
Power Stage Supply.  
Power Stage Supply.  
1.8 V Regulator Output/DVDD Input.  
TDM Frame Sync Input.  
VREG18/DVDD PWR  
FSYNC  
OUT+  
OUT+  
SDATA  
BCLK  
DIN  
AOUT Power Stage Noninverting Output.  
AOUT Power Stage Noninverting Output.  
DIO  
DIN  
PWR  
Serial Data Input to DAC.  
TDM Bit Clock Input.  
Power Stage Ground. The PGND pin is shorted internally. It is recommended to connect PGND to a  
single ground plane on the board.  
PGND  
E4  
BST+  
AIN  
Bootstrap Capacitor for OUT+.  
1 AOUT is analog output; PWR is power supply or ground pin; AIN is analog input; DIO is digital input/output; DIN is digital input.  
Rev. A| Page 9 of 41  
 
SSM3515  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
10  
20  
10  
0
0
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Fast Fourier Transform (FFT), 60 dBFS Input, Analog Gain = 8.4,  
RL = 4 Ω  
Figure 10. FFT, 60 dBFS Input, Analog Gain = 15, RL = 4 Ω  
20  
10  
0
20  
10  
0
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. FFT, 60 dBFS Input, Analog Gain = 12.6, RL = 4 Ω  
Figure 11. FFT, No Signal, Analog Gain = 8.4, RL = 4 Ω  
20  
10  
0
20  
10  
0
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. FFT, 60 dBFS Analog Gain = 14, RL = 4 Ω  
Figure 12. FFT, No Signal, Analog Gain =12.6, RL = 4 Ω  
Rev. A| Page 10 of 41  
 
