AD7173-8 [ADI]

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC; 低功耗的8位/ 16通道, 31.25 kSPS时,24位,高集成的Σ-Δ ADC
AD7173-8
型号: AD7173-8
厂家: ADI    ADI
描述:

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
低功耗的8位/ 16通道, 31.25 kSPS时,24位,高集成的Σ-Δ ADC

文件: 总64页 (文件大小:1089K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, 8-/16-Channel, 31.25 kSPS,  
24-Bit, Highly Integrated Sigma-Delta ADC  
AD7173-8  
Data Sheet  
APPLICATIONS  
FEATURES  
Process control: PLC/DCS modules  
Voltage, current, temperature, and pressure measurement  
Flow meters  
Low power, 8-/16-channel, highly integrated multiplexed  
analog-to-digital converter (ADC)  
Integration  
Medical and scientific multichannel instrumentation  
Seismic instrumentation  
Chemical analysis instrumentation: chromatography  
Precision analog input buffers and reference input buffers  
2.5 V precision reference (3.5 ppm/°C)  
Cross point multiplexer (enable system diagnostic)  
8 full differential or 16 single-ended channels  
Clock oscillator  
GPIO and GPO pins with automatic external mux control  
Fast and flexible output rate: 1.25 SPS to 31.25 kSPS  
Channel scan data rate: 6.21 kSPS/channel (161 µs settling)  
Performance specifications  
GENERAL DESCRIPTION  
Fast settling, highly accurate, low power, 8-/16-channel,  
multiplexed ADC for low bandwidth input signals with  
integrated input buffers.  
Integrated precision, 2.5 V, low drift (3.5 ppm/°C), band gap  
reference and integrated oscillator.  
17.5 noise free bits at 31.25 kSPS  
24 noise free bits at 1.25 SPS  
INL: 3 ppm/FSR  
Eight flexible setups with configurability for output data rate,  
digital filter mode, offset/gain error correction, reference  
selection, buffer enables and more.  
85 dB rejection of 50 Hz and 60 Hz with 50 ms settling  
Operates with either 3.3 V or5 V supply  
Single supply  
3.3 V or 5 V AVDD1, 2 V to 5 V AVDD2, and 2 V to 5 V IOVDD  
Optional split supply  
Sinc5 + sinc1 filter maximizes channel scan rate, and sinc3 filter  
maximizes resolution and enhanced 50 Hz/60 Hz rejection,  
with four selectable options to maximize rejection.  
Integrated diagnostic features, including CRC, register checksum,  
temperature sensor, crosspoint multiplexer, burnout currents,  
and GPIOs/GPOs.  
AVDD1 and AVSS 2.5 V or AVDD1 and AVSS 1.65 V  
Current: 1.4 mA  
3-/4-wire serial digital interface (Schmitt trigger on SCLK)  
CRC error checking  
SPI, QSPI, MICROWIRE, and DSP compatible  
Package: 40-lead 6 mm × 6 mm LFCSP  
Temperature range: −40°C to +105°C  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1 AVDD2 REGCAPA  
REF– REF+ REFOUT  
IOVDD REGCAPD  
BUFFERED  
1.8V  
LDO  
1.8V  
LDO  
PRECISION  
REFERENCE  
REFERENCE  
CROSSPOINT  
MULTIPLEXER  
INPUT  
BUFFERS  
INT  
REF  
AIN0/REF2–  
AIN1/REF2+  
AVDD  
ANALOG  
INPUT  
BUFFERS  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND CONTROL  
DIGITAL  
FILTER  
Σ-Δ ADC  
DOUT/RDY  
SYNC  
ERROR  
AIN15  
AIN16  
XTAL AND INTERNAL  
CLOCK OSCILLATOR  
CIRCUITRY  
AVSS  
I/O CONTROL  
AD7173-8  
TEMPERATURE  
SENSOR  
AVSS  
PDSW  
GPIO0 GPIO1 GPIO2 GPIO3  
XTAL1 XTAL2/CLKIO  
DGND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD7173-8  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Diagnostics...................................................................................... 42  
General-Purpose I/O ................................................................. 42  
16-Bit/24-Bit Conversions......................................................... 42  
Serial Interface Reset (DOUT_RESET) .................................. 42  
Synchronization.......................................................................... 42  
Error Flags................................................................................... 43  
DATA_STAT ............................................................................... 43  
IOSTRENGTH Bit ..................................................................... 43  
Grounding and Layout .................................................................. 44  
Register Summary .......................................................................... 45  
Register Details ............................................................................... 47  
Communications Register......................................................... 47  
Status Register............................................................................. 49  
ADC Mode Register................................................................... 50  
Interface Mode Register ............................................................ 51  
Register Check............................................................................ 52  
Data Register............................................................................... 52  
GPIO Configuration Register................................................... 53  
ID Register................................................................................... 54  
Channel Register 0 ..................................................................... 54  
Channel Register 1 to Channel Register 15 ............................ 56  
Setup Configuration Register 0 ................................................ 57  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Noise Performance and Resolution.............................................. 17  
Getting Started................................................................................ 18  
Power Supplies ............................................................................ 19  
Digital Communication............................................................. 19  
Configuration Overview ........................................................... 21  
Circuit Description......................................................................... 26  
Analog Input ............................................................................... 26  
Reference Options ...................................................................... 28  
Clock Source ............................................................................... 28  
Digital Filters................................................................................... 30  
Sinc5 + Sinc1 Filter..................................................................... 30  
Sinc3 Filter................................................................................... 31  
Single Cycle Settling................................................................... 32  
Enhanced 50 Hz and 60 Hz Rejection Filters......................... 32  
Operating Modes............................................................................ 35  
Continuous Conversion Mode ................................................. 35  
Continuous Read Mode............................................................. 36  
Single Conversion Mode ........................................................... 37  
Standby and Power-Down Modes............................................ 38  
Calibration Modes...................................................................... 38  
Digital Interface .............................................................................. 39  
Checksum Protection................................................................. 39  
CRC Calculation......................................................................... 40  
Setup Configuration Register 1 to Setup Configuration  
Register 7 ..................................................................................... 58  
Filter Configuration Register 0................................................. 59  
Filter Configuration Register 1 to Filter Configuration  
Register 7 ..................................................................................... 60  
Offset Register 0 ......................................................................... 61  
Offset Register 1 to Offset Register 7....................................... 61  
Gain Register 0............................................................................ 61  
Gain Register 1 to Gain Register 7........................................... 61  
Outline Dimensions....................................................................... 62  
Ordering Guide .......................................................................... 62  
REVISION HISTORY  
10/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 64  
 
Data Sheet  
AD7173-8  
SPECIFICATIONS  
AVDD1 = 3.0 V to 5.5 V, AVDD2 = 2 V to 5.5 V, IOVDD = 2 V to 5.5 V, AVSS = DGND = 0 V, REF+ = 2.5 V, REF− = AVSS,  
internal master clock = 2 MHz, TA = TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC SPEED AND PERFORMANCE  
Output Data Rate (ODR)  
No Missing Codes1  
Resolution  
1.25  
24  
31250  
SPS  
Bits  
Excluding sinc3 filter at 31.25 kSPS  
See Table 6  
Noise  
See Table 6  
Noise Free Resolution  
Sinc5 + sinc1 filter (default)  
31.25 kSPS, REF+ = 5 V  
2.6 kSPS, REF+ = 5 V  
1.25 SPS, REF+ = 5 V  
17.5  
18.4  
24  
Bits  
Bits  
Bits  
ACCURACY  
Integral Nonlinearity (INL)  
2.5 V reference  
5 V reference  
Internal short  
Internal short  
3
5
7.5  
ppm/FSR  
ppm/FSR  
µV  
Offset Error2  
Offset Drift  
Offset Drift vs. Time3  
Gain Error2  
Gain Drift vs. Temperature1  
Gain Drift vs. Time3  
40  
350  
450  
10  
0.5  
3
nV/°C  
nV/1000 hrs  
ppm/FSR  
ppm/FSR/°C  
ppm/FSR/  
1000 hrs  
25°C, AVDD1 = 5 V  
50  
1
REJECTION  
Power Supply Rejection  
Common-Mode Rejection  
At DC  
AVDD1 and AVDD2, VIN = 1 V  
VIN = 0.1 V  
90  
dB  
95  
120  
dB  
dB  
At 50 Hz and 60 Hz1  
20 SPS ODR (post filter); 50 Hz 1 Hz and  
60 Hz 1 Hz  
50 Hz 1 Hz and 60 Hz 1 Hz  
Normal Mode Rejection1  
Internal clock, 20 SPS ODR (post filter)  
External clock, 20 SPS ODR (post filter)  
71  
85  
90  
90  
dB  
dB  
ANALOG INPUTS  
Differential Input Voltage Range  
Absolute AIN Voltage Limits1  
Buffers Disabled  
VREF  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1 − 1.1  
V
V
Buffers Enabled  
Analog Input Current  
Buffers Enabled  
Single cycle settling enabled (default)  
Input Current  
2
nA  
Input Current Drift  
Buffers Disabled  
25  
pA/°C  
Input Current  
6
µA/V  
Input Current Drift  
External clock  
Internal clock ( 2.5% clock)  
1 kHz input  
0.1  
0.5  
−120  
nA/V/°C  
nA/V/°C  
dB  
Crosstalk  
INTERNAL REFERENCE  
Output Voltage  
100 nF external capacitor on REFOUT to AVSS  
REFOUT with respect to AVSS  
TA = 25°C4  
2.5  
V
Initial Accuracy1  
−0.1  
−10  
+0.1  
% of V  
Temperature Coefficient  
0°C to +105°C  
−40°C to +105°C  
3.5  
3.5  
8
10  
+10  
ppm/°C  
ppm/°C  
mA  
Reference Load Current, ILOAD  
IL  
Rev. 0 | Page 3 of 64  
 
AD7173-8  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Power Supply Rejection  
(Line Regulation)  
AVDD1 and AVDD2  
90  
dB  
Load Regulation  
Voltage Noise  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability3  
Short Circuit  
∆VOUT/∆IL  
eN, 0.1 Hz to 10 Hz  
eN, 1 kHz  
100 nF capacitor  
1000 hours  
ISC  
140  
6.5  
215  
60  
460  
25  
ppm/mA  
µV rms  
nV/√Hz  
µs  
ppm  
mA  
EXTERNAL REFERENCE  
Reference Input Voltage  
Reference input = (REF+) − (REF−)  
1
2.5  
AVDD1  
V
Absolute Reference Input Voltage  
Limits1  
Buffers Disabled  
Buffers Enabled  
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
Average Reference Input Current  
Buffers Disabled  
Buffers Enabled  
9
50  
µA/V  
nA  
Average Reference Input Current Drift Buffers disabled  
External clock  
Internal clock  
5
6
nA/V/°C  
nA/V/°C  
Normal Mode Rejection1  
Common-Mode Rejection  
TEMPERATURE SENSOR  
Accuracy  
See the Rejection parameter  
83  
dB  
After user calibration at 25°C  
2
°C  
Sensitivity  
477  
µV/°C  
BURNOUT CURRENTS  
Source/Sink Current  
BRIDGE POWER-DOWN SWITCH  
RON  
Analog input buffers must be enabled  
10  
24  
µA  
Ω
Allowable Currents  
16  
mA  
GENERAL-PURPOSE I/O (GPIO0, GPIO1,  
GPO2, GPO3)  
With respect to AVSS  
Input Mode Leakage Current1  
Floating State Output Capacitance  
AVDD1 − AVSS = 5 V  
−10  
+10  
µA  
pF  
5
1
Output High Voltage, VOH  
ISOURCE = 200 µA  
ISINK = 800 µA  
AVSS + 4  
AVSS + 3  
V
V
V
V
1
Output Low Voltage, VOL  
AVSS + 0.4  
AVSS + 0.7  
1
Input High Voltage, VIH  
1
Input Low Voltage, VIL  
AVDD1 − AVSS = 3.3 V  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Input High Voltage, VIH  
1
ISOURCE = 200 µA  
ISINK = 800 µA  
AVSS + 2.7  
AVSS + 2  
V
V
V
V
1
AVSS + 0.27  
AVSS + 0.45  
1
1
Input Low Voltage, VIL  
CLOCK  
Internal Clock  
Frequency  
Accuracy  
2
MHz  
%
−2.5  
+2.5  
0.4  
Duty Cycle  
50:50  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Crystal  
V
V
0.8 × IOVDD  
14  
Frequency  
16  
10  
2
16.384  
MHz  
µs  
MHz  
Start-Up Time  
External Clock (CLKIO)  
Duty Cycle1  
2.048  
70:30  
Typical duty cycle 50:50 (maximum:minimum)  
Rev. 0 | Page 4 of 64  
30:70  
50:50  
Data Sheet  
AD7173-8  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
Input High Voltage, VINH  
1
2 V ≤ IOVDD ≤ 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
2 V ≤ IOVDD ≤ 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
IOVDD > 2.7 V  
0.65 × IOVDD  
0.7 × IOVDD  
V
V
V
V
V
V
µA  
1
Input Low Voltage, VINL  
0.35 × IOVDD  
0.7  
0.25  
0.2  
+10  
Hysteresis1  
0.08  
0.04  
−10  
IOVDD < 2.7 V  
Leakage Currents  
LOGIC OUTPUT (DOUT/RDY)  
1
Output High Voltage, VOH  
IOVDD ≥ 4.5 V, ISOURCE = 1 mA  
2.7 V ≤ IOVDD < 4.5 V, ISOURCE = 500 μA  
IOVDD < 2.7 V, ISOURCE = 200 μA  
IOVDD ≥ 4.5 V, ISINK = 2 mA  
2.7 V ≤ IOVDD < 4.5 V, ISINK = 1 mA  
IOVDD < 2.7 V, ISINK = 400 μA  
Floating state  
0.8 × IOVDD  
0.8 × IOVDD  
0.8 × IOVDD  
V
V
V
V
V
V
µA  
pF  
1
Output Low Voltage, VOL  
0.4  
0.4  
0.4  
+10  
Leakage Current  
Output Capacitance  
SYSTEM CALIBRATION1  
Full-Scale Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
−10  
Floating state  
10  
1.05 × FS  
2.1 × FS  
V
V
V
−1.05 × FS  
0.8 × FS  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 − AVSS  
3.0  
2
−2.75  
2
5.5  
5.5  
0
5.5  
6.35  
V
V
V
V
V
AVDD2 − AVSS  
AVSS − DGND  
IOVDD − DGND  
IOVDD − AVSS  
For AVSS < DGND  
POWER SUPPLY CURRENTS  
Full Operating Mode  
AVDD1 Current  
All outputs unloaded  
AVDD1 = 5 V Typical,  
5.5 V Maximum  
AIN and REF buffers disabled; external  
reference  
AIN and REF buffers disabled; internal  
reference  
AIN and REF buffers enabled; external  
reference  
Each enabled buffered pair: AIN+, AIN− and  
REF+, REF−  
AIN and REF buffers disabled; external  
reference  
AIN and REF buffers disabled; internal  
reference  
AIN and REF buffers enabled; external  
reference  
Each enabled buffered pair: AIN+, AIN− and  
REF+, REF−  
0.23  
0.42  
2.12  
0.945  
0.16  
0.34  
1.9  
0.27  
0.49  
2.71  
1.22  
0.19  
0.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
AVDD1 = 3.3 V Typical,  
3.6 V Maximum1  
2.45  
1.13  
0.87  
AVDD2 Current  
IOVDD Current  
External reference  
Internal reference  
External clock  
Internal clock  
External crystal  
1
1.15  
1.4  
0.39  
0.76  
mA  
mA  
mA  
mA  
mA  
1.25  
0.24  
0.52  
0.9  
Standby Mode  
Standby (LDO on)  
Reference off, total current consumption  
Reference on, total current consumption  
Full power-down, LDO, REF  
25  
400  
2
µA  
µA  
µA  
Power-Down Mode  
10  
Rev. 0 | Page 5 of 64  
AD7173-8  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER DISSIPATION  
Full Operating Mode  
Unbuffered, external clock and reference;  
AVDD1 = 3.3 V, AVDD2 = 2 V, IOVDD = 2 V  
Unbuffered, external clock and reference;  
all supplies = 5 V  
Unbuffered, external clock and reference;  
all supplies = 5.5 V  
Fully buffered, internal clock and reference  
(note that REFOUT has no load); AVDD1 = 3.3 V,  
AVDD2 = 2 V, IOVDD = 2 V  
Fully buffered, internal clock and reference  
(note that REFOUT has no load); all supplies =  
5 V  
Fully buffered, internal clock and reference  
(note that REFOUT has no load); all supplies =  
5.5 V  
Reference off, all supplies = 5 V  
Reference on, all supplies = 5 V  
Full power-down, all supplies = 5 V  
Full power-down, all supplies = 5.5 V  
mW  
mW  
mW  
mW  
3
7.35  
9.96  
10.4  
20.4  
mW  
mW  
28  
55  
Standby Mode  
125  
2
10  
µW  
mW  
µW  
µW  
Power-Down Mode  
1 Specification is not production tested but is supported by characterization data at the initial product release.  
2 Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale  
calibration reduces the gain error to the order of the noise for the programmed output data rate.  
3 This specification is noncumulative and includes MSL preconditioning effects.  
4 This specification includes MSL preconditioning effects.  
Rev. 0 | Page 6 of 64  
 
Data Sheet  
AD7173-8  
TIMING CHARACTERISTICS  
IOVDD = 2 V to 5.5 V, DGND = 0 V, Input Logic 0 = 0 V, Input Logic 1 = IOVDD, CLOAD = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Test Conditions/Comments1, 2  
SCLK PULSE WIDTH  
t3  
t4  
25  
25  
ns min  
ns min  
SCLK high pulse width  
SCLK low pulse width  
READ OPERATION  
t1  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns max  
ns min  
ns min  
CS falling edge to DOUT/RDY active time  
IOVDD = 4.5 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
SCLK active edge to data valid delay4  
IOVDD = 4.5 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
Bus relinquish time after CS inactive edge  
15  
40  
0
12  
25  
2.5  
20  
0
3
t2  
5
t5  
t6  
t7  
SCLK inactive edge to CS inactive edge  
10  
SCLK inactive edge to DOUT/RDY high/low  
WRITE OPERATION  
t8  
0
8
8
5
ns min  
ns min  
ns min  
ns min  
CS falling edge to SCLK active edge setup time4  
Data valid to SCLK edge setup time  
Data valid to SCLK edge hold time  
CS rising edge to SCLK edge hold time  
t9  
t10  
t11  
1 Sample tested during initial release to ensure compliance.  
2 See Figure 2 and Figure 3.  
3 The time required for the output to cross the VOL or VOH limits.  
4 The SCLK active edge is the falling edge of SCLK.  
5 RDY  
RDY  
returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while  
is high. It is important to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is enabled, the digital word can be  
read only once.  
Timing Diagrams  
CS (I)  
t6  
t1  
t5  
MSB  
LSB  
t7  
DOUT/RDY (O)  
t2  
t3  
SCLK (I)  
t4  
I = INPUT, O = OUTPUT  
Figure 2. Read Cycle Timing Diagram  
CS (I)  
t11  
t8  
SCLK (I)  
DIN (I)  
t9  
t10  
MSB  
LSB  
I = INPUT, O = OUTPUT  
Figure 3. Write Cycle Timing Diagram  
Rev. 0 | Page 7 of 64  
 