Data Sheet  
SSM3515  
20  
10  
0
1
100mW  
1W  
5W  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.1  
0.01  
0.001  
–180  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. FFT, No Signal, Analog Gain = 14, RL = 4 Ω  
Figure 16. THD + N vs. Frequency, RL = 4 Ω, PVDD = 12 V  
1
20  
10  
0
100mW  
1W  
10W  
–10  
–20  
–30  
–40  
–50  
0.1  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
0.01  
0.001  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. FFT, No Signal, Analog Gain = 15, RL = 4 Ω  
Figure 17. THD + N vs. Frequency, RL = 4 Ω, PVDD = 17 V  
1
1
100mW  
1W  
100mW  
1W  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. THD + N vs. Frequency into RL = 4 Ω, PVDD = 4.5 V  
Figure 18. THD + N vs. Frequency, RL = 8 Ω, PVDD = 4.5 V  
Rev. A| Page 11 of 41  
SSM3515  
Data Sheet  
1
10  
1
100mW  
1W  
5W  
4.5V  
12V  
17V  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
20  
100  
1k  
10k  
10µ  
100µ  
1m  
10m  
100m  
1
10  
FREQUENCY (Hz)  
POWER (W)  
Figure 19. THD + N vs. Frequency, RL = 8 Ω, PVDD = 12 V  
Figure 22. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 12.6  
10  
1
4.5V  
14V  
17V  
100mW  
1W  
5W  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
20  
100  
1k  
10k  
POWER (W)  
FREQUENCY (Hz)  
Figure 20. THD + N vs. Frequency, RL = 8 Ω, PVDD = 17 V  
Figure 23. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 14  
10  
1
10  
8V  
4.5V  
17V  
4.5V  
15V  
17V  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
10µ  
100µ  
1m  
10m  
100m  
1
10  
POWER (W)  
POWER (W)  
Figure 21. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 8.4  
Figure 24. THD + N vs. Output Power, RL = 4 Ω, Analog Gain = 15  
Rev. A| Page 12 of 41  
Data Sheet  
SSM3515  
10  
10  
1
4.5V  
14V  
17V  
4.5V  
15V  
17V  
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
10µ  
100µ  
1m  
10m  
100m  
1
10  
POWER (W)  
POWER (W)  
Figure 25. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 8.4  
Figure 28. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 15  
14  
10  
4.5V  
12V  
14V  
P
P
10%, 8V GAIN  
1%, 8V GAIN  
OUT  
OUT  
12  
10  
8
1
0.1  
6
4
0.01  
0.001  
2
0
10µ  
100µ  
1m  
10m  
100m  
1
10  
5
6
7
8
9
10  
11  
12  
13  
14  
POWER (W)  
PV (V)  
DD  
Figure 26. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 12.6  
Figure 29. Output Power vs. PVDD Supply Voltage (PVDD), RL = 4 Ω,  
Analog Gain = 8.4  
10  
30  
4.5V  
14V  
16V  
P
P
10%  
1%  
OUT  
OUT  
25  
20  
15  
10  
5
1
0.1  
0.01  
0.001  
10µ  
100µ  
1m  
10m  
100m  
1
10  
0
5
6
7
8
9
10 11 12 13 14 15 16 17  
PV (V)  
POWER (W)  
DD  
Figure 30. Output Power vs. PVDD, RL = 4 Ω, Analog Gain = 12.6  
Figure 27. THD + N vs. Output Power, RL = 8 Ω, Analog Gain = 14  
Rev. A| Page 13 of 41  
SSM3515  
Data Sheet  
35  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
P
P
10%  
1%  
OUT  
OUT  
30  
25  
20  
15  
10  
5
5V FB NORMAL  
5V FB LOW  
0
5
6
7
8
9
10 11 12 13 14 15 16 17  
PV (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(W)  
OUT  
3.0  
3.5  
4.0  
4.5  
5.0  
P
DD  
Figure 31. Output Power vs. PVDD, RL = 4 Ω, Analog Gain = 14  
Figure 34. Efficiency vs. POUT, RL = 4 Ω, FB and 220 pF Capacitor, PVDD = 5 V,  
Analog Gain = 8.4  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
P
P
10%  
1%  
OUT  
OUT  
25  
20  
15  
10  
5
10  
12V NO FB NORMAL  
12V NO FB LOW  
0
0
5
6
7
8
9
10 11 12 13 14 15 16 17  
0
5
10  
15  
20  
25  
PV (V)  
DD  
P
(W)  
OUT  
Figure 32. Output Power vs. PVDD, RL = 4 Ω, Analog Gain = 15  
Figure 35. Efficiency vs. POUT, RL = 4 Ω, No FB and 220 pF, PVDD = 12 V,  
Analog Gain = 12.6  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
5V NO FB NORMAL  
5V NO FB LOW  
12V FB NORMAL  
12V FB LOW  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
(W)  
3.0  
3.5  
4.0  
4.5  
5.0  
0
5
10  
15  
20  
25  
P
P
(W)  
OUT  
OUT  
Figure 33. Efficiency vs. Output Power (POUT), RL = 4 Ω, No Ferrite Bead (FB)  
and 220 pF Capacitor, PVDD = 5 V, Analog Gain = 8.4  
Figure 36. Efficiency vs. POUT, RL = 4 Ω, FB and 220 pF Capacitor, PVDD = 12 V,  
Analog Gain = 12.6  
Rev. A| Page 14 of 41  
Data Sheet  
SSM3515  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
4Ω + 15µH FB 220pF LOW MODE  
4Ω + 15µH FB 220pF NORMAL MODE  
17V FB NORMAL  
17V FB LOW  
5
7
9
11  
13  
15  
17  
19  
0
5
10  
15  
20  
25  
30  
35  
40  
P
(W)  
PV (V)  
OUT  
DD  
Figure 37. Efficiency vs. POUT, RL = 4 Ω, FB and 220 pF Capacitor, PVDD = 17 V,  
Analog Gain = 14  
Figure 40. Quiescent Current, RL = 4 Ω, FB and 220 pF Capacitor,  
Analog Gain = 12  
100  
90  
80  
70  
60  
50  
40  
30  
20  
7
P
P
10%  
1%  
OUT  
OUT  
6
5
4
3
2
1
0
10  
17V NO FB NORMAL  
17V NO FB LOW  
0
5
6
7
8
9
10  
11  
12  
13  
14  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
P
(W)  
PV (V)  
OUT  
DD  
Figure 38. Efficiency vs . PO UT , RL = 4 Ω, No FB and 220 pF Capacitor, PVDD = 17 V,  
Analog Gain = 14  
Figure 41. Output Power vs. PVDD, RL = 8 Ω, Analog Gain = 8  
14  
12  
10  
8
0.007  
P
P
10%  
1%  
NO LOAD NO FB NORMAL MODE  
NO LOAD NO FB LOW MODE  
OUT  
OUT  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
6
4
2
0
5.0  
7.5  
10  
12.5  
5
7
9
11  
13  
15  
17  
PV (V)  
DD  
PV (V)  
DD  
Figure 39. Quiescent Current, RL = 4 Ω, No FB and 220 pF Capacitor,  
Analog Gain = 12  
Figure 42. Output Power vs. PVDD, RL = 8 Ω, Analog Gain = 12  
Rev. A| Page 15 of 41  
SSM3515  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
P
P
10%  
1%  
OUT  
OUT  
16  
14  
12  
10  
8
6
4
2
NORMAL NO FB/220pF  
LOW NO FB/220pF  
0
0
2
4
6
8
10  
12  
5
10  
PV (V)  
15  
P
(W)  
OUT  
DD  
Figure 43. Output Power vs. PVDD, RL = 8 Ω, Analog Gain = 14  
Figure 46. Efficiency vs. POUT, RL = 8 Ω, No FB and 220 pF Capacitor,  
PVDD = 12 V, Analog Gain = 12.6  
20  
100  
17V NO FB NORMAL  
17V NO FB LOW  
P
P
10%  
1%  
OUT  
OUT  
80  
15  
10  
5
60  
40  
20  
0
0
5
10  
PV (V)  
15  
0
5
10  
15  
20  
P
(W)  
DD  
OUT  
Figure 44. Output Power vs. PVDD, RL = 8 Ω, Analog Gain = 15  
Figure 47. Efficiency vs. POUT, RL = 8 Ω, No FB and 220 pF Capacitor,  
PVDD = 17 V, Analog Gain = 14  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
5V NO FB NORMAL  
5V NO FB LOW  
80  
60  
40  
20  
0
10  
5V NO FB NORMAL  
5V NO FB LOW  
0
0
1
2
3
0
1
2
3
P
(W)  
P
(W)  
OUT  
OUT  
Figure 45. Efficiency vs. POUT, RL = 8 Ω, No FB and 220 pF Capacitor,  
PVDD = 5 V, Analog Gain = 8.4  
Figure 48. Efficiency vs. POUT, RL = 8 Ω, FB and 220 pF Capacitor,  
PVDD = 5 V, Analog Gain = 8.4  
Rev. A| Page 16 of 41  
Data Sheet  
SSM3515  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
12V NO FB NORMAL  
12V NO FB LOW  
NORMAL FB/220pF  
LOW FB/220pF  
0
2
4
6
8
10  
12  
14  
0
10  
20  
30  
P
(W)  
P
(W)  
OUT  
OUT  
Figure 49. Efficiency vs. POUT, RL = 8 Ω, FB and 220 pF Capacitor,  
PVDD = 12 V, Analog Gain = 12.6  
Figure 52. Efficiency vs. POUT, RL = 3 Ω, No FB and 220 pF Capacitor,  
PVDD = 12 V, Analog Gain = 12.6  
100  
100  
17V FB LOW  
17V FB NORMAL  
17V NO FB NORMAL  
17V NO FB LOW  
80  
80  
60  
40  
20  
0
60  
40  
20  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
P
(W)  
P
(W)  
OUT  
OUT  
Figure 50. Efficiency vs. POUT, RL = 8 Ω, FB and 220 pF Capacitor, PVDD = 17 V,  
Analog Gain = 14  
Figure 53. Efficiency vs. POUT, RL = 3 Ω, No FB and 220 pF Capacitor,  
PVDD = 17 V, Analog Gain = 14  
100  
80  
60  
40  
20  
100  
5V FB NORMAL  
5V FB LOW  
80  
60  
40  
20  
0
5V NO FB NORMAL  
5V NO FB LOW  
0
0
2
4
6
0
2
4
6
P
(W)  
P
(W)  
OUT  
OUT  
Figure 51. Efficiency vs. POUT, RL = 3 Ω, No FB and 220 pF Capacitor,  
PVDD = 5 V, Analog Gain = 8.4  
Figure 54. Efficiency vs. POUT, RL = 3 Ω, FB and 220 pF Capacitor, PVDD = 5 V,  
Analog Gain = 8.4  
Rev. A| Page 17 of 41  
SSM3515  
Data Sheet  
100  
40  
35  
30  
25  
20  
15  
10  
5
12V FB NORMAL  
12V FB LOW  
P
P
10%  
1%  
OUT  
OUT  
80  
60  
40  
20  
0
0
0
10  
20  
30  
8
10  
12  
14  
P
(W)  
PV (V)  
DD  
OUT  
Figure 55. Efficiency vs. POUT, RL = 3 Ω, FB and 220 pF Capacitor, PVDD = 12 V,  
Analog Gain = 12.6  
Figure 58. Output Power vs. PVDD, RL = 3 Ω, Analog Gain = 12.6  
100  
50  
17V FB LOW  
17V FB NORMAL  
P
P
10%  
1%  
OUT  
OUT  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
P
(W)  
PV (V)  
OUT  
DD  
Figure 56. Efficiency vs. POUT,, RL = 3 Ω, FB and 220 pF Capacitor, PVDD = 17 V,  
Analog Gain = 14  
Figure 59. Output Power vs. PVDD, RL = 3 Ω, Analog Gain = 14  
18  
50  
P
P
10%  
1%  
P
P
10%  
1%  
OUT  
OUT  
OUT  
OUT  
16  
14  
12  
10  
8
40  
30  
20  
10  
0
6
4
2
0
5
6
7
8
9
10  
11  
12  
13  
14  
5
10  
15  
PV (V)  
PV (V)  
DD  
DD  
Figure 57. Output Power vs. PVDD, RL = 3 Ω, Analog Gain = 8.4  
Figure 60. Output Power vs. PVDD, RL = 3 Ω, Analog Gain = 15  
Rev. A| Page 18 of 41  
Data Sheet  
SSM3515  
THEORY OF OPERATION  
OVERVIEW  
POWER-UP SEQUENCE  
The SSM3515Class-D audio amplifier features a filterless  
modulation scheme that greatlyreduces the external component  
count, conserving board space and reducing system cost. The  
SSM3515 does not require an output filter; it relies on the  
inherent inductance of the speaker coil and the natural filtering  
of the speaker and human ear to recover the audio component  
of the square wave output.  
If the REG_EN pin is tied to PVDD, the power-up sequence is  
performed internally. As the PVDD voltage ramps up, the  
VREG18/DVDD voltage (generated internally) also ramps up.  
The typical wait time before the I2C commands can be sent to  
the device depends on the PVDD supply ramp-up time.  
If the REG_EN pin is tied low, ensure that 1.8 V is supplied  
externally and that PVDD is greater than 4.5 V before sending  
I2C commands to enable the device.  
Most Class-D amplifiers use some variation of pulse-width  
modulation (PWM), but the SSM3515 uses Σ-Δ modulation to  
determine the switching pattern of the output devices, resulting  
in a number of importantbenefits.Σ-Δ modulators do notproduce  
a sharp peak with many harmonics in the AM broadcast band, as  
pulse-width modulators often do. Σ-Δ modulation reduces the  
amplitude of spectral components at high frequencies, reducing  
EMI emission that may otherwise be radiated by speakers and  
long cable traces. Due to the inherent spread spectrum nature of  
Σ-Δ modulation,the need for oscillator synchronization is elimi-  
nated for designs incorporatingmultiple SSM3515 amplifiers.  
POWER-DOWN OPERATION  
The SSM3515offers several power down options via I2C.  
Register 0x00 provides multiple options for setting the various  
power-down modes.  
Set the SPWDN bit to 1 to fully power down the device. Only  
the I2C, 1.8 V regulator is kept alive.  
The SSM3515monitors both the BCLK and FSYNC pins for clock  
presence when in 2-wire mode. When no BCLK or FSYNCsignals  
are present, the device automatically powers down all internal  
circuitry to its lowest power state. When a BCLK or FSYNC  
signal returns, the device automatically powers up following  
its usual power up sequence.  
The SSM3515also integrates overcurrent and temperature  
protection and a thermal warning with optional programmable  
gain reduction.  
POWER SUPPLIES  
When enabled, the APWDN_EN bit (auto power down),  
activatesa low power state as soon as 2048 consecutive zero  
input samples are received. Only the I2C and digital audio input  
blocks are kept active.  
The power supply pins on the SSM3515 are PVDD, VREG50/  
AVDD, and VREG18/DVDD.  
PVDD, the battery supply, is used for the output stage and also  
supplies power to the 5 V reg ulat or. In addition, it can be used  
to supply power to the 1.8 V reg ulat or. This pin must be  
decoupled to ground using a 100 nF capacitor in parallel with a  
1 µF MLCC capacitor to ground as close as possible to the  
respective pins. In addition, a bulk electrolytic capacitor maybe  
required depending onthe output power to supplythe current at  
low frequency output. Typically, 220µF and 25 V is  
REG_EN PIN SETUP AND CONTROL  
The REG_EN (regulator enable) pin enables or disables the  
internal 1.8 V reg ulat or.  
Table 10. Regulator Enable Pin Function  
REG_EN  
Ground  
PVDD  
1.8 V Regulator  
Comment  
Disabled  
External 1.8 V  
Internal 1.8 V  
Enabled  
recommended. This must be sized according to the power  
supply regulation in the system.  
The status of the REG_EN pin determines if the 1.8 V supply is  
generated internally or if it must be provided externally. If the  
REG_EN pin is tied to PVDD, the internal 1.8 V regulator is  
enabled. If the REG_EN pin is tied to ground, a 1.8 V supply  
must be supplied externally to the VREG18/DVDD pin for the  
device to operate. For the device to respond to I2C commands,  
the 1.8 V supply must be stable.  
VREG50/AVDD (5 V) is the analog supply used for the input  
stage, modulator, power stage driver, and other blocks. It uses  
the VREG50/AVDD pin. It is generated internally by the  
integrated 5 V linear regulat or. This pin must be decoupled to  
ground using the 100 nF and 10 µF capacitor.  
VREG18/DVDD (1.8 V) is the supply for the digital circuitry. It  
uses the VREG18/DVDD pin. It can be generated internally  
using an integrated 1.8 V linear regulator. Alternatively, an  
external 1.8 V supply can be used to save the power dissipation.  
The VREG18/DVDD pin must be decoupled to ground using  
100 nF and 10 µF MLCC capacitors close to the pin.  
Rev. A| Page 19 of 41  
 
 
 
 
 
 
SSM3515  
Data Sheet  
signal must have a minimum frequencyof 2.048 MHz. The BCLK  
signal is used for internal clocking of the device. The BCLK rate  
is detected automatically, but the sampling frequency must be  
known to the device. The supported BCLK rates at 32 kHz to 48  
kHz are 50, 64, 100, 128, 192, 200, 256, 384, 400, and 512 times  
the sample rate.  
ADDR PIN SETUP AND CONTROL  
The ADDR pin setsthe device I2C address. See Table 11 for details.  
CLOCKING  
In 3-wire mode (BCLK, FSYNC, SDATA), a BCLK signal must  
be provided to the SSM3515 for correct operation. The BCLK  
Table 11. Pin Setup List  
ADDR Pin  
SCL Pin  
SDA Pin  
Control Mode  
7-Bit I2C Address  
TDM Slot  
Connected to Ground Using a 47 kΩ Resistor SCL  
SDA  
SDA  
SDA  
SDA  
I2C  
I2C  
I2C  
I2C  
0x14  
0x15  
0x16  
0x17  
1
2
3
4
Open (No Connection)  
SCL  
SCL  
SCL  
Connected to 1.8 V Using a 47 kΩ Resistor  
Connected to 1.8 V  
Rev. A| Page 20 of 41  
 
 
 
Data Sheet  
SSM3515  
DIGITAL AUDIO SERIAL INTERFACE  
The SSM3515includes a standard serial audio interface that is  
slave only. The interface is capable of receiving I2S, left justified,  
PCM, or TDM formatted data.  
I2C CONTROL  
The SSM3515supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. Two pins,  
serial data (SDA) and serial clock (SCL), carry information  
between the SSM3515 and the system I2C master controller. The  
SSM3515 is always a slave on the bus, meaning it cannot initiate  
a data transfer. Each slavedeviceis recognized bya unique address.  
Using the ADDR pin provides the four device addresses, which are  
listed in Table 11. The address byte format is shown in Table 13.  
The address resides in the first seven bits of the I2C write. The  
LSB of this byte sets either a read or write operation.Logic Level 1  
corresponds to a read operation, and Logic Level 0 corresponds  
to a write operation.  
The serial interface has three main operating modes, listed in  
Table 12.  
Table 12. Operating Modes  
Mode  
Format  
Comments  
Register control  
using I2C port  
2-Channel (Stereo)  
I2S/left justified  
Register control  
using I2C port  
Multichannel TDM  
I2S/left justified  
Stereo modes, typically I2S or left justified, are used when there  
is one or two devices on the interface bus. Standard multi-  
channel TDM modes are more flexible and offer the ability to  
have multiple devices on the bus. In both of these cases, the  
register control uses an I2C port.  
Connect 2.2 kΩ pull-up resistors on the lines connected to the  
SDA and SCL pins. The voltage on these signal lines must not  
be more than 5 V.  
STEREO (I2S/LEFT JUSTIFIED)OPERATING MODE  
Addressing  
Initially, each deviceon the I2C bus is in an idle state, monitoring  
the SDA and SCL lines for a start condition and the proper  
address. The I2C master initiates a data transfer by establishing a  
start condition, defined by a high to low transition on SDA while  
SCL remains high. This indicates that an address or data stream  
follows. All devices on the bus respond to the start condition  
Stereo modes use both edges of FSYNC to determine placement  
of data. Stereo mode is enabled when SAI_MODE = 0 and the  
data format is determined by the SDATA_FMT register setting.  
The I2S or left justified interface formats accept any number of  
BCLK cycles per FSYNC cycle. Sample rates from 8 kHz to  
192 kHz are accepted. The maximum BCLK rate is 24.576 MHz.  
and shift the next eight bits(the 7-bit address plus the R/ bit)  
W
TDM OPERATING MODE  
MSB first. The device that recognizes the transmitted address  
responds by pulling the data line low during the ninthclock  
pulse. This ninth bit is an acknowledge bit. All other devices  
withdraw from the bus at this point and return to the idle con-  
dition. The device address for the SSM3515is determined by the  
state of the ADDR pin. See Table 11 for four available addresses.  
The TDM operating mode allows multiple chips to use a single  
serial interface bus for audio data.  
The FSYNC signal operates at the desired sample rate. A rising  
edge of the FSYNC signal indicates the start of a new frame. For  
proper operation, this signal must be one BCLK cycle wide,  
transitioning on a falling BCLK edge. The MSB of data must be  
present on the SDATA one BCLK cycle later. The SDATA signal  
latches on the rising edge of BCLK.  
The R/ bit determines the direction of the data. A Logic 0 on  
W
the LSB of the first byte means the master writes information to  
the peripheral, whereas a Logic 1 means the master reads  
information from the peripheral after writing the subaddress  
and repeating the start address. A data transfer occurs until a  
stop condition is encountered. A stop condition occurs when  
SDA transitions from low to high while SCL is held high. The  
timing for the I2C port is shown in Figure 61.  
Each chip on the TDM bus can occupy 16, 24, 32,48,or64 BCLK  
cycles. This is set with the TDM_BCLKS bits and all devices on  
the bus must have the same setting.Up to 16 SSM3515 devices can  
be used on a single TDM bus, but only 4 unique I2C device  
addresses are available. The SSM3515automatically determines  
how many possible devices can be placed on the bus from the  
BCLK rate. There is no limit to the total numberof BCLK cycles  
per FSYNC pulse.  
Stop and start conditionscan be detected at anystage during the  
data transfer. Ifthese conditions are asserted out ofsequence with  
normal read and write operations, the SSM3515 immediately  
jumps to the idle condition. During a given SCL high period,  
the user must issue only one start condition, one stop condition, or  
a single stop condition followed by a single start condition. If  
the user issues an invalid subaddress, the SSM3515does not  
issue an acknowledge and returns to the idle condition. If the  
user exceeds the highest subaddress while in auto-incrementmode,  
one of two actions is taken.  
Which chip slot each SSM3515uses is determined by theADDR  
pin settings(see Table 11 for details), or by the TDM_SLOT bits  
in Register 0x05.  
The input data width to the DAC can be either 16-bit or 24-bit.  
Rev. A| Page 21 of 41  
 
 
 
 
 
SSM3515  
Data Sheet  
In read mode, the SSM3515outputs the highest subaddress register  
contents until the master device issues a no acknowledge, indi-  
cating the end of a read. A no acknowledge condition is when the  
SDA line is not pulled low on the ninthclock pulse on SCL. Ifthe  
highest subaddress location is reached while in write mode, the  
data for the invalid byte is notloaded into anysubaddress register,  
a no acknowledge is issued by the SSM3515, and the device  
returns to the idle condition.  
every byte because therequested subaddress corresponds to a  
register or memory area with a byte word length.  
The timing of a single word read operation is shown in Figure 64.  
Note that the first R/ bit is 0, indicating a write operation.  
W
This is because the subaddress still must be written to set up the  
internal address. After the SSM3515 acknowledges the receipt of  
the subaddress, the master must issue a repeated start command  
followed by the chip address byte with the R/ set to 1 (read).  
W
I2C Read and Write Operations  
This causes the SSM3515SDA to reverse and begin driving data  
back to the master. The master then responds every ninth pulse  
with an acknowledge pulse to the SSM3515. See Table 15 for a  
list of abbreviations in Figure 62 through Figure 65.  
Figure 62 shows the timing of a single-word write operation.  
Every ninth clock, the SSM3515issues an acknowledge (ACK)  
by pulling SDA low.  
Figure 63 shows the timing of a burst mode writesequence. This  
figure shows an example in which the targetdestinationregisters  
are two bytes. The SSM3515incrementsits subaddress register  
Table 13. I2C Device Address Byte Format Using the ADDR Pin1  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
R/  
0
0
1
0
1
X
X
W
1 X means don’t care.  
Table 14. ADDR Pin to I2C Device Address Mapping  
ADDR Pin  
ADDR Voltage  
I2C Address Bit 5  
I2C Address Bit 6  
GND  
GND  
Not applicable  
Not applicable  
Pull-Down 47 kΩ Resistor  
Open  
Pull-Up 47 kΩ Resistor  
DVDD  
0.25 × VREG18/DVDD  
0.5 × VREG18/DVDD  
0.75 × VREG18/DVDD  
DVDD  
0
0
1
1
0
1
0
1
Table 15. Abbreviations for Figure 62 Through Figure 65  
Symbol  
Meaning  
S
Start bit  
P
Stop bit  
AM  
AS  
Acknowledge by master  
Acknowledge by slave  
Rev. A| Page 22 of 41  
 