 
 
 
 
 
AD7173-8  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for a device soldered on a JEDEC test board for  
surface-mount packages. The values listed in Table 4 are based  
on simulated data.  
Table 3.  
Parameter  
Rating  
AVDD1, AVDD2 to AVSS  
AVDD1 to DGND  
0.3 V to +6.5 V  
0.3 V to +6.5 V  
0.3 V to +6.5 V  
0.3 V to +7.5 V  
3.25 V to +0.3 V  
0.3 V to AVDD1 + 0.3 V  
0.3 V to AVDD1 + 0.3 V  
0.3 V to IOVDD + 0.3 V  
0.3 V to IOVDD + 0.3 V  
10 mA  
Table 4. Thermal Resistance  
IOVDD to DGND  
Package Type  
θJA  
Unit  
IOVDD to AVSS  
40-Lead, 6 mm × 6 mm LFCSP  
1-Layer JEDEC Board  
4-Layer JEDEC Board  
114  
54  
34  
°C/W  
°C/W  
°C/W  
AVSS to DGND  
Analog Input Voltage to AVSS  
Reference Input Voltage to AVSS  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
4-Layer JEDEC Board with 16 Thermal Vias  
ESD CAUTION  
AIN[16:0] or Digital Input Current  
Operating Temperature Range  
40°C to +105°C  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Soldering, Reflow Temperature  
ESD Rating (HBM)  
65°C to +150°C  
150°C  
260°C  
4 kV  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 8 of 64  
 
 
 
 
Data Sheet  
AD7173-8  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AIN16  
AIN0/REF2–  
AIN1/REF2+  
AIN2  
1
2
3
4
5
6
7
8
9
30 AIN8  
29 AIN7  
28 AIN6  
27 AIN5  
AD7173-8  
TOP VIEW  
(Not to Scale)  
AIN3  
26 AIN4  
REFOUT  
REGCAPA  
AVSS  
25 GPO2  
24 GPIO1  
23 GPIO0  
22 REGCAPD  
21 DGND  
AVDD1  
AVDD2 10  
NOTES  
1. THE EXPOSED PAD SHOULD BE SOLDERED TO A SIMILAR PAD ON THE PCB  
UNDER THE EXPOSED PAD TO CONFER MECHANICAL STRENGTH AND FOR  
HEAT DISSIPATION. THE EXPOSED PAD MUST BE CONNECTED TO AVSS  
THROUGH THIS PAD ON THE PCB.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
No. Mnemonic  
Type1 Description  
1
2
AIN16  
AIN0/REF2−  
AI  
AI  
Analog Input 16. Selectable through cross point mux.  
Analog Input 0 (AIN0)/Reference 2, Negative Input (REF2−). An external reference can be applied between  
REF2+ and REF2−. REF2− can span from AVSS to AVDD1 − 1 V. Analog Input 0 is selectable through cross  
point mux. Reference 2 can be selected through the REFSEL bits in the setup configuration register.  
3
AIN1/REF2+  
AI  
Analog Input 1 (AIN0)/Reference 2, Positive Input (REF2+). An external reference can be applied between  
REF2+ and REF2−. REF2+ can span from AVDD1to AVSS + 1 V. Analog Input 1 is selectable through cross  
point mux. Reference 2 can be selected through the REFSEL bits in the setup configuration register.  
4
AIN2  
AI  
Analog Input 2. Selectable through cross point mux.  
5
AIN3  
AI  
Analog Input 3. Selectable through cross point mux.  
6
7
8
9
10  
11  
12  
13  
REFOUT  
REGCAPA  
AVSS  
AVDD1  
AVDD2  
PDSW  
AO  
AO  
P
P
P
AO  
AI  
AI/DI  
Buffered Output of Internal Reference. The output is 2.5 V with respect to AVSS.  
Analog LDO Regulator Output. Decouple this pin to AVSS using a 1 µF capacitor.  
Negative Analog Supply. This supply ranges from 0 V to −2.75 V and is nominally set to 0 V.  
Analog Supply Voltage 1. This voltage ranges from 3.0 V minimum to 5.5 V maximum with respect to AVSS.  
Analog Supply Voltage 2. This voltage ranges from 2 V to AVDD1 with respect to AVSS.  
Power-Down Switch Connected to AVSS. This pin is controlled by the PDSW bit in the GPIOCON register.  
Input 1 for Crystal.  
XTAL1  
XTAL2/CLKIO  
Input 2 for Crystal (XTAL2)/Clock Input or Output (CLKIO). See the CLOCKSEL bit settings in the ADCMODE  
register (Table 25) for more information.  
14  
DOUT/RDY  
DO  
Serial Data Output (DOUT)/Data Ready Output (RDY). This pin serves a dual purpose. It functions as a serial  
data output pin to access the output shift register of the ADC. The output shift register can contain data  
from any of the on-chip data or control registers. The data-word/control word information is placed on the  
DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. When CS is high, the DOUT/RDY  
output is tristated. When CS is low, and a register is not being read, DOUT/RDY operates as a data ready  
pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the  
pin goes high before the next update occurs. The DOUT/RDY falling edge can be used as an interrupt to  
a processor, indicating that valid data is available.  
Rev. 0 | Page 9 of 64  
 
AD7173-8  
Data Sheet  
Pin  
No. Mnemonic  
Type1 Description  
15  
DIN  
DI  
Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the  
control registers in the ADC, with the register address (RA) bits of the communications register identifying  
the appropriate register. Data is clocked in on the rising edge of SCLK.  
16  
17  
SCLK  
CS  
DI  
DI  
Serial Clock Input. This serial clock input is for data transfers to and from the ADC. SCLK has a Schmitt  
trigger input, making the interface suitable for opto-isolated applications.  
Chip Select Input. This is an active low logic input used to select the ADC. CS can be used to select the ADC  
in systems with more than one device on the serial bus. CS can be hardwired low, allowing the ADC to operate  
in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device. When CS is high, the  
DOUT/RDY output is tristated.  
18  
ERROR  
DI/O  
This pin can be used in one of the following three modes:  
Active low error input mode. This mode sets the ADC_ERROR bit in the STATUS register.  
Active low, open-drain error output mode. The STATUS register error bits are mapped to the ERROR pin.  
The ERROR pins of multiple devices can be wired together to a common pull-up resistor so that an error on  
any device can be observed.  
General-purpose output mode. The status of the pin is controlled by the ERR_DAT bit in the GPIOCON register.  
The pin is referenced between IOVDD and DGND, as opposed to the AVDD1 and AVSS levels used by the  
GPIO1 and GPIO2 pins. The ERROR pin has an active pull-up in this case.  
19  
20  
SYNC  
DI  
P
Synchronization Input. Allows synchronization of the digital filters and analog modulators when using  
multiple AD7173-8 devices.  
Digital I/O Supply Voltage. IOVDD voltage ranges from 2 V to 5 V. IOVDDis independent of AVDD1 and  
AVDD2. For example, IOVDDcan be operated at 3.3 V when AVDD1 or AVDD2equals 5 V, or vice versa. If  
AVSS is set to −2.5 V, the voltage on IOVDD must not exceed 3.6 V.  
IOVDD  
21  
22  
DGND  
REGCAPD  
P
AO  
Digital Ground.  
Digital LDO Regulator Output. This pin is for decoupling purposes only. Decouple this pin to DGND using  
a 1 µF capacitor.  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
GPIO0  
GPIO1  
GPO2  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
GPO3  
REF−  
DI/O  
DI/O  
DO  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
DO  
AI  
General-Purpose Input/Output. Logic input/output on this this pin is referred to the AVDD1 and AVSS supplies.  
General-Purpose Input/Output. Logic input/output on this this pin is referred to the AVDD1 and AVSS supplies.  
General-Purpose Output. Logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
Analog Input 4. Selectable through cross point mux.  
Analog Input 5. Selectable through cross point mux.  
Analog Input 6. Selectable through cross point mux.  
Analog Input 7. Selectable through cross point mux.  
Analog Input 8. Selectable through cross point mux.  
Analog Input 9. Selectable through cross point mux.  
Analog Input 10. Selectable through cross point mux.  
Analog Input 11. Selectable through cross point mux.  
Analog Input 12. Selectable through cross point mux.  
Analog Input 13. Selectable through cross point mux.  
Analog Input 14. Selectable through cross point mux.  
Analog Input 15. Selectable through cross point mux.  
General-Purpose Output. Logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
Reference 1 Input Negative Terminal. REF− can span from AVSS to AVDD1 − 1 V. Reference 1 can be  
selected through the REFSEL bits in the SETUP CONFIGURATION register.  
40  
REF+  
EP  
AI  
P
Reference 1 Input Positive Terminal. An external reference can be applied between REF+ and REF−. REF+  
can span from AVDD1to AVSS + 1 V. Reference 1 can be selected through the REFSEL bits in the SETUP  
CONFIGURATION register.  
Exposed Pad. The exposed pad should be soldered to a similar pad on the PCB under the exposed paddle  
to confer mechanical strength to the package and for heat dissipation. The exposed pad must be connected  
to AVSS through this pad on the PCB.  
1 AI = analog input, AO = analog output, DI/O = bidirectional digital input/output, DO = digital output, DI = digital input, P = power supply.  
Rev. 0 | Page 10 of 64  
 
Data Sheet  
AD7173-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 5 V, AVDD2 = 5 V, IOVDD = 3.3 V, unless otherwise noted.  
8388539  
700  
600  
500  
400  
300  
200  
100  
0
8388538  
8388537  
8388536  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE  
8388536  
8388537  
8388538  
8388539  
ADC CODE  
Figure 8. Noise Distribution Histogram  
Figure 5. Noise  
(Output Data Rate = 1.25 SPS, Analog Input Buffers Disabled))  
(Output Data Rate = 1.25 SPS, Analog Input Buffers Disabled)  
8388551  
600  
500  
400  
300  
200  
100  
0
8388550  
8388549  
8388548  
8388548  
8388549  
8388550  
8388551  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE  
ADC CODE  
Figure 6. Noise  
Figure 9. Noise Distribution Histogram  
(Output Data Rate = 1.25 SPS, Analog Input Buffers Enabled)  
(Output Data Rate = 1.25 SPS, Analog Input Buffers Enabled)  
8388580  
60  
8388570  
8388560  
8388550  
8388540  
8388530  
8388520  
8388510  
8388500  
8388490  
50  
40  
30  
20  
10  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE  
ADC CODE  
Figure 7. Noise  
Figure 10. Noise Distribution Histogram  
(Output Data Rate = 10 kSPS, Analog Input Buffers Disabled)  
(Output Data Rate = 10 kSPS, Analog Input Buffers Disabled))  
Rev. 0 | Page 11 of 64  
 
AD7173-8  
Data Sheet  
8388610  
8388600  
8388590  
8388580  
8388570  
8388560  
8388550  
8388540  
8388530  
8388520  
8388510  
8388500  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 14. Noise Distribution Histogram  
(Output Data Rate = 10 kSPS, Analog Input Buffers Enabled))  
Figure 11. Noise  
(Output Data Rate = 10 kSPS, Analog Input Buffers Enabled)  
45  
40  
35  
30  
25  
20  
15  
10  
5
8388580  
8388570  
8388560  
8388550  
8388540  
8388530  
8388520  
8388510  
8388500  
8388490  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 12. Noise  
Figure 15. Noise Distribution Histogram  
(Output Data Rate = 31.25 kSPS, Analog Input Buffers Disabled)  
(Output Data Rate = 31.25 kSPS, Analog Input Buffers Disabled)  
40  
35  
30  
25  
20  
15  
10  
5
8388620  
8388600  
8388580  
8388560  
8388540  
8388520  
8388500  
8388480  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 13. Noise  
Figure 16. Noise Distribution Histogram  
(Output Data Rate = 31.25 kSPS, Analog Input Buffers Enabled)  
(Output Data Rate = 31.25 kSPS, Analog Input Buffers Enabled)  
Rev. 0 | Page 12 of 64  
Data Sheet  
AD7173-8  
14  
12  
10  
8
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
6
BUFFER ON, DEVICE 1  
BUFFER OFF, DEVICE 1  
BUFFER ON, DEVICE 2  
BUFFER OFF, DEVICE 2  
BUFFER ON, DEVICE 3  
BUFFER OFF, DEVICE 3  
4
2
0
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
(V)  
FREQUENCY (kHz)  
CM  
Figure 20. ADC Output FFT; 1 kHz Input Tone, −6 dBFS Input FFT  
(Output Data Rate = 10 kSPS, External Reference,  
External Clock, Buffers Enabled)  
Figure 17. RMS Noise vs. Common-Mode Input Voltage  
0
–20  
20  
18  
16  
14  
12  
10  
8
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
6
4
2
0
0
2
4
6
8
10  
12  
14  
0
5
10  
15  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
Figure 21. ADC Output FFT; 1 kHz Input Tone, −0.5 dBFS Input FFT  
(Output Data Rate = 31.25 kSPS, External Reference,  
External Clock, Buffers Enabled)  
Figure 18. RMS Noise vs. Master Clock Frequency  
(Output Data Rate = 31.25 kSPS, Analog Input Buffers Enabled)  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
0
2
4
6
8
10  
12  
14  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 22. ADC Output FFT; 1 kHz Input Tone, −6 dBFS Input FFT  
(Output Data Rate = 31.25 kSPS, External Reference,  
External Clock, Buffers Enabled)  
Figure 19. ADC Output FFT; 1 kHz Input Tone, −0.5 dBFS Input FFT  
(Output Data Rate = 10 kSPS, External Reference,  
External Clock, Buffers Enabled)  
Rev. 0 | Page 13 of 64  
AD7173-8  
Data Sheet  
1.0  
0
–20  
UNIT 1 BUFFERS OFF  
UNIT 1 BUFFERS ON  
UNIT 2 BUFFERS OFF  
UNIT 2 BUFFERS ON  
UNIT 3 BUFFERS OFF  
UNIT 3 BUFFERS ON  
0.5  
0
–40  
FROM POWER-DOWN  
–60  
–80  
FROM STANDBY – REFERENCE OFF  
–100  
–120  
–140  
–0.5  
–1.0  
0
50k  
100k  
150k  
200k  
0.00001  
0.0001  
0.001  
0.01  
0.1  
FREQUENCY (Hz)  
TIME (Seconds)  
Figure 23. Internal Reference Settling Time  
Figure 26. Common-Mode Rejection Ratio vs. Frequency  
(Output Data Rate = 31.25 kSPS)  
0.10  
0.05  
0
–20  
UNIT 1 BUFFERS OFF  
UNIT 1 BUFFERS ON  
UNIT 2 BUFFERS OFF  
UNIT 2 BUFFERS ON  
–40  
–60  
0
–0.05  
–0.10  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME (Seconds)  
FREQUENCY (Hz)  
Figure 24. Internal Reference Settling Time (Extended)  
Figure 27. Power Supply Rejection Ratio vs. Frequency  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
UNIT 1 BUFFERS OFF  
UNIT 1 BUFFERS ON  
UNIT 2 BUFFERS ON  
UNIT 3 BUFFERS ON  
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (Hz)  
Figure 25. Common-Mode Rejection Ratio (10 Hz to 70 Hz) vs. Frequency  
(20 SPS Enhanced Filter)  
Rev. 0 | Page 14 of 64  
Data Sheet  
AD7173-8  
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
BUFFER ON, DEVICE 1  
BUFFER OFF, DEVICE 1  
BUFFER ON, DEVICE 2  
BUFFER OFF, DEVICE 2  
BUFFER ON, DEVICE 3  
BUFFER OFF, DEVICE 3  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFERENCE VOLTAGE (V)  
Figure 28. Integral Nonlinearity (INL) Error vs. Reference Voltage  
(Differential Input, External Reference)  
Figure 31. Integral Nonlinearity (INL) Error vs. Temperature  
(Differential Input, VREF = 2.5 V)  
30  
25  
20  
15  
10  
5
16.02  
16.00  
15.98  
15.96  
15.94  
15.92  
15.90  
15.88  
15.86  
15.84  
15.82  
DEVICE 1  
DEVICE 2  
DEVICE 3  
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
–40  
–20  
0
20  
40  
60  
80  
100  
INL ERROR (ppm)  
TEMPERATURE (°C)  
Figure 29. Integral Nonlinearity (INL) Distribution Histogram  
(Differential Input, VREF = 2.5 V External)  
Figure 32. Internal Oscillator Frequency vs. Temperature  
2.5010  
25  
20  
15  
10  
5
2.5008  
2.5006  
2.5004  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
DEVICE 1  
DEVICE 2  
DEVICE 3  
0
2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
INL ERROR (ppm)  
Figure 30. Integral Nonlinearity (INL) Distribution Histogram  
(Differential Input, VREF = 5 V External)  
Figure 33. Internal Reference Voltage vs. Temperature  
Rev. 0 | Page 15 of 64  
AD7173-8  
Data Sheet  
16  
14  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
6
4
2
0
–48 –46 –44 –42 –40 –38 –36 –34 –32 –30 –28 –26  
–22 –20 –18  
–24  
VOLTAGE (µV)  
GAIN ERROR DRIFT (ppm/°C)  
Figure 34. Offset Error Distribution Histogram  
(Internal Short)  
Figure 37. Gain Error Drift Distribution Histogram  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
DEVICE 1  
DEVICE 2  
DEVICE 3  
250  
300  
350  
400  
450  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
OFFSET DRIFT (nV/°C)  
Figure 35. Offset Error Drift Distribution Histogram  
(Internal Short)  
Figure 38. Current Consumption vs. Temperature  
(Continuous Conversion Mode, Buffers Enabled,  
Internal Reference, Internal Clock)  
35  
30  
25  
20  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DEVICE 1  
DEVICE 2  
DEVICE 3  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
GAIN ERROR (ppm)  
Figure 39. Current Consumption vs. Temperature  
(Power-Down Mode)  
Figure 36. Gain Error Distribution Histogram  
Rev. 0 | Page 16 of 64  
Data Sheet  
AD7173-8  
NOISE PERFORMANCE AND RESOLUTION  
Table 6 shows the rms noise, peak-to-peak noise, effective  
resolution, and the noise free (peak-to-peak) resolution of the  
AD7173-8 for various output data rates and filters. The values  
listed are for the bipolar input range with an external 5 V  
reference.  
on a single channel. It is important to note that the peak-to-  
peak resolution is calculated based on the peak-to-peak noise.  
The peak-to-peak resolution represents the resolution for which  
there is no code flicker. Using the sinc3 filter at the fastest rate  
results in the noise being quantization limited. This limitation  
degrades the noise specification at this rate and does not give a  
result of 24 bits, no missing codes.  
These values are typical and are generated with a differential  
input voltage of 0 V when the ADC is continuously converting  
Table 6. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate using Sinc5 + Sinc1 Filter (Default)1  
Sinc5 + Sinc1 Filter (Default)  
Peak-to-Peak  
Noise (µV rms)  
Peak-to-Peak  
Resolution (Bits)  
Output Data Rate (SPS) RMS Noise (µV rms)  
Effective Resolution (Bits)  
31,250  
5208  
1007  
381  
100.5  
20.01  
5
8.0  
4.5  
2.2  
1.3  
0.71  
0.32  
0.15  
0.07  
20.2  
21.1  
22.2  
22.9  
23.8  
24  
67  
30  
15  
8.9  
5.1  
1.7  
0.75  
0.32  
17.5  
18.3  
19.3  
20.1  
21  
22.2  
23.4  
24  
24  
24  
1.25  
1 Selected rates only; 1000 samples.  
Table 7. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate using Sinc3 Filter1  
Sinc3 Filter  
Peak-to-Peak  
Noise (µV rms)  
Peak-to-Peak  
Resolution (Bits)  
Output Data Rate (SPS) RMS Noise (µV rms)  
Effective Resolution (Bits)  
31,250  
5208  
1008  
400.6  
100.5  
20.01  
5
210  
3.6  
1.5  
15.5  
21.4  
22.7  
23.3  
24  
24  
24  
24  
1665  
28  
12  
6.6  
3.5  
1.2  
0.56  
0.27  
12.8  
18.7  
19.9  
20.5  
21.4  
22.4  
23.4  
24  
1
0.55  
0.25  
0.11  
0.07  
1.25  
1 Selected rates only; 1000 samples.  
Rev. 0 | Page 17 of 64  
 
 
 
AD7173-8  
GETTING STARTED  
The AD7173-8 offers the user a fast settling, high resolution,  
multiplexed ADC with high levels of configurability.  
The AD7173-8 includes a precision 2.5 V low drift (3.5 ppm/°C)  
band gap internal reference. This reference can be selected to  
be used for the ADC conversions, reducing the external com-  
ponent count. When enabled, the internal reference is output to  
the REFOUT pin and can be used as a low noise biasing voltage  
for the external circuitry. An example of this is using the REFOUT  
signal to set the input common mode for an external single-ended  
to differential amplifier.  
Eight fully differential or 16 single-ended analog inputs.  
Cross point mux. Selects any analog input combination as a  
pairing to be converted. The signals are routed to the input  
buffers and onto the modulator positive or negative input.  
ADC input. Selectable as a fully differential input or as  
a single-ended input.  
Per setup configurability. Up to eight different setups can  
be defined. A separate setup can be mapped to each of the  
channels. Each setup allows the user to configure the  
following:  
The AD7173-8 includes two separate linear regulator blocks for  
both the analog and digital circuitry. The analog LDO regulates  
the AVDD2 supply to 1.8 V, supplying the ADC core. The user  
can tie the AVDD1 and AVDD2 supplies together for easiest  
connection. If a clean analog supply rail is in the system in the  
range of 2 V to 5.5 V (minimum to maximum), the user can  
also choose to connect this supply rail to the AVDD2 input,  
allowing for lower power dissipation.  
Output data rate  
Digital filter mode  
Offset/gain error correction  
Reference source selection (internal/external)  
Analog and reference input buffer enables  
Digital output coding  
16MHz  
CX2  
CX1  
SEE ANALOG INPUT SECTION FOR FURTHER DETAILS  
OPTIONAL EXTERNAL  
CRYSTAL CIRCUITRY  
CAPACITORS  
12  
XTAL1  
2
AIN0/REF2–  
XTAL2/CLKIO 13  
DOUT/RDY 14  
CLKIN  
OPTIONAL  
EXTERNAL  
CLOCK  
DOUT/RDY  
DIN  
3
AIN1/REF2+  
AIN14  
INPUT  
15  
DIN  
16  
SCLK  
CS  
SCLK  
36  
17  
CS  
37  
1
AIN15  
AIN16  
AD7173-8  
IOVDD  
0.1µF  
20  
21  
IOVDD  
DGND  
VIN  
1
3
REGCAPD 22  
2
4
7
6
V
NC  
IN  
0.1µF  
1µF  
AVDD1  
4.7µF  
0.1µF  
ADR44xBRZ  
AVDD1  
AVDD2  
9
10  
7
0.1µF  
40  
39  
GND  
5
VOUT  
8
REF+  
REF–  
AVDD2  
0.1µF  
4.7µF  
0.1µF  
0.1µF  
REGCAPA  
0.1µF  
1µF  
AVSS  
8
Figure 40. Typical Connection Diagram  
Rev. 0 | Page 18 of 64  
 
Data Sheet  
AD7173-8  
The linear regulator for the digital IOVDD supply performs  
a similar function, regulating the input voltage applied at the  
IOVDD pin to 1.8 V for the internal digital filtering. The serial  
interface signals always operate from the IOVDD supply seen at  
the pin. This means that if 3.3 V is applied to the IOVDD pin,  
the interface logic inputs and outputs operate at this level.  
AVDD2 is the input to the internal voltage regulator. Connect  
AVDD2 to AVDD1 for convenience. Otherwise, if a separate  
supply is available in the system, a voltage from 2 V to 5.5 V can  
be applied. IOVDD can range from 2 V to 5.5 V in this unipolar  
input configuration.  
Split Supply Operation (AVSS ≠ DGND)  
The AD7173-8 can be used across a wide variety of applications,  
providing high resolution and accuracy. A sample of these  
scenarios follows:  
The AD7173-8 device has the ability to operate with AVSS set to  
a negative voltage, allowing true bipolar inputs to be applied. This  
allows for a fully differential input signal centered around 0 V  
and eliminates the need for an external level shifting circuit. For  
example, with a 5 V split supply, AVDD1 = 2.5 V and AVSS =  
−2.5 V. In this use case, the AD7173-8 internally level shifts the  
signals, allowing the digital output to function between DGND  
(nominally 0 V) and IOVDD.  
Fast scanning of analog input channels using the internal  
mux  
Fast scanning of analog input channels using an external  
mux  
High resolution at lower speeds in either multichannel or  
ADC per channel applications  
Single ADC per channel; the fast low latency output allows  
further application specific filtering in an external micro-  
controller, DSP, or FPGA  
When using a split supply for AVDD1 and AVSS, the absolute  
maximum ratings must be considered (refer to the Absolute  
Maximum Ratings section). Ensure that IOVDD is set below  
3.6 V to stay within the absolute maximum rating for the  
device.  
POWER SUPPLIES  
DIGITAL COMMUNICATION  
The AD7173-8 can run from either a 3.3 V or 5 V supply  
voltage.  
The AD7173-8 has a 3-wire or 4-wire SPI interface that is  
compatible with QSPI™, MICROWIRE®, and DSPs. The interface  
The device has three independent power supply pins: AVDD1,  
AVDD2, and IOVDD.  
CS  
operates in SPI Mode 3 and can be operated with  
tied low. In  
SPI Mode 3, SCLK idles high, the falling edge of SCLK is the drive  
edge, and the rising edge of SCLK is the sample edge. This means  
that data is clocked out on the falling/drive edge and data is  
clocked in on the rising/sample edge.  
AVDD1 and AVDD2 are referred to AVSS.  
AVDD2 powers the internal regulator supplying the ADC.  
AVDD1 and AVDD2 can be tied together for convenience.  
IOVDD is referred to DGND. The supply sets the interface  
logic levels on the SPI interface and powers an internal  
regulator for operation of the digital processing.  
DRIVE EDGE  
SAMPLE EDGE  
Single Supply Operation (AVSS = DGND)  
When the AD7173-8 is powered from a single supply that is  
connected to AVDD1, the supply can be either 3.3 V or 5 V.  
In this configuration, AVSS and DGND can be shorted together  
on one single ground plane. With this setup, an external level  
shifting circuit is required to use fully differential inputs to shift  
the common-mode voltage.  
Figure 41. SPI Mode 3 SCLK Edges  
Rev. 0 | Page 19 of 64  
 
 
AD7173-8  
Data Sheet  
8 BITS, 16 BITS,  
OR 24 BITS OF DATA  
Accessing the ADC Register Map  
8-BIT COMMAND  
The communications register controls access to the full register  
map of the ADC. This register is an 8-bit write only register. On  
power-up or after a reset, the digital interface defaults to a state  
where it is expecting a write to the communications register;  
therefore, all communication begins by writing to the com-  
munications register.  
CS  
CMD  
DATA  
DIN  
The data written to the communications register determines  
which register is being accessed and if the next operation is a  
read or write. The register address bits (RA[5:0]) determine the  
specific register to which the read or write operation applies.  
SCLK  
Figure 42. Writing to a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length Is Dependent on the Register Selected)  
When the read or write operation to the selected register is  
complete, the interface returns to its default state, where it  
expects a write operation to the communications register.  
8 BITS, 16 BITS,  
24 BITS, OR  
In situations where interface synchronization is lost, a write  
operation of at least 64 serial clock cycles with DIN high returns  
the ADC to its default state by resetting the entire part, including  
8-BIT COMMAND  
32 BITS OUTPUT  
CS  
CS  
the register contents. Alternatively, if  
is being used with the  
high resets the digital interface to  
CS  
digital interface, returning  
CMD  
its default state and aborts any current operation.  
DIN  
Figure 42 and Figure 43 illustrate writing to and reading from a  
register by first writing the 8-bit command to the communications  
register followed by the data for the addressed register.  
DOUT/RDY  
DATA  
Reading the ID register is the recommended method for verifying  
correct communication with the part. The ID register is a read  
only register and contains the value 0x30DX for the AD7173-8.  
The communication register and ID register details are described  
in Table 8 and Table 9.  
SCLK  
Figure 43. Reading from a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length on DOUT Is Dependent on the Register Selected)  
Table 8. Communications Register Bit Map  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
Reset  
RW  
0x00  
COMMS  
[7:0]  
WEN  
R/W  
RA  
0x00  
W
Table 9. ID Register Bit Map  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Reset  
RW  
0x07  
ID  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x30DX1  
R
1 X = don’t care.  
Rev. 0 | Page 20 of 64  
 
 
 
 
 
Data Sheet  
AD7173-8  
Channel Configuration  
CONFIGURATION OVERVIEW  
The AD7173-8 has 16 independent channels and eight indepen-  
dent setups. The user can select any of the analog input pairs on  
any channel, as well as any of the eight setups for any channel,  
giving the user full flexibility in the channel configuration. This  
also allows per channel configuration when using eight  
differential inputs because each channel can have its own  
dedicated setup.  
After power on-or reset, the AD7173-8 default configuration is  
as follows:  
Channel configuration. CH0 is enabled, AIN0 is selected  
as the positive input, and AIN1 is selected as the negative  
input. Setup 0 is selected.  
Setup configuration. The input buffers are disabled, and  
the external reference is selected.  
ADC mode. Continuous conversion mode, the internal  
oscillator, and single cycle settling are enabled.  
Interface mode. CRC is disabled, and data + status output  
is disabled.  
Channel Registers  
The channel registers are used to select which of the 17 analog  
input pins (AIN0 to AIN16) are used as either the positive analog  
input or the negative analog input for that channel. This register  
also contains a channel enable/disable bit and the setup selection  
bits, which are used to pick which of the eight available setups  
are used for this channel.  
Note that only a few of the register setting options are shown;  
this list is just an example. For full register information, see the  
Register Details section.  
When the AD7173-8 is operating with more than one channel  
enabled, the channel sequencer cycles through the enabled  
channels in sequential order, from Channel 0 to Channel 15. If a  
channel is disabled, it is skipped by the sequencer. Details of the  
channel register for Channel 0 are shown in Table 10.  
Figure 44 shows an overview of the suggested flow for changing  
the ADC configuration, divided into the following three blocks:  
Channel configuration (see Box A in Figure 44)  
Setup configuration (see Box B in Figure 44)  
ADC mode and interface mode configuration (see Box C  
in Figure 44)  
A
B
C
CHANNEL CONFIGURATION  
SELECT POSITIVEAND NEGATIVE INPUT FOR EACH ADC CHANNEL  
SELECT ONE OF 8 SETUPS FORADC CHANNEL  
SETUP CONFIGURATION  
8 POSSIBLE ADC SETUPS  
SELECT FILTER ORDER, OUTPUT DATA RATE, AND MORE  
ADC MODE AND INTERFACE MODE CONFIGURATION  
SELECT ADC OPERATING MODE, CLOCK SOURCE,  
ENABLE CRC, DATA + STATUS, AND MORE  
Figure 44. Suggested ADC Configuration Flow  
Table 10. Channel 0 Register Bit Map  
Reg Name  
Bits Bit 7  
[15:8] CH_EN0  
[7:0]  
Bit 6  
Bit 5  
SETUP_SEL[2:0]  
AINPOS0[2:0]  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x10 CH0  
RESERVED  
AINPOS0[4:3]  
0x8001 RW  
AINNEG0  
Rev. 0 | Page 21 of 64  
 
 
 
 
AD7173-8  
Data Sheet  
ADC Setups  
Setup Configuration Registers  
The AD7173-8 has eight independent setups. Each setup  
consists of the following four registers:  
The setup configuration registers allow the user to select the output  
coding of the ADC by selecting between bipolar and unipolar. In  
bipolar mode, the ADC accepts negative differential input voltages,  
and the output coding is offset binary. In unipolar mode, the ADC  
accepts only positive differential voltages, and the coding is straight  
binary. In either case, the input voltage must be within the AVDD1/  
AVSS supply voltages. The user can also select the reference source  
using this register. Four options are available: an internal 2.5 V  
reference, an external reference connected between the REF+  
and REF− pins, an external reference connected between  
AIN0/REF2− and AIN1/REF2+, or AVDD1 − AVSS. The  
analog input buffers and reference input buffers for the setup  
can also be enabled using this register.  
Setup configuration register  
Filter configuration register  
Offset register  
Gain register  
For example, Setup 0 consists of Setup Configuration Register 0,  
Filter Configuration Register 0, Offset Register 0, and Gain  
Register 0. Figure 45 shows the grouping of these registers The  
setup is selectable from the channel registers detailed in the  
Channel Configuration section. This allows each channel to be  
assigned to one of 8 separate setups. Table 11 through Table 14  
show the four registers that are associated with Setup 0. This  
structure is repeated for Setup 1 to Setup 7.  
Filter Configuration Registers  
The filter configuration register selects which digital filter is  
used at the output of the ADC modulator. The order of the filter  
and the output data rate is selected by setting the bits in this  
register. For more information, see the Digital Filters section.  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
SETUPCON0  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON0  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN0  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
OFFSET1  
0x31  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
AIN BUFFERS  
REF BUFFERS  
BURNOUT  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
ENHANCED 50/60  
REFERENCE SOURCE  
Figure 45. ADC Setup Register Grouping  
Table 11. Setup Configuration 0 Register Bit Map  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
RESERVED  
BI_UNIPOLAR0  
REF_BUF 0[1:0]  
AIN_BUF 0[1:0]  
0x1000  
RW  
BURNOUT_EN0 RESERVED  
REF_SEL0  
RESERVED  
Table 12. Filter Configuration 0 Register Bit Map  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x28 FILTCON0  
SINC3_MAP0  
RESERVED  
ORDER0  
ENHFILTEN0  
ENHFILT0  
0x0000  
RW  
ODR0  
Table 13. Offset Configuration 0 Register Bit Map  
Reg Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x30 OFFSET0  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
Table 14. Gain Configuration 0 Register Bit Map  
Reg Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x38 GAIN0  
[23:0]  
GAIN0[23:0]  
0x5XXXX0 RW  
Rev. 0 | Page 22 of 64  
 
 
 
 
Data Sheet  
AD7173-8  
ADC Mode and Interface Mode Configuration  
Offset Registers  
The ADC mode register and the interface mode register configure  
the core peripherals for use by the AD7173-8 and the mode for  
the digital interface.  
The offset register holds the offset calibration coefficient for the  
ADC. The power-on reset value of the offset register is 0x800000.  
The offset register is a 24-bit read/write register. The power-on  
reset value is automatically overwritten if an internal or system  
zero-scale calibration is initiated by the user or if the offset register  
is written to by the user.  
ADC Mode Register  
The ADC mode register is used primarily to set the conversion  
mode of the ADC to either continuous or single conversion.  
The user can also select the standby and power-down modes,  
as well as any of the calibration modes. In addition, this register  
contains the clock source select bits and the internal reference  
enable bits. The reference select bits are contained in the setup  
configuration registers (see the ADC Setups section for more  
information).  
Gain Registers  
The gain register is a 24-bit register that holds the gain  
calibration coefficient for the ADC. The gain registers are  
read/write registers. These registers are configured at power-on  
with factory calibrated coefficients. Therefore, every device has  
different default coefficients. The default value is automatically  
overwritten if a system full-scale calibration is initiated by the  
user or if the gain register is written to by the user. For more  
information on calibration, see the Operating Modes section.  
Interface Mode Register  
The interface mode register configures the digital interface  
operation. This register allows the user to control data-word  
length, CRC enable, data + status read and continuous read mode.  
The details of both registers are shown in Table 15 and Table 16.  
For more information, see the Digital Interface section.  
Table 15. ADC Mode Register Bit Map  
Reg  
0x01 ADCMODE [15:8] REF_EN  
[7:0] RESERVED  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 2  
CLOCKSEL  
Bit 1  
DELAY  
RESERVED  
Bit 0  
Reset  
RW  
RESERVED SING_CYC  
MODE  
RESERVED  
0x2000 RW  
Table 16. Interface Mode Register Bit Map  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x02 IFMODE [15:8]  
[7:0]  
RESERVED  
ALT_SYNC IOSTRENGTH  
REG_CHECK RESERVED CRC_EN  
RESERVED  
DOUT_RESET  
0x0000 RW  
CONTREAD DATA_STAT  
RESERVED WL16  
Rev. 0 | Page 23 of 64  
 
 
AD7173-8  
Data Sheet  
Understanding Configuration Flexibility  
Programming the gain and offset registers is optional for any  
use case, as indicated by the dashed lines between the register  
blocks.  
The most straightforward implementation of the AD7173-8 is to  
use eight differential inputs with adjacent analog inputs and run  
all of them with the same setup, gain correction, and offset  
correction register. In this case, the user selects the following  
differential inputs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN8/AIN9. AIN10/AIN11, AIN12/AIN13,  
AIN14/AIN15. In Figure 46, the registers shown in black font  
must be programmed for such a configuration. The registers  
that are shown in gray font are redundant in this configuration.  
An alternative way to implement these eight fully differential  
inputs is by taking advantage of the eight available setups.  
Motivation for doing this includes having is a different speed/noise  
requirement on some of the eight differential inputs vs. other  
inputs, or there may be a specific offset or gain correction for  
particular channels. Figure 47 shows how each of the differential  
inputs may use a separate setup, allowing full flexibility in the  
configuration of each channel.  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
CH1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
AIN2  
CH2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
AIN BUFFERS  
REF BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 46. Eight Fully Differential Inputs, All Using a Single Setup (SETUPCON0; FILTCON0; GAIN0; OFFSET0)  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
0x10  
CH1  
CH2  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
AIN2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
AIN BUFFERS  
REF BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
0x1F  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 47. Eight Fully Differential Inputs with a Setup per Channel  
Rev. 0 | Page 24 of 64  
 