 
Data Sheet  
SSM3515  
SCK  
ACK  
ACK  
SDA  
R/W  
START BY  
MASTER  
FRAME 2  
SUBADDRESS BYTE  
FRAME 1  
CHIP ADDRESS BYTE  
SCK  
(CONTINUED)  
SDA  
(CONTINUED)  
ACK  
ACK  
STOP BY  
MASTER  
FRAME 4  
DATA BYTE 2  
FRAME 3  
DATA BYTE 1  
Figure 61. I2C Read/Write Timing  
2
START  
BIT  
I C ADDRESS  
(7 BITS)  
ACK BY  
SLAVE  
SUBADDRESS  
(8 BITS)  
ACK BY  
SLAVE  
DATA BYTE 1  
(8 BITS)  
STOP  
BIT  
R/W = 0  
Figure 62. Single Word I2C Write Format  
CHIP ADDRESS,  
DATA  
WORD 1  
DATA  
WORD 2  
S
A
SUBADDRESS  
A
A
A
S
P
S
S
S
R/W = 0  
Figure 63. Burst Mode I2C Write Format  
DATA  
BYTE 1  
DATA  
BYTE N  
CHIP ADDRESS,  
R/W = 0  
CHIP ADDRESS,  
S
A
SUBADDRESS  
A
S
A
S
A
M
P
S
S
R/W = 1  
Figure 64. Single Word I2C Read Format  
DATA  
WORD 1  
CHIP ADDRESS,  
R/W = 0  
CHIP ADDRESS,  
S
A
SUBADDRESS  
A
S
A
S
A
M
P
S
S
R/W = 1  
Figure 65. Burst Mode I2C Read Format  
Rev. A| Page 23 of 41  
 
 
 
 
 
SSM3515  
Data Sheet  
ANALOG AND DIGITAL GAIN  
EMI NOISE  
Several selectable settings are available for the analog gain of the  
system. These provide optimal gain settings at various PVDD supply  
voltages. The ANA_GAIN bits are available in Register 0x01,  
Bits[1:0].  
The SSM3515 uses a proprietary modulation and spread  
spectrum technology to minimize EMI emissions from the  
device. The SSM3515 can pass FCC Class B emissions testing  
with an unshielded 20-inch cable using ferrite bead-based  
filtering. For applications that have difficulty passing FCC Class B  
emission tests, the SSM3515 includes a modulation select pin  
(ultralow EMI emission mode) that significantly reduces the  
radiated emissions at the Class-D outputs, particularly above  
100 MHz. Note that reducing the supply voltage greatly reduces  
radiated emissions.  
The available options are as shown in Table 16.  
Table 16. Analog Gain Options  
Amplifier Analog Gain  
ANA_GAIN Selection  
PVDD  
5 V to 9 V  
9 V to 13 V  
13 V to 14 V  
14 V to 16 V  
00  
01  
10  
11  
8.4 V full-scale gain mapping  
12.6 V full-scale gain mapping  
14 V full-scale gain mapping  
15 V full-scale gain mapping  
OUTPUT MODULATION DESCRIPTION  
The SSM3515 uses three-level, Σ-Δ output modulation. Each  
output can swing from GND to PVDD and vice versa. Ideally, when  
no input signal is present, the output differential voltage is 0 V  
because there is no need to generate a pulse. In a real-world  
situation, there are always noise sources present.  
There is also a digital gain or volume control that provides fine  
control in 0.375 dB steps from −70 dB to +24 dB.  
POP AND CLICK SUPPRESSION  
Voltage transients at the output of audio amplifiers may occur  
when shutdown is activated or deactivated. Voltage transients  
as small as 10 mV can be heard as an audible pop in the speaker.  
Clicks and pops are defined as undesirable audible transients  
generated by the amplifier system that do not come from the  
system input signal.  
Due to this constant presence of noise, a differential pulse is  
occasionally generated in response to this stimulus. A small  
amount of current flows into the inductive load when the  
differential pulse is generated. However, most of the time, the  
output differential voltage is 0 V. This feature ensures that the  
current flowing through the inductive load is small.  
Such transients may be generated when the amplifier system  
changes its operating mode. For example, system power-up and  
power-down can be sources of audible transients.  
When the user sends an input signal, an output pulse is generated  
to follow the input voltage. The differential pulse density is  
increased by raising the input signal level. Figure 66 depicts  
three-level, Σ-Δ output modulation with and without input  
stimulus.  
The SSM3515 has a pop and click suppression architecture that  
reduces these output transients, resulting in noiseless activation and  
deactivation.  
Either mute or power-down must be set before the BCLK is  
removed to ensure a pop free power-down.  
OUTPUT = 0V  
OUT+  
+5V  
0V  
+5V  
OUT–  
VOUT  
0V  
+5V  
0V  
–5V  
OUTPUT > 0V  
OUT+  
+5V  
0V  
+5V  
OUT–  
VOUT  
0V  
+5V  
0V  
OUTPUT < 0V  
OUT+  
+5V  
0V  
+5V  
OUT–  
0V  
0V  
–5V  
NOTES  
1. VOUT = (OUT+) – (OUT) MEASURED ACROSS THE LOAD.  
Figure 66. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Rev. A| Page 24 of 41  
 
 
 
 
 
 
Data Sheet  
SSM3515  
FAULTS AND LIMITERSTATUS REPORTING  
VBAT SENSING  
The SSM3515offers comprehensive protections against the  
faultsat the outputs and reporting to help with system design.  
The faults listed in Table 17are reported using the status registers.  
The SSM3515contains an 8-bit ADC that measures the voltage  
of the battery voltage (VBAT) supply. The battery voltage  
information is stored in Register 0x06 as an 8-bit unsigned format.  
The ADC input range is fixed internally as 3.8 V to 16.2 V. To  
convert the hexidecimal (hex) value to the voltage value, use the  
following steps:  
Table 17. Register 0x0A, Faults  
Status Reported  
Fault Type  
Flag Set Condition  
Register  
1. Convert the hex value to decimal. For example, if the hex  
value is 0xA9, the decimal value = 169.  
2. Calculate the voltage using the following equation:  
5 V Regulator UV  
5 V regulator voltage at Register 0x0A,  
VREG50/AVDD < 3.6 V  
Bit 6, UVLO_VR EG  
Limiter/GainReduction Limiter engaged  
Engage  
Register 0x0A,  
Bit 5, LIM_EG  
Voltage = 3.8 V + 12.4 V × Decimal Value/255  
Clipping  
DAC clipping  
Register 0x0A,  
Bit 4, CLIP  
Register 0x0A,  
Bit 3, AMP_OC  
Register 0x0A,  
Bit 2, OTF  
Register 0x0A,  
Bit 4, OTW  
With a decimal value of 169,  
Output Overcurrent  
(OC)  
Die Overtemperature Die temperature >  
(OT) 145°C  
Die Overtemperature Die temperature >  
Warning (OTW)  
Battery Voltage >  
VBAT_INF  
Output current > 6 A  
peak  
Voltage = 3.8 V + 12.4 V × 169/255 = 12.02 V  
LIMITER AND BATTERY TRACKING THRESHOLD  
CONTROL  
117°C  
Battery voltage PVDD  
VBAT_INF  
The SSM3515containsan output limiterthat can be used limit  
the peak output voltage of the amplifier. The limiter works on  
the rms and peak value of the signal. The limiter threshold,  
slope, attack rate, and release rate are programmable using  
Register 0x07, Register 0x08, and Register0x09. The limiter can  
be enabled or disabled using LIM_EN,Bits[1:0] inRegister0x07.  
>
Register 0x0A,  
Bit 0, BAT_WARN  
The faults listed in Table 17 are reported in Register 0x0A and  
can be read via I2C by the microcontroller in the system.  
In the event of a fault occurrence, how the device reacts to the  
faults can be controlled by using Register 0x0B.  
The threshold at which the output is limited is determined by  
the LIM_THRES register setting, in Register 0x08, Bits[7:3].  
When the ouput signal level exceeds the set therhold level, the  
limiter activates and limits the signal level to the set limit. Below  
the set threshold, the output level is not affected. The limiter  
threshold can be set from 1 V peak to 15 V peak.  
Table 18. Register 0x0B, Fault Recovery  
Status Reported  
Register  
Fault Type  
Flag Set Condition  
OTW  
The amount of gain  
reduction applied if there  
is an OTW  
Use to attempt manual  
recovery in case of a fault  
event  
Register 0x0B,  
Bits[7:6], OTW_GAIN  
The limiter threshold can be set above the maximum output  
voltage of the amplifier. In this case, the limiter allows maximum  
peak output; in other words, the output may clip depending on  
the power supply voltage and not the limiter.  
Manual  
Recovery  
Register 0x0B, Bit5,  
MRCV  
Autorecovery When autorecovery from  
Attempts  
Register 0x0B,  
Bits[4:3], MAX_AR  
faults is used, set the  
number of attempts using  
this bit  
Recovery can be automatic Register 0x0B, Bit2,  
or manual ARCV_UV  
Recovery can be automatic Register 0x0B, Bit1,  
or manual ARCV_OT  
Recovery can be aut omatic Register 0x0B, Bit0,  
or manual ARCV_OC  
The limiter threshold can be set as fixed or to vary with the  
battery voltage via the VBAT_TRACKbit (Register 0x07, Bit 2).  
When set to fixed, the limiter threshold is fixed and does not  
vary with battery voltage.The threshold canbe set from 1 Vpeak  
to 15 V peak using the LIM_THRES bit (see Figure 68).  
UV  
Die OT  
OC  
When set to a variable threshold, the SSM3515monitorsthe  
VBAT supply and automatically adjusts the limiter threshold  
based on the VBAT supply voltage.  
When the automatic recovery mode is set, the device attempts  
to recover itself after the fault event and, in case the fault  
persists, then the device sets the fault again. This process  
repeats until the fault is resolved.  
The VBAT supply voltage at which the limiter threshold level  
begins to decrease the output level is determined by the VBAT  
inflection point, the VBAT_INF bits (Register 0x09, Bits[7:0]).  
When the manual recovery mode is used, the device shuts down  
and the recovery must be attempted using the system  
microcontroller.  
Rev. A| Page 25 of 41  
 
 
 
 
SSM3515  
Data Sheet  
The VBAT_INF point is defined as the battery voltage at which  
the limiter either activates or deactivates depending on the  
LIM_EN mode (see Table 19). When the battery voltage is  
greater than VBAT_INF, the limiter is not active. When it  
battery voltage is less than VBAT_INF, the limiter is activated.  
The VBAT_INF bits can be set from 3.8 V to 16.2 V. The 8-bit  
value for the voltage can be calculated using the following  
equation.  
The limiter, when active, reduces the gain of the amplifier. The rate  
of gain reduction or attack rate is determined by the LIM_ATR bits  
(Register 0x07, Bits[5:4]). Similarly, when the signal level drops  
below the limiter threshold, the gain is restored. The gain release  
rate is determined by the LIM_RRT bits (Register 0x07, Bits[7:6]).  
LIM_EN = 00  
VBAT_TRACK = 0  
AMPLIFIER CLIPPING LEVEL  
Voltage = 3.8 + 12.4 × Decimal Value/255  
Convert the decimal value to an 8-bit hex value and use it to set  
the VBAT_INF bits.  
The rate at which the limiter threshold is lowered relative to  
the amount change in VBAT below the VBAT_INF point is  
determined by the slope bits (Register 0x08, Bits[1:0]).  
The slope is the ratio of the limiter threshold reduction to the  
VBAT voltage reduction.  
INPUT LEVEL  
Slope = ΔLimiter ThresholdVBAT  
Figure 67. Limiter Example (LIM_EN = 0b0, VBAT_TRACK = 0bx)  
The slope ratio can be set from 1:1 to 4:1. This function is useful  
to prevent early shutdown under low battery conditions. As the  
VBAT voltage falls, the limiter threshold is lowered. This results in  
the lower output level and therefore helps to reduce the current  
drawn from the battery and in turn helps prevent early shutdown  
due to low VBAT.  
LIMITER THRESHOLD FIXEDAT SET VALUE  
AND DOES NOT TRACK VBAT  
LIM_THRES  
The limiter offers various active modes which can be set using the  
LIM_EN bits (Register 0x07, Bits[1:0]) and the VBAT_TRACK bit,  
as shown in Table 19.  
When LIM_EN = 01, the limiter is enabled. When LIM_EN = 10,  
the limiter mutes the output if VBAT falls below VBAT_INF. When  
LIM_EN = 11, the limiter engages only when the battery voltage  
is lower than VBAT_INF. When VBAT is above VBAT_INF, no  
limiting occurs. Note that there is hysteresis on VBAT_INF for the  
limiter disengaging.  
VBAT  
Figure 68. Limiter Fixed (LIM_EN = 0b01, VBAT_TRACK = 0b0)  
Table 19. Limiter Modes  
LIM_EN  
VBAT_TRACK  
Limiter  
No  
Fixed  
Variable  
Fixed  
Fixed  
VBAT < VBAT_INF  
Not applicable  
Use the set threshold  
Lowers the threshold  
Mutes the output  
VBAT > VBAT_INF  
Not applicable  
Use the set threshold  
Use the set threshold  
Use the set threshold  
No limiting  
Comments  
00  
01  
01  
10  
11  
11  
0/1  
0
1
0/1  
0
1
See Figure 67  
See Figure 68  
See Figure 69 and Figure 70  
Use the set threshold  
Lowers the threshold  
See Figure 71 and Figure 72  
See Figure 73 and Figure 74  
Variable  
No limiting  
Rev. A| Page 26 of 41  
 
 
 
Data Sheet  
SSM3515  
LIM_EN = 01  
VBAT_TRACK = 1  
LIMITER THRESHOLD FIXED AT SET VALUE  
AND DOES NOT TRACK VBAT  
LIM_THRES  
VBAT > VBAT_INF LIMITER  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BIT IN REG 0x08  
VBAT  
INPUT LEVEL  
Figure 69. Limiter Fixed (LIM_EN = 0b01, VBAT_TRACK = 0b1)  
Figure 72. Limiter Fixed (LIM_EN = 0b11, VBAT_TRACK = 0b0)  
LIM_EN = 11  
VBAT_TRACK = 1  
LIMITER THRESHOLD STAYS AT  
THE SET VALUE FOR VBAT > VBAT_INF  
VBAT > VBAT_INF LIMITER IS NOTACTIVE  
AMPLIFIER CLIPPING LEVEL  
VBAT_INF  
LIM_THRES  
LIMITER THRESHOLD SETTING  
LIMITER THRESHOLD CHANGE FOR VBAT < VBAT_INF  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF  
CHANGE IN LIM THRESHOLD = N × (VBAT_INF – VBAT)  
WHERE N = 1 TO 4, SET USING SLOPE BIT IN REG 0x08  
VBAT  
INPUT LEVEL  
Figure 70. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN = 0b01,  
VBAT_TRACK = 0b1)  
Figure 73. Limiter Example (LIM_EN = 0b11, VBAT_TRACK = 0b1)  
LIM_EN = 11  
VBAT_TRACK = 0  
LIMITER THRESHOLD INACTIVE FOR VBAT > VBAT_INF  
VBAT_INF  
AMPLIFIER CLIPPING LEVEL  
SET LIM_THRES  
LIMITER THRESHOLD SETTING  
NO CHANGE IN LIM THRESHOLD PER VBAT  
SLOPE  
LIMITER THRESHOLD LOWERS  
FOR VBAT < VBAT_INF  
VBAT  
Figure 74. Output Level vs. VBAT in Limiter Tracking Mode (LIM_EN = 0b11,  
VBAT_TRACK = 0b1)  
INPUT LEVEL  
Figure 71. Limiter Example (LIM_EN = 0b11, VBAT_TRACK = 0)  
Rev. A| Page 27 of 41  
 
 
 
 
 
 
SSM3515  
Data Sheet  
If the system has separate analog and digital ground and power  
planes, the analog ground plane must be directly beneath the  
analog power plane, and, similarly, the digital ground plane must  
be directly beneath the digital power plane. There must be no  
overlap between analog and digital ground planes or between  
analog and digital power planes.  
LAYOUT  
As output power increases, care must be taken to lay out PCB  
traces and wires properly among the amplifier, load, and power  
supply; a poor layout increases voltage drops, consequently  
decreasing efficiency. A good practice is to use short, wide PCB  
tracks to decrease voltage drops and minimize inductance. For  
lowest dc resistance (DCR) and minimum inductance, ensure  
that track widths are at least 200 mil for every inch of length  
and use 1 oz or 2 oz copper. Use large traces for the power supply  
inputs and amplifier outputs. Proper grounding guidelines  
improve audio performance, minimize crosstalk between  
channels, and prevent switching noise from coupling into the  
audio signal.  
BOOTSTRAP CAPACITORS  
The output stage of the SSM3515 uses a high-side NM OS driv er,  
rather than PMOS. Therefore, a bootstrap supply is needed to  
drive the high-side NMOS. To generate the boosted gate driver  
voltage for the high-side NMOS, a 0.22 μF bootstrap capacitor is  
used from each output pin to BST pins. This capacitor boosts the  
voltage at BST pins when the high-side NMOS turns on and  
acts as a floating power supply for that particular switching  
cycle. The bootstrap capacitor is charged during the low-side  
NMOS active period.  
To maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins must be as wide as possible to maintain the minimum trace  
resistances. It is also recommended that a large ground plane be  
used forminimum impedances. In addition, good PCB layout  
isolates critical analog paths from sources of high interference.  
Separate high frequency circuits (analog and digital) from low  
frequency circuits.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high power supply rejection ratio (PSRR), proper power  
supply decoupling is necessary. Noise transients on the power  
supply lines are short duration voltage spikes. These spikes can  
contain frequency components that extend into the hundreds of  
megahertz. The power supply input must be decoupled with a  
good quality, low ESL, low ESR bulk capacitor larger than  
220 µF. This capacitor bypasses low frequency noises to the  
ground plane.  
Properly designed multilayer PCBs can reduce EMI emission  
and increase immunity to the RF field by a factor of 10 or more,  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
For high frequency transient noises, place 1 µF capacitors as  
close as possible to the PVDD pins of the device.  
Rev. A| Page 28 of 41  
 
 
 
Data Sheet  
SSM3515  
REGISTER SUMMARY  
Table 20. Register Summary  
Reg. Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 Power Control  
[7:0] APWDN_  
EN  
BSNS_  
PWDN  
RESERVED  
S_RST  
SPWDN  
0x81 R/W  
0x01 Gain and Edg e  
Control  
[7:0]  
RESERVED  
EDGE  
RESERVED  
ANA_GAIN  
0x01 R/W  
0x02 DAC Control  
[7:0] DAC_HV  
[7:0]  
DAC_MUTE DAC_HPF DAC_LPM RESERVED  
VOL  
DAC_FS  
0x32 R/W  
0x40 R/W  
0x03 DAC Volume  
Control  
0x04 SAI Control 1  
[7:0] DAC_POL  
BCLK_POL  
RESERVED  
TDM_BCLKS  
FSYNC_  
MODE  
SDATA_  
FMT  
SAI_MODE 0x11 R/W  
0x00 R/W  
0x05 SAI Control 2  
[7:0] DATA_  
WIDTH  
AUTO_  
SLOT  
TDM_SLOT  
0x06 Battery Voltage  
Output  
[7:0]  
VBAT  
0x00  
R
0x07 Limiter Control 1  
[7:0]  
LIM_RRT  
LIM_ATR  
LIM_THRES  
RESERVED VBAT_  
TRACK  
LIM_EN  
SLOPE  
0xA4 R/W  
0x08 Limiter Control 2  
0x09 Limiter Control 3  
0x0A Status  
[7:0]  
[7:0]  
RESERVED  
0x51 R/W  
0x22 R/W  
VBAT_INF  
AMP_OC  
MAX_AR  
[7:0] RESERVED UVLO_VREG LIM_EG  
[7:0] OTW_GAIN MRCV  
CLIP  
OTF  
ARCV_UV  
OTW  
ARCV_OT  
BAT_WARN 0x00  
R
0x0B Fault Control  
ARCV_OC  
0x18 R/W  
Rev. A| Page 29 of 41  
 