 
Data Sheet  
AD7173-8  
Figure 48 shows an example of how the channel registers span  
between the analog input pins and the setup configurations  
downstream. In this random example, seven differential inputs and  
two single-ended inputs are required. The single-ended inputs are  
the AIN8/AIN16 and AIN15/AIN16 combinations. The first five  
differential input pairs (AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN9/AIN10) use the same setup: SETUPCON0.  
The two single-ended input pairs (AIN8/AIN16 and AIN15/  
AIN16) are set up as a diagnostics; therefore, use a separate setup:  
SETUPCON1. The final two differential inputs (AIN11/AIN12  
and AIN13/AIN14) also use a separate setup: SETUPCON2.  
Given that three setups are selected for use, the SETUPCON0,  
SETUPCON1, and SETUPCON2 registers are programmed as  
required, and the FILTCON0, FILTCON1, and FILTCON2  
registers are also programmed as desired. Optional gain and  
offset correction can be employed on a per setup basis by  
programming the GAIN0, GAIN1, and GAIN2 registers and  
the OFFSET0, OFFSET1, and OFFSET2 registers.  
In the example shown in Figure 48, the CH0 to CH8 registers  
are used. Setting the MSB in each of these registers, the CH_EN0  
to CH_EN8 bits enable the nine combinations via the cross point  
mux. When the AD7173-8 converts, the sequencer transitions in  
ascending sequential order from CH0 to CH1 to CH2, and then  
on to CH8 before looping back to CH0 to repeat the sequence.  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
CH1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
AIN2  
CH2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
AIN BUFFERS  
REF BUFFERS  
BURNOUT  
31.25kSPS TO 1.25SPS  
SINC5 + SINC1  
SINC3  
0x1F  
SELECT ANALOG INPUT PARTS  
ENABLE THE CHANNEL  
SELECT SETUP  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50/60  
Figure 48. Mixed Differential and Single-Ended Configuration Using Multiple Shared Setups  
Rev. 0 | Page 25 of 64  
 
AD7173-8  
Data Sheet  
CIRCUIT DESCRIPTION  
this is by using adjacent input pins as the differential pair. All  
analog inputs decoupling capacitors connect to AVSS.  
ANALOG INPUT  
Buffered Analog Input  
Single-Ended Inputs  
The AD7173-8 integrates precision unity gain buffers on the  
ADC inputs. The output of the integrated cross point mux is  
connected to the ADC via these precision buffers. The buffers  
provide the benefit of giving the user high input impedance and  
fully drive the internal ADC switch capacitor sampling network.  
The user can also choose to measure 16 different single-ended  
analog inputs. In this case, each of the analog inputs is converted  
as being the difference between the single-ended input to be  
measured and a set analog input common pin. Because there is  
a cross point mux, the user can set any of the analog inputs as the  
common pin. An example of such a scenario is to connect the  
AIN16 pin to AVSS or to the REFOUT voltage (that is, AVSS +  
2.5 V) and select this input when configuring the cross point  
mux. When using the AD7173-8 with single-ended inputs, the  
INL specification is degraded.  
There is a buffer on both the positive and negative analog inputs to  
the ADC. The input signals of the AIN pair that is selected via  
control of the cross point mux (BUF+, BUF−) pass to the buffer  
inputs, which drive the ADC sampling capacitor circuitry. Each  
analog input buffer has an input voltage range as shown in  
Figure 49. Each buffer can operate with an input signal down to  
AVSS (analog ground) or up to an input voltage of 1.1 V from  
the AVDD1 supply.  
When the user requires a buffered input in either the fully  
differential or single-ended case, the user is required to turn on  
the analog input buffers as a pair. This means that, even where  
an input pin is connected to AVSS, the input buffer of this  
channel is turned on if the other pin making up the differential  
input is going to be buffered.  
Fully Differential Inputs  
The AIN0 to AIN16 analog inputs are connected to a cross point  
mux. Any combination of signals can be used to create an analog  
input pair. This allows the user to select eight fully differential  
inputs or 16 single-ended inputs. If all signals to the AD7173-8  
are fully differential, it is recommended that the traces of the inputs  
be of the same length. The most reliable and efficient way to do  
AVDD1  
1.1V  
AVDD1  
REF– REF+ REFOUT  
REFERENCE  
CROSSPOINT  
INPUT  
BUFFERS  
MULTIPLEXER  
INT  
REF  
AIN X  
USABLE  
INPUT VOLTAGE RANGE:  
BUFFERS ON  
ANALOG  
INPUT  
BUFFERS  
CS  
ON  
(AVDD1 – 1.1V) – (AVSS)  
BUF+  
AIN Y  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND CONTROL  
DIGITAL  
FILTER  
Σ-Δ ADC  
DOUT/RDY  
BUF–  
ON  
TEMPERATURE  
SENSOR  
AVSS  
AVSS  
Figure 49. Analog Input Voltage Range with Analog Input Buffers Enabled  
Rev. 0 | Page 26 of 64  
 
 
 
Data Sheet  
AD7173-8  
Buffer Chopping, Noise, and Input Current  
The average input current to the AD7173-8 changes linearly  
with the differential input voltage at a rate of 6 µA/V. Each  
analog input must be buffered externally, not only to provide the  
varying input current with differential input amplitude, but also  
to settle the switched capacitor input to allow accurate sampling.  
The simplified analog input circuit for this situation is shown in  
Figure 50.  
Each analog input buffer amplifier is fully chopped, meaning that  
it minimizes the offset error drift and 1/f noise of the signal chain.  
The 1/f noise profile is shown in Figure 51.  
The noise performance of the buffer at certain output data rates  
can be improved by increasing the chopping rate of the buffer,  
giving a corresponding increase in input current. This is done  
by setting the BUFCHOPMAXx bit in the setup configuration  
register of the selected setup.  
0
Running with Single Cycle = 0  
–50  
The output data rate can be maximized when using only a single  
channel by setting the SING_CYC bit to 0. However, the analog  
input current changes in magnitude, depending on the output  
data rate selected. In this condition, the input current increases  
by approximately 32× for output data rates selected at >2.6 kSPS.  
Set the SING_CYC bit to 0 only in this specific use case. Figure 52  
and Figure 53 show rms noise and input current vs. output data  
rate for various conditions.  
–100  
–150  
–200  
–250  
Using External Buffers  
0.1  
1
10  
100  
1k  
10k  
The analog input buffers can be disabled. When they are disabled,  
the input voltage range on the analog inputs is AVDD1 – AVSS.  
The analog input switched capacitor input is then exposed to  
the user. A suitable external amplifier is required to sufficiently  
drive and settle the analog input in such cases. The CS1 and CS2  
capacitors each have a magnitude in the order of a number of  
picofarads (pF). This capacitance is the combination of both the  
sampling capacitance and the parasitic capacitance.  
FREQUENCY (Hz)  
Figure 51. Shorted Input FFT  
12  
10  
8
6
AVDD1  
BUFCHOP MAX = 0  
BUFCHOP MAX = 1  
AIN0  
4
AVSS  
AVDD1  
2
Ø1  
+IN  
AIN1  
CS1  
0
10  
1
100  
1k  
10k  
AVSS  
ODR (SPS)  
Ø2  
Figure 52. RMS Noise vs. Output Data Rate  
(Sinc5 + Sinc1 Filter)  
Ø2  
AVDD1  
CS2  
14  
12  
10  
8
AIN14  
Ø1  
AVSS  
–IN  
AVDD1  
AVSS  
SINGLE CHANNEL AND SING_CYC = 0  
BUFCHOPMAX = 1  
SING_CYC = 1  
AIN15  
AIN16  
6
4
AVDD1  
2
0
–2  
–4  
–6  
AVSS  
Figure 50. Simplfied Analog Input Circuit  
1
10  
100  
1k  
10k  
ODR (SPS)  
Figure 53. Typical Analog Input Current vs. Output Data Rate  
(2.5 V Common Mode)  
Rev. 0 | Page 27 of 64  
 
 
 
 
AD7173-8  
Data Sheet  
Internal Reference  
REFERENCE OPTIONS  
The AD7173-8 includes its own low noise, low drift voltage  
reference. On power-up, the internal reference is disabled by  
default and a register write is required to select it as the reference  
source for the ADC. Write to the REF_EN bit (Bit 15) in the ADC  
mode register to enable it (see Table 18). The internal reference  
has a 2.5 V output and is output on the REFOUT pin after the  
REF_EN bit is set in the ADC mode register. Decouple the internal  
reference to AVSS with a 0.1 µF capacitor.  
The AD7173-8 offers the user the option of either supplying an  
external reference to the REF+ and REF− pins of the device or  
allowing the use of the internal 2.5 V, low noise, low drift reference.  
Select the reference source to be used by the analog input by setting  
the REF_SELx bits (Bits[5:4]) in the setup configuration registers  
appropriately. The structure of the Setup Configuration 0 register  
is shown in Table 17. The AD7173-8 defaults on power-up to  
use of an external reference.  
The REFOUT signal is buffered prior to being output to the pin.  
The signal can be used externally in the circuit as a common-mode  
source for external amplifier configurations.  
External Reference  
The AD7173-8 has a fully differential reference input applied  
through the REF+ and REF− pins. Standard low noise, low drift  
voltage references, such as the ADR445, ADR444, and ADR441,  
are recommended for use. Apply the external reference to the  
AD7173-8 reference pins as shown in Figure 54. Decouple the  
output of any external reference is to AVSS. As shown in  
Figure 54, the ADR441 output is decoupled with a 0.1 µF  
capacitor at its output for stability purposes. The output is then  
connected to a 4.7 µF capacitor, which acts as a reservoir for any  
dynamic charge required by the ADC, and followed by a 0.1 µF  
decoupling capacitor at the REF+ input. This capacitor is placed  
as close as possible to the REF+ and REF− pins. The REF− pin is  
connected directly to the AVSS potential.  
CLOCK SOURCE  
The AD7173-8 requires a master clock of 2 MHz. The AD7173-8  
can use one of the following sources as its sampling clock:  
Internal oscillator  
External crystal (use a 16 MHz crystal, automatically  
divided internally to set the 2 MHz clock)  
External clock source  
All output data rates listed in the data sheet relate to a master clock  
rate of 2 MHz. Using a lower clock frequency from, for example,  
an external source proportionally scales any listed data rate. To  
achieve the specified data rates, particularly rates for rejection  
of 50 Hz and 60 Hz, a use a 2 MHz clock. The source of the master  
clock is selected by setting the CLOCKSEL bits in the ADCMODE  
register, as shown in Table 25. The default, on power-up and reset,  
is to operate with the internal oscillator.  
AD7173-8  
3V TO 18V  
ADR441**  
REF+  
REF–  
40  
39  
0.1µF  
2.5V VREF  
*
0.1µF  
0.1µF  
4.7µF  
*
*
*
*
*ALL DECOUPLING IS TO AVSS.  
**ANY OF THE ADR44x FAMILY REFERENCES CAN BE USED.  
ADR441 ENABLES REUSE OF THE 3.3V ANALOG SUPPLY  
NEEDED FOR AVDD1 TO POWER THE REFERENCE VIN.  
Figure 54. External Reference ADR441 Connected to AD7173-8 Reference Pins  
Table 17. Setup Configuration 0 Register  
Reg Name Bits Bit 7 Bit 6  
0x20 SETUPCON0 [15:8] RESERVED  
[7:0] BURNOUT_EN RESERVED  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
AIN_BUF 0[1:0]  
RESERVED  
Bit 0  
Reset  
0x1000  
RW  
RW  
0
RESERVED BI_UNIPOLAR  
REF_SEL0  
REF_BUF 0[1:0]  
Table 18. ADC Mode Register  
Reg Name  
Bits Bit 7  
[15:8] INT_REF_EN RESERVED SING_CYC  
[7:0] RESERVED MODE  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
RESERVED  
Bit 2  
Bit 1  
DELAY  
RESERVED  
Bit 0  
Reset  
RW  
0x01 ADCMODE  
0x2000  
RW  
CLOCKSEL  
Rev. 0 | Page 28 of 64  
 
 
 
 
 
Data Sheet  
AD7173-8  
Internal Oscillator  
As shown in Figure 55, allow two capacitors to be inserted from  
the traces connecting the crystal to the XTAL1 and XTAL2/CLKIO  
pins. These capacitors enable circuit tuning. Connect these  
capacitors to the DGND pin. The value for these capacitors  
depends on the length and capacitance of the trace connections  
between the crystal and the XTAL1 and XTAL2/CLKIO pins.  
Therefore, the values of these capacitors differ depending on the  
PCB layout and the crystal employed. As a result, empirical  
testing of the circuit is required.  
The internal oscillator is used as the ADC master clock by  
default. The clock used for the ADC sampling is 2 MHz (this is  
divided down from a higher frequency in the case of the internal  
oscillator use). It is the default clock source for the AD7173-8 and  
is specified with an accuracy of 2.5%.  
There is an option to allow the internal clock oscillator to be  
output on the XTAL2/CLKIO pin. The clock output is driven  
to the IOVDD logic level. Use of this option may affect the dc  
performance of the AD7173-8 due to a disturbance that may be  
introduced by the output driver. The extent to which the per-  
formance is affected depends on the IOVDD voltage supply.  
Higher IOVDD voltages create a wider logic output swing from  
the driver and may affect performance to a greater extent. This  
effect may be further exaggerated if the IOSTRENGTH bit  
(Register 0x02, Bit 11) is set at higher IOVDD levels (see Table 26  
for more information).  
AD7173-8  
*
CX1  
12  
13  
XTAL1  
CLKIO/XTAL2  
CX2  
*
*DECOUPLE TO GND  
Figure 55. External Crystal Connections  
External Crystal  
External Clock  
If higher precision, lower jitter clock sources are required, the  
AD7173-8 has the ability to use an external crystal to generate  
the master clock. For the AD7173-8 the required crystal  
frequency is 16 MHz. Internally this is automatically divided to  
create the 2 MHz needed for sampling the ADC input.  
The AD7173-8 can also use an externally supplied clock. In  
systems where this is desirable, the external clock is routed  
to the XTAL2/CLKIO pin. In this configuration, the XTAL2/  
CLKIO pin accepts the externally sourced clock and routes it to  
the modulator. The logic level of this clock input is defined by  
the voltage applied to the IOVDD pin.  
The crystal is connected to the XTAL1 and XTAL2/CLKIO  
pins. A recommended crystal for use is the FA-20H: a 16 MHz,  
10 ppm, 9 pF crystal from Epson-Toyocom, which is available  
in a surface-mounted package.  
Rev. 0 | Page 29 of 64  
 
AD7173-8  
Data Sheet  
DIGITAL FILTERS  
can be varied to control the final ADC output data rate. Figure 57  
shows the frequency domain response of the sinc5 + sinc1 filter at  
a 50 SPS output data rate. The sinc5 + sinc1 filter has a slow roll-off  
over frequency and narrow notches.  
The AD7173-8 provides the following three flexible filter  
options to allow optimization of settling time, noise, and  
rejection:  
Sinc5 + sinc1 filter  
Sinc3 filter  
Enhanced 50 Hz and 60 Hz rejection filters  
0
–20  
–40  
50Hz AND 60Hz  
REJECTION  
FILTERS  
SINC1  
SINC5  
SINC3  
–60  
–80  
Figure 56. Digital Filter Block Diagram  
–100  
–120  
The filter and output data rate are configured by setting the  
appropriate bits in the filter configuration register for the  
selected setup. See the Register Details section for more  
information.  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 57. Sinc5 + Sinc1 Filter Response at 50 SPS ODR  
SINC5 + SINC1 FILTER  
The output data rates with the accompanying settling time and  
rms noise for the sinc5 + sinc1 filter are listed in Table 19.  
The sinc5 + sinc1 filter is targeted at fast switching multiplexed  
applications and achieves single cycle settling at output data rates  
of 2.6 kSPS and lower. The sinc5 block output is fixed at the  
maximum rate of 31.25 kSPS, and the sinc1 block output data rate  
Table 19. Output Data Rate (ODR), Settling Time (tSETTLE), and Noise Using the Sinc5 + Sinc1 Filter  
Default Output  
Output Data  
Data Rate  
Rate (SPS);1  
(SPS/Channel);1  
SING_CYC = 1 or  
with Multiple  
Effective  
Resolution with  
5 V Reference  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
SING_CYC = 0 and  
Single Channel  
Notch  
Frequency Noise  
(Hz)  
Settling  
Time1  
Noise  
Channels Enabled Enabled  
(µV rms) (µV p-p)2 (Bits)  
6211  
5181  
4444  
3115  
2597  
1007  
503.8  
381  
200.3  
100.5  
59.52  
49.68  
20.01  
16.63  
10  
31,250  
15,625  
10,417  
5208  
2597  
1007  
503.8  
381  
200.3  
100.5  
59.52  
49.68  
20.01  
16.63  
10  
161 µs  
193 µs  
225 µs  
321 µs  
385 µs  
993 µs  
1.99 ms  
2.63 ms  
4.99 ms  
9.95 ms  
16.8 ms  
20.13 ms  
49.98 ms  
60.13 ms  
100 ms  
200 ms  
400 ms  
800 ms  
8.0  
6.9  
6.0  
4.5  
3.9  
2.2  
1.5  
1.3  
0.99  
0.71  
0.57  
0.52  
0.32  
0.3  
0.22  
0.15  
0.08  
0.07  
67  
52  
40  
30  
27  
15  
11  
8.9  
6.6  
5.1  
3.3  
3
1.7  
1.6  
1.1  
0.75  
0.32  
0.32  
20.2  
20.4  
20.7  
21.1  
21.3  
22.2  
22.7  
22.9  
23.3  
23.8  
24  
24  
24  
24  
24  
24  
24  
24  
17.5  
17.7  
17.9  
18.3  
18.5  
19.3  
19.9  
20.1  
20.5  
21  
21.4  
21.4  
22.2  
22.4  
22.7  
23.4  
24  
31250  
15625  
10417  
5208  
3890  
1156  
539  
401  
206  
102  
60  
50  
20  
16.67  
10  
5
5
5
2.5  
1.25  
2.5  
1.25  
2.5  
1.25  
24  
1 The settling time (tSETTLE) is rounded to the nearest microsecond (µs). This is reflected in the output data rate and switching rate. Switching rate = 1 ÷ tSETTLE  
2 1000 samples.  
.
Rev. 0 | Page 30 of 64  
 
 
 
 
 