SSM3515  
Data Sheet  
REGISTER DETAILS  
POWER CONTROL REGISTER  
Address: 0x00, Reset: 0x81, Name: Power Control  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
1
[7] APW DN_EN (R/W)  
[0] SPW DN(R/W)  
Auto Power-Down Enable  
0: Auto Power-Down Disabled.  
1: Auto Power-Down Enabled.  
Master Software Power-D o wn  
0: Normal Operation.  
1: Software Master Power-Down.  
[6] BSNS_PWDN (R/W)  
[1] S_RST (W)  
BatteryVoltage Sense Power-D o wn  
Full Software Reset  
0: BatteryVoltage Sense Powered On.  
1: BatteryVoltage Sense Powered Off.  
0: Normal Operation.  
1: Reset all blocks and I2C registers.  
[5:2] RESERVED  
Table 21. Bit Descriptions for Power Control  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
Auto Power-Down Enable. Auto power-down automatically puts the IC in a low  
power state when 2048 consecutive zero input samples have been received.  
7
APWDN_EN  
0x1  
R/W  
0
Auto Power-Down Disabled.  
Auto Power-Down Enabled. When APWDN_EN = 1 the device automatically  
powers down when 2048 consecutive zero value input samples have been  
received. The device automatically powers up when a single nonzero sample is  
received.  
1
6
BSNS_PWDN  
Battery Voltage Sense Power-Down.  
Battery Voltage Sense Powered On.  
Battery Voltage Sense Powered Off.  
Reserved.  
0x0  
R/W  
0
1
[5:2] RESERVED  
0x0  
0x0  
R/W  
W
1
S_RST  
Full Software Reset.  
0
1
Normal Operation.  
Reset all Blocks and I2C Registers.  
Master Software Power-Down. Software power-down puts all blocks except the I2C  
interface in a low-power state.  
0
SPWDN  
0x1  
R/W  
0
1
Normal Operation.  
Software Master Power-Down.  
GAIN AND EDGECONTROL REGISTER  
Address: 0x01, Reset: 0x01, Name: Gain and Edge Control  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:5] RESERVED  
[1:0] ANA_GAIN (R/W)  
Amp Analog Gain Selection  
[4] EDGE (R/W)  
Edge Rate Control  
0: Normal Operation.  
1: LowEMI Mode Operation.  
00: 8.4V Full-Scale Gain Mapping.  
01: 12.6V Full-Scale Gain Mapping.  
10: 14V Full-Scale Gain Mapping.  
11: 15V Full-Scale Gain Mapping.  
[3:2] RESERVED  
Table 22. Bit Descriptions for Gain and Edge Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:5] RESERVED  
Reserved.  
0x0  
R/W  
Rev. A| Page 30 of 41  
 
 
 
Data Sheet  
SSM3515  
Bits  
Bit Name  
Settings Description  
Edge Rate Control. This controls the edge speed of the power stage. The low EMI  
Reset  
Access  
4
EDGE  
0x0  
R/W  
operation mode reduces the edge speed, lowering EMI and power efficiency  
0
1
Normal Operation.  
Low EMI Mode Operation.  
Reserved.  
[3:2] RESERVED  
[1:0] ANA_GAIN  
0x0  
0x1  
R/W  
R/W  
Amp Analog Gain Selection.  
00 8.4 V Full-Scale Gain Mapping.  
01 12.6 V Full-Scale Gain Mapping.  
10 14 V Full-Scale Gain Mapping.  
11 15 V Full-Scale Gain Mapping.  
DAC CONTROL REGISTER  
Address: 0x02, Reset: 0x32, Name: DAC Control  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
0
[7] DAC_HV (R/W)  
DAC Hard Volume  
[2:0] DAC_FS (R/W)  
DAC Sample Rate Selection  
0: Soft Volume Ramping.  
1: Hard/Immediate Volume Change.  
000: 8 kHz to 12 kHz Sample Rate.  
001: 16 kHz to 24 kHz Sample Rate.  
010: 32 kHz to 48 kHz Sample Rate.  
011: 64 kHz to 96 kHz Sample Rate.  
100: 128 kHz to 192 kHz Sample Rate.  
101: 48 kHz to 72 kHz Sample Rate.  
110: Reserved.  
[6] DAC_MUTE (R/W)  
DAC Mute Control  
0: DAC Unmuted.  
1: DAC Muted.  
111: Reserved.  
[5] DAC_HPF (R/W)  
DAC High Pass Filter Enable  
[3] RESERVED  
0: DAC High Pass Filter Off.  
1: DAC High Pass Filter On.  
[4] DAC_LPM (R/W)  
DAC Low Power Mode Enable  
0: DAC Low Power Mode Off.  
1: DAC Low Power Mode On.  
Table 23. Bit Descriptions for DAC Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_HV  
DAC Hard Volume.  
0x0  
R/W  
0
1
Soft Volume Ramping.  
Hard/Immediate Volume Change.  
DAC Mute Control.  
6
5
4
3
DAC_MUTE  
DAC_HPF  
DAC_LPM  
RESERVED  
0x0  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
DAC Unmuted.  
DAC Muted.  
DAC High-Pass Filter Enable.  
DAC High-Pass Filter Off.  
DAC High-Pass Filter On.  
DAC Low Power Mode Enable.  
DAC Low Power Mode Off.  
DAC Low Power Mode On.  
Reserved.  
0
1
0
1
Rev. A| Page 31 of 41  
 
SSM3515  
Data Sheet  
Bits  
Bit Name  
DAC_FS  
Settings  
Description  
Reset  
Access  
[2:0]  
DAC Sample Rate Selection.  
0x2  
R/W  
000 8 kHz to 12 kHz Sample Rate.  
001 16 kHz to 24 kHz Sample Rate.  
010 32 kHz to 48 kHz Sample Rate.  
011 64 kHz to 96 kHz Sample Rate.  
100 128 kHz to 192 kHz Sample Rate.  
101 48 kHz to 72 kHz Sample Rate.  
110 Reserved.  
111 Reserved.  
DAC VOLUMECONTROL REGISTER  
Address: 0x03, Reset: 0x40, Name: DAC Volume Control  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7:0] VOL (R/W)  
Volume Control  
00000000: +24 dB.  
00000001: +23.625 dB.  
00000010: +23.35 dB.  
...  
11111101: -70.875 dB.  
11111110: -71.25 dB.  
11111111: Mute.  
Table 24. Bit Descriptions for DAC Volume Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VOL  
Volume Control.  
0x40  
R/W  
00000000 +24 dB.  
00000001 +23.625 dB.  
00000010 +23.35 dB.  
00000011 +22.875 dB.  
00000100 +22.5 dB.  
00000101 ...  
00111111 +0.375 dB.  
01000000 0.  
01000001 −0.375 dB.  
01000010 ...  
11111101 −70.875 dB.  
11111110 −71.25 dB.  
11111111 Mute.  
Rev. A| Page 32 of 41  
 
Data Sheet  
SSM3515  
SAI CONTROL 1 REGISTER  
Address: 0x04, Reset: 0x11, Name: SAI Control 1  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
1
[7] DAC_POL (R/W)  
DAC Output Polarity  
[0] SAI_MODE (R/W)  
Serial Interface Mode Selection  
0: Normal Operation.  
1: Invert the Audio Output Signal.  
0: Stereo Modes (I2S,LJ)  
1: TDM/PCM Modes.  
[6] BCLK_POL (R/W)  
[1] SDATA_FMT (R/W)  
BCLK PolarityControl  
0: Rising Edge of BCLKis used to register  
SDATA.  
Serial Data Format  
0: I2S/Delay by one from FSYNC edge.  
1: Left Justified/No delayfrom FSYNC edge.  
Falling Edge of BCLK is used to register  
SDATA.  
1:  
[2] FSYNC_MODE (R/W)  
FSYNC Mode Control  
[5:3] TDM_BCLKS (R/W)  
0: LowFSYNC is Left Channel in Stereo  
Modes or Pulsed FSYNC Mode in TDM Modes.  
Number of BCLKs per chip in TDM mode  
000: 16 BCLKs per chip in TDM.  
001: 24 BCLKs per chip in TDM.  
010: 32 BCLKs per chip in TDM.  
011: 48 BCLKs per chip in TDM.  
100: 64 BCLKs per chip in TDM.  
High FSYNC is Left Channel in Stereo  
1:  
Modes or 50% FSYNCMode in TDM Modes.  
Table 25. Bit Descriptions for SAI Control 1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_POL  
DAC Output Polarity.  
Normal Operation.  
0x0  
0x0  
0x2  
R/W  
0
1
Invert the Audio Output Signal.  
BCLK Polarity Control.  
6
BCLK_POL  
R/W  
R/W  
0
1
Rising Edge of BCLK is Used to Register SDATA.  
Falling Edge of BCLK is Used to Register SDATA.  
Number of BCLKs per Chip in TDM Mode. Any number of BCLK cycles per FSYNC  
can be used in stereo modes (I2S/LJ) or in TDM mode with only one chip. When in  
TDM mode and having multiple chips on the TDM bus, the number of BCLKs per  
chip must be defined.  
[5:3] TDM_BCLKS  
000 16 BCLKs per Chip in TDM.  
001 24 BCLKs per Chip in TDM.  
010 32 BCLKs per Chip in TDM.  
011 48 BCLKs per Chip in TDM.  
100 64 BCLKs per Chip in TDM.  
FSYNC Mode Control.  
2
FSYNC_MODE  
0x0  
R/W  
Low FSYNC is Left Channel in Stereo Modes or Pulsed FSYNC Mode in TDM  
Modes.  
0
1
High FSYNC is Left Channel in Stereo Modes or 50% FSYNC Mode in TDM Modes.  
1
0
SDATA _ FM T  
SAI_MODE  
Serial Data Format.  
0x0  
0x1  
R/W  
R/W  
0
1
I2S/Delay by One from FSYNC Edge.  
Left Justified/No Delay from FSYNC Edge.  
Serial Interface Mode Selection.  
0
1
Stereo Modes (I2S, LJ).  
TDM/PCM Modes.  
Rev. A| Page 33 of 41  
 
SSM3515  
Data Sheet  
SAI CONTROL 2 REGISTER  
Address: 0x05, Reset: 0x00, Name: SAI Control 2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] DATA_W IDTH (R/W)  
Audio Data W idth  
[3:0] TDM_SLOT(R/W)  
TDM Slot Selection  
0: Audio input on SDATAis 24 bits.  
1: Audio input on SDATAis 16 bits.  
0000: Chip Slot 1 Used.  
0001: Chip Slot 2 Used.  
0010: Chip Slot 3 Used.  
...  
[6:5] RESERVED  
1101: Chip Slot 14 Used.  
1110: Chip Slot 15 Used.  
1111: Chip Slot 16 Used.  
[4] AUTO_SLOT (R/W)  
Automatic TDM Slot Selection  
0: TDM Slot determined byTDM_SLOTregister.  
1: TDM Slot determined byADDR pin.  
Table 26. Bit Descriptions for SAI Control 2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DATA_WIDTH  
Audio Data Width.  
0x0  
R/W  
0
1
Audio Input on SDATA is 24 Bits.  
Audio Input on SDATA is 16 Bits.  
Reserved.  
[6:5]  
4
RESERVED  
0x0  
0x0  
R/W  
R/W  
AUTO_SLOT  
Automatic TDM Slot Selection.  
0
1
TDM Slot Determined by the TDM_SLOT Register.  
TDM Slot Determined by the ADDR Pin.  
TDM Slot Selection.  
[3:0]  
TDM_SLOT  
0x0  
R/W  
0000 Chip Slot 1 Used.  
0001 Chip Slot 2 Used.  
0010 Chip Slot 3 Used.  
0011 Chip Slot 4 Used.  
0100 Chip Slot 5 Used.  
0101 Chip Slot 6 Used.  
0110 Chip Slot 7 Used.  
0111 Chip Slot 8 Used.  
1000 Chip Slot 9 Used.  
1001 Chip Slot 10 Used.  
1010 Chip Slot 11 Used.  
1011 Chip Slot 12 Used.  
1100 Chip Slot 13 Used.  
1101 Chip Slot 14 Used.  
1110 Chip Slot 15 Used.  
1111 Chip Slot 16 Used.  
Rev. A| Page 34 of 41  
 
Data Sheet  
SSM3515  
BATTERY VOLTAGE OUTPUT REGISTER  
Address: 0x06, Reset: 0x00, Name: Battery Voltage Output  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VBAT (R)  
8-Bit Unsigned BatteryVoltage  
Table 27. Bit Descriptions for Battery Voltage Output  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VBAT  
8-Bit Unsigned Battery Voltage  
0x0  
R
LIMITERCONTROL 1 REGISTER  
Address: 0x07, Reset: 0xA4, Name: Limiter Control 1  
7
6
5
4
3
2
1
0
1
0
1
0
0
1
0
0
[7:6] LIM_RRT(R/W)  
Limiter Release Rate  
00: 3200 ms/dB.  
01: 1600 ms/dB.  
10: 1200 ms/dB.  
11: 800 ms/dB.  
[1:0] LIM_EN (R/W)  
Limiter or Mute Mode Enable  
00: Limiter and Mute Mode Off.  
01: Limiter On.  
10: Output mutes if VBAT is belowVBAT_INF.  
Limiter On but onlyengages if VBAT  
is below VBAT_INF.  
11:  
[5:4] LIM_ATR (R/W)  
Limiter Attack Rate  
[2] VBAT_TRACK (R/W)  
Threshold BatteryTracking Enable  
0: Limiter Attack Threshold Fixed.  
1: Limiter Attack Threshold Varies or gain  
reduction with BatteryVoltage.  
00: 120 us/dB.  
01: 60 us/dB.  
10: 30 us/dB.  
11: 20 us/dB.  
[3] RESERVED  
Table 28. Bit Descriptions for Limiter Control 1  
Bits  
Bit Name  
Settings  
Description  
Limiter Release Rate.  
00 3200 ms/dB.  
Reset  
Access  
[7:6]  
LIM_RRT  
0x2  
R/W  
01 1600 ms/dB.  
10 1200 ms/dB.  
11 800 ms/dB.  
[5:4]  
LIM_ATR  
Limiter Attack Rate.  
0x2  
R/W  
00 120 µs/dB.  
01 60 µs/dB.  
10 30 µs/dB.  
11 20 µs/dB.  
Reserved.  
3
2
RESERVED  
0x0  
0x1  
R/W  
R/W  
VBAT_TRACK  
Threshold Battery Tracking Enable.  
Limiter Attack Threshold Fixed.  
0
1
Limiter Attack Threshold Varies or Gain Reduction with Battery Voltage.  
Limiter or Mute Mode Enable.  
[1:0]  
LIM_EN  
0x0  
R/W  
00 Limiter and Mute Mode Off.  
01 Limiter On.  
10 Output Mutes if VBAT is Be l ow VBAT_ I NF.  
11 Limiter On But Only Engages if VBAT is Be l ow VBAT_ I NF.  
Rev. A| Page 35 of 41  
 
 
SSM3515  
Data Sheet  
LIMITER CONTROL 2 REGISTER  
Address: 0x08, Reset: 0x51, Name: Limiter Control 2  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
[7:3] LIM_THRES (R/W)  
Limiter Attack Threshold  
[1:0] SLOPE (R/W)  
Slope of threshold reduction/batteryvoltage  
change  
00000: 15.0 V peak Output.  
00001: 14.5 V peak Output.  
00010: 14.0 V peak Output.  
...  
00: 1:1 Threshold/BatteryReduction.  
01: 2:1 Threshold/BatteryReduction.  
10: 3:1 Threshold/BatteryReduction.  
11: 4:1 Threshold/BatteryReduction.  
11101:  
2.0 V peak Output.  
11110: 1.5V V peak Output.  
1.0 V peak Output.  
[2] RESERVED  
11111:  
Table 29. Bit Descriptions for Limiter Control 2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0xA  
Access  
[7:3]  
LIM_THRES  
Limiter Attack Threshold.  
R/W  
00000 15.0 V peak Output.  
00001 14.5 V peak Output.  
00010 14.0 V peak Output.  
00011 13.5 V peak Output.  
00100 13.0 V peak Output.  
00101 12.5 V peak Output.  
00110 12.0 V peak Output.  
00111 11.5 V peak Output.  
01000 11.0 V peak Output.  
01001 10.5 V peak Output.  
01010 10.0 V peak Output.  
01011 9.5 V peak Output.  
01100 9.0 V peak Output.  
01101 8.5 V peak Output.  
01110 8.25 V peak Output.  
01111 8.0 V peak Output.  
10000 7.75 V peak Output.  
10001 7.5 V peak Output.  
10010 7.25 V peak Output.  
10011 7.0 V peak Output.  
10100 6.5 V peak Output.  
10101 6.0 V peak Output.  
10110 5.5 V peak Output.  
10111 5.0 V peak Output.  
11000 4.5 V peak Output.  
11001 4.0 V peak Output.  
11010 3.5 V peak Output.  
11011 3.0 V peak Output.  
11100 2.5 V peak Output.  
11101 2.0 V peak Output.  
11110 1.5 V peak Output.  
11111 1.0 V peak Output.  
Rev. A| Page 36 of 41  
 
Data Sheet  
SSM3515  
Bits  
2
Bit Name  
RESERVED  
SLOPE  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
Reserved.  
[1:0]  
Slope of Threshold Reduction/Battery Voltage Change.  
0x1  
R/W  
00 1:1 Threshold/Battery Reduction.  
01 2:1 Threshold/Battery Reduction.  
10 3:1 Threshold/Battery Reduction.  
11 4:1 Threshold/Battery Reduction.  
LIMITER CONTROL 3 REGISTER  
Address: 0x09, Reset: 0x22, Name: Limiter Control 3  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
0
[7:0] VBAT_INF (R/W)  
BatteryVoltage Inflection Point  
Table 30. Bit Descriptions for Limiter Control 3  
Bits Bit Name Settings Description  
[7:0] VBAT_INF  
Reset Access  
Battery Voltage Inflection Point. This is the VBAT sense value at which the limiter either  
activates or starts reducing the threshold. It corresponds to the value that can be read  
in the VBAT read only status register. To calculate this value in volts, refer to the VBAT  
Sensing section. Voltage = 3.8 + 12.4 × Decimal Value/255.  
0x22  
R/W  
STATUS REGISTER  
Address: 0x0A, Reset: 0x00, Name: Status  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESERVED  
[0] BAT_W ARN (R)  
BatteryVoltage W arning  
0: BatteryVoltage above VBAT_INF.  
1: BatteryVoltage at or belowVBAT_INF.  
[6] UVLO_VREG (R)  
Regulator Undervoltage Fault Status  
0: Normal Operation.  
1: Voltage Regulator Fault Condition.  
[1] OTW (R)  
Over Temperature Warning Status  
[5] LIM_EG (R)  
Limiter/Gain Reduction Engaged  
0: Normal Operation.  
1: Over Temperature Warning Condition.  
0: Normal Operation.  
[2] OTF (R)  
Over Temperature Fault Status  
Limiter or Gain Reduction has Reduced  
Gain.  
1:  
0: Normal Operation.  
1: Over Temperature Fault Condition.  
[4] CLIP (R)  
Clip Detector  
[3] AMP_OC (R)  
0: Normal Operation.  
Amplifier Over-Current Fault Status  
1: Amplifier Clipping Detected.  
0: Normal Operation.  
1: Amp Over-Current Fault Condition.  
Table 31. Bit Descriptions for Status  
Bits  
Bit Name  
RESERVED  
UVLO_VREG  
Settings  
Description  
Reset  
Access  
7
Reserved.  
0x0  
0x0  
R
R
6
Regulator Undervoltage Fault Status.  
Normal Operation.  
0
1
Voltage Regulator Fault Condition.  
5
LIM_EG  
Limiter/Gain Reduction Engaged.  
Normal Operation.  
0x0  
R
0
1
Limiter or Gain Reduction has Reduced Gain.  
Rev. A| Page 37 of 41  
 
 
SSM3515  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
CLIP  
Clip Detector.  
0x0  
0x0  
0x0  
0x0  
0x0  
R
0
1
Normal Operation.  
Amplifier Clipping Detected.  
Amplifier Overcurrent Fault Status.  
Normal Operation.  
3
2
1
0
AMP_OC  
OTF  
R
R
R
R
0
1
Amp Over-Current Fault Condition.  
Overtemperature Fault Status.  
Normal Operation.  
0
1
Overtemperature Fault Condition.  
Overtemperature Warning Status.  
Normal Operation.  
OTW  
0
1
Overtemperature Warning Condition.  
Battery Voltage Warning.  
Battery Voltage Above VBAT_ I NF.  
Battery Voltage at or Be l ow VBAT_ I NF.  
BAT_ WA RN  
0
1
FAULT CONTROL REGISTER  
Address: 0x0B, Reset: 0x18, Name: Fault Control  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7:6] OTW_GAIN (R/W)  
[0] ARCV_OC (R/W)  
Over Thermal W arning Gain Reduction  
Over Current Automatic Fault RecoveryControl  
00: No gain reduction inthermal warning.  
Automatic Fault Recoveryfor Over-Current  
0:  
01: 1.5dB gain reduction in thermal warning.  
10: 3dB gain reduction in thermal warning.  
11: 5.625dB gain reduction in thermal warning.  
Fault.  
Manual Fault Recoveryfor Over-Current  
Fault.  
1:  
[5] MRCV (W)  
[1] ARCV_OT (R/W)  
Manual Fault Recovery  
0: Normal Operation.  
Overtemperature Automatic Fault RecoveryControl  
0: Automatic Fault Recoveryfor Overtemperature  
Fault.  
W riting of 1 causes a manual fault  
recoveryattempt when ARCV=11.  
1:  
Manual Fault Recoveryfor Overtemperature  
Fault.  
1:  
[4:3] MAX_AR (R/W)  
Maximum Fault recoveryAttempts  
[2] ARCV_UV (R/W)  
Undervoltage Automatic Fault RecoveryControl  
00: 1 Auto RecoveryAttempt.  
01: 3 Auto RecoveryAttempts.  
10: 7 Auto RecoveryAttempts.  
11: Unlimited Auto RecoveryAttempts.  
Automatic Fault Recoveryfor Undervoltage  
Fault.  
Manual Fault Recoveryfor Undervoltage  
Fault.  
0:  
1:  
Table 32. Bit Descriptions for Fault Control  
Bits  
Bit Name  
Settings  
Description  
Over Thermal Warning Gain Reduction.  
00 No Gain Reduction in Thermal Warning.  
Reset  
Access  
[7:6] OTW_GAIN  
0x0  
R/W  
01 1.5 dB Gain Reduction in Thermal Warning.  
10 3 dB Gain Reduction in Thermal Warning.  
11 5.625 dB Gain Reduction in Thermal Warning.  
Manual Fault Recovery.  
5
MRCV  
0x0  
W
0
1
Normal Operation.  
Writing of 1 Causes a Manual Fault Recovery Attempt when ARCV = 11.  
Rev. A| Page 38 of 41  
 
Data Sheet  
SSM3515  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
Maximum Fault Recovery Attempts. The maximum autorecovery register  
determines how many attempts at autorecovery are performed.  
[4:3] MAX_AR  
0x3  
R/W  
00 1 Autorecovery Attempt.  
01 3 Autorecovery Attempts.  
10 7 Autorecovery Attempts.  
11 Unlimited Autorecovery Attempts.  
Undervoltage Automatic Fault Recovery Control.  
2
1
0
ARCV_UV  
ARCV_OT  
ARCV_OC  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Automatic Fault Recovery for Undervoltage Faul t .  
Manual Fault Recovery for Undervoltage Faul t .  
Overtemperature Automatic Fault Recovery Control.  
Automatic Fault Recovery for Overtemperature Faul t .  
Manual Fault Recovery for Overtemperature Faul t .  
Overcurrent Automatic Fault Recovery Control.  
Automatic Fault Recovery for Overcurrent Faul t .  
Manual Fault Recovery for Overcurrent Faul t .  
0
1
0
1
Rev. A| Page 39 of 41  
SSM3515  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
Figure 75 shows a typical application circuit for a single channel output.  
REG_EN  
R3 0EXTERNAL DVDD  
R4 0INTERNAL DVDD  
PVDD  
R4  
+5V (AVDD)  
+1.8V (DVDD)  
R3  
+1.8V  
PVDD  
+4.5V TO +17V  
C1  
C2  
C3  
1µF  
C6  
470µF  
2.2µF  
C4  
C5  
10µF  
0.1uF  
0.1µF  
R2  
2.2kΩ  
R1  
2.2kΩ  
VREG50/AVDD  
REG_EN  
VREG18/DVDD  
PVDD  
PVDD  
BST+  
SCL  
SDA  
2
I C  
REG  
AVDD  
REG  
DVDD  
2
I C  
OPTIONAL  
C5  
0.22µF  
FB1  
FB2  
BCLK  
FSYNC  
SDATA  
FULL  
Σ-∆  
2
TDM  
I S/TDM  
OUT+  
OUT–  
BRIDGE  
POWER  
STAGE  
2
VOLUME  
4/8Ω  
DAC  
CLASS-D  
I S  
MODULATOR  
INPUT  
C7  
220pF  
C8  
220pF  
C6  
0.22µF  
BST–  
PGND  
SSM3515  
ADDR  
AGND  
FB1/FB2: MURATA FERRITE BEAD NFZ2MSM181  
SEE THE ADDR PIN SETUP AND CONTROL SECTION  
Figure 75. Typical Application Circuit for Single Channel Output  
Rev. A| Page 40 of 41  
 
 
Data Sheet  
SSM3515  
OUTLINE DIMENSIONS  
1.840  
1.800  
1.760  
4
3
2
1
A
B
BALL A1  
IDENTIFIER  
2.240  
2.200  
2.160  
1.60 REF  
C
D
E
0.40  
BSC  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
1.20 REF  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.05  
0.300  
0.260  
0.220  
0.230  
0.200  
0.170  
SEATING  
PLANE  
Figure 76. 20-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-20-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
SSM3515CCBZ-RL  
SSM3515CCBZ-R7  
EVAL-SSM3515Z  
−40°C to +85°C  
−40°C to +85°C  
20-Ball Wafer Level Chip Scale Package [WLCSP]  
20-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-20-10  
CB-20-10  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13327-0-1/17(A)  
Rev. A| Page 41 of 41  
 
 

相关型号:

SSM3525

30 W, Filterless, Class D, Output Sensing Audio Amplifier
ADI

SSM3525BCBZRL

30 W, Filterless, Class D, Output Sensing Audio Amplifier
ADI

SSM3582

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZ

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZR7

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM3582BCPZRL

2×, 31.76 W, Digital Input, Filterless Stereo Class-D Audio Amplifier
ADI

SSM35PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM360AF

Rectifier Diode,
SURGE

SSM36PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM3J01F

High Speed Switching Applications
TOSHIBA

SSM3J01F(TE85L,F)

SSM3J01F(TE85L,F)
TOSHIBA

SSM3J01T

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type
TOSHIBA