 
Data Sheet  
AD7173-8  
The output data rates with the accompanying settling time and  
rms noise for the sinc3 filter are shown in Table 20.  
SINC3 FILTER  
The sinc3 filter achieves the best single-channel noise performance  
at lower rates and is, therefore, most suitable for single-channel  
applications. The sinc3 filter always has a settling time equal to  
It is possible to fine-tune the output data rate for the sinc3 filter by  
setting the SINC3_MAPx bit in the Filter Configuration x register.  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter. All other options  
are eliminated. The data rate, when on a single channel, can be  
calculated using the following equation:  
tSETTLE = 3/Output Data Rate  
Figure 58 shows the frequency domain filter response for the  
sinc3 filter. The sinc3 filter has good roll-off over frequency and  
has wide notches for good notch frequency rejection.  
fMOD  
Output Data Rate =  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
32 × FILTCONx[14:0]  
where:  
fMOD is the modulator rate and is equal to 1 MHz.  
FILTCONx[14:0] is the contents of the filter configuration  
register, excluding the MSB.  
For example, an output data rate of 50 SPS can be achieved with  
SINC3_MAPx enabled by setting the FILTCONx[14:0] bits to  
a value of 625.  
–120  
0
50  
100  
150  
FREQUENCY (Hz)  
Figure 58. Sinc3 Filter Response  
Table 20. Output Data Rate (ODR), Settling Time (tSETTLE), and Noise Using the Sinc3 Filter  
Default Output  
Output Data  
Rate (SPS);1  
SING_CYC = 0  
and Single  
Data Rate  
(SPS/Channel);1  
SING_CYC = 1 or  
with Multiple  
Channels Enabled  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Noise  
(µV rms)  
Noise  
(µV p-p)  
Channel Enabled Time 1  
10417  
5208  
3472  
1736  
868  
31,250  
15,625  
10,417  
5208  
2,604  
1,008  
504  
400.6  
200.3  
100.5  
59.98  
50  
20.01  
16.67  
10  
5
2.5  
96 µs  
192 µs  
288 µs  
576 µs  
31,250  
15,625  
10,417  
5208  
2,604  
1,008  
504  
400.6  
200.3  
100.5  
59.98  
50  
210  
27  
7.8  
3.6  
2.4  
1.5  
1.1  
1
0.73  
0.55  
0.44  
0.42  
0.25  
0.21  
0.16  
0.11  
0.08  
0.07  
1665  
206  
63  
28  
20  
15.5  
18.5  
20.3  
21.4  
22  
22.7  
23.1  
23.3  
23.8  
24  
24  
24  
24  
24  
24  
24  
24  
24  
12.8  
15.7  
17.5  
18.7  
19.2  
19.9  
20.4  
20.5  
21.2  
21.4  
21.6  
21.7  
22.4  
22.6  
22.9  
23.4  
24  
1.15 ms  
2.98 ms  
5.95 ms  
7.49 ms  
14.99 ms  
29.85 ms  
50.02 ms  
60 ms  
149.93 ms 20.01  
179.96 ms 16.67  
300 ms  
600 ms  
1.2 sec  
2.4 sec  
336  
168  
12  
8
133.53  
67.76  
33.5  
19.99  
16.67  
6.67  
5.56  
3.33  
1.67  
0.83  
7.6  
5.1  
3.5  
2.5  
2.3  
1.2  
1.1  
0.83  
0.56  
0.41  
0.27  
10  
5
2.5  
1.25  
0.42  
1.25  
24  
1 The settling time (tSETTLE) is rounded to the nearest microsecond (µs). This settling time is reflected in the output data rate and switching rate. Switching rate = 1 ÷ tSETTLE  
.
Rev. 0 | Page 31 of 64  
 
 
 
 
AD7173-8  
Data Sheet  
Figure 60 shows a step on the analog input with this mode  
SINGLE CYCLE SETTLING  
disabled, one channel enabled and the Sinc3 filter selected.  
At least three cycles are required after the step change for the  
output to reach the final settled value. However, the ADC can  
then output a new conversion result at the higher rate of 1/ODR.  
By default, the AD7173-8 is configured with the SING_CYC bit  
in the ADC Mode Register. This means that only fully settled data  
is output, thus putting the ADC into a single cycle settling mode.  
This mode achieves single cycle settling by reducing the output  
data rate to be equal to the settling time of the ADC for the selected  
output data rate. This bit has no effect with the sinc5 + sinc1 at  
output data rates of 2.6 kSPS and lower or when multiple channels  
are enabled.  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
Figure 59 shows the same step on the analog input but with  
single cycle settling enabled. At least a single cycle is required  
for the output to be fully settled. The output data rate is equal to  
the settling time of the filter at the selected output data rate.  
1/ODR  
Figure 60. Step Input Without Single Cycle Settling  
ENHANCED 50 Hz AND 60 Hz REJECTION FILTERS  
ANALOG  
INPUT  
The enhanced filters are designed to provide rejection of 50 Hz  
and 60 Hz simultaneously and to allow the user to trade off settling  
time and rejection. These filters can operate up to 27.27 SPS or  
can reject up to 90 dB of 50 Hz 1 Hz and 60 Hz 1 Hz inter-  
ference. These filters are realized by post filtering the output of  
the sinc5 + sinc1 filter. For this reason, the sinc5 + sinc1 filter  
must be selected when using the enhanced filters. Table 21 shows  
the output data rates with the accompanying settling time,  
rejection, and rms noise. Figure 61 to Figure 68 show the  
frequency domain plots of the responses from the enhanced filters.  
FULLY  
SETTLED  
ADC  
OUTPUT  
tSETTLE  
Figure 59. Step Input with Single Cycle Settling  
Table 21. Enhanced Filter Output Data Rate (ODR), Noise, Settling Time (tSETTLE), and Rejection Using the Enhanced Filters  
Simultaneous  
Rejection of  
Output  
Data  
Rate (SPS)  
50 Hz 1 Hz and  
Settling  
Noise  
(µV rms) (µV p-p)  
Noise  
Effective  
Peak-to-Peak  
Time (ms) 60 Hz 1 Hz (dB)1  
Resolution (Bits) Resolution (Bits) Reference  
27.27  
25  
20  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.45  
0.44  
0.41  
0.41  
3.6  
3.6  
3.0  
3.0  
24.4  
24.4  
24.5  
24.5  
21.4  
21.4  
21.7  
21.7  
See Figure 61 and Figure 64  
See Figure 62 and Figure 65  
See Figure 63 and Figure 66  
See Figure 67 and Figure 68  
16.67  
1 Master clock = 2 MHz.  
Rev. 0 | Page 32 of 64  
 
 
 
 
 
 
Data Sheet  
AD7173-8  
50 Hz and 60 Hz Rejection Filter Frequency Domain Plots  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 61. 27.27 SPS ODR, 36.67 ms Settling Time  
Figure 64. 27.27 SPS ODR, 36.67 ms Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 62. 25 SPS ODR, 40 ms Settling Time  
Figure 65. 25 SPS ODR, 40 ms Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 63. 20 SPS ODR, 50 ms Settling Time  
Figure 66. 20 SPS ODR, 50 ms Settling Time  
Rev. 0 | Page 33 of 64  
 
 
 
 
 
 
AD7173-8  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 67. 16.667 SPS ODR, 60 ms Settling Time  
Figure 68. 16.667 SPS ODR, 60 ms Settling Time  
Rev. 0 | Page 34 of 64  
 
 
Data Sheet  
AD7173-8  
OPERATING MODES  
When several channels are enabled, the ADC automatically  
CONTINUOUS CONVERSION MODE  
sequences through the enabled channels, performing one  
conversion on each channel. When all channels are converted,  
the sequence starts again with the first channel. The channels  
are converted, in order, from lowest enabled channel to highest  
enabled channel. The data register is updated as soon as each  
Continuous conversion (see Figure 69) is the default power-up  
RDY  
mode. The AD7173-8 converts continuously, and the  
in the status register goes low each time a conversion is complete.  
CS RDY  
bit  
If  
is low, the DOUT/  
line also goes low when a conversion  
is complete. To read a conversion, the user writes to the  
communications register, indicating that the next operation is a  
read of the data register. When the data-word has been read from  
RDY  
conversion is available. The DOUT/  
pin pulses low each  
time a conversion is available. The user must then read the  
conversion result while the ADC converts the next enabled  
channel; otherwise, the new conversion result is lost.  
RDY  
the data register, DOUT/  
goes high. The user can read this  
register additional times, if required. However, the user must  
ensure that the data register is not being accessed at the  
completion of the next conversion.  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion data,  
are output each time the data register is read. The status register  
indicates the channel to which the conversion corresponds.  
CS  
0x44  
0x44  
DIN  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 69. Continuous Conversion Mode  
Rev. 0 | Page 35 of 64  
 
 
 
AD7173-8  
Data Sheet  
To enable continuous read mode, set the CONTREAD bit in the  
interface mode register. When this bit is set, the only serial interface  
operations possible are reads from the data register. To exit con-  
tinuous read mode, issue a dummy read of the ADC data register  
CONTINUOUS READ MODE  
In continuous read mode (see Figure 70), it is not required that  
the communications register be written to before the ADC data  
is read. Instead, apply the required number of SCLKs after  
RDY  
command (0x44) while  
is low. Alternatively, apply a software  
CS  
RDY  
DOUT/  
goes low to indicate the end of a conversion.  
RDY  
reset, that is, 64 SCLKs with  
= 0 and DIN = 1. This resets the  
When the conversion is read, DOUT/  
returns high until  
ADC and all register contents. These are the only commands  
that the interface recognizes after it is placed in continuous read  
mode. Hold DIN low in continuous read mode until an instruction  
is to be written to the device.  
the next conversion is available. In this mode, the data can be  
read only once. The user must also ensure that the data-word is  
read before the next conversion is complete. If the user has not  
read the conversion before the completion of the next conversion  
or if insufficient serial clocks are applied to the AD7173-8 to  
read the word, the serial output register is reset shortly before the  
next conversion is complete, and the new conversion is placed in  
the output serial register. To use continuous read mode, the  
ADC must be configured for continuous conversion mode.  
If multiple ADC channels are enabled, each channel is output  
in turn, with the status bits being appended to the data if the  
DATA_STAT bit is set in the interface mode register. The status  
register indicates the channel to which the conversion corresponds.  
CS  
0x02  
0x0080  
DIN  
DATA  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 70. Continuous Read Mode  
Rev. 0 | Page 36 of 64  
 
 
Data Sheet  
AD7173-8  
ADC then selects the next channel and begins a conversion. The  
user must read the present conversion while the next conversion is  
being performed. As soon as the next conversion is complete,  
the data register is updated; therefore, the period in which to  
read the conversion is limited. After the ADC performs a single  
conversion on each of the selected channels, it returns to  
standby mode.  
SINGLE CONVERSION MODE  
In single conversion mode (see Figure 71), the AD7173-8  
performs a single conversion and is placed in standby mode  
RDY  
after the conversion is complete. DOUT/  
goes low to indicate  
the completion of a conversion. After the data-word is read from  
RDY  
the data register, DOUT/  
be read several times, if required, even when DOUT/  
goes high. The data register can  
RDY  
is high.  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion, are  
output each time the data register is read. The four LSBs of the  
status register indicate the channel to which the conversion  
corresponds.  
If several channels are enabled, the ADC automatically sequences  
through the enabled channels and performs a conversion on each  
channel. When a conversion is started, DOUT/  
remains high until a valid conversion is available and  
soon as the conversion is available, DOUT/  
RDY  
goes high and  
CS  
is low. As  
RDY  
goes low. The  
CS  
0x01  
0x2010  
0x44  
DIN  
DATA  
DOUT/RDY  
SCLK  
Figure 71. Single Conversion Mode  
Rev. 0 | Page 37 of 64  
 
 
 
AD7173-8  
Data Sheet  
To start a calibration, write the relevant value to the MODE bits  
STANDBY AND POWER-DOWN MODES  
RDY  
in the ADC mode register. The DOUT/  
pin and the RDY bit  
In standby mode, most blocks are powered down. The LDOs  
remain active such that the registers maintain their contents.  
The internal reference remains active, if enabled; and the crystal  
oscillator remains active, if selected. To power down the  
reference in standby mode, set the REF_EN bit in the ADC  
mode register to 0. To power down the clock in standby mode,  
set the CLOCKSEL bits in the ADC mode register to 00  
(internal oscillator).  
in the status register go high when the calibration initiates. When  
the calibration is complete, the contents of the corresponding  
RDY  
offset or gain register are updated, the  
bit in the status  
RDY  
CS  
is low),  
register is set, the DOUT/  
pin returns low (if  
and the AD7173-8 reverts to standby mode.  
During an internal offset calibration, the selected positive  
analog input pin is disconnected, and both modulator inputs  
are connected internally to the selected negative analog input  
pin. For this reason, it is necessary to ensure that the voltage on  
the selected negative analog input pin does not exceed the  
allowed limits and is free from excessive noise and interference.  
In power-down mode, all blocks are powered down, including  
the LDOs. All registers lose their contents, and the GPIO outputs  
are placed in tristate. To prevent accidental entry to power-down  
mode, the ADC must first be placed into standby mode. Exiting  
CS  
power-down mode requires 64 SCLKs with  
= 0 and DIN = 1,  
System calibrations, however, expect the system zero-scale  
(offset) and system full-scale (gain) voltages to be applied to the  
ADC pins before initiating the calibration modes. As a result,  
errors external to the ADC are removed.  
that is, a serial interface reset. A delay of 500 µs is recommended  
before issuing a subsequent serial interface command to allow  
the LDO to power up.  
CALIBRATION MODES  
From an operational point of view, treat a calibration like  
another ADC conversion. An offset calibration, if required,  
must always be performed before a full-scale calibration. Set the  
The AD7173-8 provides three calibration modes that can be  
used to eliminate the offset and gain errors on a per setup basis:  
RDY  
system software to monitor the  
bit in the status register or  
pin to determine the end of a calibration via a  
Internal zero-scale calibration mode  
System zero-scale calibration mode  
System full-scale calibration mode  
RDY  
the DOUT/  
polling sequence or an interrupt-driven routine. All calibrations  
require a time that is equal to the settling time of the selected  
filter and the output data rate to be completed.  
Only one channel can be active during calibration. After each  
conversion, the ADC conversion result is scaled using the ADC  
calibration registers before being written to the data register.  
An internal offset calibration, system zero-scale calibration, and  
system full-scale calibration can be performed at any output data  
rate. Using lower output data rates results in better calibration  
accuracy and is accurate for all output data rates. A new calibration  
is required for a given channel if the reference source for that  
channel is changed.  
The default value of the offset register is 0x800000, and the  
nominal value of the gain register is 0x555555. The calibration  
range of the ADC gain is from 0.4 × VREF to 1.05 × VREF. The  
following equations show the calculations that are used. In  
unipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
The offset error is typically 40 µV, and an offset calibration  
reduces the offset error to the order of the noise. The gain error  
is factory calibrated at ambient temperature. Following this  
calibration, the gain error is typically 0.001%.  
0.75×VIN  
VREF  
Gain  
0x400000  
Data =  
×223 (Offset 0x800000) ×  
×2  
The AD7173-8 provides the user with access to the on-chip  
calibration registers, allowing the microprocessor to read the  
calibration coefficients of the device and to write its own  
calibration coefficients. A read or write of the offset and gain  
registers can be performed at any time except during an internal  
or self calibration.  
In bipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
0.75×VIN  
VREF  
Gain  
0x400000  
Data =  
×223 (Offset 0x800000) ×  
+ 0x800000  
Rev. 0 | Page 38 of 64  
 
 
Data Sheet  
AD7173-8  
DIGITAL INTERFACE  
The programmable functions of the AD7173-8 are via the SPI  
serial interface. The serial interface of the AD7173-8 consists of  
to ensure that the register write was successful, it is important to  
read back the register and verify the checksum.  
CS  
RDY  
four signals: , DIN, SCLK, and DOUT/  
. The DIN line is  
For CRC checksum calculations during a write operation, the  
following polynomial is always used:  
RDY  
used to transfer data into the on-chip registers, and DOUT/  
used to access data from the on-chip registers. SCLK is the serial  
clock input for the device, and all data transfers (either on DIN or  
is  
x8 + x2 + x + 1  
During read operations, the user can select between this  
polynomial and a similar XOR function. The XOR function  
requires less time to process on the host microcontroller than  
the polynomial-based checksum. The CRC_EN bits in the  
interface mode register enable and disable the checksum and  
allow the user to select between the polynomial check and the  
simple XOR check.  
RDY  
on DOUT/  
) occur with respect to the SCLK signal.  
RDY  
The DOUT/  
pin also functions as a data-ready signal, with  
CS  
the line going low if  
is low when a new data-word is available  
in the data register. The pin is reset high when a read operation  
RDY  
from the data register is complete. The DOUT/  
pin also goes  
high before updating the data register to indicate when not to  
read from the device to ensure that a data read is not attempted  
while the register is being updated. Take care to avoid reading  
from the data register when DOUT/  
best method to ensure that no data read occurs is to always monitor  
The checksum is appended to the end of each read and write  
transaction. The checksum calculation for the write transaction  
is calculated using the 8-bit command word and the 8- to 24-bit  
data. For a read transaction, the checksum is calculated using  
the command word and the 8- to 32-bit data output. Figure 72  
and Figure 73 show SPI write and read transactions, respectively.  
RDY  
is about to go low. The  
RDY  
the DOUT/  
RDY  
line; start reading the data register as soon as  
DOUT/  
goes low; and ensure a sufficient SCLK rate, such  
CS  
that the read is completed before the next conversion result.  
is  
8-BIT COMMAND  
UP TO 24-BIT INPUT  
8-BIT CRC  
used to select a device. It can be used to decode the AD7173-8  
in systems where several components are connected to the  
serial bus.  
CS  
CMD  
DATA  
CRC  
DIN  
Figure 2 and Figure 3 show timing diagrams for interfacing to  
CS  
the AD7173-8 using  
to decode the part. Figure 2 shows the  
SCLK  
timing for a read operation from the AD7173-8, and Figure 3  
shows the timing for a write operation to the AD7173-8. It is  
possible to read from the data register several times, even though  
Figure 72. SPI Write Transaction with CRC  
RDY  
the DOUT/  
line returns high after the first read operation.  
However, take care to ensure that the read operations are completed  
before the next output update occurs. In continuous read mode,  
the data register can be read only once.  
8-BIT COMMAND UP TO 32-BIT OUTPUT  
8-BIT CRC  
CS  
CS  
The serial interface can operate in 3-wire mode by tying  
low.  
lines are used to  
communicate with the AD7173-8. The end of the conversion  
RDY  
CMD  
DIN  
RDY  
In this case, the SCLK, DIN, and DOUT/  
DOUT/  
RDY  
DATA  
CRC  
can also be monitored using the  
bit in the status register.  
CS  
The serial interface can be reset by writing 64 SCLKs with  
=
0 and DIN = 1. A reset returns the interface to the state in which it  
expects a write to the communications register. This operation  
resets the contents of all registers to their power-on values.  
Following a reset, allow a period of 500 µs before addressing the  
serial interface.  
SCLK  
Figure 73. SPI Read Transaction with CRC  
If checksum protection is enabled when continuous read mode  
is active, there is an implied read data command of 0x44 before  
every data transmission that must be accounted for when  
calculating the checksum value. This ensures a nonzero checksum  
value even if the ADC data equals 0x000000.  
CHECKSUM PROTECTION  
The AD7173-8 has a checksum mode that can be used to improve  
interface robustness. Using the checksum ensures that only  
valid data is written to a register and allows data read from  
a register to be validated. If an error occurs during a register  
write, the CRC_ERROR bit is set in the status register. However,  
Rev. 0 | Page 39 of 64  
 
 
 
 
AD7173-8  
Data Sheet  
aligned such that its MSB is adjacent to the leftmost Logic 1 of  
the data. An exclusive OR (XOR) function is applied to the data  
to produce a new, shorter number. The polynomial is again aligned  
so that its MSB is adjacent to the leftmost Logic 1 of the new result,  
and the procedure is repeated. This process is repeated until the  
original data is reduced to a value less than the polynomial.  
This is the 8-bit checksum.  
CRC CALCULATION  
Polynomial  
The checksum, which is eight bits wide, is generated using the  
following polynomial:  
x8 + x2 + x + 1  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight Logic 0s. The polynomial is  
Example of a Polynomial CRC Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
An example of generating the 8-bit checksum using the polynomial based checksum is as follows:  
Initial value  
011001010100001100100001  
01100101010000110010000100000000  
left shifted eight bits  
polynomial  
x8 + x2 + x + 1  
=
100000111  
100100100000110010000100000000  
100000111  
XOR result  
polynomial  
XOR result  
polynomial  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
checksum = 0x86.  
100011000110010000100000000  
100000111  
11111110010000100000000  
100000111  
1111101110000100000000  
100000111  
111100000000100000000  
100000111  
11100111000100000000  
100000111  
1100100100100000000  
100000111  
100101010100000000  
100000111  
101101100000000  
100000111  
1101011000000  
100000111  
101010110000  
100000111  
1010001000  
100000111  
10000110  
Rev. 0 | Page 40 of 64  
 
Data Sheet  
AD7173-8  
XOR Calculation  
The checksum, which is 8-bits wide, is generated by splitting the data into bytes and then performing an XOR of the bytes.  
Example of an XOR Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
Using the previous example,  
Divide into three bytes: 0x65, 0x43, and 0x21  
01100101  
01000011  
00100110  
00100001  
00000111  
0x65  
0x43  
XOR result  
0x21  
CRC  
Rev. 0 | Page 41 of 64  
AD7173-8  
Data Sheet  
DIAGNOSTICS  
The AD7173-8 has a number of features that can be used for  
diagnostic purposes in safety conscious applications as well as  
to increase functionality and improve usefulness in a number of  
other applications.  
bit to 1 in the interface mode register, the instant at which the  
CS  
interface is reset is controlled by the rising edge. In this case,  
RDY  
the DOUT/  
pin continues to output the LSB of the register  
CS CS  
being read until  
the interface reset. This configuration is useful if the  
CS  
is taken high. Only on the  
rising edge is  
CS  
signal  
GENERAL-PURPOSE I/O  
is used to frame all read operations. If  
is not used to frame  
The AD7173-8 has two general-purpose digital input/output  
pins (GPIO0, GPIO1) and two general-purpose digital output  
pins (GPO2, GPO3). As the naming convention suggests, the  
GPIO0 and GPIO1 pins can be configured as inputs or outputs,  
but GPO2 and GPO3 are outputs only. The GPIO and GPO pins  
are enabled using the following bits in the GPIOCON register:  
IP_EN0, IP_EN1 (or OP_EN0, OP_EN1) for GPIO0 and  
GPIO1, and OP_EN2_3 for GPO2 and GPO3.  
all read operations, DOUT_RESET must be set to 0 so that the  
interface is reset following the last SCLK edge in the read  
operation.  
SYNCHRONIZATION  
Normal Synchronization  
When the SYNC_EN bit in the GPIOCON register is set to 1,  
SYNC  
SYNC  
the  
pin functions as a synchronization pin. The  
When the GPIO0 or GPIO1 pin is enabled as an input, the logic  
level at the pin is contained in the GP_DATA0 or GP_DATA1 bit,  
respectively. When the GPIO0, GPIO1, GPO2, or GPO3 pin is  
enabled as an output, the GP_DATA0, GP_DATA1, GP_DATA2,  
or GP_DATA3 bit, respectively, determines the logic level output  
at the pin. The logic levels for these pins are referenced to AVDD1  
and AVSS; therefore, outputs have an amplitude of either 5 V or  
3.3 V depending on the AVDD1 − AVSS voltage.  
input allows the user to reset the modulator and the digital  
filter without affecting any of the setup conditions on the part.  
This allows the user to start gathering samples of the analog  
input from a known point in time, that is, the rising edge  
SYNC  
of  
. This pin must be low for at least one master clock  
cycle to ensure that synchronization occurs. If multiple  
channels are enabled, the sequencer is reset to the first enabled  
channel.  
If an external mux is used to increase the channel count, the  
mux logic pins can be controlled using the AD7173-8 GPIO and  
GPO pins. When the MUX_IO bit is set in the GPIOCON  
register (Address 0x06, Bit 12), the timing of the GPIO pins is  
controlled by the ADC; therefore, the channel change is  
synchronized with the ADC, eliminating any need for external  
synchronization.  
If multiple AD7173-8 devices are operated from a common  
master clock, they can be synchronized so that their data registers  
are updated simultaneously. This is normally done after each  
AD7173-8 has performed its own calibration or has calibration  
coefficients loaded into its calibration registers. A falling edge  
SYNC  
on the  
and places the AD7173-8 into a consistent known state. While  
SYNC  
pin resets the digital filter and the analog modulator  
ERROR  
The  
pin can also be used as a general-purpose output  
the  
On the  
pin is low, the AD7173-8 is maintained in this state.  
SYNC  
if the ERR_EN bits in the GPIOCON register are set to 11. In  
this configuration, the ERR_DAT bit in the GPIOCON register  
rising edge, the modulator and filter are taken  
out of this reset state, and on the next master clock edge, the  
part starts to gather input samples again.  
ERROR  
determines the logic level output at the  
level for the pin is referenced to IOVDD and DGND, and  
ERROR  
pin. The logic  
The part is taken out of reset on the master clock falling edge  
the  
pin has an active pull-up.  
SYNC  
following the  
multiple devices are being synchronized, take the  
high on the master clock rising edge to ensure that all devices  
SYNC  
low-to-high transition. Therefore, when  
16-BIT/24-BIT CONVERSIONS  
SYNC  
pin  
By default, the AD7173-8 generates 24-bit conversions. However,  
the width of the conversions can be reduced to 16 bits. Setting  
Bit WL16 in the interface mode register to 1 rounds all data  
conversions to 16 bits. Clearing this bit sets the width of the  
data conversions to 24 bits.  
begin sampling on the master clock falling edge. If the  
pin is not taken high in sufficient time, it is possible to have a  
difference of one master clock cycle between the devices; that is,  
the instant at which conversions are available differs from part  
to part by a maximum of one master clock cycle.  
SERIAL INTERFACE RESET (DOUT_RESET)  
SYNC  
The  
In this mode, the rising edge of  
RDY  
pin can also be used as a start conversion command.  
The serial interface is reset when each read operation is complete.  
The instant at which the serial interface is reset is programmable.  
By default, the serial interface is reset after a short period of time  
following the last SCLK rising edge, the SCLK edge on which  
the LSB is read by the processor. By setting the DOUT_RESET  
SYNC  
starts a conversion, and  
indicates when the conversion is complete.  
the falling edge of  
The settling time of the filter must be allowed for each data  
register update.  
Rev. 0 | Page 42 of 64  
 
 
 
 
 
Data Sheet  
AD7173-8  
Alternate Synchronization  
registers. If one of the register values has changed, the  
REG_ERROR bit is set. If an error is flagged, the REG_CHECK  
bit must be set to 0 to clear the REG_ERROR bit in the status  
register. The register check function does not monitor the data  
register, status register, or interface mode register.  
Setting Bit ALT_SYNC in the interface mode register to 1 enables  
an alternate synchronization scheme. The SYNC_EN bit in the  
GPIOCON register must be set to 1 to enable this alternate scheme.  
SYNC  
In this mode, the  
mand when several channels of the AD7173-8 are enabled.  
SYNC  
pin operates as a start conversion com-  
ERROR  
Pin  
When  
on the current channel, selects the next channel in the  
SYNC  
is taken low, the ADC completes the conversion  
ERROR  
The  
pin functions as an error input/output pin or a  
general-purpose output pin. The ERR_EN bits in the GPIOCON  
register determine the function of the pin.  
sequence, and then waits until  
is taken high to commence  
RDY  
the conversion. The  
complete on  
pin goes low when the conversion is  
When the ERR_EN bits are set to 10, the pin functions as an  
open-drain error output pin. The three error bits in the status  
register (ADC_ERROR, CRC_ERROR, and REG_ERROR) are  
the current channel, and the data register is updated with the  
SYNC  
corresponding conversion. Therefore, the  
command  
ERROR  
ORed, inverted, and mapped to the  
pin. Therefore,  
pin indicates that an error has occurred. To identify  
the error source, read the status register.  
ERROR  
does not interfere with the sampling on the currently selected  
channel but allows the user to control the instant at which the  
conversion begins on the next channel in the sequence.  
ERROR  
the  
When ERR_EN bits are set to 01, the  
an error input pin. The error pin of another component can be  
ERROR  
pin functions as  
This mode can be used only when several channels are enabled.  
It is not recommended to use this mode when a single channel  
is enabled.  
connected to the AD7173-8  
indicates when an error occurs on either itself or the external  
ERROR  
pin so that the AD7173-8  
ERROR FLAGS  
component. The value on the  
pin is inverted and ORed  
The status register contains three error bits—ADC_ERROR,  
CRC_ERROR, and REG_ERROR—that flag errors with the  
ADC conversion, errors with the CRC check, and errors due to  
with the errors from the ADC conversion, and the result is  
indicated via the ADC_ERROR bit in the status register. The value  
ERROR  
of the  
register.  
pin is reflected in the ERR_DAT bit in the status  
ERROR  
changes in the registers, respectively. In addition, the  
pin can indicate that an error has occurred.  
ERROR  
The  
pin is disabled when the ERR_EN bits are set to 00.  
ADC_ERROR  
ERROR  
When the ERR_EN1 bits are set to 11, the  
as a general-purpose output.  
pin operates  
The ADC_ERROR bit in the status register flags any errors that  
occur during the conversion process. The flag is set when an over-  
range or underrange occurs at the output of the ADC. When an  
underrange or overrange occurs, the ADC also outputs all 0s or  
all 1s, respectively. This flag is reset only when the underrange  
or overrange is removed. It is not reset by a read of the data  
register.  
DATA_STAT  
The contents of the status register can be appended to each  
conversion on the AD7173-8. This is a useful function if several  
channels are enabled. Each time a conversion is output, the  
contents of the status register are appended. The four LSBs of  
the status register indicate to which channel the conversion  
corresponds. In addition, the user can determine if any errors  
are being flagged by the error bits.  
CRC_ERROR  
If the CRC value that accompanies a write operation does not  
correspond with the information sent, the CRC_ERROR flag is  
set. The flag is reset as soon as the status register is explicitly read.  
IOSTRENGTH BIT  
The serial interface can operate with a power supply as low as  
2 V. At higher speeds (from 10 MHz to 15 MHz upward), the  
REG_ERROR  
This flag is used in conjunction with the REG_CHECK bit in  
the interface mode register. When the REG_CHECK bit is set,  
the AD7173-8 monitors the values in the on-chip registers. If  
a bit changes, the REG_ERROR bit is set. Therefore, for writes  
to the on-chip registers, ensure that REG_CHECK is set to 0.  
When the registers have been updated, the REF_CHK bit can be  
set to 1. The AD7173-8 calculates a checksum of the on-chip  
RDY  
DOUT/  
pin may not have sufficient drive strength if there is  
moderate parasitic capacitance on the board. The IOSTRENGTH  
bit in the interface mode register increases the drive strength of  
RDY  
the DOUT/  
pin. It is recommended that this bit be kept to  
its default value unless a high frequency SPI SCLK (that is,  
~15 MHz upward) is being used.  
Rev. 0 | Page 43 of 64  
 
 
 
AD7173-8  
Data Sheet  
GROUNDING AND LAYOUT  
The analog inputs and reference inputs are differential and,  
therefore, most of the voltages in the analog modulator are  
common-mode voltages. The high common-mode rejection of  
the part removes common-mode noise on these inputs. The  
analog and digital supplies to the AD7173-8 are independent  
and separately pinned out to minimize coupling between the  
analog and digital sections of the device. The digital filter  
provides rejection of broadband noise on the power supplies,  
except at integer multiples of the master clock frequency.  
with digital ground to prevent radiating noise to other sections  
of the board and never run clock signals near the analog inputs.  
Avoid crossover of digital and analog signals. Run traces on  
opposite sides of the board at right angles to each other. This  
reduces the effects of feedthrough on the board. A microstrip  
technique is by far the best but is not always possible with a  
double-sided board. In this technique, the component side of  
the board is dedicated to ground planes, whereas signals are  
placed on the solder side.  
The digital filter also removes noise from the analog and  
reference inputs, provided that these noise sources do not  
saturate the analog modulator. As a result, the AD7173-8 is  
more immune to noise interference than a conventional high  
resolution converter. However, because the resolution of the  
AD7173-8 is high and the noise levels from the converter are so  
low, take care with regard to grounding and layout.  
Good decoupling is important when using high resolution ADCs.  
The AD7173-8 has three power supply pins: AVDD1, AVDD2,  
and IOVDD. The AVDD1 and AVDD2 pins are referenced to  
AVSS, and the IOVDD pin is referenced to DGND. Decouple  
AVDD1 and AVDD2 with a 10 µF tantalum capacitor in parallel  
with a 0.1 µF capacitor to AVSS on each pin. Place the 0.1 µF  
capacitor as near as possible to the device on each supply, ideally  
right up against the device. Decouple IOVDD with a 10 µF  
tantalum capacitor, in parallel with a 0.1 µF capacitor to DGND.  
Decouple all analog inputs to AVSS. If an external reference is  
used, decouple the REF+ and REF− pins to AVSS.  
The printed circuit board (PCB) that houses the ADC must be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. A minimum etch  
technique is generally best for ground planes because it results  
in the best shielding.  
The AD7173-8 also has two on-board LDO regulators—one  
that regulates the AVDD2 supply and one that regulates the  
IOVDD supply. For the REGCAPA pin, it is recommended that  
1 µF and 0.1 µF capacitors to AVSS be used. Similarly, for the  
REGCAPD pin, it is recommended that 1 µF and 0.1 µF  
capacitors to DGND be used.  
In any layout, the user must keep in mind the flow of currents  
in the system, ensuring that the paths for all return currents are as  
close as possible to the paths the currents took to reach their  
destinations.  
Avoid running digital lines under the device because this  
couples noise onto the die and allows the analog ground plane  
to run under the AD7173-8 to prevent noise coupling. The  
power supply lines to the AD7173-8 must use as wide a trace as  
possible to provide low impedance paths and reduce glitches on  
the power supply line. Shield fast switching signals like clocks  
If using the AD7173-8 for split supply operation, a separate plane  
must be used for AVSS. As an example, the EVAL -AD7173-8SDZ  
customer evaluation board uses a 4-layer PCB, with the largest  
central section of Layer 3 used as the AVSS plane. Figure 74 shows  
the PCB layout of this layer.  
Figure 74. EVAL-AD7173-8SDZ, PCB Layer 3  
Rev. 0 | Page 44 of 64  
 
 
Data Sheet  
AD7173-8  
REGISTER SUMMARY  
Table 22. Register Summary  
Reg  
Name  
Bits  
[7:0]  
[7:0]  
Bit 7  
WEN  
RDY  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
RA  
Bit 1  
Bit 0  
Reset  
0x00  
RW  
W
0x00 COMMS  
0x00 STATUS  
W
R/  
ADC_ERROR CRC_ERROR REG_ERROR  
CHANNEL  
0x80  
R
0x01 ADCMODE [15:8] REF_EN  
RESERVED  
SING_CYC  
MODE  
RESERVED  
DELAY  
RESERVED  
0x2000  
RW  
[7:0]  
[15:8]  
[7:0]  
RESERVED  
CLOCKSEL  
IOSTRENGTH  
CRC_EN  
REGISTER_CHECK[23:16]  
0x02 IFMODE  
RESERVED  
ALT_SYNC  
REG_CHECK RESERVED  
RESERVED  
DOUT_RESET 0x0000  
WL16  
RW  
R
CONTREAD DATA_STAT  
RESERVED  
0x03 REGCHECK [23:16]  
0x000000  
[15:8]  
[7:0]  
REGISTER_CHECK[15:8]  
REGISTER_CHECK[7:0]  
DATA[23:0]  
0x04 DATA  
[23:0]  
[15:8] RESERVED  
0x000000  
0x0800  
R
0x06 GPIOCON  
PDSW  
GP_DATA3 GP_DATA2  
OP_EN2_3  
IP_EN1  
MUX_IO  
IP_EN0  
SYNC_EN  
OP_EN1  
ERR_EN  
ERR_DAT  
RW  
[7:0]  
[15:8]  
[7:0]  
OP_EN0  
GP_DATA1 GP_DATA0  
0x07 ID  
ID[15:8]  
ID[7:0]  
0x30DX1  
0x8001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x1000  
R
0x10 CH0  
0x11 CH1  
0x12 CH2  
0x13 CH3  
0x14 CH4  
0x15 CH5  
0x16 CH6  
0x17 CH7  
0x18 CH8  
0x19 CH9  
0x1A CH10  
0x1B CH11  
0x1C CH12  
0x1D CH13  
0x1E CH14  
0x1F CH15  
[15:8] CH_EN0  
[7:0]  
SETUP_SEL0  
SETUP_SEL1  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
SETUP_SEL8  
SETUP_SEL9  
SETUP_SEL10  
SETUP_SEL11  
SETUP_SEL12  
SETUP_SEL13  
SETUP_SEL14  
SETUP_SEL15  
RESERVED  
AINNEG0  
RESERVED  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
RESERVED  
AINNEG4  
RESERVED  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
RESERVED  
AINNEG8  
RESERVED  
AINNEG9  
RESERVED  
AINNEG10  
RESERVED  
AINNEG11  
RESERVED  
AINNEG12  
RESERVED  
AINNEG13  
RESERVED  
AINNEG14  
RESERVED  
AINNEG15  
REF_BUF 0[1:0]  
AINPOS0[4:3]  
AINPOS1[4:3]  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
AINPOS8[4:3]  
AINPOS9[4:3]  
AINPOS10[4:3]  
AINPOS11[4:3]  
AINPOS12[4:3]  
AINPOS13[4:3]  
AINPOS14[4:3]  
AINPOS15[4:3]  
AIN_BUF 0[1:0]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
AINPOS0[2:0]  
AINPOS1[2:0]  
AINPOS2[2:0]  
AINPOS3[2:0]  
AINPOS4[2:0]  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINPOS7[2:0]  
AINPOS8[2:0]  
AINPOS9[2:0]  
AINPOS10[2:0]  
AINPOS11[2:0]  
AINPOS12[2:0]  
AINPOS13[2:0]  
AINPOS14[2:0]  
[15:8] CH_EN1  
[7:0]  
[15:8] CH_EN2  
[7:0]  
[15:8] CH_EN3  
[7:0]  
[15:8] CH_EN4  
[7:0]  
[15:8] CH_EN5  
[7:0]  
[15:8] CH_EN6  
[7:0]  
[15:8] CH_EN7  
[7:0]  
[15:8] CH_EN8  
[7:0]  
[15:8] CH_EN9  
[7:0]  
[15:8] CH_EN10  
[7:0]  
[15:8] CH_EN11  
[7:0]  
[15:8] CH_EN12  
[7:0]  
[15:8] CH_EN13  
[7:0]  
[15:8] CH_EN14  
[7:0]  
[15:8] CH_EN15  
[7:0]  
AINPOS15[2:0]  
RESERVED  
0x20 SETUPCON0 [15:8]  
BI_  
UNIPOLAR0  
REF_SEL0  
[7:0]  
BURNOUT_ BUFCHOPMAX  
RESERVED  
EN0  
0
0x21 SETUPCON1 [15:8]  
[7:0]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN1  
BI_UNIPOLAR1  
REFSEL1  
REF_BUF 1[1:0]  
REF_BUF 2[1:0]  
AIN_BUF 1[1:0]  
AIN_BUF 2[1:0]  
0x1000  
0x1000  
RW  
RW  
RESERVED  
RESERVED  
1
0x22 SETUPCON2 [15:8]  
[7:0]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN2  
BI_UNIPOLAR2  
REFSEL2  
2
Rev. 0 | Page 45 of 64  
 
AD7173-8  
Data Sheet  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN3  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x23 SETUPCON3 [15:8]  
[7:0]  
BI_UNIPOLAR3  
REF_BUF 3[1:0]  
AIN_BUF 3[1:0]  
0x1000  
RW  
REFSEL3  
RESERVED  
3
0x24 SETUPCON4 [15:8]  
[7:0]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN4  
BI_UNIPOLAR4  
REFSEL4  
REF_BUF 4[1:0]  
REF_BUF 5[1:0]  
REF_BUF 6[1:0]  
REF_BUF 7[1:0]  
AIN_BUF 4[1:0]  
AIN_BUF 5[1:0]  
AIN_BUF 6[1:0]  
AIN_BUF 7[1:0]  
0x1000  
0x1000  
0x1000  
0x1000  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
4
0x25 SETUPCON5 [15:8]  
[7:0]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN5  
BI_UNIPOLAR5  
REFSEL5  
5
0x26 SETUPCON6 [15:8]  
[7:0]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN6  
BI_UNIPOLAR6  
REFSEL6  
6
0x27 SETUPCON7 [15:8]  
RESERVED  
BURNOUT_ BUFCHOPMAX  
EN7  
[15:8] SINC3_MAP0  
[7:0] RESERVED  
[15:8] SINC3_MAP1  
[7:0] RESERVED  
[15:8] SINC3_MAP2  
[7:0] RESERVED  
[15:8] SINC3_MAP3  
[7:0] RESERVED  
[15:8] SINC3_MAP4  
[7:0] RESERVED  
[15:8] SINC3_MAP5  
[7:0] RESERVED  
[15:8] SINC3_MAP6  
[7:0] RESERVED  
[15:8] SINC3_MAP7  
BI_UNIPOLAR7  
REFSEL7  
[7:0]  
7
0x28 FILTCON0  
0x29 FILTCON1  
0x2A FILTCON2  
0x2B FILTCON3  
0x2C FILTCON4  
0x2D FILTCON5  
0x2E FILTCON6  
0x2F FILTCON7  
RESERVED  
ORDER0  
RESERVED  
ORDER1  
RESERVED  
ORDER2  
RESERVED  
ORDER3  
RESERVED  
ORDER4  
RESERVED  
ORDER5  
RESERVED  
ORDER6  
RESERVED  
ORDER7  
ENHFILTEN0  
ENHFILTEN1  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
ENHFILTEN7  
ENHFILT0  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ODR0  
ODR1  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
ODR7  
ENHFILT1  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ENHFILT6  
ENHFILT7  
[7:0]  
RESERVED  
0x30 OFFSET0  
0x31 OFFSET1  
0x32 OFFSET2  
0x33 OFFSET3  
0x34 OFFSET4  
0x35 OFFSET5  
0x36 OFFSET6  
0x37 OFFSET7  
0x38 GAIN0  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
OFFSET0[23:0]  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET4[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
GAIN0[23:0]  
0x5XXXX02 RW  
0x5XXXX02  
0x39 GAIN1  
GAIN1[23:0]  
RW  
0x5XXXX02  
RW  
0x5XXXX02  
RW  
0x5XXXX02  
RW  
0x5XXXX02  
RW  
0x5XXXX02  
RW  
0x5XXXX02  
RW  
0x3A GAIN2  
0x3B GAIN3  
0x3C GAIN4  
0x3D GAIN5  
0x3E GAIN6  
0x3F GAIN7  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
1 X = don’t care. The value of X is specific to the ADC.  
2 The value of X varies, depending on the IC that is used.  
Rev. 0 | Page 46 of 64  
 
 
Data Sheet  
AD7173-8  
REGISTER DETAILS  
COMMUNICATIONS REGISTER  
Address: 0x00, Reset: 0x00, Name: COMMS  
Table 23. Bit Descriptions for COMMS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
W
7
WEN  
This bit must be low to begin communications with the ADC.  
0x0  
0x0  
6
R/W  
This bit determines if the command is a read or write operation.  
W
0
1
Write command  
Read command  
[5:0]  
RA  
The register address bits determine which register is to be read from or  
written to as part of the current communication.  
0x00  
W
000000 Status register  
000001 ADC mode register  
000010 Interface mode register  
000011 Register checksum register  
000100 Data register  
000110 GPIO configuration register  
000111 ID register  
010000 Channel 0 register  
010001 Channel 1 register  
010010 Channel 2 register  
010011 Channel 3 register  
010100 Channel 4 register  
010101 Channel 5 register  
010110 Channel 6 register  
010111 Channel 7 register  
011000 Channel 8 register  
011001 Channel 9 register  
011010 Channel 10 register  
011011 Channel 11 register  
011100 Channel 12 register  
011101 Channel 13 register  
011110 Channel 14 register  
011111 Channel 15 register  
100000 Setup Configuration 0 register  
100001 Setup Configuration 1 register  
100010 Setup Configuration 2 register  
100011 Setup Configuration 3 register  
100100 Setup Configuration 4 register  
100101 Setup Configuration 5 register  
100110 Setup Configuration 6 register  
100111 Setup Configuration 7 register  
101000 Filter Configuration 0 register  
101001 Filter Configuration 1 register  
101010 Filter Configuration 2 register  
101011 Filter Configuration 3 register  
101100 Filter Configuration 4 register  
101101 Filter Configuration 5 register  
101110 Filter Configuration 6 register  
101111 Filter Configuration 7 register  
110000 Offset 0 register  
110001 Offset 1 register  
Rev. 0 | Page 47 of 64  
 
 
AD7173-8  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
110010 Offset 2 register  
110011 Offset 3 register  
110100 Offset 4 register  
110101 Offset 5 register  
110110 Offset 6 register  
110111 Offset 7 register  
111000 Gain 0 register  
111001 Gain 1 register  
111010 Gain 2 register  
111011 Gain 3 register  
111100 Gain 4 register  
111101 Gain 5 register  
111110 Gain 6 register  
111111 Gain 7 register  
Rev. 0 | Page 48 of 64  
Data Sheet  
AD7173-8  
STATUS REGISTER  
Address: 0x00, Reset: 0x80, Name: STATUS  
The status register is an 8-bit register that contains ADC and serial interface status information. It can optionally be appended to the data  
register by setting the DATA_STAT bit in the interface mode register (Bit 6, Register 0x02).  
Table 24. Bit Descriptions for STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
RDY  
The status of RDY is output to the DOUT/RDYpin whenever CS is low and  
a register is not being read. This bit goes low when the ADC has written  
a new result to the data register. In ADC calibration modes, this bit goes  
low when the ADC has written the calibration result. RDY is brought high  
automatically by a read of the data register.  
0x1  
R
0
1
New data result available  
Awaiting new data result  
6
ADC_ERROR  
This bit, by default, indicates if an ADC overrange or underrange has  
occurred. The ADC result is clamped to full scale if an overrange or  
underrange occurs. This bit is updated when the ADC result is written and  
is cleared by removing the overrange or underrange condition on the  
analog inputs.  
0x0  
R
0
1
No error  
Error  
5
4
CRC_ERROR  
REG_ERROR  
This bit indicates if a CRC error has occurred during a register write. For  
register reads, the host microcontroller determines if a CRC error has  
occurred. This bit is cleared by a read of this register.  
No error  
CRC error  
0x0  
0x0  
R
R
0
1
This bit indicates if the content of one of the internal registers has  
changed from the value calculated when the register integrity check was  
activated. The check is activated by setting the REG_CHECK bit in the  
interface mode register. This bit is cleared by clearing the REG_CHECK bit.  
0
1
No error  
Error  
[3:0]  
CHANNEL  
These bits indicate which channel was active for the ADC conversion  
whose result is currently in the data register. This may be different from  
the channel currently being converted. The bits are a direct mapping from  
the Channel x registers; therefore, Channel 0 results in 0x0 and Channel 15  
results in 0x1F.  
0x0  
R
0000 Channel 0  
0001 Channel 1  
0010 Channel 2  
0011 Channel 3  
0100 Channel 4  
0101 Channel 5  
0110 Channel 6  
0111 Channel 7  
1000 Channel 8  
1001 Channel 9  
1010 Channel 10  
1011 Channel 11  
1100 Channel 12  
1101 Channel 13  
1110 Channel 14  
1111 Channel 15  
Rev. 0 | Page 49 of 64  
 
AD7173-8  
Data Sheet  
ADC MODE REGISTER  
Address: 0x01, Reset: 0x2000, Name: ADCMODE  
The ADC mode register controls the operating mode of the ADC and the master clock selection. A write to the ADC mode register resets  
RDY  
the filter and the  
bits and starts a new conversion or calibration.  
Table 25. Bit Descriptions for ADCMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
REF_EN  
Enables internal reference and outputs a buffered 2.5 V to the REFOUT pin. 0x0  
RW  
0
1
Disabled  
Enabled  
14  
13  
RESERVED  
SING_CYC  
This bit is reserved. Set to 0.  
0x0  
R
This bit can be used when only a single channel is active to set the ADC to 0x1  
output only at the settled filter data rate.  
RW  
0
1
Disabled  
Enabled  
[12:11] RESERVED  
These bits are reserved. Set to 0.  
0x0  
R
[10:8]  
DELAY  
These bits allow a programmable delay to be added after a channel switch 0x0  
to allow settling of external circuitry before the ADC starts processing its  
input.  
RW  
000 0 µs  
001 32 µs  
010 128 µs  
011 320 µs  
100 800 µs  
101 1.6 ms  
110 4 ms  
111 8 ms  
7
RESERVED  
MODE  
This bit is reserved. Set to 0.  
0x0  
R
[6:4]  
These bits control the operating mode of the ADC. Details can be found in 0x0  
the Operating Modes section.  
RW  
000 Continuous conversion mode  
001 Single conversion mode  
010 Standby mode  
011 Power-down mode  
100 Internal offset calibration  
110 System offset calibration  
111 System gain calibration  
[3:2]  
[1:0]  
CLOCKSEL  
RESERVED  
This bit is used to select the ADC clock source. Selecting the internal  
oscillator also enables the internal oscillator.  
00 Internal oscillator  
01 Internal oscillator output on XTAL2/CLKIO pin  
10 External clock input on XTAL2/CLKIO pin  
11 External crystal on XTAL1 and XTAL2/CLKIO pins  
These bits are reserved. Set to 0.  
0x0  
0x0  
RW  
R
Rev. 0 | Page 50 of 64  
 
 
Data Sheet  
AD7173-8  
INTERFACE MODE REGISTER  
Address: 0x02, Reset: 0x0000, Name: IFMODE  
The interface mode register configures various serial interface options.  
Table 26. Bit Descriptions for IFMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R
[15:13] RESERVED  
These bits are reserved. Set to 0.  
0x0  
0x0  
12  
11  
ALT_SYNC  
This bit enables a different behavior of the SYNC pin to allow the use  
of SYNC as a control for conversions when cycling channels. (For details,  
see the description of the SYNC_EN bit in the GPIO Configuration Register.)  
Disabled  
Enabled  
RW  
0
1
IOSTRENGTH  
This bit controls the drive strength of the DOUT (DOUT/RDY) pin and the  
XTAL2/CLKIO pin. Set this bit to 1 when reading from the serial interface at  
high speed with low IOVDD supply and moderate capacitance.  
0x0  
RW  
0
1
Disabled (default)  
Enabled  
[10:9]  
8
RESERVED  
These bits are reserved. Set to 0.  
0x0  
0x0  
R
DOUT_RESET  
This bit prevents the DOUT/RDY pin from switching from outputting  
DOUT to outputting RDY soon after the last rising edge of SCLK during  
a read operation. Instead, the DOUT/RDY pin continues to output the LSB  
of the data until CS goes high, providing longer hold times for the SPI  
master to sample the LSB of the data. When this bit is set, CS must not be  
tied low.  
RW  
0
1
Disabled  
Enabled  
7
6
CONTREAD  
DATA_STAT  
This bit enables continuous read of the ADC data register. To use continuous 0x0  
read, configure the ADC in continuous conversion mode. For more details,  
see the Operating Modes section.  
Disabled  
Enabled  
RW  
RW  
0
1
This bit enables the status register to be appended to the data register  
when read so that channel and status information is transmitted with the  
data. This is the only way to ensure that the channel bits read from the  
status register correspond to the data in the data register.  
0x0  
0
1
Disabled  
Enabled  
5
REG_CHECK  
This bit enables a register integrity checker that can be used to monitor  
any change in the value of the user registers. To use this feature, configure  
all other registers as desired, with this bit cleared. Then write to this register  
to set the REG_CHECK bit to 1. If the contents of any of the registers change,  
the REG_ERROR bit is set in the status register. To clear the error, set the  
REG_CHECK bit to 0. Neither the interface mode register nor the ADC data  
or status register is included in the registers that are checked. If a register  
must have a new value written, clear this bit first; otherwise, an error is  
flagged when the new register contents are written.  
0x0  
RW  
0
1
Disabled  
Enabled  
4
RESERVED  
CRC_EN  
This bit is reserved. Set to 0.  
0x0  
R
[3:2]  
Enables CRC protection of register reads/writes. CRC increases the number of  
bytes in a serial interface transfer by one. See the CRC Calculation section  
for more details.  
0x00  
RW  
00 Disabled.  
01 XOR checksum enabled for register read transactions. Register writes still  
use CRC with these bits set.  
10 CRC checksum enabled for read and write transactions.  
This bit is reserved. Set to 0.  
1
RESERVED  
0x0  
R
Rev. 0 | Page 51 of 64  
 
 
AD7173-8  
Data Sheet  
Bits  
Bit Name  
WL16  
Settings  
Description  
Reset  
Access  
0
Changes the ADC data register to 16 bits. The ADC is not reset by a write  
to the interface mode register; therefore, the ADC result isnot rounded to  
the correct word length immediately after writing to these bits. The first  
new ADC result is correct.  
0x0  
RW  
0
1
24-bit data  
16-bit data  
REGISTER CHECK  
Address: 0x03, Reset: 0x000000, Name: REGCHECK  
The register check register is a 24-bit checksum calculated by XOR'ing the contents of the user registers and some nonaccessible registers.  
The REG_CHECK bit in the interface mode register must be set for this to operate; otherwise, the register reads 0.  
Table 27. Bit Descriptions for REGCHECK  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
REGISTER_CHECK  
This register contains the 24-bit checksum of user registers when the  
REG_CHECK bit is set in the interface mode register.  
0x000000  
R
DATA REGISTER  
Address: 0x04, Reset: 0x000000, Name: DATA  
The data register contains the ADC conversion result. The encoding is offset binary; however, it can be changed to unipolar by the  
RDY  
BI_UNIPOLAR bit in the setup configuration register. Reading the data register brings the  
bit and pin high if they are low. The  
has been brought high, it is not possible to know if another ADC result is  
RDY  
ADC result can be read multiple times; however, because  
imminent. The ADC does not write a new result into the data register if the register is currently being read.  
Table 28. Bit Descriptions for DATA  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
DATA  
This register contains the ADC conversion result. If the DATA_STAT bit is  
set in the interface mode register, the status register is appended to this  
register when read, making this a 32-bit register. If WL16 is set in the  
interface mode register, this register is set to a length of 16 bits.  
0x000000  
R
Rev. 0 | Page 52 of 64  
 
 
Data Sheet  
AD7173-8  
GPIO CONFIGURATION REGISTER  
Address: 0x06, Reset: 0x0800, Name: GPIOCON  
The GPIO configuration register controls the general-purpose I/O pins of the ADC.  
Table 29. Bit Descriptions for GPIOCON  
Bits  
Bit Name  
RESERVED  
PDSW  
Settings  
Description  
Reset  
Access  
R
15  
This bit is reserved. Set to 0.  
0x0  
0x0  
14  
This bit enables/disables the power-down switch function. Setting the bit  
allows the pin to sink current. This function can be used for bridge sensor  
applications where the switch controls the power-up/power-down of the  
bridge.  
RW  
13  
12  
OP_EN2_3  
MUX_IO  
This bit enables the GPO2 and GPO3 pins. Outputs are referenced between  
AVDD1 and AVSS.  
0x0  
0x0  
RW  
RW  
This bit allows the ADC to control an external multiplexer, using GPIO0/GPIO1/  
GPO2/GPO3 in sync with the internal channel sequencing. The analog input  
pins used for a channel can still be selected on a per channel basis. Therefore,  
it is possible to have a 16-channel multiplexer in front of each analog input  
pair (AIN0/AIN1 to AIN14/AIN15), giving a total of 128 differential channels.  
However, only 16 channels at a time can be automatically sequenced. Following  
the sequence of 16 channels, the user changes the analog input to the next pair  
of input channels, and it sequences through the next 16 channels.  
There is a delay function that allows extra time for the analog input to settle, in  
conjunction with any switching an external multiplexer (see the delay bits in  
the ADC Mode Register).  
11  
SYNC_EN  
This bit enables the SYNC pin as a sync input. When set low, the SYNC pin  
holds the ADC and filter in reset until SYNC goes high. An alternative  
operation of the SYNC pin is available when the ALT_SYNC bit in the  
interface mode register is set. This mode works only when multiple  
channels are enabled. In such cases, a low on the SYNC pin does not  
immediately reset the filter/modulator. Instead, if the SYNC pin is low when  
the channel is due to be switched, the modulator and filter are prevented  
from starting a new conversion. Bringing SYNC high begins the next  
conversion. This alternative sync mode allows SYNC to be used while cycling  
through channels.  
0x1  
RW  
0
1
Disabled  
Enabled  
[10:9]  
ERR_EN  
These bits enable the ERROR pin as an error input/output.  
0x0  
RW  
00 Disabled  
01 ERROR is an error input. The (inverted) readback state is OR'ed with other  
error sources and is available in the ADC_ERROR bit in the status register.  
The ERROR pin state can also be read from the ERR_DAT bit in this register.  
10 ERROR is an open-drain error output. The status register error bits are  
OR'ed, inverted, and mapped to the ERROR pin. ERROR pins of multiple  
devices can be wired together to a common pull-up resistor so that an error  
on any device can be observed.  
11 ERROR is a general-purpose output. The status of the pin is controlled by  
the ERR_DAT bit in this register. This is referenced between IOVDD and  
DGND, as opposed to the AVDD1 and AVSS levels used by the general-  
purpose I/O pins. It has an active pull-up in this case.  
8
ERR_DAT  
This bit determines the logic level at the ERROR pin if the pin is enabled as a 0x0  
general-purpose output. It reflects the readback status of the pin if the pin  
is enabled as an input.  
RW  
7
6
5
GP_DATA3  
GP_DATA2  
IP_EN1  
This bit is the write data for GPO3.  
0x0  
0x0  
0x0  
W
This bit is the write data for GPO2.  
W
This bit turns GPIO1 into an input. Input should equal AVDD1 or AVSS.  
RW  
0
1
Disabled  
Enabled  
Rev. 0 | Page 53 of 64  
 
AD7173-8  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
IP_EN0  
This bit turns GPIO0 into an input. Input should equal AVDD1 or AVSS.  
0x0  
RW  
0
1
Disabled  
Enabled  
3
2
OP_EN1  
This bit turns GPIO1 into an output. Outputs are referenced between  
AVDD1 and AVSS.  
Disabled  
Enabled  
0x0  
0x0  
RW  
RW  
0
1
OP_EN0  
This bit turns GPIO0 into an output. Outputs are referenced between  
AVDD1 and AVSS.  
0
1
Disabled  
Enabled  
1
0
GP_DATA1  
GP_DATA0  
This bit is the readback or write data for GPIO1.  
This bit is the readback or write data for GPIO0.  
0x0  
0x0  
RW  
RW  
ID REGISTER  
Address: 0x07, Reset: 0x30DX, Name: ID  
The ID register returns a 16-bit ID. For the AD7173-8, this is 0x30DX.  
Table 30. Bit Descriptions for ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x30DX1  
Access  
[15:0]  
ID  
The ID register returns a 16-bit ID code that is specific to the ADC.  
R
0x30DX AD7173-8  
1 X = don’t care.  
CHANNEL REGISTER 0  
Address: 0x10, Reset: 0x8001, Name: CH0  
The channel registers are 16-bit registers that are used to select which channels are currently active, which inputs are selected for each  
channel, and which setup should be used to configure the ADC for that channel.  
Table 31. Bit Descriptions for CH0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
CH_EN0  
This bit enables Channel 0. If more than one channel is enabled, the ADC 0x1  
automatically sequences between them.  
RW  
0
1
Disabled  
Enabled (default)  
[14:12] SETUP_SEL0  
These bits identify which of the eight setups are used to configure the  
ADC for this channel.  
0x0  
RW  
A setup comprises a set of four registers: the setup configuration register, the  
filter configuration register, the offset register, and the gain register.  
All channels can use the same setup, in which case the same 3-bit value  
is written to these bits on all active channels; alternatively, up to eight  
channels can be configured differently.  
000 Setup 0  
001 Setup 1  
010 Setup 2  
011 Setup 3  
100 Setup 4  
101 Setup 5  
110 Setup 6  
111 Setup 7  
[11:10] RESERVED  
These bits are reserved. Set to 0.  
0x0  
R
Rev. 0 | Page 54 of 64  
 
 
 
Data Sheet  
AD7173-8  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[9:5]  
AINPOS0  
These bits select which of the analog inputs is connected to the positive  
input of the ADC for this channel. TEMP SENSOR is an internal tempera-  
ture sensor.  
RW  
00000 AIN0 (default)  
00001 AIN1  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
01000 AIN8  
01001 AIN9  
01010 AIN10  
01011 AIN11  
01100 AIN12  
01101 AIN13  
01110 AIN14  
01111 AIN15  
10000 AIN16  
10001 TEMP SENSOR +  
10010 TEMP SENSOR −  
10101 REF+  
10110 REF−  
[4:0]  
AINNEG0  
These bits select which of the analog inputs is connected to the negative 0x1  
input of the ADC for this channel.  
RW  
00000 AIN0  
00001 AIN1(default)  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
01000 AIN8  
01001 AIN9  
01010 AIN10  
01011 AIN11  
01100 AIN12  
01101 AIN13  
01110 AIN14  
01111 AIN15  
10000 AIN16  
10001 TEMP SENSOR +  
10010 TEMP SENSOR −  
10101 REF+  
10110 REF−  
Rev. 0 | Page 55 of 64  
AD7173-8  
Data Sheet  
CHANNEL REGISTER 1 TO CHANNEL REGISTER 15  
Address Range: 0x11 to 0x1F, Reset: 0x0001, Name: CH1 to CH15  
Subsequent channel registers, CH1 to CH15, use the same structure as the CH0 register. They are disabled by default (MSB = 0). Each  
channel created can be referred to one of eight setups. The sequencer progresses through each of the enabled channels in order.  
Table 32 shows the summary of these registers, their addresses, and their reset values.  
Table 32. Summary of CH1 to CH15  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x11 CH1  
[15:8] CH_EN1  
[7:0]  
SETUP_SEL1  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
SETUP_SEL8  
SETUP_SEL9  
SETUP_SEL10  
SETUP_SEL11  
SETUP_SEL12  
SETUP_SEL13  
SETUP_SEL14  
SETUP_SEL15  
RESERVED  
AINPOS1[4:3]  
0x0001  
RW  
AINPOS1[2:0]  
AINPOS2[2:0]  
AINPOS3[2:0]  
AINPOS4[2:0]  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINPOS7[2:0]  
AINPOS8[2:0]  
AINPOS9[2:0]  
AINPOS10[2:0]  
AINPOS11[2:0]  
AINPOS12[2:0]  
AINPOS13[2:0]  
AINPOS14[2:0]  
AINPOS15[2:0]  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
RESERVED  
AINNEG4  
RESERVED  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
RESERVED  
AINNEG8  
RESERVED  
AINNEG9  
RESERVED  
AINNEG10  
RESERVED  
AINNEG11  
RESERVED  
AINNEG12  
RESERVED  
AINNEG13  
RESERVED  
AINNEG14  
RESERVED  
AINNEG15  
0x12 CH2  
0x13 CH3  
0x14 CH4  
0x15 CH5  
0x16 CH6  
0x17 CH7  
0x18 CH8  
0x19 CH9  
0x1A CH10  
0x1B CH11  
0x1C CH12  
0x1D CH13  
0x1E CH14  
0x1F CH15  
[15:8] CH_EN2  
[7:0]  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
AINPOS8[4:3]  
AINPOS9[4:3]  
AINPOS10[4:3]  
AINPOS11[4:3]  
AINPOS12[4:3]  
AINPOS13[4:3]  
AINPOS14[4:3]  
AINPOS15[4:3]  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[15:8] CH_EN3  
[7:0]  
[15:8] CH_EN4  
[7:0]  
[15:8] CH_EN5  
[7:0]  
[15:8] CH_EN6  
[7:0]  
[15:8] CH_EN7  
[7:0]  
[15:8] CH_EN8  
[7:0]  
[15:8] CH_EN9  
[7:0]  
[15:8] CH_EN10  
[7:0]  
[15:8] CH_EN11  
[7:0]  
[15:8] CH_EN12  
[7:0]  
[15:8] CH_EN13  
[7:0]  
[15:8] CH_EN14  
[7:0]  
[15:8] CH_EN15  
[7:0]  
Rev. 0 | Page 56 of 64  
 
 
Data Sheet  
AD7173-8  
SETUP CONFIGURATION REGISTER 0  
Address: 0x20, Reset: 0x1000, Name: SETUPCON0  
The setup configuration registers are 16-bit registers that configure the reference selection, input buffers, burnout currents, and output  
coding of the ADC.  
Table 33. Bit Descriptions for SETUPCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved. Set to 0.  
This bit sets the output coding of the ADC for Setup 0.  
Unipolar coded output  
12  
BI_UNIPOLAR0  
0x1  
RW  
0
1
Offset binary coded output  
[11:10] REF_BUF_0[1:0]  
Reference input buffer enable. These bits turn on the buffers of the  
positive and negative reference inputs. This offers a high impedance input  
for an external reference source and isolates it from the switch capacitor  
reference sampling input of the ADC. Use both reference buffers together.  
0x0  
0x0  
RW  
RW  
00 Reference input buffers disabled  
11 Reference input buffers enabled  
[9:8]  
AIN_BUF_0[1:0]  
BURNOUT_EN0  
Analog input buffer enable. These bits turn on the buffers of the positive  
and negative analog inputs. This offers a high impedance input to the  
device and isolates the sensor/signal for measurement from the switch  
capacitor sampling input of the ADC. Use both analog input buffers  
together.  
00 Analog input buffers disabled  
11 Analog input buffers enabled  
7
This bit enables a 10 µA current source on the positive analog input  
selected and a 10 µA current sink on the negative analog input selected.  
The burnout currents are useful in diagnosis of an open wire, whereby the  
ADC result goes to full scale. Enabling the BURNOUT currents during  
measurement results in an offset voltage on the ADC reading of  
approximately 1 µV. This means the strategy for diagnosing an open wire  
operates best by turning on the BURNOUT currents at intervals, before or  
after precision measurements.  
0x0  
RW  
6
BUFCHOPMAX0  
REF_SEL0  
This bit enables the maximum buffer chop frequency, increasing AIN  
input current and reducing buffer noise.  
0x0  
0x0  
RW  
RW  
[5:4]  
These bits allow selection of the reference source for ADC conversion on  
Setup 0.  
00 External reference supplied to REF+ and REF− pins  
01 External Reference 2 supplied to AIN1/REF2+ and AIN0/REF2− pins  
10 Internal 2.5 V reference; this reference must also be enabled in the ADC mode  
register  
11 AVDD1 – AVSS; this setting can be used to as a diagnostic to validate other  
reference values  
[3:0]  
RESERVED  
These bits are reserved. Set to 0.  
0x0  
R
Rev. 0 | Page 57 of 64  
 
AD7173-8  
Data Sheet  
SETUP CONFIGURATION REGISTER 1 TO SETUP CONFIGURATION REGISTER 7  
Address: 0x21 to 0x27, Reset: 0x1000, Name: SETUPCON1 to SETUPCON7  
The remaining seven setup configuration registers share the same 16-bit register layout as SETUPCON0. They configure the reference  
selection, input buffers, burnout currents, and output coding of the ADC.  
Table 34. Summary of SETUPCON1 to SETUPCON7  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x21 SETUPCON1 [15:8]  
RESERVED  
BI_UNIPOLAR1  
REF_BUF 1[1:0]  
AIN_BUF 1[1:0]  
0x1000  
RW  
[7:0] BURNOUT_ BUFCHOPMAX1  
EN1  
REFSEL1  
RESERVED  
0x22 SETUPCON2 [15:8]  
RESERVED  
BI_UNIPOLAR2  
REFSEL2  
REF_BUF 2[1:0]  
REF_BUF 3[1:0]  
REF_BUF 4[1:0]  
REF_BUF 5[1:0]  
REF_BUF 6[1:0]  
REF_BUF 7[1:0]  
AIN_BUF 2[1:0]  
AIN_BUF 3[1:0]  
AIN_BUF 4[1:0]  
AIN_BUF 5[1:0]  
AIN_BUF 6[1:0]  
AIN_BUF 7[1:0]  
0x1000  
0x1000  
0x1000  
0x1000  
0x1000  
0x1000  
RW  
RW  
RW  
RW  
RW  
RW  
[7:0] BURNOUT_ BUFCHOPMAX2  
EN2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x23 SETUPCON3 [15:8]  
RESERVED  
BI_UNIPOLAR3  
REFSEL3  
[7:0] BURNOUT_ BUFCHOPMAX3  
EN3  
0x24 SETUPCON4 [15:8]  
RESERVED  
BI_UNIPOLAR4  
REFSEL4  
[7:0] BURNOUT_ BUFCHOPMAX4  
EN4  
0x25 SETUPCON5 [15:8]  
RESERVED  
BI_UNIPOLAR5  
REFSEL5  
[7:0] BURNOUT_ BUFCHOPMAX5  
EN5  
0x26 SETUPCON6 [15:8]  
RESERVED  
BI_UNIPOLAR6  
REFSEL6  
[7:0] BURNOUT_ BUFCHOPMAX6  
EN6  
0x27 SETUPCON7 [15:8]  
RESERVED  
BI_UNIPOLAR7  
REFSEL7  
[7:0] BURNOUT_ BUFCHOPMAX7  
EN7  
Rev. 0 | Page 58 of 64  
 
Data Sheet  
AD7173-8  
FILTER CONFIGURATION REGISTER 0  
Address: 0x28, Reset: 0x0000, Name: FILTCON0  
The filter configuration registers are 16-bit registers that configure the ADC data rate and filter options. Writing to any of these registers  
resets any active ADC conversion and restarts converting at the first channel in the sequence.  
Table 35. Bit Descriptions for FILTCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
SINC3_MAP0  
If this bit is set, the mapping of the filter configuration register changes to 0x0  
directly program the decimation rate of the sinc3 filter for Setup 0. All  
other options are eliminated. This allows fine tuning of the output data  
rate and filter notch for rejection of specific frequencies. The data rate  
when on a single channel, with single cycle settling disabled, equals  
FMOD/(32 × FILTCON0[14:0]).  
RW  
[14:12] RESERVED  
These bits are reserved. Set to 0.  
0x0  
R
11  
ENHFILTEN0  
This bit enables various post filters for enhanced 50 Hz/60 Hz rejection for 0x0  
Setup 0. For this setting to function, the ORDERx bits must also be set to  
00 to select the sinc5 + sinc1 filter.  
RW  
0
1
Disabled  
Enabled  
[10:8]  
ENHFILT0  
These bits select between various post filters for enhanced 50 Hz/60 Hz  
rejection for Setup 0.  
0x0  
RW  
010 27.27 SPS, 47 dB rejection, 36.67 ms settling  
011 25 SPS, 62 dB rejection, 40 ms settling  
101 20 SPS, 86 dB rejection, 50 ms settling  
110 16.67 SPS, 92 dB rejection, 60 ms settling  
This bit is reserved. Set to 0.  
7
RESERVED  
ORDER0  
0x0  
0x0  
R
[6:5]  
These bits control the order of the digital filter that processes the  
modulator data for Setup 0.  
RW  
00 Sinc5 + sinc1 (default)  
11 Sinc3  
[4:0]  
ODR0  
These bits control the output data rate of the ADC and, therefore, the  
settling time and noise for Setup 0.  
0x0  
RW  
00000 31,250 SPS  
00001 31,250 SPS  
00010 31,250 SPS  
00011 31,250 SPS  
00100 31,250 SPS  
00101 31,250 SPS  
00110 15,625 SPS  
00111 10,417 SPS  
01000 5208 SPS  
01001 2597 SPS (2604 SPS for sinc3)  
01010 1007 SPS (1008 SPS for sinc3)  
01011 503.8 SPS (504 SPS for sinc3)  
01100 381 SPS (400.6 SPS for sinc3)  
01101 200.3 SPS  
01110 100.5 SPS  
01111 59.52 SPS (59.98 SPS for sinc3)  
10000 49.68 SPS (50 SPS for sinc3)  
10001 20.01 SPS  
10010 16.63 SPS (16.67 SPS for sinc3)  
10011 10 SPS  
10100 5 SPS  
10101 2.5 SPS  
10110 1.25 SPS  
Rev. 0 | Page 59 of 64  
 
AD7173-8  
Data Sheet  
FILTER CONFIGURATION REGISTER 1 TO FILTER CONFIGURATION REGISTER 7  
Address Range: 0x29 to 0x2F, Reset: 0x0000, Name: FILTCON1 to FILTCON7  
The remaining seven filter configuration registers share the same 16-bit register layout as FILTCON0. They configure the ADC data rate  
and filter options and map as per their number. Writing to any of these registers resets any active ADC conversion and restarts converting  
at the first channel in the sequence.  
Table 36. Summary of FILTCON1 to FILTCON7  
Reg Name  
0x29 FILTCON1 [15:8] SINC3_MAP1  
[7:0] RESERVED  
0x2A FILTCON2 [15:8] SINC3_MAP2  
[7:0] RESERVED  
0x2B FILTCON3 [15:8] SINC3_MAP3  
[7:0] RESERVED  
0x2C FILTCON4 [15:8] SINC3_MAP4  
[7:0] RESERVED  
0x2D FILTCON5 [15:8] SINC3_MAP5  
[7:0] RESERVED  
0x2E FILTCON6 [15:8] SINC3_MAP6  
[7:0] RESERVED  
0x2F FILTCON7 [15:8] SINC3_MAP7  
[7:0] RESERVED  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
RESERVED  
ENHFILTEN1  
ENHFILT1  
0x0000  
RW  
ORDER1  
RESERVED  
ORDER2  
RESERVED  
ORDER3  
RESERVED  
ORDER4  
RESERVED  
ORDER5  
RESERVED  
ORDER6  
RESERVED  
ORDER7  
ODR1  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
ODR7  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
ENHFILTEN7  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ENHFILT6  
ENHFILT7  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RW  
RW  
RW  
RW  
RW  
RW  
Rev. 0 | Page 60 of 64  
 
Data Sheet  
AD7173-8  
OFFSET REGISTER 0  
Address: 0x30, Reset: 0x800000, Name: OFFSET0  
The offset (zero-scale) registers are 24-bit registers that can be used to compensate for any offset error in the ADC or in the system.  
Table 37. Bit Descriptions for OFFSET0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
OFFSET0  
Offset calibration coefficient for Setup 0.  
0x800000 RW  
OFFSET REGISTER 1 TO OFFSET REGISTER 7  
Address Range: 0x31to 0x37, Reset: 0x800000, Name: OFFSET1 to OFFSET7  
The offset (zero-scale) registers, OFFSET1 to OFFSET7, share the same structure (24-bit) as OFFSET0. They can be used individually to  
compensate for any offset error in the ADC or in the system.  
Table 38. Summary of OFFSET1 to OFFSET7  
Reg  
Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
OFFSET1 [23:0]  
OFFSET2 [23:0]  
OFFSET3 [23:0]  
OFFSET4 [23:0]  
OFFSET5 [23:0]  
OFFSET6 [23:0]  
OFFSET7 [23:0]  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET4[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
GAIN REGISTER 0  
Address: 0x38, Reset: 0x5XXXX0, Name: GAIN0  
The gain (full-scale) registers are 24-bit registers that can be used to compensate for any gain error in the ADC or in the system.  
Table 39. Bit Descriptions for GAIN0  
Bits  
Bit Name  
Settings  
Description  
Reset1  
0x5XXXX0 RW  
Access  
[23:0]  
GAIN0  
Gain calibration coefficient for Setup 0.  
1 The value of X varies, depending on the IC that is used.  
GAIN REGISTER 1 TO GAIN REGISTER 7  
Address Range: 0x39 to 0x3F, Reset: 0x5XXXX0, Name: GAIN1 to GAIN7  
The gain (full-scale) registers for GAIN1 to GAIN7 share the same 24-bit structure as that shown by GAIN0 register. They can be used to  
compensate for any gain error in the ADC or in the system and are assigned as per their number to a given setup.  
Table 40. Summary of GAIN1 to GAIN7  
Reg  
Name  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
Bits  
Bit[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
Reset1  
RW  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
1 The value of X varies, depending on the IC that is used.  
Rev. 0 | Page 61 of 64  
 
 
 
 
 
AD7173-8  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.05  
3.90 SQ  
3.75  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 75. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Models1  
AD7173-8BCPZ  
AD7173-8BCPZ-RL  
EVAL-AD7173-8SDZ  
EVAL-SDP-CB1Z  
Temperature Range  
Package Description  
40-Lead LFCSP_WQ  
40-Lead LFCSP_WQ  
Evaluation Board  
Package Option  
−40°C to +105°C  
−40°C to +105°C  
CP-40-14  
CP-40-14  
Evaluation Controller Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 62 of 64  
 
 
 
Data Sheet  
NOTES  
AD7173-8  
Rev. 0 | Page 63 of 64  
AD7173-8  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11773-0-10/13(0)  
Rev. 0 | Page 64 of 64  

相关型号:

AD7173-8BCPZ

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

AD7173-8BCPZ-RL

Low Power, 8-/16-Channel, 31.25 kSPS, 24-Bit, Highly Integrated Sigma-Delta ADC
ADI

AD7175-2

24-Bit, 250 kSPS, Sigma-Delta ADC Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ-RL

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2BRUZ-RL7

24-Bit, 250 kSPS, Sigma-Delta ADC with 20 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7175-2_17

24-Bit, 250 kSPS, Sigma-Delta ADC Settling and True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7175-8BCPZ-RL7

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7176-2

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7176-2BRUZ

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI