AD7175-8BCPZ-RL [ADI]

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers;
AD7175-8BCPZ-RL
型号: AD7175-8BCPZ-RL
厂家: ADI    ADI
描述:

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers

转换器
文件: 总65页 (文件大小:1052K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24-Bit, 8-/16-Channel, 250 kSPS, Sigma-  
Delta ADC with True Rail-to-Rail Buffers  
AD7175-8  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Fast and flexible output rate: 5 SPS to 250 kSPS  
The AD7175-8 is a low noise, fast settling, multiplexed, 8-/16-  
Channel scan data rate of 50 kSPS/channel (20 µs settling)  
Performance specifications  
17.2 noise free bits at 250 kSPS  
20.2 noise free bits at 2.5 kSPS  
24 noise free bits at 20 SPS  
INL: 1 ppm of FSR  
85 dB filter rejection of 50 Hz and 60 Hz with 50 ms settling  
User configurable input channels  
8 fully differential channels or 16 single-ended channels  
Crosspoint multiplexer  
On-chip 2.5 V reference ( 2 ppm/°C drift)  
True rail-to-rail analog and reference input buffers  
Internal or external clock  
channel (fully/pseudo differential) Σ-Δ analog-to-digital  
converter (ADC) for low bandwidth inputs. It has a maximum  
channel scan rate of 50 kSPS (20 µs) for fully settled data. The  
output data rates range from 5 SPS to 250 kSPS.  
The AD7175-8 integrates key analog and digital signal condition-  
ing blocks to allow users to configure an individual setup for  
each analog input channel in use. Each feature can be user selected  
on a per channel basis. Integrated true rail-to-rail buffers on the  
analog inputs and external reference inputs provide easy to drive  
high impedance inputs. The precision 2.5 V low drift (2 ppm/°C)  
band gap internal reference (with output reference buffer) adds  
embedded functionality to reduce external component count.  
The digital filter allows simultaneous 50 Hz and 60 Hz rejection  
at a 27.27 SPS output data rate. The user can switch between  
different filter options according to the demands of each channel  
in the application. The ADC automatically switches through  
each selected channel. Further digital processing functions  
include offset and gain calibration registers, configurable on a  
per channel basis.  
Power supply: AVDD1 − AVSS = 5 V, AVDD2 = IOVDD = 2 V to  
5 V (nominal)  
Split supply with AVDD1/AVSS at 2.5 V  
ADC current: 8.4 mA  
Temperature range: −40°C to +105°C  
3- or 4-wire serial digital interface (Schmitt trigger on SCLK)  
Serial port interface (SPI), QSPI, MICROWIRE, and DSP  
compatible  
The device operates with a 5 V AVDD1 − AVSS supply, or with  
2.5 V AVDD1/AVSS, and 2 V to 5 V AVDD2 and IOVDD  
nominal supplies. The specified operating temperature range is  
−40°C to +105°C. The AD7175-8 is available in a 40-lead LFCSP  
package.  
APPLICATIONS  
Process control: PLC/DCS modules  
Temperature and pressure measurement  
Medical and scientific multichannel instrumentation  
Chromatography  
FUNCTIONAL BLOCK DIAGRAM  
AVDD2 REGCAPA REF– REF+ REFOUT  
AVDD1  
IOVDD REGCAPD  
CROSSPOINT  
MULTIPLEXER  
BUFFERED  
PRECISION  
REFERENCE  
1.8V  
LDO  
1.8V  
LDO  
REFERENCE  
INPUT  
BUFFERS  
AIN0/REF2–  
AIN1/REF2+  
AVDD  
INT  
REF  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
AND CONTROL  
DIGITAL  
FILTER  
Σ-Δ ADC  
DOUT/RDY  
SYNC  
ERROR  
AIN15  
AIN16  
ANALOG  
INPUT  
BUFFERS  
AVSS  
XTAL AND INTERNAL  
CLOCK OSCILLATOR  
CIRCUITRY  
I/O AND EXTERNAL  
MUX CONTROL  
AD7175-8  
TEMPERATURE  
SENSOR  
AVSS  
PDSW  
GPIO0GPIO1GPO2GPO3  
XTAL1 XTAL2/CLKIO  
DGND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD7175-8* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE DESIGNS  
CN0292  
EVALUATION KITS  
AD7175-8 Evaluation Board  
DESIGN RESOURCES  
AD7175-8 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Data Sheet  
Quality And Reliability  
Symbols and Footprints  
AD7175-8: 24-Bit, 8-/16-Channel, 250 kSPS, Sigma- Delta  
ADC with True Rail-to-Rail Buffers Preliminary Data Sheet  
DISCUSSIONS  
View all AD7175-8 EngineerZone Discussions.  
User Guides  
UG-901: Evaluating the AD7175-8 24-Bit, 250 kSPS, Sigma-  
Delta ADC with 20 µs Settling and Integrated Analog  
Input Buffers  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
AD7175 Microcontroller Renesas Driver  
AD717x Microcontroller No-OS  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD717x Eval+ Software  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7175-8  
Data Sheet  
TABLE OF CONTENTS  
CRC Calculation......................................................................... 41  
Integrated Functions ...................................................................... 43  
General-Purpose I/O ................................................................. 43  
External Multiplexer Control ................................................... 43  
Delay ............................................................................................ 43  
16-Bit/24-Bit Conversions......................................................... 43  
DOUT_RESET ........................................................................... 43  
Synchronization.......................................................................... 43  
Error Flags................................................................................... 44  
DATA_STAT ............................................................................... 44  
IOSTRENGTH ........................................................................... 44  
Power-Down Switch .................................................................. 45  
Internal Temperature Sensor .................................................... 45  
Grounding and Layout .................................................................. 46  
Register Summary .......................................................................... 47  
Register Details ............................................................................... 49  
Communications Register......................................................... 49  
Status Register............................................................................. 51  
ADC Mode Register................................................................... 52  
Interface Mode Register ............................................................ 53  
Register Check............................................................................ 54  
Data Register............................................................................... 54  
GPIO Configuration Register................................................... 55  
ID Register................................................................................... 56  
Channel Register 0 ..................................................................... 56  
Channel Register 1 to Channel Register 15 ............................ 58  
Setup Configuration Register 0 ................................................ 59  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Noise Performance and Resolution.............................................. 17  
Getting Started................................................................................ 18  
Power Supplies ............................................................................ 19  
Digital Communication............................................................. 19  
AD7175-8 Reset.......................................................................... 20  
Configuration Overview ........................................................... 20  
Circuit Description......................................................................... 25  
Buffered Analog Input ............................................................... 25  
Crosspoint Multiplexer.............................................................. 25  
AD7175-8 Reference.................................................................. 26  
Buffered Reference Input........................................................... 27  
Clock Source ............................................................................... 27  
Digital Filters................................................................................... 28  
Sinc5 + Sinc1 Filter..................................................................... 28  
Sinc3 Filter................................................................................... 28  
Single Cycle Settling................................................................... 29  
Enhanced 50 Hz and 60 Hz Rejection Filters......................... 33  
Operating Modes............................................................................ 36  
Continuous Conversion Mode ................................................. 36  
Continuous Read Mode............................................................. 37  
Single Conversion Mode ........................................................... 38  
Standby and Power-Down Modes............................................ 39  
Calibration................................................................................... 39  
Digital Interface .............................................................................. 40  
Checksum Protection................................................................. 40  
Setup Configuration Register 1 to Setup Configuration  
Register 7 ..................................................................................... 60  
Filter Configuration Register 0................................................. 61  
Filter Configuration Register 1 to Filter Configuration  
Register 7 ..................................................................................... 62  
Offset Register 0 ......................................................................... 62  
Offset Register 1 to Offset Register 7....................................... 62  
Gain Register 0............................................................................ 62  
Gain Register 1 to Gain Register 7........................................... 63  
Outline Dimensions....................................................................... 64  
Ordering Guide .......................................................................... 64  
REVISION HISTORY  
10/15—Revision 0: Initial Version  
Rev. 0 | Page 2 of 64  
 
Data Sheet  
AD7175-8  
SPECIFICATIONS  
AVDD1 = 4.5 V to 5.5 V, AV DD2 = 2 V to 5.5 V, IOV DD = 2 V to 5.5 V, AVSS = DGND = 0 V, REF+ = 2.5 V, REF− = AVSS,  
internal master clock (MCLK) = 16 MHz, TA = TMIN to TMAX (−40°C to +105°C), unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC SPEED AND PERFORMANCE  
Output Data Rate (ODR)  
No Missing Codes1  
Resolution  
5
24  
250,000  
SPS  
Bits  
Excluding sinc3 filter ≥ 125 kSPS  
See Table 19 to Table 23  
Noise  
See Table 19 to Table 23  
ACCURACY  
Integral Nonlinearity (INL)  
All input buffers enabled  
All input buffers disabled  
Internal short  
4.5  
1
60  
150  
80  
0.5  
10  
4.5  
ppm of FSR  
ppm of FSR  
µV  
nV/°C  
ppm of FSR  
ppm/°C  
Offset Error2  
Offset Drift  
Gain Error2  
Gain Drift1  
Internal short  
110  
0.75  
REJECTION  
Power Supply Rejection  
Common-Mode Rejection  
At DC  
AVDD1, AVDD2, for VIN = 1 V  
VIN = 0.1 V  
90  
dB  
95  
120  
dB  
dB  
At 50 Hz, 60 Hz1  
20 Hz output data rate (post filter), 50 Hz  
1 Hz and 60 Hz 1 Hz  
50 Hz 1 Hz and 60 Hz 1 Hz  
Normal Mode Rejection1  
Internal clock, 20 SPS ODR (postfilter)  
External clock, 20 SPS ODR (postfilter)  
71  
85  
90  
90  
dB  
dB  
ANALOG INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
Analog Input Current  
Input Buffers Disabled  
Input Current  
VREF = (REF+) − (REF−)  
VREF  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
48  
0.75  
4
µA/V  
nA/V/°C  
nA/V/°C  
Input Current Drift  
External clock  
Internal clock  
Input Buffers Enabled  
Input Current  
Input Current Drift  
30  
75  
1
nA  
AVDD1 − 0.2 V to AVSS + 0.2 V  
AVDD1 to AVSS  
1 kHz input  
pA/°C  
nA/°C  
dB  
Crosstalk  
−120  
INTERNAL REFERENCE  
Output Voltage  
100 nF external capacitor to AVSS  
REFOUT, with respect to AVSS  
REFOUT, TA = 25°C  
2.5  
V
Initial Accuracy3  
−0.12  
−10  
+0.12  
% of V  
Temperature Coefficient1  
0°C to 105°C  
2
3
5
10  
+10  
ppm/°C  
ppm/°C  
mA  
−40°C to +105°C  
Reference Load Current, ILOAD  
Power Supply Rejection  
Load Regulation  
Voltage Noise  
Voltage Noise Density  
AVDD1, AVDD2 (line regulation)  
∆VOUT/∆ILOAD  
eN, 0.1 Hz to 10 Hz, 2.5 V reference  
eN, 1 kHz, 2.5 V reference  
95  
32  
4.5  
215  
dB  
ppm/mA  
µV rms  
nV/√Hz  
Rev. 0 | Page 3 of 64  
 
 
AD7175-8  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
200  
25  
Max  
Unit  
µs  
mA  
Turn-On Settling Time  
Short-Circuit Current, ISC  
EXTERNAL REFERENCE INPUTS  
Differential Input Range  
Absolute Voltage Limits1  
Input Buffers Disabled  
Input Buffers Enabled  
REF+/REF− Input Current  
Input Buffers Disabled  
Input Current  
100 nF REFOUT capacitor  
VREF = (REF+) − (REF−)  
1
2.5  
AVDD1  
V
AVSS − 0.05  
AVSS  
AVDD1 + 0.05  
AVDD1  
V
V
72  
1.2  
6
µA/V  
nA/V/°C  
nA/V/°C  
Input Current Drift  
External clock  
Internal clock  
Input Buffers Enabled  
Input Current  
800  
1.2  
nA  
nA/°C  
Input Current Drift  
Normal Mode Rejection1  
Common-Mode Rejection  
TEMPERATURE SENSOR  
Accuracy  
See the Rejection parameter  
95  
dB  
After user calibration at 25°C  
2
°C  
Sensitivity  
470  
µV/K  
BURNOUT CURRENTS  
Source/Sink Current  
POWER-DOWN SWITCH  
RON  
Analog input buffers must be enabled  
10  
24  
µA  
Ω
Allowable Currents  
16  
mA  
GENERAL-PURPOSE INPUTS/OUTPUTS  
(GPIO0, GPIO1, GPO2, GPO3)  
Input Mode Leakage Current1  
With respect to AVSS  
−10  
+10  
µA  
pF  
V
V
V
Floating State Output Capacitance  
5
1
Output High Voltage, VOH  
ISOURCE = 200 µA  
ISINK = 800 µA  
AVSS + 4  
AVSS + 3  
1
Output Low Voltage, VOL  
AVSS + 0.4  
AVSS + 0.7  
1
Input High Voltage, VINH  
Input Low Voltage, VINL  
1
V
CLOCK  
Internal Clock  
Frequency  
Accuracy  
16  
50  
MHz  
%
%
V
V
−2.5%  
+2.5%  
0.4  
Duty Cycle  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Crystal  
0.8 × IOVDD  
14  
Frequency  
16  
10  
16  
50  
16.384  
MHz  
µs  
MHz  
%
Start-Up Time  
External Clock (CLKIO)  
Duty Cycle1  
16.384  
70  
30  
Rev. 0 | Page 4 of 64  
Data Sheet  
AD7175-8  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
Input High Voltage, VINH  
1
2 V ≤ IOVDD < 2.3 V  
0.65 ×  
IOVDD  
0.7 × IOVDD  
V
V
V
V
V
V
µA  
2.3 V ≤ IOVDD ≤ 5.5 V  
2 V ≤ IOVDD < 2.3 V  
2.3 V ≤ IOVDD ≤ 5.5 V  
IOVDD ≥ 2.7 V  
1
Input Low Voltage, VINL  
0.35 × IOVDD  
0.7  
0.25  
0.2  
+10  
Hysteresis1  
0.08  
0.04  
−10  
IOVDD < 2.7 V  
Leakage Current  
LOGIC OUTPUT (DOUT/RDY)  
1
Output High Voltage, VOH  
IOVDD ≥ 4.5 V, ISOURCE = 1 mA  
2.7 V ≤ IOVDD < 4.5 V, ISOURCE = 500 µA  
IOVDD < 2.7 V, ISOURCE = 200 µA  
IOVDD ≥ 4.5 V, ISINK = 2 mA  
2.7 V ≤ IOVDD < 4.5 V, ISINK = 1 mA  
IOVDD < 2.7 V, ISINK = 400 µA  
Floating state  
0.8 × IOVDD  
0.8 × IOVDD  
0.8 × IOVDD  
V
V
V
V
V
V
µA  
pF  
1
Output Low Voltage, VOL  
0.4  
0.4  
0.4  
+10  
Leakage Current  
Output Capacitance  
SYSTEM CALIBRATION1  
Full-Scale (FS) Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
−10  
Floating state  
10  
1.05 × FS  
2.1 × FS  
V
V
V
−1.05 × FS  
0.8 × FS  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 to AVSS  
4.5  
2
−2.75  
2
5
5.5  
5.5  
0
5.5  
6.35  
V
V
V
V
V
AVDD2 to AVSS4  
2.5 to 5  
AVSS to DGND  
IOVDD to DGND4  
IOVDD to AVSS  
2.5 to 5  
For AVSS < DGND  
POWER SUPPLY CURRENTS5  
All outputs unloaded, digital inputs  
connected to IOVDD or DGND  
Full Operating Mode  
AVDD1 Current  
Analog input and reference input buffers  
(AIN , REF ) disabled, external reference  
Analog input and reference input buffers  
disabled, internal reference  
Analog input and reference input buffers  
enabled, external reference  
1.4  
1.75  
13  
1.65  
2
mA  
mA  
mA  
16  
Each buffer: AIN+, AIN−, REF+, REF−  
External reference  
Internal reference  
External clock  
Internal clock  
External crystal  
Internal reference off, total current  
consumption  
Internal reference on, total current  
consumption  
Full power-down (including LDO and  
internal reference)  
2.9  
4.5  
4.75  
2.5  
2.75  
3
mA  
mA  
mA  
mA  
mA  
mA  
µA  
AVDD2 Current  
IOVDD Current  
5
5.2  
2.8  
3.1  
Standby Mode (LDO On)  
Power-Down Mode  
30  
425  
5
µA  
µA  
10  
Rev. 0 | Page 5 of 64  
 
AD7175-8  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER DISSIPATION5  
Full Operating Mode  
All buffers disabled, external clock and  
reference, AVDD2 = 2 V, IOVDD = 2 V  
All buffers disabled, external clock and  
reference, all supplies = 5 V  
All buffers disabled, external clock and  
reference, all supplies = 5.5 V  
All buffers enabled, internal clock and  
reference, AVDD2 = 2 V, IOVDD = 2 V  
All buffers enabled, internal clock and  
reference, all supplies = 5 V  
All buffers enabled, internal clock and  
reference, all supplies = 5.5 V  
Internal reference off, all supplies = 5 V  
Internal reference on, all supplies = 5 V  
Full power-down, all supplies = 5 V  
21  
42  
mW  
mW  
mW  
mW  
mW  
mW  
52  
82  
105  
136  
50  
Standby Mode  
150  
2.2  
25  
µW  
mW  
µW  
Power-Down Mode  
1 This specification is not production tested but is supported by characterization data at the initial product release.  
2 Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale  
calibration reduces the gain error to the order of the noise for the programmed output data rate.  
3 This specification includes moisture sensitivity level (MSL) preconditioning effects.  
4 The nominal range is 2 V to 5 V.  
5 This specification is with no load on the REFOUT and digital output pins.  
TIMING CHARACTERISTICS  
IOVDD = 2 V to 5.5 V, DGND = 0 V, Input Logic 0 = 0 V, Input Logic 1 = IOVDD, CLOAD = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Description1, 2  
SCLK  
t3  
t4  
25  
25  
ns min  
ns min  
SCLK high pulse width  
SCLK low pulse width  
READ OPERATION  
t1  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns max  
ns min  
ns min  
CS falling edge to DOUT/RDY active time  
IOVDD = 4.75 V to 5.5 V  
15  
40  
0
12.5  
25  
2.5  
20  
0
IOVDD = 2 V to 3.6 V  
3
t2  
SCLK active edge to data valid delay4  
IOVDD = 4.75 V to 5.5 V  
IOVDD = 2 V to 3.6 V  
Bus relinquish time after CS inactive edge  
5
t5  
t6  
t7  
SCLK inactive edge to CS inactive edge  
10  
SCLK inactive edge to DOUT/RDY high/low  
WRITE OPERATION  
t8  
0
8
8
5
ns min  
ns min  
ns min  
ns min  
CS falling edge to SCLK active edge setup time4  
Data valid to SCLK edge setup time  
Data valid to SCLK edge hold time  
CS rising edge to SCLK edge hold time  
t9  
t10  
t11  
1 Sample tested during initial release to ensure compliance.  
2 See Figure 2 and Figure 3.  
3 This parameter is defined as the time required for the output to cross the VOL or VOH limits.  
4 The SCLK active edge is the falling edge of SCLK.  
5
RDY  
while DOUT/  
DOUT/  
returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required,  
RDY  
is high, although care must be taken to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is  
enabled, the digital word can be read only once.  
Rev. 0 | Page 6 of 64  
 
 
Data Sheet  
AD7175-8  
Timing Diagrams  
CS (I)  
t6  
t1  
t5  
MSB  
LSB  
DOUT/RDY (O)  
t7  
t2  
t3  
SCLK (I)  
t4  
I = INPUT, O = OUTPUT  
Figure 2. Read Cycle Timing Diagram  
CS (I)  
t11  
t8  
SCLK (I)  
DIN (I)  
t9  
t10  
MSB  
LSB  
I = INPUT, O = OUTPUT  
Figure 3. Write Cycle Timing Diagram  
Rev. 0 | Page 7 of 64  
 
 
AD7175-8  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for a device soldered on a JEDEC test board for  
surface-mount packages.  
Table 3.  
Parameter  
Rating  
AVDD1, AVDD2 to AVSS  
AVDD1 to DGND  
IOVDD to DGND  
IOVDD to AVSS  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +7.5 V  
−3.25 V to +0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
10 mA  
−40°C to +105°C  
−65°C to +150°C  
150°C  
260°C  
4 kV  
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
40-Lead, 6 mm × 6 mm LFCSP  
1-Layer JEDEC Board  
4-Layer JEDEC Board  
114  
54  
34  
°C/W  
°C/W  
°C/W  
AVSS to DGND  
Analog Input Voltage to AVSS  
Reference Input Voltage to AVSS  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Analog Input/Digital Input Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Soldering, Reflow Temperature  
ESD Rating (Human Body Model)  
4-Layer JEDEC Board with 16 Thermal Vias  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 8 of 64  
 
 
 
Data Sheet  
AD7175-8  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AIN16  
AIN0/REF2–  
AIN1/REF2+  
AIN2  
1
2
3
4
5
6
7
8
9
30 AIN8  
29 AIN7  
28 AIN6  
27 AIN5  
AD7175-8  
TOP VIEW  
(Not to Scale)  
AIN3  
26 AIN4  
REFOUT  
REGCAPA  
AVSS  
AVDD1  
AVDD2 10  
25 GPO2  
24 GPIO1  
23 GPIO0  
22 REGCAPD  
21 DGND  
NOTES  
1. SOLDER THE EXPOSED PAD TO A SIMILAR PAD ON THE PCB UNDER THE  
EXPOSED PAD TO CONFER MECHANICAL STRENGTH AND FOR HEAT  
DISSIPATION. THE EXPOSED PAD MUST BE CONNECTED TO AVSS  
THROUGH THIS PAD ON THE PCB.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions1  
Pin No. Mnemonic  
Type2 Description  
1
2
AIN16  
AIN0/REF2−  
AI  
AI  
Analog Input 16. This pin is selectable through the crosspoint multiplexer.  
Analog Input 0 (AIN0)/Reference 2, Negative Input (REF2−). An external reference can be applied  
between REF2+ and REF2−. REF2− can span from AVSS to AVDD1 − 1 V. Analog Input 0 is selectable  
through the crosspoint multiplexer. Reference 2 can be selected through the REF_SELx bits in the setup  
configuration registers.  
3
AIN1/REF2+  
AI  
Analog Input 1 (AIN0)/Reference 2, Positive Input (REF2+). An external reference can be applied between  
REF2+ and REF2−. REF2+ spans from AVDD1 to AVSS + 1 V. Analog Input 1 is selectable through the  
crosspoint multiplexer. Reference 2 can be selected through the REF_SELx bits in the setup  
configuration registers.  
4
5
6
7
8
9
AIN2  
AIN3  
REFOUT  
REGCAPA  
AVSS  
AI  
AI  
AO  
AO  
P
Analog Input 2. This pin is selectable through the crosspoint multiplexer.  
Analog Input 3. This pin is selectable through the crosspoint multiplexer.  
Buffered Output of Internal Reference. The output is 2.5 V with respect to AVSS.  
Analog Low Dropout (LDO) Regulator Output. Decouple this pin to AVSS using a 1 µF capacitor.  
Negative Analog Supply. This supply ranges from 0 V to −2.75 V and is nominally set to 0 V.  
Analog Supply Voltage 1. This voltage is 5 V 10% with respect to AVSS. AVDD1 − AVSS can be a single  
5 V supply or a 2.5 V split supply.  
AVDD1  
P
10  
11  
12  
13  
AVDD2  
PDSW  
XTAL1  
P
AO  
AI  
Analog Supply Voltage 2. This voltage ranges from 2 V to AVDD1 with respect to AVSS.  
Power-Down Switch Connected to AVSS. This pin is controlled by the PDSW bit in the GPIOCON register.  
Input 1 for Crystal.  
Input 2 for Crystal (XTAL2)/Clock Input or Output (CLKIO). See the CLOCKSEL bit settings in the  
ADCMODE register for more information.  
XTAL2/CLKIO AI/DI  
14  
DOUT/RDY DO  
Serial Data Output (DOUT)/Data Ready Output (RDY). This pin serves a dual purpose. It functions as a  
serial data output pin to access the output shift register of the ADC. The output shift register can contain  
data from any of the on-chip data or control registers. The data-word/control word information is placed  
on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. When CS is high, the  
DOUT/RDY output is tristated. When CS is low, and a register is not being read, DOUT/RDY operates as  
a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the  
conversion, the pin goes high before the next update occurs. The DOUT/RDY falling edge can be used as  
an interrupt to a processor, indicating that valid data is available.  
Rev. 0 | Page 9 of 64  
 
AD7175-8  
Data Sheet  
Pin No. Mnemonic  
Type2 Description  
15  
DIN  
DI  
Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the  
control registers in the ADC, with the register address (RA) bits of the communications register  
identifying the appropriate register. Data is clocked in on the rising edge of SCLK.  
16  
17  
SCLK  
CS  
DI  
DI  
Serial Clock Input. This serial clock input is for data transfers to and from the ADC. SCLK has a Schmitt  
triggered input, making the interface suitable for opto-isolated applications.  
Chip Select Input. This pin is an active low logic input used to select the ADC. Use CS to select the ADC in  
systems with more than one device on the serial bus. CS can be hardwired low, allowing the ADC to operate  
in 3-wire mode with SCLK, DIN, and DOUT/RDY used to interface with the device. When CS is high, the  
DOUT/RDY output is tristated.  
18  
ERROR  
DI/O  
Error input/output or General-Purpose Output. This pin can be used in one of the following three modes:  
Active low error input mode. This mode sets the ADC_ERROR bit in the STATUS register.  
Active low, open-drain error output mode. The status register error bits are mapped to the ERROR pin.  
The ERROR pins of multiple devices can be wired together to a common pull-up resistor so that an error  
on any device can be observed.  
General-purpose output mode. The status of the pin is controlled by the ERR_DAT bit in the GPIOCON register.  
The pin is referenced between IOVDD and DGND, as opposed to the AVDD1 and AVSS levels used by the  
GPIO1 and GPIO2 pins. The ERROR pin has an active pull-up circuit in this case.  
19  
20  
SYNC  
DI  
P
Synchronization Input. Allows synchronization of the digital filters and analog modulators when using  
multiple AD7175-8 devices.  
Digital I/O Supply Voltage. The IOVDD voltage ranges from 2 V to 5 V (nominal). IOVDD is independent of  
AVDD1 and AVDD2. For example, IOVDD can be operated at 3.3 V when AVDD1 or AVDD2 equals 5 V, or  
vice versa. If AVSS is set to −2.5 V, the voltage on IOVDD must not exceed 3.6 V.  
IOVDD  
21  
22  
DGND  
REGCAPD  
P
AO  
Digital Ground.  
Digital LDO Regulator Output. This pin is for decoupling purposes only. Decouple this pin to DGND  
using a 1 µF capacitor.  
23  
24  
GPIO0  
GPIO1  
DI/O  
DI/O  
General-Purpose Input/Output 0. Logic input/output on this this pin is referred to the AVDD1 and AVSS  
supplies.  
General-Purpose Input/Output 2. Logic input/output on this this pin is referred to the AVDD1 and AVSS  
supplies.  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
GPO2  
AIN4  
AIN5  
AIN6  
AIN7  
DO  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
DO  
AI  
General-Purpose Output 2. Logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
Analog Input 4. This pin is selectable through the crosspoint multiplexer.  
Analog Input 5. This pin is selectable through the crosspoint multiplexer.  
Analog Input 6. This pin is selectable through the crosspoint multiplexer.  
Analog Input 7. This pin is selectable through the crosspoint multiplexer.  
Analog Input 8. This pin is selectable through the crosspoint multiplexer.  
Analog Input 9. This pin is selectable through the crosspoint multiplexer.  
Analog Input 10. This pin is selectable through the crosspoint multiplexer.  
Analog Input 11. This pin is selectable through the crosspoint multiplexer.  
Analog Input 12. This pin is selectable through the crosspoint multiplexer.  
Analog Input 13. This pin is selectable through the crosspoint multiplexer.  
Analog Input 14. This pin is selectable through the crosspoint multiplexer.  
Analog Input 15. This pin is selectable through the crosspoint multiplexer.  
General-Purpose Output 3. Logic output on this this pin is referred to the AVDD1 and AVSS supplies.  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
GPO3  
REF−  
Reference 1 Input Negative Terminal. REF− can span from AVSS to AVDD1 − 1 V. Reference 1 can be  
selected through the REF_SELx bits in the setup configuration registers.  
40  
REF+  
EP  
AI  
P
Reference 1 Input Positive Terminal. An external reference can be applied between REF+ and REF−. REF+  
can span from AVDD1 to AVSS + 1 V. Reference 1 can be selected through the REF_SELx bits in the setup  
configuration registers.  
Exposed Pad. Solder the exposed pad to a similar pad on the PCB under the exposed pad to confer  
mechanical strength to the package and for heat dissipation. The exposed pad must be connected to AVSS  
through this pad on the PCB.  
1 Note that, throughout this data sheet, the dual function pin names are referenced by the relevant function only.  
2 AI = analog input, AO = analog output, P = power supply, DI = digital input, DO = digital output, and DI/O = bidirectional digital input/output.  
Rev. 0 | Page 10 of 64  
 
Data Sheet  
AD7175-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 5 V, AVDD2 = 5 V, IOVDD = 3.3 V, TA = 25°C, unless otherwise noted.  
8390000  
8389500  
8389000  
8388500  
8388000  
8387500  
8387000  
8386500  
8386000  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
8388460 8388461 8388462 8388463 8388464 8388465 8388466  
ADC CODE  
Figure 5. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
Figure 8. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
120  
100  
80  
60  
40  
20  
0
8388480  
8388475  
8388470  
8388465  
8388460  
8388455  
8388450  
8388445  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 9. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
Figure 6. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
45  
40  
35  
30  
25  
20  
15  
10  
5
8388520  
8388500  
8388480  
8388460  
8388440  
8388420  
8388400  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 10. Histogram (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Figure 7. Noise (Analog Input Buffers Disabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Rev. 0 | Page 11 of 64  
 
AD7175-8  
Data Sheet  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8390000  
8389500  
8389000  
8388500  
8388000  
8387500  
8387000  
8386500  
8386000  
8385500  
8385000  
8388490 8388491 8388492 8388493 8388494 8388495 8388496  
ADC CODE  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
Figure 11. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
Figure 14. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 5 SPS)  
8388520  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8388515  
8388510  
8388505  
8388500  
8388495  
8388490  
8388485  
8388480  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 12. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
Figure 15. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 10 kSPS)  
35  
30  
25  
20  
15  
10  
5
8388580  
8388560  
8388540  
8388520  
8388500  
8388480  
8388460  
8388440  
0
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE NUMBER  
ADC CODE  
Figure 13. Noise (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Figure 16. Histogram (Analog Input Buffers Enabled, VREF = 5 V,  
Output Data Rate = 250 kSPS)  
Rev. 0 | Page 12 of 64  
Data Sheet  
AD7175-8  
0
–20  
0.000016  
ANALOG INPUT BUFFERS ON  
ANALOG INPUT BUFFERS OFF  
0.000014  
0.000012  
0.000010  
0.000008  
0.000006  
0.000004  
0.000002  
0
–40  
–60  
–80  
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1
10  
100  
1k  
10k  
100k  
1M  
INPUT COMMON-MODE VOLTAGE (V)  
V
FREQUENCY (Hz)  
IN  
Figure 20. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, Output Data Rate = 250 kSPS)  
Figure 17. Noise vs. Input Common-Mode Voltage,  
Analog Input Buffers On and Off  
–80  
–90  
20  
18  
16  
14  
12  
10  
8
ANALOG INPUT BUFFERS OFF  
ANALOG INPUT BUFFERS ON  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
6
4
2
0
0
10  
20  
30  
V
40  
50  
60  
70  
2
4
6
8
10  
12  
14  
16  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
IN  
Figure 18. Noise vs. External Master Clock Frequency,  
Analog Input Buffers On and Off  
Figure 21. Common-Mode Rejection Ratio (CMRR) vs. VIN Frequency  
(VIN = 0.1 V, 10 Hz to 70 Hz, Output Data Rate = 20 SPS, Enhanced Filter)  
16800000  
–60  
CONTINUOUS CONVERSION—REFERENCE DISABLED  
STANDBY—REFERENCE DISABLED  
STANDBY—REFERENCE ENABLED  
AVDD1—EXTERNAL 2.5V REFERENCE  
AVDD1—INTERNAL 2.5V REFERENCE  
16780000  
16760000  
16740000  
16720000  
16700000  
16680000  
16660000  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
SAMPLE NUMBER  
V
FREQUENCY (Hz)  
IN  
Figure 19. Internal Reference Settling Time  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. VIN Frequency  
Rev. 0 | Page 13 of 64  
 
AD7175-8  
Data Sheet  
5
16  
14  
12  
10  
8
INT OSC BUFFERS OFF  
INT OSC BUFFERS ON  
EXT CRYSTAL BUFFERS OFF  
EXT CRYSTAL BUFFERS ON  
EXT CLK BUFFERS OFF  
EXT CLK BUFFERS ON  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
6
4
2
0
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
V
(V)  
INL ERROR (ppm)  
IN  
Figure 23. Integral Nonlinearity (INL) vs. VIN  
(Differential Input, External 2.5 V Reference)  
Figure 26. Integral Nonlinearity (INL) Distribution Histogram (All Input  
Buffers Disabled, Differential Input, VREF = 5 V External, 92 Units)  
6
4
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
INT OSC BUFFERS OFF  
INT OSC BUFFERS ON  
EXT CRYSTAL BUFFERS OFF  
EXT CRYSTAL BUFFERS ON  
EXT CLK BUFFERS OFF  
EXT CLK BUFFERS ON  
2
0
–2  
–4  
–6  
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
15.98 15.99 16.00 16.01 16.02 16.03 16.04 16.05  
FREQUENCY (MHz)  
V
(V)  
IN  
Figure 27. Internal Oscillator Frequency/Accuracy Distribution Histogram  
(100 Units)  
Figure 24. Integral Nonlinearity (INL) vs. VIN  
(Differential Input, External 5 V Reference)  
16400000  
16300000  
16200000  
16100000  
16000000  
15900000  
15800000  
15700000  
15600000  
25  
20  
INT OSC BUFFERS OFF  
INT OSC BUFFERS ON  
EXT CRYSTAL BUFFERS OFF  
EXT CRYSTAL BUFFERS ON  
EXT CLK BUFFERS OFF  
EXT CLK BUFFERS ON  
15  
10  
5
0
–5  
–10  
–15  
–20  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 28. Internal Oscillator Frequency vs. Temperature  
Figure 25. Integral Nonlinearity (INL) vs. VIN  
(Differential Input, Internal 2.5 V Reference)  
Rev. 0 | Page 14 of 64  
 
Data Sheet  
AD7175-8  
1500  
1000  
500  
160  
140  
120  
100  
80  
DEVICE 1  
DEVICE 2  
DEVICE 3  
0
60  
–500  
–1000  
–1500  
40  
20  
0
–60 –50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
GAIN ERROR (ppm of FSR)  
Figure 29. Absolute Reference Error vs. Temperature  
Figure 32. Gain Error Distribution Histogram  
(All Input Buffers Enabled, 611 Units)  
35  
30  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
60  
40  
20  
0
0
–74 –70 –66 –62 –58 –54 –50 –46 –42 –38 –34 –30  
OFFSET ERROR (µV)  
74 75 76 77 78 79 80 81 82 83 84 85  
GAIN ERROR (ppm of FSR)  
Figure 30. Offset Error Distribution Histogram (Internal Short, 92 Units)  
Figure 33. Gain Error Distribution Histogram  
(All Input Buffers Disabled, 647 Units)  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
OFFSET DRIFT (nV/°C)  
GAIN ERROR DRIFT (ppm of FSR/°C)  
Figure 34. Gain Error Drift Distribution Histogram  
(All Input Buffers Enabled, 79 Units)  
Figure 31. Offset Error Drift Distribution Histogram  
(Internal Short, 92 Units)  
Rev. 0 | Page 15 of 64  
AD7175-8  
Data Sheet  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
–1.2 –1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
TEMPERATURE DELTA (°C)  
GAIN ERROR DRIFT (ppm of FSR/°C)  
Figure 35. Gain Error Drift over Temperature Distribution Histogram  
(All Input Buffers Disabled, 79 Units)  
Figure 38. Temperature Sensor Distribution Histogram  
(Uncalibrated, 100 Units)  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
5
5
ALL INPUT BUFFERS OFF  
ALL INPUT BUFFERS ON  
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 10.00 10.05 10.10  
CURRENT (µA)  
TEMPERATURE (°C)  
Figure 36. Supply Current vs. Temperature (Continuous Conversion Mode)  
Figure 39. Burnout Current Distribution Histogram  
(100 Units)  
700  
100  
80  
60  
40  
20  
0
–40°C, AIN–  
–40°C, AIN+  
+25°C, AIN–  
+25°C, AIN+  
+85°C, AIN–  
+85°C, AIN+  
+105°C, AIN–  
+105°C, AIN+  
93 DEVICES  
600  
500  
400  
300  
200  
100  
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–40  
25  
105  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 37. Supply Current vs. Temperature  
(Standby Mode with Reference Enabled)  
Figure 40. Analog Input Current vs. Input Voltage  
(VCM = 2.5 V)  
Rev. 0 | Page 16 of 64  
 
Data Sheet  
AD7175-8  
NOISE PERFORMANCE AND RESOLUTION  
Table 6 and Table 7 show the rms noise, peak-to-peak noise,  
effective resolution, and the noise free (peak-to-peak)  
resolution of the AD7175-8 for various output data rates and  
filters. The numbers given are for the bipolar input range with  
an external 5 V reference. These numbers are typical and are  
generated with a differential input voltage of 0 V when the ADC  
is continuously converting on a single channel. It is important  
to note that the peak-to-peak resolution is calculated based on  
the peak-to-peak noise. The peak-to-peak resolution represents  
the resolution for which there is no code flicker.  
Table 6. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate Using a Sinc5 + Sinc1 Filter (Default)1  
Output Data Rate (SPS)  
RMS Noise (µV rms)  
Effective Resolution (Bits)  
Peak-to-Peak Noise (µV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
250,000  
62,500  
10,000  
1000  
59.92  
49.96  
16.66  
5
8.7  
5.5  
2.5  
0.77  
0.19  
0.18  
0.1  
20.1  
20.8  
21.9  
23.6  
24  
24  
24  
24  
65  
43  
18.3  
5.2  
1.1  
0.95  
0.45  
0.34  
17.2  
17.8  
19.1  
20.9  
23.1  
23.3  
24  
0.07  
24  
Input Buffers Enabled  
250,000  
62,500  
10,000  
1000  
59.98  
49.96  
16.66  
5
9.8  
6.4  
3
0.92  
0.23  
0.2  
0.13  
0.07  
20  
85  
55  
23  
5.7  
1.2  
1
0.66  
0.32  
16.8  
17.5  
18.7  
20.7  
23.0  
23.3  
23.9  
24  
20.6  
21.7  
23.4  
24  
24  
24  
24  
1 Selected rates only, 1000 samples.  
Table 7. RMS Noise and Peak-to-Peak Resolution vs. Output Data Rate Using a Sinc3 Filter1  
Output Data Rate (SPS)  
RMS Noise (µV rms)  
Effective Resolution (Bits)  
Peak-to-Peak Noise (µV p-p) Peak-to-Peak Resolution (Bits)  
Input Buffers Disabled  
250,000  
62,500  
10,000  
1000  
60  
50  
16.66  
5
210  
5.2  
1.8  
0.56  
0.13  
0.13  
0.07  
0.05  
15.5  
20.9  
22.4  
24  
24  
24  
1600  
40  
14  
3.9  
0.8  
0.7  
0.37  
0.21  
12.6  
17.9  
19.4  
21.3  
23.6  
23.8  
24  
24  
24  
24  
Input Buffers Enabled  
250,000  
62,500  
10,000  
1000  
60  
50  
16.66  
5
210  
5.8  
2.1  
0.71  
0.17  
0.15  
0.12  
0.08  
15.5  
20.7  
22.2  
23.7  
24  
24  
24  
24  
1600  
48  
16  
4.5  
1.1  
0.83  
0.6  
0.35  
12.6  
17.7  
19.3  
21.1  
23.1  
23.5  
24  
24  
1 Selected rates only, 1000 samples.  
Rev. 0 | Page 17 of 64  
 
 
 
AD7175-8  
Data Sheet  
GETTING STARTED  
The AD7175-8 offers the user a fast settling, high resolution,  
multiplexed ADC with high levels of configurability. The  
AD7175-8 includes the following features:  
The AD7175-8 includes a precision 2.5 V low drift ( 2 ppm/°C)  
band gap internal reference. This reference can used for the  
ADC conversions, reducing the external component count.  
Alternatively, the reference can be output to the REFOUT pin to  
be used as a low noise biasing voltage for external circuitry. An  
example of this is using the REFOUT signal to set the input  
common mode for an external amplifier.  
Eight fully differential or 16 single-ended analog inputs.  
A crosspoint multiplexer selects any analog input  
combination as the input signals to be converted, routing it  
to the modulator positive or negative input.  
The AD7175-8 includes two separate linear regulator blocks for  
both the analog and digital circuitry. The analog LDO regulates  
the AVDD2 supply to 1.8 V, supplying the ADC core. The user  
can tie the AVDD1 and AVDD2 supplies together for the easiest  
connection. If there is already a clean analog supply rail in the  
system in the range of 2 V (minimum) to 5.5 V (maximum), the  
user can also choose to connect this to the AVDD2 input,  
allowing lower power dissipation.  
True rail-to-rail buffered analog and reference inputs.  
Fully differential input or single-ended input relative to any  
analog input.  
Per channel configurability—up to eight different setups  
can be defined. A separate setup can be mapped to each of  
the channels. Each setup allows the user to configure  
whether the buffers are enabled or disabled, gain and offset  
correction, filter type, output data rate, and reference  
source selection (internal/external).  
16MHz  
CX2  
CX1  
SEE THE BUFFERED ANALOG INPUT SECTION  
FOR FURTHER DETAILS  
OPTIONAL EXTERNAL  
CRYSTAL CIRCUITRY  
CAPACITORS  
12  
XTAL1  
2
AIN0/REF2–  
XTAL2/CLKIO 13  
DOUT/RDY 14  
CLKIN  
OPTIONAL  
EXTERNAL  
CLOCK  
DOUT/RDY  
DIN  
3
AIN1/REF2+  
AIN14  
INPUT  
15  
DIN  
16  
SCLK  
CS  
SCLK  
36  
17  
CS  
37  
1
AIN15  
AIN16  
AD7175-8  
IOVDD  
0.1µF  
20  
21  
IOVDD  
DGND  
REGCAPD 22  
1
3
0.1µF  
1µF  
AVDD1  
V
IN  
TP  
NC  
AVDD1  
AVDD2  
9
10  
7
2
4
7
6
V
NC  
IN  
0.1µF  
4.7µF  
0.1µF  
AVDD2  
ADR445  
40  
39  
GND  
V
REF+  
REF–  
OUT  
0.1µF  
0.1µF  
4.7µF  
0.1µF  
TRIM  
5
TP  
8
REGCAPA  
0.1µF  
1µF  
AVSS  
8
Figure 41. Typical Connection Diagram  
Rev. 0 | Page 18 of 64  
 
Data Sheet  
AD7175-8  
The linear regulator for the digital IOVDD supply performs a  
similar function, regulating the input voltage applied at the  
IOVDD pin to 1.8 V for the internal digital filtering. The serial  
interface signals always operate from the IOVDD supply seen at  
the pin. This means that if 3.3 V is applied to the IOVDD pin,  
the interface logic inputs and outputs operate at this level.  
DRIVE EDGE  
SAMPLE EDGE  
Figure 42. SPI Mode 3 SCLK Edges  
The AD7175-8 can be used across a wide variety of applications,  
providing high resolution and accuracy. A sample of these  
scenarios is as follows:  
Accessing the ADC Register Map  
The communications register controls access to the full register  
map of the ADC. This register is an 8-bit write only register. On  
power-up or after a reset, the digital interface defaults to a state  
where it is expecting a write to the communications register;  
therefore, all communication begins by writing to the  
communications register.  
Fast scanning of analog input channels using the internal  
multiplexer  
Fast scanning of analog input channels using an external  
multiplexer with automatic control from the GPIOs.  
High resolution at lower speeds in either channel scanning  
or ADC per channel applications  
The data written to the communications register determines  
which register is being accessed and if the next operation is a  
read or write. The register address bits (RA[5:0]) determine the  
specific register to which the read or write operation applies.  
High resolution applications requiring a highly integrated  
solution to save printed circuit board (PCB) area  
POWER SUPPLIES  
When the read or write operation to the selected register is  
complete, the interface returns to its default state, where it  
expects a write operation to the communications register.  
The AD7175-8 has three independent power supplies: AVDD1,  
AVDD2, and IOVDD.  
AVDD1 powers the crosspoint multiplexer and integrated analog  
and reference input buffers. AVDD1 is referenced to AVSS, and  
AVDD1 − AVSS = 5 V only. AVDD1 − AVSS can be a single 5 V  
supply or a 2.5 V split supply. The split supply operation allows  
true bipolar inputs. When using split supplies, consider the absolute  
maximum ratings (see the Absolute Maximum Ratings section).  
Figure 43 and Figure 44 illustrate writing to and reading from a  
register by first writing the 8-bit command to the communications  
register, followed by the data for that register.  
8 BITS, 16 BITS,  
8-BIT COMMAND  
OR 24 BITS OF DATA  
CS  
AVDD2 powers the internal 1.8 V analog LDO regulator. This  
regulator powers the ADC core. AVDD2 is referenced to AVSS,  
and AVDD2 − AVSS can range from 2 V (minimum) to 5.5 V  
(maximum).  
CMD  
DATA  
DIN  
IOVDD powers the internal 1.8 V digital LDO regulator. This  
regulator powers the digital logic of the ADC. IOVDD sets the  
voltage levels for the SPI interface of the ADC. IOVDD is refer-  
enced to DGND, and IOVDD − DGND can vary from 2 V  
(minimum) to 5.5 V (maximum).  
SCLK  
Figure 43. Writing to a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length on DIN Is Dependent on the Register Selected)  
There is no specific requirement for a power supply sequence  
on the AD7175-8. When all power supplies are stable, a device  
reset is required; see the AD7175-8 Reset section for details on  
how to reset the device.  
8 BITS, 16 BITS,  
24 BITS, OR  
32 BITS OUTPUT  
8-BIT COMMAND  
CS  
DIGITAL COMMUNICATION  
CMD  
DIN  
The AD7175-8 has a 3- or 4-wire SPI interface that is compatible  
with QSPI™, MICROWIRE®, and DSPs. The interface operates  
CS  
in SPI Mode 3 and can be operated with  
tied low. In SPI  
DOUT/RDY  
DATA  
Mode 3, SCLK idles high, the falling edge of SCLK is the drive  
edge, and the rising edge of SCLK is the sample edge. This  
means that data is clocked out on the falling/drive edge and data  
is clocked in on the rising/sample edge.  
SCLK  
Figure 44. Reading from a Register  
(8-Bit Command with Register Address Followed by Data of 8, 16, or 24 Bits;  
Data Length on DOUT Is Dependent on the Register Selected)  
Rev. 0 | Page 19 of 64  
 
 
 
 
AD7175-8  
Data Sheet  
Reading the ID register is the recommended method for verifying  
correct communication with the device. The ID register is a  
read only register and contains the value 0x3CDx for the  
AD7175-8. The communications register and the ID register  
details are described in Table 8 and Table 9, respectively.  
Figure 45 shows an overview of the suggested flow for changing  
the ADC configuration, divided into the following three blocks:  
Channel configuration (see Box A in Figure 45)  
Setup configuration (see Box B in Figure 45)  
ADC mode and interface mode configuration (see Box C  
in Figure 45)  
AD7175-8 RESET  
In situations where interface synchronization is lost, a write  
operation of at least 64 serial clock cycles with DIN high returns the  
ADC to its default state by resetting the entire device, including  
Channel Configuration  
The AD7175-8 has 16 independent channels and 8 independent  
setups. The user can select any of the analog input pairs on any  
channel, as well as any of the eight setups for any channel, giving  
the user full flexibility in the channel configuration. This also  
allows per channel configuration for up to eight channels when  
using differential inputs or single-ended inputs. Channel configura-  
tion can be shared across multiple channels.  
CS  
the register contents. Alternatively, if  
is being used with the  
CS  
digital interface, returning  
high sets the digital interface to its  
default state and halts any serial interface operation.  
CONFIGURATION OVERVIEW  
After power-on or reset, the AD7175-8 default configuration  
are as follows. Note that only a few of the register setting  
options are shown; this list is just an example. For full register  
information, see the Register Details section.  
Channel Registers  
The channel registers are used to select which of the 17 analog  
input pins (AIN0 to AIN16) are used as either the positive analog  
input (AIN+) or the negative analog input (AIN−) for that  
channel. This register also contains a channel enable/disable bit  
and the setup selection bits, which are used to select from the  
eight available setups for this channel.  
Channel configuration. CH0 is enabled, AIN0 is selected  
as the positive input, and AIN1 is selected as the negative  
input. Setup 0 is selected.  
Setup configuration. The internal reference and the analog  
input buffers are enabled. The reference input buffers are  
disabled.  
When the AD7175-8 is operating with more than one channel  
enabled, the channel sequencer cycles through the enabled  
channels in sequential order, from Channel 0 to Channel 15. If a  
channel is disabled, it is skipped by the sequencer. Details of the  
channel register for Channel 0 are shown in Table 10.  
Filter configuration. The sinc5 + sinc 1 filter is selected and  
the maximum output data rate is selected.  
ADC mode. Continuous conversion mode and the internal  
oscillator are enabled.  
Interface mode. CRC and the data + status output are disabled.  
A
B
C
CHANNEL CONFIGURATION  
SELECT POSITIVE AND NEGATIVE INPUT FOR EACH ADC CHANNEL  
SELECT ONE OF 8 SETUPS FOR ADC CHANNEL  
SETUP CONFIGURATION  
8 POSSIBLE ADC SETUPS  
SELECT FILTER ORDER, OUTPUT DATA RATE, AND MORE  
ADC MODE AND INTERFACE MODE CONFIGURATION  
SELECT ADC OPERATING MODE, CLOCK SOURCE,  
ENABLE CRC, DATA + STATUS, AND MORE  
Figure 45. Suggested ADC Configuration Flow  
Table 8. Communications Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
Reset  
RW  
0x00  
COMMS  
[7:0]  
WEN  
W
RA  
0x00  
W
R/  
Table 9. ID Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Reset  
RW  
0x07  
ID  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x3CDx  
R
Table 10. Channel 0 Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x10  
CH0  
[15:8]  
[7:0]  
CH_EN0  
Reserved  
AINPOS0[2:0]  
SETUP_SEL[2:0]  
Reserved  
AINNEG0  
AINPOS0[4:3]  
0x8001  
RW  
Rev. 0 | Page 20 of 64  
 
 
 
 
 
 
 
Data Sheet  
AD7175-8  
Setup Configuration Registers  
ADC Setups  
The setup configuration registers allow the user to select the  
output coding of the ADC by selecting between bipolar mode  
and unipolar mode. In bipolar mode, the ADC accepts negative  
differential input voltages, and the output coding is offset binary.  
In unipolar mode, the ADC accepts only positive differential  
voltages, and the coding is straight binary. In either case, the  
input voltage must be within the AVDD1/ AVSS supply voltages.  
The user can select the reference source using these registers.  
Three options are available: an internal 2.5 V reference, an  
external reference connected between the REF+ and REF− pins,  
or AVDD1 − AVSS. The analog input and reference input  
buffers can also be enabled or disabled using this register.  
The AD7175-8 has eight independent setups. Each setup  
consists of the following four registers:  
Setup configuration register  
Filter configuration register  
Gain register  
Offset register  
For example, Setup 0 consists of Setup Configuration Register 0,  
Filter Configuration Register 0, Gain Register 0, and Offset  
Register 0. Figure 46 shows the grouping of these registers. The  
setup is selectable from the channel registers (see the Channel  
Configuration section), which allows each channel to be assigned  
to one of eight separate setups. Table 11 through Table 14 show the  
four registers associated with Setup 0. This structure is repeated  
for Setup 1 to Setup 3.  
Filter Configuration Registers  
The filter configuration registers select which digital filter is  
used at the output of the ADC modulator. The order of the filter  
and the output data rate is selected by setting the bits in this  
register. For more information, see the Digital Filters section.  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
SETUPCON0  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON0  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN0  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
OFFSET1  
0x31  
OFFSET2  
0x32  
OFFSET3  
0x33  
OFFSET4  
0x34  
OFFSET5  
0x35  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
INPUT BUFFERS  
REFERENCE BUFFERS  
BURNOUT  
SINC5 + SINC1  
SINC3  
SINC3 MAP  
REFERENCE SOURCE  
ENHANCED 50Hz AND 60Hz  
Figure 46. ADC Setup Register Grouping  
Table 11. Setup Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0x20 SETUPCON0 [15:8]  
Reserved  
BI_UNIPOLAR0  
REFBUF0− AINBUF0+ AINBUF0− 0x1320  
Reserved  
RW  
REFBUF0+  
[7:0] BURNOUT_EN0 Reserved  
REF_SEL0  
Table 12. Filter Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ENHFILT0  
Bit 0  
Reset  
RW  
0x28 FILTCON0 [15:8] SINC3_MAP0  
[7:0] Reserved  
Reserved  
ORDER0  
ENHFILTEN0  
0x0500  
RW  
ODR0  
Table 13. Gain Configuration 0 Register  
Reg. Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x38 GAIN0  
[23:0]  
GAIN0[23:0]  
0x5XXXX0 RW  
Table 14. Offset Configuration 0 Register  
Reg. Name  
Bits  
Bit[23:0]  
Reset  
RW  
0x30 OFFSET0  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
Rev. 0 | Page 21 of 64  
 
 
 
 
AD7175-8  
Data Sheet  
ADC Mode and Interface Mode Configuration  
Gain Registers  
The ADC mode register and the interface mode register configure  
the core peripherals for use by the AD7175-8 and the mode for  
the digital interface.  
The gain registers are 24-bit registers that hold the gain  
calibration coefficient for the ADC. The gain registers are  
read/write registers. These registers are configured at power-on  
with factory calibrated coefficients. Therefore, every device has  
different default coefficients. The default value is automatically  
overwritten if a system full-scale calibration is initiated by the  
user or if the gain register is written to by the user. For more  
information on calibration, see the Operating Modes section.  
ADC Mode Register  
The ADC mode register primarily sets the conversion mode of  
the ADC to either continuous or single conversion. The user  
can also select the standby and power-down modes, as well as  
any of the calibration modes. In addition, this register contains  
the clock source select bits and the internal reference enable  
bits. The reference select bits are contained in the setup  
configuration registers (see the ADC Setups section for more  
information).  
Offset Registers  
The offset registers hold the offset calibration coefficient for the  
ADC. The power-on reset value of the offset registers is 0x800000.  
The offset registers are 24-bit read/write registers. The power-  
on reset value is automatically overwritten if an internal or  
system zero-scale calibration is initiated by the user or if the offset  
registers are written to by the user.  
Interface Mode Register  
The interface mode register configures the digital interface  
operation. This register allows the user to control data-word  
length, CRC enable, data + status read, and continuous read mode.  
The details of the ADC mode and interface mode registers are  
shown in Table 15 and Table 16, respectively. For more information,  
see the Digital Interface section.  
Table 15. ADC Mode Register  
Reg. Name  
0x01 ADCMODE [15:8] REF_EN  
[7:0] Reserved  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Reserved  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
HIDE_DELAY SING_CYC  
Mode  
0xA000 RW  
Table 16. Interface Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Reserved  
CONTREAD DATA_STAT  
Bit 5  
Bit 4  
ALT_SYNC IOSTRENGTH  
Reserved CRC_EN  
Bit 3  
Bit 2  
Bit 1  
Reserved  
Reserved  
Bit 0  
Reset  
RW  
0x02 IFMODE [15:8]  
[7:0]  
DOUT_RESET  
WL16  
0x0000 RW  
REG_CHECK  
Rev. 0 | Page 22 of 64  
 
 
Data Sheet  
AD7175-8  
Understanding Configuration Flexibility  
Programming the gain and offset registers is optional for any  
use case, as indicated by the dashed lines between the register  
blocks.  
The most straightforward implementation of the AD7175-8 is  
to use eight differential inputs with adjacent analog inputs and  
run all of them with the same setup, gain correction, and offset  
correction register. In this case, the user selects the following  
differential inputs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN8/AIN9, AIN10/AIN11, AIN12/AIN13, and  
AIN14/AIN15. In Figure 47, the registers shown in black font  
must be programmed for such a configuration. The registers  
shown in gray font are redundant in this configuration.  
An alternative way to implement these eight fully differential  
inputs is by taking advantage of the eight available setups.  
Motivation for doing this includes having a different speed/noise  
requirement on some of the eight differential inputs vs. other  
inputs, or there may be a specific offset or gain correction for  
particular channels. Figure 48 shows how each of the differential  
inputs may use a separate setup, allowing full flexibility in the  
configuration of each channel.  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
CH1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
AIN2  
CH2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
INPUT BUFFERS  
REFERENCE BUFFERS  
BURNOUT  
250kSPS TO 5SPS  
SINC5 + SINC1  
SINC3  
SELECT ANALOG INPUT PAIRS  
ENABLE THE CHANNEL  
SELECT SETUP 0  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 47. Eight Fully Differential Inputs, All Using a Single Setup (SETUPCON0; FILTCON0; GAIN0; OFFSET0)  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
CH1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
AIN2  
CH2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
INPUT BUFFERS  
REFERENCE BUFFERS  
BURNOUT  
250kSPS TO 5SPS  
SINC5 + SINC1  
SINC3  
0x1F  
SELECT ANALOG INPUT PAIRS  
ENABLE THE CHANNEL  
SELECT SETUP  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 48. Eight Fully Differential Inputs with a Setup per Channel  
Rev. 0 | Page 23 of 64  
 
 
AD7175-8  
Data Sheet  
programmed as required, and the FILTCON0, FILTCON1, and  
FILTCON2 registers are also programmed as required. Optional  
gain and offset correction can be employed on a per setup basis  
by programming the GAIN0, GAIN1, and GAIN2 registers and  
the OFFSET0, OFFSET1, and OFFSET2 registers.  
Figure 49 shows an example of how the channel registers span  
between the analog input pins and the setup configurations  
downstream. In this random example, seven differential inputs  
and two single-ended inputs are required. The single-ended  
inputs are the AIN8/AIN16 and AIN15/AIN16 combinations.  
The first five differential input pairs (AIN0/AIN1, AIN2/AIN3,  
AIN4/AIN5, AIN6/AIN7, and AIN9/AIN10) use the same setup:  
SETUPCON0. The two single-ended input pairs (AIN8/AIN16  
and AIN15/ AIN16) are set up as a diagnostics; therefore, use a  
separate setup: SETUPCON1. The final two differential inputs  
(AIN11/AIN12 and AIN13/AIN14) also use a separate setup:  
SETUPCON2. Given that three setups are selected for use, the  
SETUPCON0, SETUPCON1, and SETUPCON2 registers are  
In the example shown in Figure 49, the CH0 to CH8 registers  
are used. Setting the MSB in each of these registers, the CH_EN0  
to CH_EN8 bits, enables the nine combinations via the crosspoint  
multiplexer. When the AD7175-8 converts, the sequencer  
transitions in ascending sequential order from CH0 to CH1 to  
CH2, and then on to CH8 before looping back to CH0 to repeat  
the sequence.  
CHANNEL  
REGISTERS  
AIN0  
AIN1  
CH0  
CH1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
AIN2  
CH2  
AIN3  
CH3  
SETUP CONFIG  
REGISTERS  
FILTER CONFIG  
REGISTERS  
GAIN REGISTERS*  
OFFSET REGISTERS  
AIN4  
CH4  
SETUPCON0  
FILTCON0  
GAIN0  
OFFSET0  
0x30  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
AIN5  
CH5  
SETUPCON1  
SETUPCON2  
SETUPCON3  
SETUPCON4  
SETUPCON5  
SETUPCON6  
SETUPCON7  
FILTCON1  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
OFFSET1  
0x31  
AIN6  
CH6  
OFFSET2  
0x32  
AIN7  
CH7  
OFFSET3  
0x33  
AIN8  
CH8  
OFFSET4  
0x34  
AIN9  
CH9  
OFFSET5  
0x35  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
OFFSET6  
0x36  
OFFSET7  
0x37  
SELECT PERIPHERAL  
FUNCTIONS FOR  
ADC CHANNEL  
SELECT DIGITAL  
FILTER TYPE  
GAIN CORRECTION  
OPTIONALLY  
OFFSET CORRECTION  
OPTIONALLY PROGRAMMED  
PER SETUP AS REQUIRED  
AND OUTPUT DATA RATE  
PROGRAMMED  
PER SETUP AS REQUIRED  
(*FACTORY CALIBRATED)  
INPUT BUFFERS  
REFERENCE BUFFERS  
BURNOUT  
250kSPS TO 5SPS  
SINC5 + SINC1  
SINC3  
0x1F  
SELECT ANALOG INPUT PAIRS  
ENABLE THE CHANNEL  
SELECT SETUP  
REFERENCE SOURCE  
SINC3 MAP  
ENHANCED 50Hz AND 60Hz  
Figure 49. Mixed Differential and Single-Ended Configuration Using Multiple Shared Setups  
Rev. 0 | Page 24 of 64  
 
Data Sheet  
AD7175-8  
CIRCUIT DESCRIPTION  
AVDD1  
AVSS  
BUFFERED ANALOG INPUT  
AIN0  
AIN1  
The AD7175-8 has true rail-to-rail, integrated, precision unity-  
gain buffers on both ADC analog inputs. The buffers provide  
the benefit of giving the user high input impedance with only  
30 nA typical input current, allowing high impedance sources  
to be connected directly to the analog inputs. The buffers fully  
drive the internal ADC switch capacitor sampling network,  
simplifying the analog front-end circuit requirements while  
consuming a very efficient 2.9 mA typical per buffer. Each analog  
input buffer amplifier is fully chopped, meaning that it minimizes  
the offset error drift and 1/f noise of the buffer. The 1/f noise  
profile of the ADC and buffer combined is shown in Figure 50.  
0
AVDD1  
Ø1  
+IN  
CS1  
AVSS  
Ø2  
Ø2  
AVDD1  
AVSS  
CS2  
AIN14  
Ø1  
–IN  
AVDD1  
AIN15  
AIN16  
–50  
–100  
–150  
–200  
–250  
AVSS  
AVDD1  
AVSS  
Figure 51. Simplified Analog Input Circuit  
The CS1 and CS2 capacitors each have a magnitude in the order  
of a number of picofarads. This capacitance is the combination  
of both the sampling capacitance and the parasitic capacitance.  
0.1  
1
10  
100  
1k  
10k  
Fully Differential Inputs  
FREQUENCY (Hz)  
Because the AIN0 to AIN16 analog inputs are connected to a  
crosspoint multiplexer, any combination of signals can be used  
to create an analog input pair. This crosspoint multiplexer allows  
the user to select eight fully differential inputs or 16 single-ended  
inputs.  
Figure 50. Shorted Input FFT (Analog Input Buffers Enabled)  
The analog input buffers do not suffer from linearity  
degradation when operating at the rails, unlike many discrete  
amplifiers. When operating at or close to the AVDD1 and AVSS  
supply rails, there is an increase in input current. This increase  
is most notable at higher temperatures. Figure 40 shows the  
analog input current for various conditions. With the analog  
input buffers disabled, the average input current to the AD7175-8  
changes linearly with the differential input voltage at a rate of  
48 µA /V.  
If eight fully differential input paths are connected to the  
AD7175-8, using adjacent analog input pins such as AIN0/AIN1  
for the differential input pair is recommended. This is due to the  
relative locations of these pins to each other. Decouple all analog  
inputs to AVSS.  
Single-Ended Inputs  
CROSSPOINT MULTIPLEXER  
The user can also choose to measure 16 different single-ended  
analog inputs. In this case, each of the analog inputs is converted  
as the difference between the single-ended input to be measured  
and a set analog input common pin. Because there is a crosspoint  
multiplexer, the user can set any of the analog inputs as the  
common pin. An example of such a scenario is to connect the  
AIN8 pin to AVSS or to the REFOUT voltage (that is, AVSS +  
2.5 V) and select this input when configuring the crosspoint  
multiplexer. When using the AD7175-8 with single-ended  
inputs.  
There are 17 analog input pins: AIN0 to AIN16. Each of these  
pins connects to the internal crosspoint multiplexer. The  
crosspoint multiplexer enables any of these inputs to be configured  
as an input pair, either single-ended or fully differential. The  
AD7175-8 can have up to 16 active channels. When more than  
one channel is enabled, the channels are automatically sequenced  
in order from the lowest enabled channel number to the highest  
enabled channel number. The output of the multiplexer is  
connected to the input of the integrated true rail-to-rail buffers.  
These can be bypassed and the multiplexer output can be  
directly connected to the switched-capacitor input of the ADC. The  
simplified analog input circuit is shown in Figure 51.  
Rev. 0 | Page 25 of 64  
 
 
 
 
 
AD7175-8  
Data Sheet  
REF−/REF2− pin is connected directly to the AVSS potential.  
On power-up of the AD7175-8, the internal reference is enabled  
by default and is output on the REFOUT pin. When an external  
reference is used instead of the internal reference to supply the  
AD7175-8, attention must be paid to the output of the REFOUT  
pin. If the internal reference is not being used elsewhere in the  
application, ensure that the REFOUT pin is not hardwired to  
AVSS because this draws a large current on power-up. On  
power-up, if the internal reference is not being used, write to  
the ADC mode register, disabling the internal reference. This is  
controlled by the REF_EN bit (Bit 15) in the ADC mode  
register, which is shown in Table 18.  
AD7175-8 REFERENCE  
The AD7175-8 offers the user the option of either supplying an  
external reference to the REF+ and REF− or REF2+ and REF2-  
pins of the device or allowing the use of the internal 2.5 V, low  
noise, low drift reference. Select the reference source to be used by  
the analog input by setting the REF_SELx bits (Bits[5:4]) in the  
setup configuration registers appropriately. The structure of the  
Setup Configuration 0 register is shown in Table 17. The  
AD7175-8 defaults on power-up to use the internal 2.5 V  
reference.  
External Reference  
The AD7175-8 has a fully differential reference input applied  
through the REF+ and REF− or REF2+ and REF2 pins.  
Standard low noise, low drift voltage references, such as the  
ADR445, ADR444, and ADR441, are recommended for use.  
Apply the external reference to the AD7175-8 reference pins as  
shown in Figure 52. Decouple the output of any external  
reference to AVSS. As shown in Figure 52, the ADR445 output is  
decoupled with a 0.1 µF capacitor at its output for stability  
purposes. The output is then connected to a 4.7 µF capacitor,  
which acts as a reservoir for any dynamic charge required by the  
ADC, and followed by a 0.1 µF decoupling capacitor at the  
REF+ or REF2+ input. This capacitor is placed as close as  
possible to the REF+/REF2+ and REF−/REF2− pins. The  
Internal Reference  
The AD7175-8 includes its own low noise, low drift voltage  
reference. The internal reference has a 2.5 V output. The internal  
reference is output on the REFOUT pin after the REF_EN bit in  
the ADC mode register is set and is decoupled to AVSS with a  
0.1 µF capacitor. The AD7175-8 internal reference is enabled by  
default on power-up and is selected as the reference source for  
the ADC. When using the internal reference, the INL performance  
degrades as shown in Figure 23.  
The REFOUT signal is buffered before being output to the pin.  
The signal can be used externally in the circuit as a common-mode  
source for external amplifier configurations.  
AD7175-8  
5.5V TO 18V  
ADR4452  
40  
39  
REF+  
REF–  
0.1µF  
1
5V VREF  
1
0.1µF  
4.7µF  
0.1µF  
1
1
1
1
2
ALL DECOUPLING IS TO AVSS.  
ANY OF THE ADRF440/ADR441/ADR443/ADR444/ADR445 FAMILY OF REFERENCES  
CAN BE USED. THE ADR444 AND ADR441 BOTH ENABLE REUSE OF THE 5V  
ANALOG SUPPLY NEEDED FOR AVDD1 TO POWER THE REFERENCE V  
.
IN  
Figure 52. External Reference ADR445 Connected to the AD7175-8 Reference Pins  
Table 17. Setup Configuration 0 Register  
Reg. Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
BI_UNIPOLAR0 REFBUF0+ REFBUF0− AINBUF0+ AINBUF0− 0x1320 RW  
REF_SEL0 Reserved  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x20 SETUPCON0 [15:8]  
[7:0]  
Reserved  
BURNOUT_EN0 Reserved  
Table 18. ADC Mode Register  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
CLOCKSEL  
Bit 1  
Delay  
Reserved  
Bit 0  
Reset  
RW  
0x01 ADCMODE [15:8]  
[7:0]  
REF_EN  
Reserved  
HIDE_DELAY  
SING_CYC  
Mode  
Reserved  
0xA000  
RW  
Rev. 0 | Page 26 of 64  
 
 
 
 
Data Sheet  
AD7175-8  
exaggerated if the IOSTRENGTH bit is set at higher IOVDD  
levels (see Table 28 for more information).  
BUFFERED REFERENCE INPUT  
The AD7175-8 has true rail-to-rail, integrated, precision unity  
gain buffers on both ADC reference inputs. The buffers provide  
the benefit of giving the user high input impedance and allow  
high impedance external sources to be directly connected to the  
reference inputs. The integrated reference buffers can fully drive  
the internal reference switch capacitor sampling network,  
simplifying the reference circuit requirements while consuming  
a very efficient 2.9 mA typical per buffer. Each reference input  
buffer amplifier is fully chopped, meaning that it minimizes the  
offset error drift and 1/f noise of the buffer. When using an  
external reference, such as the ADR445, ADR444, and ADR441,  
these buffers are not required because these references, with  
proper decoupling, can drive the reference inputs directly.  
External Crystal  
If higher precision, lower jitter clock sources are required, the  
AD7175-8 can use an external crystal to generate the master  
clock. The crystal is connected to the XTAL1 and XTAL2/CLKIO  
pins. A recommended crystal for use is the FA-20H—a 16 MHz,  
10 ppm, 9 pF crystal from Epson-Toyocom—which is available  
in a surface-mount package. As shown in Figure 53, insert two  
capacitors from the traces connecting the crystal to the XTAL1  
and XTAL2/CLKIO pins. These capacitors allow for circuit  
tuning. Connect these capacitors to the DGND pin. The value  
for these capacitors depends on the length and capacitance of  
the trace connections between the crystal and the XTAL1 and  
XTAL2/CLKIO pins. Therefore, the values of these capacitors  
differ depending on the PCB layout and the crystal employed.  
CLOCK SOURCE  
The AD7175-8 uses a nominal master clock of 16 MHz. The  
AD7175-8 sources its sampling clock from one of three sources:  
AD7175-8  
Cx1  
*
Internal oscillator  
External crystal  
External clock source  
12  
XTAL1  
XTAL2/CLKIO 13  
Cx2  
All output data rates listed in the data sheet relate to a master  
clock rate of 16 MHz. Using a lower clock frequency from, for  
instance, an external source scales any listed data rate proportion-  
ally. To achieve the specified data rates, particularly rates for the  
rejection of 50 Hz and 60 Hz, use a 16 MHz clock. The source  
of the master clock is selected by setting the CLOCKSEL bits  
(Bits[3:2]) in the ADC mode register as shown in Table 18. The  
default operation on power-up and reset of the AD7175-8 is to  
operate with the internal oscillator. It is possible to fine tune the  
output data rate and filter notch at low output data rates using  
the SINC3_MAPx bit. See the Sinc3 Filter section for more  
information.  
*
*DECOUPLE TO DGND.  
Figure 53. External Crystal Connections  
The external crystal circuitry can be sensitive to the SCLK  
edges, depending on SCLK frequency, IOVDD voltage, crystal  
circuitry layout, and the crystal used. During crystal startup, any  
disturbances caused by the SLCK edges may cause double edges  
on the crystal input, resulting in invalid conversions until the  
crystal voltage has reached a high enough level such that any  
interference from the SCLK edges is insufficient to cause double  
clocking. This double clocking can be avoided by ensuring that  
the crystal circuitry has reached a sufficient voltage level after  
startup before applying any SCLK signal.  
Internal Oscillator  
The internal oscillator runs at 16 MHz and can be used as the  
ADC master clock. It is the default clock source for the AD7175-8  
and is specified with an accuracy of 2.5%.  
Due to the nature of the crystal circuitry, it is recommended  
that empirical testing of the circuit be performed under the  
required conditions, with the final PCB layout and crystal, to  
ensure correct operation.  
There is an option to allow the internal clock oscillator to be  
output on the XTAL2/CLKIO pin. The clock output is driven  
to the IOVDD logic level. Use of this option can affect the dc  
performance of the AD7175-8 due to the disturbance intro-  
duced by the output driver. The extent to which the performance is  
affected depends on the IOVDD voltage supply. Higher IOVDD  
voltages create a wider logic output swing from the driver and  
affect performance to a greater extent. This effect is further  
External Clock  
The AD7175-8 can also use an externally supplied clock. In  
systems where this is desirable, the external clock is routed to the  
XTAL2/CLKIO pin. In this configuration, the XTAL2/CLKIO  
pin accepts the externally sourced clock and routes it to the  
modulator. The logic level of this clock input is defined by the  
voltage applied to the IOVDD pin.  
Rev. 0 | Page 27 of 64  
 
 
 
AD7175-8  
Data Sheet  
DIGITAL FILTERS  
The AD7175-8 has three flexible filter options to allow  
optimization of noise, settling time, and rejection.  
SINC3 FILTER  
The sinc3 filter achieves the best single-channel noise performance  
at lower rates and is, therefore, most suitable for single-channel  
applications. The sinc3 filter always has a settling time, tSETTLE  
Sinc5 + sinc1 filter  
Sinc3 filter  
Enhanced 50 Hz and 60 Hz rejection filters  
,
equal to  
t
SETTLE = 3/Output Data Rate  
50Hz AND 60Hz  
POSTFILTER  
Figure 56 shows the frequency domain filter response for the  
SINC1  
SINC5  
SINC3  
sinc3 filter. The sinc3 filter has good roll-off over frequency and  
has wide notches for good notch frequency rejection.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
Figure 54. Digital Filter Block Diagram  
The filter and output data rate are configured by setting the  
appropriate bits in the filter configuration register for the  
selected setup. Each channel can use a different setup and  
therefore, a different filter and output data rate. See the Register  
Details section for more information.  
SINC5 + SINC1 FILTER  
The sinc5 + sinc1 filter is targeted at multiplexed applications  
and achieves single cycle settling at output data rates of 10 kSPS and  
lower. The sinc5 block output is fixed at the maximum rate of  
250 kSPS, and the sinc1 block output data rate can be varied to  
control the final ADC output data rate. Figure 55 shows the  
frequency domain response of the sinc5 + sinc1 filter at a 50 SPS  
ODR. The sinc5 + sinc1 filter has a slow roll-off over frequency and  
narrow notches.  
–120  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 56. Sinc3 Filter Response  
The ODRs with the accompanying settling time and rms noise  
for the sinc3 filter are shown in Table 21 and Table 22. It is possible  
to finely tune the output data rate for the sinc3 filter by setting the  
SINC3_MAPx bits in the filter configuration registers. If this bit is  
set, the mapping of the filter register changes to directly program  
the decimation rate of the sinc3 filter. All other options are  
eliminated. The data rate when on a single channel can be  
calculated using the following equation:  
0
–20  
–40  
–60  
fMOD  
Output Data Rate =  
32 × FILTCONx[14:0]  
–80  
where:  
–100  
–120  
fMOD is the modulator rate (MCLK/2) and is 8 MHz for a  
16 MHz MCLK.  
FILTCONx[14:0] are the contents on the filter configuration  
registers excluding the MSB.  
0
50  
100  
FREQUENCY (Hz)  
150  
Figure 55. Sinc5 + Sinc1 Filter Response at 50 SPS ODR  
For example, an output data rate of 50 SPS can be achieved with  
SINC3_MAPx enabled by setting the FILTCONx[14:0] bits to a  
value of 5000.  
The ODRs with the accompanying settling time and rms noise  
for the sinc5 + sinc1 filter are shown in Table 19 and Table 20.  
Rev. 0 | Page 28 of 64  
 
 
 
 
 
Data Sheet  
AD7175-8  
Figure 58 shows the same step on the analog input but with  
single cycle settling enabled. The analog input requires at least a  
single cycle for the output to be fully settled. The output data  
SINGLE CYCLE SETTLING  
By default, the AD7175-8 is configured with the SING_CYC bit  
in the ADC mode register set so that only fully settled data is  
output, effectively putting the ADC into a single cycle settling  
mode. This mode achieves single cycle settling by reducing the  
output data rate to be equal to the settling time of the ADC for the  
selected output data rate. This bit has no effect with the sinc5 +  
sinc1 filter at output data rates of 10 kSPS and lower.  
RDY  
rate, as indicated by the  
signal, is now reduced to equal the  
settling time of the filter at the selected output data rate.  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
Figure 57 shows a step on the analog input with this mode  
disabled and the sinc3 filter selected. The analog input requires  
at least three cycles after the step change for the output to reach  
the final settled value.  
tSETTLE  
Figure 58. Step Input with Single Cycle Settling  
ANALOG  
INPUT  
FULLY  
SETTLED  
ADC  
OUTPUT  
1/ODR  
Figure 57. Step Input Without Single Cycle Settling  
Table 19. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Disabled  
Default Output Data  
Output Data Rate  
(SPS); SING_CYC =  
0 and Single  
Rate (SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
Channel Enabled1  
(µV p-p)2  
50,000  
41,667  
31,250  
27,778  
20,833  
17,857  
12,500  
10,000  
5000  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
397.5  
200  
100  
59.92  
49.96  
20  
16.66  
10  
20 µs  
24 µs  
32 µs  
36 µs  
48 µs  
56 µs  
80 µs  
100 µs  
200 µs  
400 µs  
1.0 ms  
2.0 ms  
2.516 ms  
5.0 ms  
10 ms  
16.67 ms  
20.016 ms  
50.0 ms  
60.02 ms  
100 ms  
200 ms  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
11,905  
5435  
2604  
1016  
504  
400.00  
200.64  
100.16  
59.98  
50.00  
20.01  
8.7  
7.2  
5.5  
5
4
3.6  
2.9  
2.5  
20.1  
20.4  
20.8  
20.9  
21.3  
21.4  
21.7  
21.9  
22.5  
23.0  
23.6  
24  
24  
24  
24  
24  
24  
24  
24  
24  
65  
60  
43  
41  
32  
29  
22  
18.3  
12  
8.2  
5.2  
3.2  
3
17.2  
17.3  
17.8  
17.9  
18.3  
18.4  
18.8  
19.1  
19.7  
20.2  
20.9  
21.6  
21.7  
22.3  
22.9  
23.1  
23.3  
24  
1.7  
1.2  
2500  
1000  
0.77  
0.57  
0.5  
0.36  
0.25  
0.19  
0.18  
0.11  
0.1  
500.0  
397.5  
200.0  
100  
59.92  
49.96  
20.00  
16.66  
10.00  
5.00  
2
1.3  
1.1  
0.95  
0.6  
0.45  
0.4  
0.34  
16.66  
10.00  
5.00  
24  
24  
24  
0.08  
0.07  
5
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 Measurement taken using 1000 samples.  
Rev. 0 | Page 29 of 64  
 
 
 
 
AD7175-8  
Data Sheet  
Table 20. Output Data Rate, Settling Time, and Noise Using the Sinc5 + Sinc1 Filter with Input Buffers Enabled  
Default Output Data  
Output Data Rate  
(SPS); SING_CYC = 0  
and Single Channel  
Enabled1  
Rate (SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
(µV p-p)2  
50,000  
41,667  
31,250  
27,778  
20,833  
17,857  
12,500  
10,000  
5000  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
397.5  
200  
100  
59.92  
49.96  
20  
16.66  
10  
20 µs  
24 µs  
32 µs  
36 µs  
48 µs  
56 µs  
80 µs  
100 µs  
200 µs  
400 µs  
1.0 ms  
2.0 ms  
2.516 ms  
5.0 ms  
10 ms  
16.67 ms  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
11,905  
5435  
2604  
1016  
504  
400.00  
200.64  
100.16  
59.98  
9.8  
8.4  
6.4  
5.9  
4.8  
4.3  
3.4  
3
20  
85  
66  
55  
49  
39  
33  
26  
23  
16.8  
17.2  
17.5  
17.6  
18.0  
18.2  
18.6  
18.7  
19.3  
19.9  
20.7  
21.3  
21.4  
22.1  
22.5  
23  
20.2  
20.6  
20.7  
21  
21.1  
21.5  
21.7  
22.2  
22.7  
23.4  
23.8  
24  
24  
24  
24  
24  
24  
24  
24  
24  
2.1  
1.5  
16  
10  
2500  
1000  
0.92  
0.68  
0.6  
0.43  
0.32  
0.23  
0.2  
0.14  
0.13  
0.1  
5.7  
3.9  
3.7  
2.2  
1.7  
1.2  
1
0.75  
0.66  
0.47  
0.32  
500.0  
397.5  
200.0  
100  
59.92  
49.96  
20.00  
16.66  
10.00  
5.00  
20.016 ms 50.00  
23.3  
23.7  
23.9  
24  
50.0 ms  
60.02 ms  
100 ms  
200 ms  
20.01  
16.66  
10.00  
5.00  
5
0.07  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 Measurement taken using 1000 samples.  
Rev. 0 | Page 30 of 64  
 
Data Sheet  
AD7175-8  
Table 21. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Disabled  
Default Output Data  
Output Data Rate  
(SPS); SING_CYC =  
0 and Single  
Rate (SPS/Channel);  
SING_CYC = 1 or with  
Multiple Channels  
Enabled1  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(μV rms)  
Noise  
Channel Enabled1  
(μV p-p)2  
83,333  
41,667  
20,833  
16,667  
10,417  
8333  
5208  
3333  
1667  
833  
333.3  
166.7  
133.3  
66.7  
33.33  
19.99  
16.67  
6.67  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
400  
200  
100  
60  
50  
20  
16.67  
10  
5
12 μs  
24 μs  
48 μs  
60 μs  
96 μs  
120 μs  
192 μs  
300 μs  
6 μs  
1.2 ms  
3 ms  
6 ms  
7.5 ms  
15 ms  
30 ms  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
400  
210  
28  
5.2  
4.2  
3.2  
2.9  
2.2  
1.8  
1.3  
0.91  
0.56  
0.44  
0.4  
0.25  
0.2  
0.13  
0.13  
0.08  
0.07  
0.06  
0.05  
15.5  
18.4  
20.9  
21.2  
21.6  
21.7  
22.1  
22.4  
22.9  
23.4  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1600  
200  
40  
34  
26  
23  
17  
14  
9.5  
6
3.9  
2.5  
2.3  
1.4  
1
0.8  
0.7  
0.42  
0.37  
0.28  
0.21  
12.6  
15.6  
17.9  
18.2  
18.6  
18.7  
19.2  
19.4  
20  
20.7  
21.3  
21.9  
22.1  
22.8  
23.3  
23.6  
23.8  
24  
200  
100  
50.02 ms 59.98  
60 ms  
150 ms  
180 ms  
300 ms  
600 ms  
50  
20  
16.67  
10  
5
5.56  
3.33  
1.67  
24  
24  
24  
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 Measurement taken using 1000 samples.  
Rev. 0 | Page 31 of 64  
 
AD7175-8  
Data Sheet  
Table 22. Output Data Rate, Settling Time, and Noise Using the Sinc3 Filter with Input Buffers Enabled  
Default Output  
Data Rate  
Output Data Rate  
(SPS);SING_CYC = 0  
and Single Channel  
Enabled1  
(SPS/Channel);  
SING_CYC = 1 or  
with Multiple  
Effective  
Peak-to-Peak  
Resolution with  
5 V Reference  
(Bits)  
Notch  
Frequency  
(Hz)  
Resolution with  
5 V Reference  
(Bits)  
Settling  
Time1  
Noise  
(µV rms)  
Noise  
Channels Enabled1  
(µV p-p)2  
83,333  
41,667  
20,833  
16,667  
10,417  
8333  
5208  
3333  
1667  
833  
333.3  
166.7  
133.3  
66.7  
33.33  
19.99  
16.67  
6.67  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
400  
200  
100  
60  
50  
20  
16.67  
10  
5
12 µs  
24 µs  
48 µs  
60 µs  
250,000  
125,000  
62,500  
50,000  
31,250  
25,000  
15,625  
10,000  
5000  
2500  
1000  
500  
400  
200  
100  
59.98  
50  
210  
28  
5.8  
4.9  
3.8  
3.4  
2.6  
2.1  
1.5  
15.5  
18.4  
20.7  
21  
21.3  
21.5  
21.9  
22.2  
22.7  
23.1  
23.7  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1600  
210  
48  
41  
30  
26  
18  
16  
11  
12.6  
15.5  
17.7  
17.9  
18.3  
18.6  
19.1  
19.3  
19.8  
20.4  
21.1  
21.7  
21.8  
22.4  
23  
96 µs  
120 µs  
192 µs  
300 µs  
6 µs  
1.2 ms  
3 ms  
1.1  
7
4.5  
3
0.71  
0.52  
0.41  
0.32  
0.2  
0.17  
0.15  
0.13  
0.12  
0.1  
6 ms  
7.5 ms  
15 ms  
30 ms  
50.02ms  
60 ms  
150 ms  
180 ms  
300 ms  
600 ms  
2.7  
1.8  
1.2  
1.1  
0.83  
0.61  
0.6  
0.55  
0.35  
23.1  
23.5  
24  
24  
24  
20  
16.67  
10  
5.56  
3.33  
1.67  
5
0.08  
24  
24  
1 The settling time is rounded to the nearest microsecond. This is reflected in the output data rate and channel switching rate. Channel switching rate = 1 ÷ settling time.  
2 Measurement taken using 1000 samples.  
Rev. 0 | Page 32 of 64  
 
Data Sheet  
AD7175-8  
sinc1 filter must be selected when using the enhanced filters to  
achieve the specified settling time and noise performance. Table 23  
shows the output data rates with the accompanying settling  
time, rejection, and rms noise. Figure 59 to Figure 66 show the  
frequency domain plots of the responses from the enhanced filters.  
ENHANCED 50 HZ AND 60 HZ REJECTION FILTERS  
The enhanced filters are designed to provide rejection of 50 Hz  
and 60 Hz simultaneously and to allow the user to trade off  
settling time and rejection. These filters can operate at up to  
27.27 SPS or can reject up to 90 dB of 50 Hz 1 Hz and 60 Hz  
1 Hz interference. These filters are realized by postfiltering  
the output of the sinc5 + sinc1 filter. For this reason, the sinc5 +  
Table 23. Enhanced Filters Output Data Rate, Noise, Settling Time, and Rejection Using the Enhanced Filters  
Output Data Rate  
(SPS)  
Settling  
Simultaneous Rejection of  
Noise  
Peak-to-Peak  
Time (ms) 50 Hz 1 Hz and 60 Hz 1 Hz (dB)1 (μV rms) Resolution (Bits) Comments  
Input Buffers Disabled  
27.27  
25  
20  
16.667  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.22  
0.2  
0.2  
22.7  
22.9  
22.9  
23  
See Figure 59 and Figure 62  
See Figure 60 and Figure 63  
See Figure 61 and Figure 64  
See Figure 65 and Figure 66  
0.17  
Input Buffers Enabled  
27.27  
25  
20  
36.67  
40.0  
50.0  
60.0  
47  
62  
85  
90  
0.22  
0.22  
0.21  
0.21  
22.7  
22.7  
22.8  
22.8  
See Figure 59 and Figure 62  
See Figure 60 and Figure 63  
See Figure 61 and Figure 64  
See Figure 65 and Figure 66  
16.667  
1 Master clock = 16 MHz.  
Rev. 0 | Page 33 of 64  
 
 
AD7175-8  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
40  
45  
50  
55  
60  
65  
70  
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 62. 27.27 SPS ODR, 36.67 ms Settling Time at 50 Hz/60 Hz  
Figure 59. 27.27 SPS ODR, 36.67 ms Settling Time  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
40  
45  
50  
55  
60  
65  
70  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 63. 25 SPS ODR, 40 ms Settling Time at 50 Hz/60 Hz  
Figure 60. 25 SPS ODR, 40 ms Settling Time  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
40  
45  
50  
55  
60  
65  
70  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 61. 20 SPS ODR, 50 ms Settling Time  
Figure 64. 20 SPS ODR, 50 ms Settling Time at 50 Hz/60 Hz  
Rev. 0 | Page 34 of 64  
 
 
 
 
 
 
Data Sheet  
AD7175-8  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 65. 16.667 SPS ODR, 60 ms Settling Time  
Figure 66. 16.667 SPS ODR, 60 ms Settling Time at 50 Hz/60 Hz  
Rev. 0 | Page 35 of 64  
 
 
AD7175-8  
Data Sheet  
OPERATING MODES  
The AD7175-8 has a number of operating modes that can be set  
from the ADC mode register and interface mode register (see  
Table 27 and Table 28). These modes are as follows and are  
described in the following sections:  
register. When the data-word has been read from the data register,  
RDY  
the DOUT/  
pin goes high. The user can read this register  
additional times, if required. However, the user must ensure that  
the data register is not being accessed at the completion of the  
next conversion; otherwise, the new conversion word is lost.  
Continuous conversion mode  
Continuous read mode  
Single conversion mode  
Standby mode  
Power-down mode  
Calibration modes (three modes)  
When several channels are enabled, the ADC automatically  
sequences through the enabled channels, performing one  
conversion on each channel. When all channels have been  
converted, the sequence starts again with the first channel. The  
channels are converted in order from lowest enabled channel to  
highest enabled channel. The data register is updated as soon as  
CONTINUOUS CONVERSION MODE  
RDY  
each conversion is available. The  
output pulses low each  
time a conversion is available. The user can then read the  
conversion while the ADC converts the next enabled channel.  
Continuous conversion is the default power-up mode. The  
RDY  
AD7175-8 converts continuously, and the  
register goes low each time a conversion is complete. If  
RDY  
bit in the status  
CS  
is low,  
output also goes low when a conversion is complete. To  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion data,  
are output each time the data register is read. The status register  
indicates the channel to which the conversion corresponds.  
the  
read a conversion, the user writes to the communications  
register, indicating that the next operation is a read of the data  
CS  
0x44  
0x44  
DIN  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 67. Continuous Conversion Mode  
Rev. 0 | Page 36 of 64  
 
 
Data Sheet  
AD7175-8  
To enable continuous read mode, set the CONTREAD bit in the  
interface mode register. When this bit is set, the only serial interface  
operations possible are reads from the data register. To exit con-  
tinuous read mode, issue a dummy read of the ADC data register  
CONTINUOUS READ MODE  
In continuous read mode, it is not required to write to the  
communications register before reading ADC data; apply only  
RDY  
the required number of SCLK pulses after  
indicate the end of a conversion. When the conversion is  
RDY  
goes low to  
RDY  
command (0x44) while the  
output is low. Alternatively, apply  
CS  
a software reset, that is, 64 SCLK pulses with  
= 0 and DIN =  
read,  
returns high until the next conversion is available. In  
1. This resets the ADC and all register contents. These are the  
only commands that the interface recognizes after it is placed in  
continuous read mode. Hold DIN low in continuous read mode  
until an instruction is to be written to the device.  
this mode, the data can be read only once. The user must also  
ensure that the data-word is read before the next conversion is  
complete. If the user has not read the conversion before the  
completion of the next conversion or if insufficient serial clocks  
are applied to the AD7175-8 to read the data-word, the serial  
output register is reset shortly before the next conversion is  
complete, and the new conversion is placed in the output serial  
register. The ADC must be configured for continuous  
conversion mode to use continuous read mode.  
If multiple ADC channels are enabled, each channel is output  
in turn, with the status bits being appended to the data if  
DATA_STAT is set in the interface mode register. The status  
register indicates the channel to which the conversion corresponds.  
CS  
0x02  
0x0080  
DIN  
DATA  
DATA  
DATA  
DOUT/RDY  
SCLK  
Figure 68. Continuous Read Mode  
Rev. 0 | Page 37 of 64  
 
AD7175-8  
Data Sheet  
RDY  
available, the  
output goes low. The ADC then selects the next  
SINGLE CONVERSION MODE  
channel and begins a conversion. The user can read the present  
conversion while the next conversion is being performed. As soon  
as the next conversion is complete, the data register is updated;  
therefore, the user has a limited period in which to read the  
conversion. When the ADC has performed a single conversion  
on each of the selected channels, it returns to standby mode.  
In single conversion mode, the AD7175-8 performs a single  
conversion and is placed in standby mode after the conversion  
RDY  
is complete. The  
of a conversion. When the data-word has been read from the  
RDY  
output goes low to indicate the completion  
data register, the DOUT/  
pin goes high. The data register  
RDY  
can be read several times, if required, even when the DOUT/  
pin has gone high.  
If the DATA_STAT bit in the interface mode register is set to 1,  
the contents of the status register, along with the conversion, are  
output each time the data register is read. The two LSBs of the  
status register indicate the channel to which the conversion  
corresponds.  
If several channels are enabled, the ADC automatically  
sequences through the enabled channels and performs a  
conversion on each channel. When a conversion is started, the  
RDY  
DOUT/  
pin goes high and remains high until a valid  
CS  
conversion is available and is low. As soon as the conversion is  
CS  
0x01  
0x8010  
0x44  
DIN  
DATA  
DOUT/RDY  
SCLK  
Figure 69. Single Conversion Mode  
Rev. 0 | Page 38 of 64  
 
Data Sheet  
AD7175-8  
To start a calibration, write the relevant value to the mode bits  
STANDBY AND POWER-DOWN MODES  
RDY  
RDY  
in the ADC mode register. The DOUT/  
pin and the  
In standby mode, most blocks are powered down. The LDOs  
remain active so that registers maintain their contents. The  
internal reference remains active if enabled, and the crystal  
oscillator remains active if selected. To power down the  
reference in standby mode, set the REF_EN bit in the ADC  
mode register to 0. To power down the clock in standby mode,  
set the CLOCKSEL bits in the ADC mode register to 00  
(internal oscillator).  
bit in the status register go high when the calibration initiates.  
When the calibration is complete, the contents of the correspond-  
RDY  
ing offset or gain register are updated, the  
bit in the status  
RDY  
CS  
is  
register is reset and the  
output pin returns low (if  
low), and the AD7175-8 reverts to standby mode.  
During an internal offset calibration, the selected positive  
analog input pin is disconnected, and both modulator inputs  
are connected internally to the selected negative analog input  
pin. For this reason, it is necessary to ensure that the voltage on  
the selected negative analog input pin does not exceed the  
allowed limits and is free from excessive noise and interference.  
In power-down mode, all blocks are powered down, including  
the LDOs. All registers lose their contents, and the GPIOx outputs  
are placed in three-state. To prevent accidental entry to power-  
down mode, the ADC must first be placed in standby mode.  
CS  
Exiting power-down mode requires 64 SCLK pulses with  
= 0  
System calibrations, however, expect the system zero-scale  
(offset) and system full-scale (gain) voltages to be applied to the  
ADC pins before initiating the calibration modes. As a result,  
errors external to the ADC are removed.  
and DIN = 1, that is, a serial interface reset. A delay of 500 µs is  
recommended before issuing a subsequent serial interface  
command to allow the LDO to power up.  
Figure 19 shows the internal reference settling time after  
returning from standby mode (setting REF_EN = 0 and then 1)  
and returning from power down.  
From an operational point of view, treat a calibration like  
another ADC conversion. An offset calibration, if required,  
must always be performed before a full-scale calibration. Set the  
RDY  
system software to monitor the  
bit in the status register or  
output to determine the end of a calibration via a  
CALIBRATION  
RDY  
the  
The AD7175-8 allows a two-point calibration to be performed  
to eliminate any offset and gain errors. Three calibration modes  
eliminate these offset and gain errors on a per setup basis:  
polling sequence or an interrupt driven routine. All calibrations  
require a time equal to the settling time of the selected filter and  
output data rate to be completed.  
Internal zero-scale calibration mode  
System zero-scale calibration mode  
System full-scale calibration mode  
An internal offset calibration, system zero-scale calibration, and  
system full-scale calibration can be performed at any output data  
rate. Using lower output data rates results in better calibration  
accuracy and is accurate for all output data rates. A new offset  
calibration is required for a given channel if the reference source  
for that channel is changed.  
There is no internal full-scale calibration mode because this is  
calibrated in the factory at the time of production.  
Only one channel can be active during calibration. After each  
conversion, the ADC conversion result is scaled using the ADC  
calibration registers before being written to the data register.  
The offset error is typically 60 µV and an offset calibration  
reduces the offset error to the order of the noise. The gain error  
is factory calibrated at ambient temperature. Following this  
calibration, the gain error is typically 80 ppm of FSR.  
The default value of the offset register is 0x800000, and the  
nominal value of the gain register is 0x555555. The calibration  
range of the ADC gain is from 0.4 × VREF to 1.05 × VREF. The  
following equations show the calculations that are used. In  
unipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
The AD7175-8 provides the user with access to the on-chip  
calibration registers, allowing the microprocessor to read the  
calibration coefficients of the device and to write its own  
calibration coefficients. A read or write of the offset and gain  
registers can be performed at any time except during an internal  
or self calibration.  
0.75×VIN  
VREF  
Gain  
0x400000  
Data =  
×223  
(
Offset 0x800000  
)
×
×2  
In bipolar mode, the ideal relationship—that is, not taking into  
account the ADC gain error and offset error—is as follows:  
0.75 ×VIN  
×223  
(
Offset 0x800000  
)
×
Data =  
VREF  
Gain  
0x400000  
+ 0x800000  
Rev. 0 | Page 39 of 64  
 
 
AD7175-8  
Data Sheet  
DIGITAL INTERFACE  
The programmable functions of the AD7175-8 are controlled via  
the SPI serial interface. The serial interface of the AD7175-8  
For CRC checksum calculations during a write operation, the  
following polynomial is always used:  
x8 + x2 + x + 1  
CS  
RDY  
consists of four signals: , DIN, SCLK, and DOUT/  
. The  
DIN input is used to transfer data into the on-chip registers, and  
the DOUT output is used to access data from the on-chip  
registers. SCLK is the serial clock input for the device, and all data  
transfers (either on the DIN input or on the DOUT output) occur  
with respect to the SCLK signal.  
During read operations, the user can select between this  
polynomial and a simpler exclusive OR (XOR) function. The  
XOR function requires less time to process on the host  
microcontroller than the polynomial-based checksum. The  
CRC_EN bits in the interface mode register enable and disable  
the checksum and allow the user to select between the  
polynomial check and the simple XOR check.  
RDY  
The DOUT/  
the output going low if  
available in the data register. The  
a read operation from the data register is complete. The  
pin also functions as a data ready signal, with  
CS  
is low when a new data-word is  
RDY  
output is reset high when  
RDY  
The checksum is appended to the end of each read and write  
transaction. The checksum calculation for the write transaction  
is calculated using the 8-bit command word and the 8-bit to  
24-bit data. For a read transaction, the checksum is calculated  
using the command word and the 8-bit to 32-bit data output.  
Figure 70 and Figure 71 show SPI write and read transactions,  
respectively.  
output also goes high before updating the data register to  
indicate when not to read from the device to ensure that a data  
read is not attempted while the register is being updated. Take  
RDY  
care to avoid reading from the data register when the  
output is about to go low. The best method to ensure that no data  
RDY  
read occurs is to always monitor the  
output; start reading  
output goes low; and  
ensure a sufficient SCLK rate, such that the read is complete  
CS  
8-BIT COMMAND  
UP TO 24-BIT INPUT  
8-BIT CRC  
RDY  
the data register as soon as the  
CS  
before the next conversion result.  
is used to select a device. It  
CS  
DATA  
CRC  
DIN  
can be used to decode the AD7175-8 in systems where several  
components are connected to the serial bus.  
SCLK  
Figure 2 and Figure 3 show timing diagrams for interfacing to  
CS  
the AD7175-8 using  
to decode the device. Figure 2 shows  
Figure 70. SPI Write Transaction with CRC  
the timing for a read operation from the AD7175-8, and Figure 3  
shows the timing for a write operation to the AD7175-8. It is  
possible to read from the data register several times even though  
UP TO  
8-BIT COMMAND  
32-BIT OUTPUT  
8-BIT CRC  
CS  
RDY  
the  
output returns high after the first read operation.  
However, care must be taken to ensure that the read operations are  
completed before the next output update occurs. In continuous  
read mode, the data register can be read only once.  
CMD  
DIN  
DOUT/  
RDY  
DATA  
CRC  
CS  
The serial interface can operate in 3-wire mode by tying  
low.  
pins are used to  
communicate with the AD7175-8. The end of the conversion  
RDY  
RDY  
In this case, the SCLK, DIN, and DOUT/  
SCLK  
can also be monitored using the  
bit in the status register.  
CS  
The AD7175-8 can be reset by writing 64 SCLKs with  
= 0  
Figure 71. SPI Read Transaction with CRC  
and DIN = 1. A reset returns the interface to the state in which it  
expects a write to the communications register. This operation  
resets the contents of all registers to their power-on values.  
Following a reset, allow a period of 500 µs before addressing the  
serial interface.  
If checksum protection is enabled when continuous read mode  
is active, an implied read data command of 0x44 before every  
data transmission must be accounted for when calculating the  
checksum value. This implied read data command ensures a  
nonzero checksum value even if the ADC data equals 0x000000.  
CHECKSUM PROTECTION  
The AD7175-8 has a checksum mode that can be used to  
improve interface robustness. Using the checksum ensures that  
only valid data is written to a register and allows data read from  
a register to be validated. If an error occurs during a register  
write, the CRC_ERROR bit is set in the status register. However,  
to ensure that the register write is successful, read back the  
register and verify the checksum.  
Rev. 0 | Page 40 of 64  
 
 
 
 
Data Sheet  
AD7175-8  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight Logic 0s. The polynomial is  
aligned so that its MSB is adjacent to the leftmost Logic 1 of the  
data. An XOR function is applied to the data to produce a new,  
shorter number. The polynomial is again aligned so that its MSB is  
adjacent to the leftmost Logic 1 of the new result, and the proce-  
dure is repeated. This process repeats until the original data is  
reduced to a value less than the polynomial. This is the 8-bit  
checksum.  
CRC CALCULATION  
Polynomial  
The checksum, which is eight bits wide, is generated using the  
polynomial  
x8 + x2 + x + 1  
Example of a Polynomial CRC Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
An example of generating the 8-bit checksum using the polynomial based checksum is as follows:  
Initial value  
011001010100001100100001  
01100101010000110010000100000000  
left shifted eight bits  
polynomial  
x8 + x2 + x + 1  
=
100000111  
100100100000110010000100000000  
100000111  
XOR result  
polynomial  
XOR result  
polynomial  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
XOR result  
polynomial value  
checksum = 0x86  
100011000110010000100000000  
100000111  
11111110010000100000000  
100000111  
1111101110000100000000  
100000111  
111100000000100000000  
100000111  
11100111000100000000  
100000111  
1100100100100000000  
100000111  
100101010100000000  
100000111  
101101100000000  
100000111  
1101011000000  
100000111  
101010110000  
100000111  
1010001000  
100000111  
10000110  
Rev. 0 | Page 41 of 64  
 
AD7175-8  
Data Sheet  
XOR Calculation  
The checksum, which is 8 bits wide, is generated by splitting the data into bytes and then performing an XOR of the bytes.  
Example of an XOR Calculation—24-Bit Word: 0x654321 (Eight Command Bits and 16-Bit Data)  
Using the previous example of a polynomial CRC calculation, divide the data into three bytes: 0x65, 0x43, and 0x21  
01100101  
01000011  
00100110  
00100001  
00000111  
0x65  
0x43  
XOR result  
0x21  
CRC  
Rev. 0 | Page 42 of 64  
Data Sheet  
AD7175-8  
INTEGRATED FUNCTIONS  
The AD7175-8 has integrated functions that improve the  
usefulness of a number of applications as well as serve  
diagnostic purposes in safety conscious applications.  
time, the delay can be absorbed by reducing the number of  
averages the digital filter performs, which keeps the conversion  
time the same but can affect the noise performance.  
The effect on the noise performance depends on the delay time  
compared to the conversion time. It is possible to absorb the  
delay only for output data rates less than 10 kSPS with the  
exception of the following four rates, which cannot absorb any  
delay: 397.5 SPS, 59.92 SPS, 49.96 SPS, and 16.66 SPS.  
GENERAL-PURPOSE I/O  
The AD7175-8 has two general-purpose digital input/output  
pins (GPIO0, GPIO1) and two general-purpose digital output  
pins (GPO2, GPO3). As the naming convention suggests, the  
GPIO0 and GPIO1 pins can be configured as inputs or outputs,  
but GPO2 and GPO3 are outputs only. The GPIOx and GPOx  
pins are enabled using the following bits in the GPIOCON  
register: IP_EN0, IP_EN1 (or OP_EN0, OP_EN1) for GPIO0  
and GPIO1, and OP_EN2_3 for GPO2 and GPO3.  
16-BIT/24-BIT CONVERSIONS  
By default, the AD7175-8 generates 24-bit conversions.  
However, the width of the conversions can be reduced to 16 bits.  
Setting the WL16 bit in the interface mode register to 1 rounds  
all data conversions to 16 bits. Clearing this bit sets the width of  
the data conversions to 24 bits.  
When the GPIO0 or GPIO1 pin is enabled as an input, the logic  
level at the pin is contained in the GP_DATA0 or GP_DATA1 bit,  
respectively. When the GPIO0, GPIO1, GPO2, or GPO3 pin is  
enabled as an output, the GP_DATA0, GP_DATA1, GP_DATA2,  
or GP_DATA3 bit, respectively, determines the logic level output  
at the pin. The logic levels for these pins are referenced to AVDD1  
and AVSS; therefore, outputs have an amplitude of 5 V.  
DOUT_RESET  
RDY  
The serial interface uses a shared DOUT/  
pin. By default,  
signal. During a data read, this pin  
outputs the data from the register being read. After the read is  
RDY  
RDY  
this pin outputs the  
complete, the pin reverts to outputting the  
signal after a  
ERROR  
The  
When the ERR_EN bits in the GPIOCON register are set to 11,  
ERROR  
pin can also be used as a general-purpose output.  
short fixed period of time (t7). However, this time may be too  
short for some microcontrollers and can be extended until  
the  
pin operates as a general-purpose output. In this  
CS  
the  
pin is brought high by setting the DOUT_RESET bit in  
CS  
configuration, the ERR_DAT bit in the GPIOCON register  
determines the logic level output at the pin. The logic level for the  
pin is referenced to IOVDD and DGND.  
the interface mode register to 1. This means that  
must be  
used to frame each read operation and compete the serial  
interface transaction.  
ERROR  
Both GPIOs and the  
pin, when set as general-purpose  
SYNCHRONIZATION  
Normal Synchronization  
outputs, have an active pull-up circuit.  
EXTERNAL MULTIPLEXER CONTROL  
When the SYNC_EN bit in the GPIOCON register is set to 1,  
If an external multiplexer is used to increase the channel count,  
the multiplexer logic pins can be controlled via the AD7175-8  
GPIOx pins. With the MUX_IO bit, the GPIOx timing is  
controlled by the ADC; therefore, the channel change is  
synchronized with the ADC, eliminating any need for external  
synchronization.  
SYNC  
SYNC  
pin functions as a synchronization input. The  
the  
input lets the user reset the modulator and the digital filter  
without affecting any of the setup conditions on the device. This  
feature lets the user start to gather samples of the analog input  
SYNC  
from a known point, the rising edge of the  
input.  
SYNC  
The  
input must be low for at least one master clock cycle  
DELAY  
to ensure that synchronization occurs.  
It is possible to insert a programmable delay before the AD7175-8  
begins to take samples. This delay allows an external amplifier  
or multiplexer to settle and can alleviate the specification  
requirements for the external amplifier or multiplexer. Eight  
programmable settings, ranging from 0 µs to 1 ms, can be set  
using the delay bits in the ADC mode register (Register 0x01,  
Bits[10:8]).  
If multiple AD7175-8 devices are operated from a common  
master clock, they can be synchronized so that their analog  
inputs are sampled simultaneously. This synchronization is  
normally done after each AD7175-8 device has performed its  
own calibration or has calibration coefficients loaded into its  
SYNC  
calibration registers. A falling edge on the  
digital filter and the analog modulator and places the AD7175-8  
SYNC  
input resets the  
If a delay greater than 0 µs is selected and the HIDE_DELAY bit  
in the ADC mode register is set to 0, this delay is added to the  
conversion time, regardless of the selected output data rate.  
into a consistent known state. While the  
input is low, the  
SYNC  
AD7175-8 is maintained in this known state. On the  
input rising edge, the modulator and filter are taken out of this  
reset state, and on the next master clock edge, the device starts to  
gather input samples again.  
When using the sinc5 + sinc1 filter, it is possible to hide this  
delay such that the output data rate remains the same as the output  
data rate without the delay enabled. If the HIDE_DELAY bit is  
set to 1 and the selected delay is less than half of the conversion  
The device is taken out of reset on the master clock falling edge  
SYNC  
following the  
input low to high transition. Therefore,  
Rev. 0 | Page 43 of 64  
 
 
 
 
 
 
 
AD7175-8  
Data Sheet  
SYNC  
REG_ERROR  
when multiple devices are being synchronized, take the  
input high on the master clock rising edge to ensure that all  
devices are released on the master clock falling edge. If  
The REG_ERROR flag is used in conjunction with the  
REG_CHECK bit in the interface mode register. When the  
REG_CHECK bit is set, the AD7175-8 monitors the values in  
the on-chip registers. If a bit changes, the REG_ERROR bit is  
set. Therefore, for writes to the on-chip registers, set REG_CHECK  
to 0. When the registers have been updated, the REG_CHECK  
bit can be set to 1. The AD7175-8 calculates a checksum of the  
on-chip registers. If one of the register values has changed, the  
REG_ERROR bit is set. If an error is flagged, set REG_CHECK  
to 0 to clear the REG_ERROR bit in the status register. The  
register check function does not monitor the data register,  
status register, or interface mode register.  
SYNC  
the  
input is not taken high in sufficient time, a difference  
of one master clock cycle between the devices is possible; that  
is, the instant at which conversions are available differs from  
device to device by a maximum of one master clock cycle.  
SYNC  
The  
command for a single channel when in normal synchronization  
SYNC  
input can also be used as a start conversion  
mode. In this mode, the rising edge of the  
RDY  
input starts a  
output indicates  
conversion, and the falling edge of the  
when the conversion is complete. The settling time of the filter is  
required for each data register update. After the conversion is  
ERROR  
Input/Output  
SYNC  
complete, bring the  
conversion start signal.  
input low in preparation for the next  
ERROR  
The  
pin functions as an error input/output pin or a  
general-purpose output pin. The ERR_EN bits in the GPIOCON  
register determine the function of the pin.  
Alternate Synchronization  
SYNC  
In alternate synchronization mode, the  
input operates as  
ERROR  
When ERR_EN is set to 10, the  
open-drain error output,  
pin functions as an  
a start conversion command when several channels of the  
AD7175-8 are enabled. Setting the ALT_SYNC bit in the interface  
mode register to 1 enables an alternate synchronization scheme.  
SYNC  
ERROR  
. The three error bits in the  
status register (ADC_ERROR, CRC_ERROR, and  
REG_ERROR) are ORed, inverted, and mapped to the  
ERROR  
When the  
input is taken low, the ADC completes the  
conversion on the current channel, selects the next channel in  
SYNC  
to commence the conversion. The  
ERROR  
output. Therefore, the  
output indicates that an error  
the sequence, and then waits until the  
RDY  
input is taken high  
output goes low when  
has occurred. The status register must be read to identify the  
error source.  
the conversion is complete on the current channel, and the data  
register is updated with the corresponding conversion.  
ERROR  
When ERR_EN is set to 01, the  
pin functions as an  
. The error output of another component  
ERROR  
ERROR  
error input,  
can be connected to the AD7175-8  
AD7175-8 indicates when an error occurs on either itself or the  
ERROR  
SYNC  
Therefore, the  
input does not interfere with the sampling  
input so that the  
on the currently selected channel but allows the user to control  
the instant at which the conversion begins on the next channel  
in the sequence.  
external component. The value on the  
input is inverted  
and ORe d with the errors from the ADC conversion, and the  
result is indicated via the ADC_ERROR bit in the status register.  
Alternate synchronization mode can be used only when several  
channels are enabled. It is not recommended to use this mode  
when a single channel is enabled.  
ERROR  
The value of the  
in the GPIO configuration register.  
ERROR  
input is reflected in the ERR_DAT bit  
ERROR FLAGS  
The  
input/output is disabled when ERR_EN is set to 00.  
The status register contains three error bits—ADC_ERROR,  
CRC_ERROR, and REG_ERROR—that flag errors with the  
ADC conversion, errors with the CRC check, and errors caused  
ERROR  
pin operates  
When the ERR_EN bits are set to 11, the  
as a general-purpose output.  
DATA_STAT  
ERROR  
by changes in the registers, respectively. In addition, the  
output can indicate that an error has occurred.  
The contents of the status register can be appended to each con-  
version on the AD7175-8. This function is useful if several  
channels are enabled. Each time a conversion is output, the  
contents of the status register are appended. The two LSBs of  
the status register indicate to which channel the conversion  
corresponds. In addition, the user can determine if any errors  
are being flagged by the error bits.  
ADC_ERROR  
The ADC_ERROR bit in the status register flags any errors that  
occur during the conversion process. The flag is set when an over-  
range or underrange result is output from the ADC. The ADC  
also outputs all 0s or all 1s when an undervoltage or overvoltage  
occurs. This flag is reset only when the overvoltage or undervoltage  
is removed. It is not reset by a read of the data register.  
IOSTRENGTH  
The serial interface can operate with a power supply as low as  
CRC_ERROR  
RDY  
2 V. However, at this low voltage, the DOUT/  
pin may not  
If the CRC value that accompanies a write operation does not  
correspond with the information sent, the CRC_ERROR flag is  
set. The flag is reset as soon as the status register is explicitly read.  
have sufficient drive strength if there is moderate parasitic  
capacitance on the board or the SCLK frequency is high. The  
Rev. 0 | Page 44 of 64  
 
 
 
Data Sheet  
AD7175-8  
IOSTRENGTH bit in the interface mode register increases the  
selected in the same way as an analog input channel. The  
temperature sensor requires that the analog input buffers be  
enabled on both analog inputs. If the buffers are not enabled,  
selecting the temperature sensor as an input forces the buffers  
to be enabled during the conversion.  
RDY  
drive strength of the DOUT/  
pin.  
POWER-DOWN SWITCH  
Setting the PDSW bit in the GPIO configuration register allows  
the PDSW pin to sink current. This function can be used in  
applications where the switch controls the power-up/power-  
down of the analog front-end sensor, for example, a bridge  
sensor. The PDSW pin can sink 16 mA maximum.  
To use the temperature sensor, the first step is to calibrate the  
device in a known temperature (25°C) and take a conversion as  
a reference point. The temperature sensor has a nominal  
sensitivity of 470 µV/K; use the difference in this ideal slope and  
the slope measured to calibrate the temperature sensor. The  
temperature sensor is specified with a 2°C typical accuracy  
after calibration at 25°C. The temperature can be calculated as  
follows:  
INTERNAL TEMPERATURE SENSOR  
The AD7175-8 has an integrated temperature sensor. The  
temperature sensor can be used as a guide for the ambient  
temperature at which the device is operating. This can be used  
for diagnostic purposes or as an indicator of when the applica-  
tion circuit needs to rerun a calibration routine to take into  
account a shift in operating temperature. The temperature  
sensor is selected using the crosspoint multiplexer and is  
Conversion Result  
Temperature (°C) =  
– 273.15  
470 μV  
Rev. 0 | Page 45 of 64  
 
 
AD7175-8  
Data Sheet  
GROUNDING AND LAYOUT  
The analog inputs and reference inputs are differential and,  
therefore, most of the voltages in the analog modulator are  
common-mode voltages. The high common-mode rejection of  
the device removes common-mode noise on these inputs. The  
analog and digital supplies to the AD7175-8 are independent  
and connected to separate pins to minimize coupling between the  
analog and digital sections of the device. The digital filter  
provides rejection of broadband noise on the power supplies,  
except at integer multiples of the master clock frequency.  
possible to provide low impedance paths and reduce glitches on  
the power supply line. Shield fast switching signals like clocks  
with digital ground to prevent radiating noise to other sections  
of the board and never run clock signals near the analog inputs.  
Avoid crossover of digital and analog signals. Run traces on  
opposite sides of the board at right angles to each other. This  
technique reduces the effects of feedthrough on the board. A  
microstrip technique is by far the best method but is not always  
possible with a double sided board.  
The digital filter also removes noise from the analog and  
reference inputs, provided that these noise sources do not  
saturate the analog modulator. As a result, the AD7175-8 is  
more immune to noise interference than a conventional high  
resolution converter. However, because the resolution of the  
AD7175-8 is high and the noise levels from the converter are so  
low, take care with regard to grounding and layout.  
Good decoupling is important when using high resolution ADCs.  
The AD7175-8 has three power supply pins—AVDD1, AVDD2,  
and IOVDD. The AVDD1 and AVDD2 pins are referenced to  
AVSS, and the IOVDD pin is referenced to DGND. Decouple  
AVDD1 and AVDD2 with a 10 µF capacitor in parallel with a  
0.1 µF capacitor to AVSS on each pin. Place the 0.1 µF capacitor  
as close as possible to the device on each supply, ideally right up  
against the device. Decouple IOVDD with a 10 µF capacitor in  
parallel with a 0.1 µF capacitor to DGND. Decouple all analog  
inputs to AVSS. If an external reference is used, decouple the  
REF+ and REF− pins to AVSS.  
The PCB that houses the ADC must be designed such that the  
analog and digital sections are separated and confined to  
certain areas of the board. A minimum etch technique is  
generally best for ground planes because it results in the best  
shielding.  
The AD7175-8 also has two on-board LDO regulators—one  
that regulates the AVDD2 supply and one that regulates the  
IOVDD supply. For the REGCAPA pin, it is recommended that  
1 µF and 0.1 µF capacitors to AVSS be used. Similarly, for the  
REGCAPD pin, it is recommended that 1 µF and 0.1 µF  
capacitors to DGND be used.  
In any layout, the user must consider the flow of currents in the  
system, ensuring that the paths for all return currents are as close as  
possible to the paths the currents took to reach their destinations.  
Avoid running digital lines under the device because this  
couples noise onto the die and allows the analog ground plane  
to run under the AD7175-8 to prevent noise coupling. The  
power supply lines to the AD7175-8 must use as wide a trace as  
If using the AD7175-8 for split supply operation, a separate  
plane must be used for AVSS.  
Rev. 0 | Page 46 of 64  
 
Data Sheet  
AD7175-8  
REGISTER SUMMARY  
Table 24. Register Summary  
Reg. Name  
Bits  
[7:0]  
[7:0]  
Bit 7  
WEN  
RDY  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
0x00  
RW  
W
0x00 COMMS  
0x00 STATUS  
0x01 ADCMODE  
W
RA  
R/  
ADC_ERROR  
HIDE_DELAY  
CRC_ERROR  
REG_ERROR  
CHANNEL  
0x80  
R
[15:8] REF_EN  
SING_CYC  
MODE  
RESERVED  
DELAY  
RESERVED  
DOUT_RESET 0x0000  
0xA000  
RW  
[7:0]  
RESERVED  
CLOCKSEL  
IOSTRENGTH  
CRC_EN  
0x02 IFMODE  
[15:8]  
[7:0]  
RESERVED  
ALT_SYNC  
RESERVED  
RESERVED  
RW  
R
CONTREAD  
DATA_STAT  
REG_CHECK  
RESERVED WL16  
0x03 REGCHECK  
[23:16]  
[15:8]  
[7:0]  
REGISTER_CHECK[23:16]  
REGISTER_CHECK[15:8]  
REGISTER_CHECK[7:0]  
DATA[23:16]  
0x000000  
0x04 DATA  
[23:16]  
[15:8]  
[7:0]  
0x000000  
R
DATA[15:8]  
DATA[7:0]  
0x06 GPIOCON  
0x07 ID  
[15:8]  
[7:0]  
RESERVED  
GP_DATA3  
PDSW  
OP_EN2_3 MUX_IO  
IP_EN0  
SYNC_EN  
OP_EN1  
ERR_EN  
GP_DATA1  
ERR_DAT  
0x0800  
0x3CDx  
0x8001  
0x0001  
0x0001  
0x0001  
0x0001  
RW  
R
GP_DATA2 IP_EN1  
OP_EN0  
GP_DATA0  
[15:8]  
[7:0]  
ID[15:8]  
ID[7:0]  
0x10 CH0  
0x11 CH1  
0x12 CH2  
0x13 CH3  
0x14 CH4  
[15:8] CH_EN0  
[7:0]  
SETUP_SEL0  
RESERVED  
AINNEG0  
RESERVED  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
RESERVED  
AINNEG4  
RESERVED  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
RESERVED  
AINNEG8  
RESERVED  
AINNEG9  
RESERVED  
AINNEG10  
RESERVED  
AINNEG11  
RESERVED  
AINNEG12  
RESERVED  
AINNEG13  
RESERVED  
AINNEG14  
RESERVED  
AINNEG15  
REFBUF0−  
RESERVED  
AINPOS0[4:3]  
RW  
RW  
RW  
RW  
RW  
AINPOS0[2:0]  
AINPOS1[2:0]  
AINPOS2[2:0]  
AINPOS3[2:0]  
[15:8] CH_EN1  
[7:0]  
SETUP_SEL1  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
AINPOS1[4:3]  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
[15:8] CH_EN2  
[7:0]  
[15:8] CH_EN3  
[7:0]  
[15:8] CH_EN4  
[7:0]  
AINPOS4[2:0]  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINPOS7[2:0]  
AINPOS8[2:0]  
AINPOS9[2:0]  
AINPOS10[2:0]  
AINPOS11[2:0]  
AINPOS12[2:0]  
AINPOS13[2:0]  
AINPOS14[2:0]  
0x15 CH5  
0x16 CH6  
0x17 CH7  
0x18 CH8  
0x19 CH9  
0x1A CH10  
0x1B CH11  
0x1C CH12  
0x1D CH13  
0x1E CH14  
0x1F CH15  
[15:8] CH_EN5  
[7:0]  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
SETUP_SEL8  
SETUP_SEL9  
SETUP_SEL10  
SETUP_SEL11  
SETUP_SEL12  
SETUP_SEL13  
SETUP_SEL14  
SETUP_SEL15  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
AINPOS8[4:3]  
AINPOS9[4:3]  
AINPOS10[4:3]  
AINPOS11[4:3]  
AINPOS12[4:3]  
AINPOS13[4:3]  
AINPOS14[4:3]  
AINPOS15[4:3]  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[15:8] CH_EN6  
[7:0]  
[15:8] CH_EN7  
[7:0]  
[15:8] CH_EN8  
[7:0]  
[15:8] CH_EN9  
[7:0]  
[15:8] CH_EN10  
[7:0]  
[15:8] CH_EN11  
[7:0]  
[15:8] CH_EN12  
[7:0]  
[15:8] CH_EN13  
[7:0]  
[15:8] CH_EN14  
[7:0]  
[15:8] CH_EN15  
[7:0]  
0x0001  
0x1320  
0x1320  
0x1320  
0x1320  
0x1320  
RW  
RW  
RW  
RW  
RW  
RW  
AINPOS15[2:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x20 SETUPCON0 [15:8]  
BI_UNIPOLAR0  
REF_SEL0  
BI_UNIPOLAR1  
REF_SEL1  
BI_UNIPOLAR2  
REF_SEL2  
BI_UNIPOLAR3  
REF_SEL3  
BI_UNIPOLAR4  
REF_SEL4  
Rev. 0 | Page 47 of 64  
REFBUF0+  
AINBUF0+  
AINBUF0−  
AINBUF1−  
AINBUF2−  
AINBUF3−  
AINBUF4−  
[7:0]  
BURNOUT_EN0  
BURNOUT_EN1  
BURNOUT_EN2  
BURNOUT_EN3  
BURNOUT_EN4  
0x21 SETUPCON1 [15:8]  
REFBUF1+  
REFBUF2+  
REFBUF3+  
REFBUF4+  
REFBUF1−  
AINBUF1+  
[7:0]  
RESERVED  
0x22 SETUPCON2 [15:8]  
REFBUF2−  
REFBUF3−  
AINBUF2+  
[7:0]  
0x23 SETUPCON3 [15:8]  
[7:0]  
RESERVED  
AINBUF3+  
RESERVED  
0x24 SETUPCON4 [15:8]  
[7:0]  
REFBUF4−  
AINBUF4+  
RESERVED  
 
AD7175-8  
Data Sheet  
Reg. Name  
Bits  
Bit 7  
BURNOUT_EN5  
Bit 6  
Bit 5  
Bit 4  
BI_UNIPOLAR5  
REF_SEL5  
BI_UNIPOLAR6  
REF_SEL6  
BI_UNIPOLAR7  
REF_SEL7  
RESERVED  
ORDER0  
Bit 3  
REFBUF5+  
Bit 2  
Bit 1  
AINBUF5+  
Bit 0  
AINBUF5−  
Reset  
RW  
0x25 SETUPCON5 [15:8]  
RESERVED  
REFBUF5−  
0x1320  
RW  
[7:0]  
0x26 SETUPCON6 [15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
REFBUF6− AINBUF6+  
RESERVED  
REFBUF7− AINBUF7+  
RESERVED  
ENHFILT0  
REFBUF6+  
REFBUF7+  
AINBUF6−  
AINBUF7−  
0x1320  
0x1320  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
BURNOUT_EN6  
0x27 SETUPCON7 [15:8]  
[7:0]  
BURNOUT_EN7  
0x28 FILTCON0  
0x29 FILTCON1  
0x2A FILTCON2  
0x2B FILTCON3  
0x2C FILTCON4  
0x2D FILTCON5  
0x2E FILTCON6  
0x2F FILTCON7  
[15:8] SINC3_MAP0  
[7:0] RESERVED  
[15:8] SINC3_MAP1  
[7:0] RESERVED  
[15:8] SINC3_MAP2  
[7:0] RESERVED  
[15:8] SINC3_MAP3  
[7:0] RESERVED  
[15:8] SINC3_MAP4  
[7:0] RESERVED  
[15:8] SINC3_MAP5  
[7:0] RESERVED  
[15:8] SINC3_MAP6  
[7:0] RESERVED  
[15:8] SINC3_MAP7  
ENHFILTEN0  
ENHFILTEN1  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
ENHFILTEN7  
ODR0  
ODR1  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
ODR7  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ENHFILT1  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ENHFILT6  
ENHFILT7  
ORDER1  
ORDER2  
ORDER3  
ORDER4  
ORDER5  
ORDER6  
ORDER7  
[7:0]  
RESERVED  
0x30 OFFSET0  
0x31 OFFSET1  
0x32 OFFSET2  
0x33 OFFSET3  
0x34 OFFSET4  
0x35 OFFSET5  
0x36 OFFSET6  
0x37 OFFSET7  
0x38 GAIN0  
0x39 GAIN1  
0x3A GAIN2  
0x3B GAIN3  
0x3C GAIN4  
0x3D GAIN5  
0x3E GAIN6  
0x3F GAIN7  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
OFFSET0[23:0]  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x800000 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
0x5XXXX0 RW  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET4[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
GAIN0[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
Rev. 0 | Page 48 of 64  
Data Sheet  
AD7175-8  
REGISTER DETAILS  
COMMUNICATIONS REGISTER  
Address: 0x00, Reset: 0x00, Name: COMMS  
All access to the on-chip registers must start with a write to the communications register. This write determines what register is accessed  
next and whether that operation is a write or a read.  
Table 25. Bit Descriptions for COMMS  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
W
7
WEN  
This bit must be low to begin communications with the ADC.  
6
R/W  
This bit determines if the command is a read or write operation.  
0x0  
W
0
1
Write command  
Read command  
[5:0]  
RA  
The register address bits determine which register is to be read from or  
written to as part of the current communication.  
0x00  
W
000000 Status register  
000001 ADC mode register  
000010 Interface mode register  
000011 Register checksum register  
000100 Data register  
000110 GPIO configuration register  
000111 ID register  
010000 Channel 0 register  
010001 Channel 1 register  
010010 Channel 2 register  
010011 Channel 3 register  
010100 Channel 4 register  
010101 Channel 5 register  
010110 Channel 6 register  
010111 Channel 7 register  
011000 Channel 8 register  
011001 Channel 9 register  
011010 Channel 10 register  
011011 Channel 11 register  
011100 Channel 12 register  
011101 Channel 13 register  
011110 Channel 14 register  
011111 Channel 15 register  
100000 Setup Configuration 0 register  
100001 Setup Configuration 1 register  
100010 Setup Configuration 2 register  
100011 Setup Configuration 3 register  
100100 Setup Configuration 4 register  
100101 Setup Configuration 5 register  
100110 Setup Configuration 6 register  
100111 Setup Configuration 7 register  
101000 Filter Configuration 0 register  
101001 Filter Configuration 1 register  
101010 Filter Configuration 2 register  
101011 Filter Configuration 3 register  
101100 Filter Configuration 4 register  
101101 Filter Configuration 5 register  
101110 Filter Configuration 6 register  
101111 Filter Configuration 7 register  
Rev. 0 | Page 49 of 64  
 
 
AD7175-8  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
110000 Offset 0 register  
110001 Offset 1 register  
110010 Offset 2 register  
110011 Offset 3 register  
110100 Offset 4 register  
110101 Offset 5 register  
110110 Offset 6 register  
110111 Offset 7 register  
111000 Gain 0 register  
111001 Gain 1 register  
111010 Gain 2 register  
111011 Gain 3 register  
111100 Gain 4 register  
111101 Gain 5 register  
111110 Gain 6 register  
111111 Gain 7 register  
Rev. 0 | Page 50 of 64  
Data Sheet  
AD7175-8  
STATUS REGISTER  
Address: 0x00, Reset: 0x80, Name: STATUS  
The status register is an 8-bit register that contains ADC and serial interface status information. It can optionally be appended to the data  
register by setting the DATA_STAT bit in the interface mode register.  
Table 26. Bit Descriptions for STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
RDY  
The status of RDY is output to the DOUT/RDY pin whenever CS is low and  
a register is not being read. This bit goes low when the ADC has written a  
new result to the data register. In ADC calibration modes, this bit goes low  
when the ADC has written the calibration result. RDY is brought high  
automatically by a read of the data register.  
0x1  
R
0
1
New data result available  
Awaiting new data result  
6
ADC_ERROR  
This bit by default indicates if an ADC overrange or underrange has  
occurred. The ADC result is clamped to 0xFFFFFF for overrange errors and  
0x000000 for underrange errors. This bit is updated when the ADC result is  
written and is cleared at the next update after removing the overrange or  
underrange condition.  
0x0  
R
0
1
No error  
Error  
5
4
CRC_ERROR  
REG_ERROR  
This bit indicates if a CRC error has taken place during a register write. For  
register reads, the host microcontroller determines if a CRC error has  
occurred. This bit is cleared by a read of this register.  
No error  
CRC error  
0x0  
0x0  
R
R
0
1
This bit indicates if the content of one of the internal registers has  
changed from the value calculated when the register integrity check was  
activated. The check is activated by setting the REG_CHECK bit in the  
interface mode register. This bit is cleared by clearing the REG_CHECK bit.  
0
1
No error  
Error  
[3:0]  
CHANNEL  
These bits indicate which channel was active for the ADC conversion  
whose result is currently in the data register. This may be different from  
the channel currently being converted. The mapping is a direct map from  
the channel register; therefore, Channel 0 results in 0x0 and Channel 15  
results in 0xF.  
0x0  
R
0000 Channel 0  
0001 Channel 1  
0010 Channel 2  
0011 Channel 3  
0100 Channel 4  
0101 Channel 5  
0110 Channel 6  
0111 Channel 7  
1000 Channel 8  
1001 Channel 9  
1010 Channel 10  
1011 Channel 11  
1100 Channel 12  
1101 Channel 13  
1110 Channel 14  
1111 Channel 15  
Rev. 0 | Page 51 of 64  
 
AD7175-8  
Data Sheet  
ADC MODE REGISTER  
Address: 0x01, Reset: 0xA000, Name: ADCMODE  
The ADC mode register controls the operating mode of the ADC and the master clock selection. A write to the ADC mode register resets  
the filter and the bits and starts a new conversion or calibration.  
RDY  
Table 27. Bit Descriptions for ADCMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
REF_EN  
Enables internal reference and outputs a buffered 2.5 V to the REFOUT pin. 0x1  
RW  
0
1
Disabled  
Enabled  
14  
13  
HIDE_DELAY  
SING_CYC  
If a programmable delay is set using the delay bits, this bit allows the  
delay to be hidden by absorbing the delay into the conversion time for  
selected data rates with the sinc5 + sinc1 filter. See the Delay section for  
more information.  
Enabled  
Disabled  
0x0  
RW  
RW  
0
1
This bit can be used when only a single channel is active to set the ADC to 0x1  
only output at the settled filter data rate.  
0
1
Disabled  
Enabled  
[12:11] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
[10:8]  
DELAY  
These bits allow a programmable delay to be added after a channel switch 0x0  
to allow the settling of external circuitry before the ADC starts processing  
its input.  
RW  
000 0 µs  
001 4 µs  
010 16 µs  
011 40 µs  
100 100 µs  
101 200 µs  
110 500 µs  
111 1 ms  
7
RESERVED  
MODE  
This bit is reserved; set this bit to 0.  
0x0  
0x0  
R
[6:4]  
These bits control the operating mode of the ADC. See the Operating  
Modes section for more information.  
RW  
000 Continuous conversion mode  
001 Single conversion mode  
010 Standby mode  
011 Power-down mode  
100 Internal offset calibration  
110 System offset calibration  
111 System gain calibration  
[3:2]  
[1:0]  
CLOCKSEL  
RESERVED  
These bits are used to select the ADC clock source. Selecting the internal  
oscillator also enables the internal oscillator.  
00 Internal oscillator  
01 Internal oscillator output on the XTAL2/CLKIO pin  
10 External clock input on the XTAL2/CLKIO pin  
11 External crystal on the XTAL1 and XTAL2/CLKIO pins  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
RW  
R
Rev. 0 | Page 52 of 64  
 
 
Data Sheet  
AD7175-8  
INTERFACE MODE REGISTER  
Address: 0x02, Reset: 0x0000, Name: IFMODE  
The interface mode register configures various serial interface options.  
Table 28. Bit Descriptions for IFMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
12  
11  
ALT_SYNC  
This bit enables a different behavior of the SYNC pin to allow the use  
of SYNC as a control for conversions when cycling channels (see the  
description of the SYNC_EN bit in the GPIO Configuration Register section  
for details).  
Disabled  
Enabled  
RW  
0
1
IOSTRENGTH  
This bit controls the drive strength of the DOUT/RDY pin. Set this bit when 0x0  
reading from the serial interface at high speed with a low IOVDD supply  
and moderate capacitance.  
RW  
0
1
Disabled (default)  
Enabled  
[10:9]  
8
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
DOUT_RESET  
See the DOUT_RESET section for more information.  
RW  
0
1
Disabled  
Enabled  
7
6
5
CONTREAD  
DATA_STAT  
REG_CHECK  
This bit enables the continuous read mode of the ADC data register. The  
ADC must be configured in continuous conversion mode to use  
continuous read mode. For more details, see the Operating Modes  
section.  
Disabled  
Enabled  
0x0  
RW  
RW  
RW  
0
1
This bit enables the status register to be appended to the data register  
when read so that channel and status information are transmitted with  
the data. This is the only way to be sure that the channel bits read from  
the status register correspond to the data in the data register.  
Disabled  
Enabled  
0x0  
0
1
This bit enables a register integrity checker, which can be used to monitor 0x0  
any change in the value of the user registers. To use this feature, configure  
all other registers as desired with this bit cleared. Then write to this register to  
set the REG_CHECK bit to 1. If the contents of any of the registers change,  
the REG_ERROR bit is set in the status register. To clear the error, set the  
REG_CHECK bit to 0. Neither the interface mode register nor the ADC data  
or status registers are included in the registers that are checked. If a  
register must have a new value written, this bit must first be cleared;  
otherwise, an error is flagged when the new register contents are written.  
0
1
Disabled  
Enabled  
4
RESERVED  
CRC_EN  
This bit is reserved; set this bit to 0.  
0x0  
R
[3:2]  
These bits enable CRC protection of register reads/writes. CRC increases  
the number of bytes in a serial interface transfer by one. See the CRC  
Calculation section for more details.  
0x00  
RW  
00 Disabled  
01 XOR checksum enabled for register read transactions; register writes still  
use CRC with these bits set  
10 CRC checksum enabled for read and write transactions  
This bit is reserved; set this bit to 0.  
1
RESERVED  
0x0  
R
Rev. 0 | Page 53 of 64  
 
 
AD7175-8  
Data Sheet  
Bits  
Bit Name  
WL16  
Settings  
Description  
Reset  
Access  
0
This bit changes the ADC data register to 16 bits. The ADC is not reset by a 0x0  
write to the interface mode register; therefore, the ADC result is not  
rounded to the correct word length immediately after writing to these  
bits. The first new ADC result is correct.  
RW  
0
1
24-bit data  
16-bit data  
REGISTER CHECK  
Address: 0x03, Reset: 0x000000, Name: REGCHECK  
The register check register is a 24-bit checksum calculated by exclusively OR'ing the contents of the user registers. The REG_CHECK bit  
in the interface mode register must be set for this to operate; otherwise, the register reads 0.  
Table 29. Bit Descriptions for REGCHECK  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
REGISTER_CHECK  
This register contains the 24-bit checksum of user registers when the  
REG_CHECK bit is set in the interface mode register.  
0x000000  
R
DATA REGISTER  
Address: 0x04, Reset: 0x000000, Name: DATA  
The data register contains the ADC conversion result. The encoding is offset binary, or it can be changed to unipolar by the  
RDY RDY  
output high if it is  
BI_UNIPOLARx bits in the setup configuration registers. Reading the data register brings the  
bit and the  
output is brought high, it is not possible to know if another  
RDY  
low. The ADC result can be read multiple times; however, because the  
ADC result is imminent. After the command to read the ADC register is received, the ADC does not write a new result into the data  
register.  
Table 30. Bit Descriptions for DATA  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
DATA  
This register contains the ADC conversion result. If DATA_STAT is set in  
the interface mode register, the status register is appended to this  
register when read, making this a 32-bit register. If WL16 is set in the  
interface mode register, this register is reduced to 16 bits.  
0x000000  
R
Rev. 0 | Page 54 of 64  
 
 
Data Sheet  
AD7175-8  
GPIO CONFIGURATION REGISTER  
Address: 0x06, Reset: 0x0800, Name: GPIOCON  
The GPIO configuration register controls the general-purpose I/O pins of the ADC.  
Table 31. Bit Descriptions for GPIOCON  
Bits  
Bit Name  
RESERVED  
PDSW  
Settings Description  
Reset  
0x0  
Access  
R
15  
These bits are reserved; set these bits to 0.  
14  
This bit enables/disables the power-down switch function. Setting the bit allows  
the pin to sink current. This function can be used for bridge sensor applications  
where the switch controls the power-up/power-down of the bridge.  
0x0  
RW  
13  
12  
OP_EN2_3  
MUX_IO  
This bit enables the GPO2 and GPO3 pins. Outputs are referenced between AVDD1 0x0  
and AVSS.  
RW  
RW  
This bit allows the ADC to control an external multiplexer, using GPIO0/GPIO1/  
GPO2/GPO3 in sync with the internal channel sequencing. The analog input pins  
used for a channel can still be selected on a per channel basis. Therefore, it is  
possible to have a 16-channel multiplexer in front of each analog input pair  
(AIN0/AIN1 to AIN14/AIN15), giving a total of 128 differential channels. However,  
only 16 channels at a time can be automatically sequenced. Following the sequence of  
16 channels, the user changes the analog input to the next pair of input channels, and  
it sequences through the next 16 channels. A delay can be inserted after switching an  
external multiplexer (see the delay bits in the ADC Mode Register section).  
0x0  
11  
SYNC_EN  
This bit enables the SYNC pin as a synchronization input. When the pin is low, this  
holds the ADC and filter in reset until the SYNC pin goes high. An alternative  
operation of the SYNC pin is available when the ALT_SYNC bit in the interface  
mode register is set. This mode only works when multiple channels are enabled. In  
this case, a low on the SYNC pin does not immediately reset the filter/modulator.  
Instead, if the SYNC pin is low when the channel is due to be switched, the modulator  
and filter are prevented from starting a new conversion. Bringing SYNC high begins  
the next conversion. This alternative sync mode allows SYNC to be used while cycling  
through channels.  
0x1  
RW  
0
1
Disabled.  
Enabled.  
[10:9]  
ERR_EN  
These bits enable the ERROR pin as an error input/output.  
0x0  
RW  
00 Disabled.  
01 ERROR is an error input. The (inverted) readback state is OR'ed with other error  
sources and is available in the ADC_ERROR bit in the status register. The ERROR pin  
state can also be read from the ERR_DAT bit in this register.  
10 ERROR is an open-drain error output. The status register error bits are OR'ed,  
inverted, and mapped to the ERROR pin. The ERROR pins of multiple devices can  
be wired together to a common pull-up resistor so that an error on any device can  
be observed.  
11 ERROR is a general-purpose output. The status of the pin is controlled by the  
ERR_DAT bit in this register. This output is referenced between IOVDD and DGND,  
as opposed to the AVDD1 and AVSS levels used by the general-purpose I/O pins.  
The ERROR pin has an active pull-up in this case.  
8
ERR_DAT  
This bit determines the logic level at the ERROR pin if the pin is enabled as a  
general-purpose output. This bit reflects the readback status of the pin if the pin is  
enabled as an input.  
0x0  
RW  
7
6
5
GP_DATA3  
GP_DATA2  
IP_EN1  
This bit is the write data for GPO3.  
0x0  
0x0  
0x0  
W
This bit is the write data for GPO2.  
W
This bit turns GPIO1 into an input. Inputs are referenced to AVDD1 or AVSS.  
RW  
0
1
Disabled.  
Enabled.  
4
IP_EN0  
This bit turns GPIO0 into an input. Inputs are referenced to AVDD1 or AVSS.  
0x0  
RW  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 55 of 64  
 
AD7175-8  
Data Sheet  
Bits  
Bit Name  
Settings Description  
This bit turns GPIO1 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
Disabled.  
Reset  
Access  
3
OP_EN1  
RW  
0
1
Enabled.  
2
OP_EN0  
This bit turns GPIO0 into an output. Outputs are referenced between AVDD1 and AVSS. 0x0  
RW  
0
1
Disabled.  
Enabled.  
1
0
GP_DATA1  
GP_DATA0  
This bit is the readback or write data for GPIO1.  
This bit is the readback or write data for GPIO0.  
0x0  
0x0  
RW  
RW  
ID REGISTER  
Address: 0x07, Reset: 0x3CDx, Name: ID  
The ID register returns a 16-bit ID. For the AD7175-8, this ID is 0x3CDx.  
Table 32. Bit Descriptions for ID  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
ID  
The ID register returns a 16-bit ID code that is specific to the ADC.  
0x3CDx  
R
0x3CDx AD7175-8  
CHANNEL REGISTER 0  
Address: 0x10, Reset: 0x8001, Name: CH0  
The channel registers are 16-bit registers used to select which channels are currently active, which inputs are selected for each channel,  
and which setup is used to configure the ADC for that channel.  
Table 33. Bit Descriptions for CH0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
CH_EN0  
This bit enables Channel 0. If more than one channel is enabled, the ADC 0x1  
automatically sequences between them.  
RW  
0
1
Disabled  
Enabled (default)  
[14:12] SETUP_SEL0  
These bits identify which of the eight setups is used to configure the  
ADC for this channel. A setup comprises a set of four registers: setup  
configuration register, filter configuration register, offset register, and gain  
register. All channels can use the same setup, in which case the same 3-bit  
value must be written to these bits on all active channels, or up to eight  
channels can be configured differently.  
0x0  
RW  
000 Setup 0  
001 Setup 1  
010 Setup 2  
011 Setup 3  
100 Setup 4  
101 Setup 5  
110 Setup 6  
111 Setup 7  
[11:10] RESERVED  
[9:5] AINPOS0  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
These bits select which input is connected to the positive input of the  
ADC for this channel.  
RW  
00000 AIN0 (default)  
00001 AIN1  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
Rev. 0 | Page 56 of 64  
 
 
Data Sheet  
AD7175-8  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
01000 AIN8  
01001 AIN9  
01010 AIN10  
01011 AIN11  
01100 AIN12  
01101 AIN13  
01110 AIN14  
01111 AIN15  
10000 AIN16  
10001 Temperature sensor+  
10010 Temperature sensor−  
10011 ((AVDD1 − AVSS)/5)+ (analog input buffers must be enabled)  
10100 ((AVDD1 − AVSS)/5)− (analog input buffers must be enabled)  
10101 REF+  
10110 REF−  
[4:0]  
AINNEG0  
These bits select which input is connected to the negative input of the  
ADC for this channel.  
0x1  
RW  
00000 AIN0  
00001 AIN1 (default)  
00010 AIN2  
00011 AIN3  
00100 AIN4  
00101 AIN5  
00110 AIN6  
00111 AIN7  
01000 AIN8  
01001 AIN9  
01010 AIN10  
01011 AIN11  
01100 AIN12  
01101 AIN13  
01110 AIN14  
01111 AIN15  
10000 AIN16  
10001 Temperature sensor+  
10010 Temperature sensor−  
10011 ((AVDD1 − AVSS)/5)+  
10100 ((AVDD1 − AVSS)/5)−  
10101 REF+  
10110 REF−  
Rev. 0 | Page 57 of 64  
AD7175-8  
Data Sheet  
CHANNEL REGISTER 1 TO CHANNEL REGISTER 15  
Address: 0x11 to 0x1F, Reset: 0x0001, Name: CH1 to CH7  
The remaining 15 channel registers share the same layout as Channel Register 0.  
Table 34. CH1 to CH15 Register Map  
Reg.  
0x11  
Name  
CH1  
Bits  
[15:8]  
[7:0]  
Bit 7  
CH_EN1  
Bit 6  
Bit 5  
SETUP_SEL1  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
0x0001  
RW  
RW  
RESERVED  
AINNEG1  
RESERVED  
AINNEG2  
RESERVED  
AINNEG3  
RESERVED  
AINNEG4  
RESERVED  
AINNEG5  
RESERVED  
AINNEG6  
RESERVED  
AINNEG7  
RESERVED  
AINNEG8  
RESERVED  
AINNEG9  
RESERVED  
AINNEG10  
RESERVED  
AINNEG11  
RESERVED  
AINNEG12  
RESERVED  
AINNEG13  
RESERVED  
AINNEG14  
RESERVED  
AINNEG15  
AINPOS1[4:3]  
AINPOS2[4:3]  
AINPOS3[4:3]  
AINPOS4[4:3]  
AINPOS5[4:3]  
AINPOS6[4:3]  
AINPOS7[4:3]  
AINPOS8[4:3]  
AINPOS9[4:3]  
AINPOS10[4:3]  
AINPOS11[4:3]  
AINPOS12[4:3]  
AINPOS13[4:3]  
AINPOS14[4:3]  
AINPOS15[4:3]  
AINPOS1[2:0]  
AINPOS2[2:0]  
AINPOS3[2:0]  
AINPOS4[2:0]  
AINPOS5[2:0]  
AINPOS6[2:0]  
AINPOS7[2:0]  
AINPOS8[2:0]  
AINPOS9[2:0]  
AINPOS10[2:0]  
AINPOS11[2:0]  
AINPOS12[2:0]  
AINPOS13[2:0]  
AINPOS14[2:0]  
AINPOS15[2:0]  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
CH2  
[15:8]  
[7:0]  
CH_EN2  
CH_EN3  
CH_EN4  
CH_EN5  
CH_EN6  
CH_EN7  
CH_EN8  
CH_EN9  
CH_EN10  
CH_EN11  
CH_EN12  
CH_EN13  
CH_EN14  
CH_EN15  
SETUP_SEL2  
SETUP_SEL3  
SETUP_SEL4  
SETUP_SEL5  
SETUP_SEL6  
SETUP_SEL7  
SETUP_SEL8  
SETUP_SEL9  
SETUP_SEL10  
SETUP_SEL11  
SETUP_SEL12  
SETUP_SEL13  
SETUP_SEL14  
SETUP_SEL15  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
0x0001  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CH3  
[15:8]  
[7:0]  
CH4  
[15:8]  
[7:0]  
CH5  
[15:8]  
[7:0]  
CH6  
[15:8]  
[7:0]  
CH7  
[15:8]  
[7:0]  
CH8  
[15:8]  
[7:0]  
CH9  
[15:8]  
[7:0]  
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
Rev. 0 | Page 58 of 64  
 
Data Sheet  
AD7175-8  
SETUP CONFIGURATION REGISTER 0  
Address: 0x20, Reset: 0x1320, Name: SETUPCON0  
The setup configuration registers are 16-bit registers that configure the reference selection, input buffers, and output coding of the ADC.  
Table 35. Bit Descriptions for SETUPCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
[15:13] RESERVED  
These bits are reserved; set these bits to 0.  
This bit sets the output coding of the ADC for Setup 0.  
Unipolar coded output  
Bipolar coded output (offset binary)  
This bit enables or disables the REF+ input buffer.  
REF+ buffer disabled  
12  
11  
10  
9
BI_UNIPOLAR0  
0x1  
RW  
0
1
REFBUF0+  
REFBUF0−  
AINBUF0+  
AINBUF0−  
BURNOUT_EN0  
0x0  
0x0  
0x1  
0x1  
0x00  
RW  
RW  
RW  
RW  
R
0
1
REF+ buffer enabled  
This bit enables or disables the REF− input buffer.  
REF− buffer disabled  
REF− buffer enabled  
0
1
This bit enables or disables the AIN+ input buffer.  
AIN+ buffer disabled  
AIN+ buffer enabled  
0
1
8
This bit enables or disables the AIN− input buffer.  
AIN− buffer disabled  
AIN− buffer enabled  
0
1
7
This bit enables a 10 µA current source on the positive analog input  
selected and a 10 µA current sink on the negative analog input selected.  
The burnout currents are useful in diagnosis of an open wire, whereby the  
ADC result goes to full scale. Enabling the burnout currents during  
measurement results in an offset voltage on the ADC. This means the  
strategy for diagnosing an open wire operates best by turning on the  
burnout currents at intervals, before or after precision measurements.  
6
RESERVED  
REF_SEL0  
These bits are reserved; set these bits to 0.  
0x00  
0x2  
R
[5:4]  
These bits allow the user to select the reference source for ADC  
conversion on Setup 0.  
RW  
00 External reference.  
01 External Reference 2 supplied to AIN1/REF2+ and AIN0/REF2− pins.  
10 Internal 2.5 V reference. This must also be enabled in the ADC mode register.  
11 AVDD1 − AVSS. This can be used to as a diagnostic to validate other  
reference values.  
[3:0]  
RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
R
Rev. 0 | Page 59 of 64  
 
AD7175-8  
Data Sheet  
SETUP CONFIGURATION REGISTER 1 TO SETUP CONFIGURATION REGISTER 7  
Address: 0x21 to 0x27, Reset: 0x1320, Name: SETUPCON1 to SETUPCON7  
The remaining seven setup configuration registers share the same layout as Setup Configuration Register 0.  
Table 36. SETUPCON1 to SETUPCON7 Register Map  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
AINBUF1+  
Bit 0  
Reset  
RW  
RW  
0x21  
SETUPCON1 [15:8]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BI_UNIPOLAR1  
REFBUF1+  
REFBUF1−  
AINBUF1− 0x1320  
AINBUF2− 0x1320  
AINBUF3− 0x1320  
AINBUF4− 0x1320  
AINBUF5− 0x1320  
AINBUF6− 0x1320  
AINBUF7− 0x1320  
BURNOUT_EN1  
BURNOUT_EN2  
BURNOUT_EN3  
BURNOUT_EN4  
BURNOUT_EN5  
BURNOUT_EN6  
BURNOUT_EN7  
REF_SEL1  
BI_UNIPOLAR2  
REF_SEL2  
BI_UNIPOLAR3  
REF_SEL3  
BI_UNIPOLAR4  
REF_SEL4  
BI_UNIPOLAR5  
REF_SEL5  
BI_UNIPOLAR6  
REF_SEL6  
BI_UNIPOLAR7  
REF_SEL7  
RESERVED  
REFBUF2− AINBUF2+  
RESERVED  
REFBUF3− AINBUF3+  
RESERVED  
REFBUF4− AINBUF4+  
RESERVED  
REFBUF5− AINBUF5+  
RESERVED  
REFBUF6− AINBUF6+  
RESERVED  
REFBUF7− AINBUF7+  
RESERVED  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
SETUPCON2 [15:8]  
[7:0]  
REFBUF2+  
REFBUF3+  
REFBUF4+  
REFBUF5+  
REFBUF6+  
REFBUF7+  
RW  
RW  
RW  
RW  
RW  
RW  
SETUPCON3 [15:8]  
[7:0]  
SETUPCON4 [15:8]  
[7:0]  
SETUPCON5 [15:8]  
[7:0]  
SETUPCON6 [15:8]  
[7:0]  
SETUPCON7 [15:8]  
[7:0]  
Rev. 0 | Page 60 of 64  
 
Data Sheet  
AD7175-8  
FILTER CONFIGURATION REGISTER 0  
Address: 0x28, Reset: 0x0500, Name: FILTCON0  
The filter configuration registers are 16-bit registers that configure the ADC data rate and filter options. Writing to any of these registers  
resets any active ADC conversion and restarts converting at the first channel in the sequence.  
Table 37. Bit Descriptions for FILTCON0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
SINC3_MAP0  
If this bit is set, the mapping of the filter register changes to directly  
program the decimation rate of the sinc3 filter for Setup 0. All other  
options are eliminated. This allows fine tuning of the output data rate and  
filter notch for rejection of specific frequencies. The data rate when on a  
single channel equals fMOD/(32 × FILTCON0[14:0]).  
0x0  
RW  
[14:12] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x0  
R
11  
ENHFILTEN0  
This bit enables various postfilters for enhanced 50 Hz/60 Hz rejection for  
Setup 0. The ORDER0 bits must be set to 00 to select the sinc5 + sinc1  
filter for this to work.  
RW  
0
1
Disabled  
Enabled  
[10:8]  
ENHFILT0  
These bits select between various postfilters for enhanced 50 Hz/60 Hz  
rejection for Setup 0.  
0x5  
RW  
010 27 SPS, 47 dB rejection, 36.7 ms settling  
011 25 SPS, 62 dB rejection, 40 ms settling  
101 20 SPS, 86 dB rejection, 50 ms settling  
110 16.67 SPS, 92 dB rejection, 60 ms settling  
This bit is reserved; set this bit to 0.  
7
RESERVED  
ORDER0  
0x0  
0x0  
R
[6:5]  
These bits control the order of the digital filter that processes the  
modulator data for Setup 0.  
RW  
00 Sinc5 + sinc1 (default)  
11 Sinc3  
[4:0]  
ODR0  
These bits control the output data rate of the ADC and, therefore, the  
settling time and noise for Setup 0. Rates shown are for the sinc5 + sinc 1  
filter. See Table 19 to Table 22.  
0x0  
RW  
00000 250,000  
00001 125,000  
00010 62,500  
00011 50,000  
00100 31,250  
00101 25,000  
00110 15,625  
00111 10,000  
01000 5000  
01001 2500  
01010 1000  
01011 500  
01100 397.5  
01101 200  
01110 100  
01111 59.92  
10000 49.96  
10001 20  
10010 16.66  
10011 10  
10100  
5
Rev. 0 | Page 61 of 64  
 
AD7175-8  
Data Sheet  
FILTER CONFIGURATION REGISTER 1 TO FILTER CONFIGURATION REGISTER 7  
Address: 0x29 to 0x2F, Reset: 0x0500, Name: FILTCON1 to FILTCON7  
The remaining seven filter configuration registers share the same layout as Filter Configuration Register 0.  
Table 38. FILTCON1 to FILTCON7 Register Map  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
ODR1  
Bit 1  
Bit 0  
Reset  
RW  
0x29  
FILTCON1  
[15:8]  
[7:0]  
SINC3_MAP1  
RESERVED  
SINC3_MAP2  
RESERVED  
SINC3_MAP3  
RESERVED  
SINC3_MAP4  
RESERVED  
SINC3_MAP5  
RESERVED  
SINC3_MAP6  
RESERVED  
SINC3_MAP7  
RESERVED  
RESERVED  
ENHFILTEN1  
ENHFILT1  
0x0500  
RW  
ORDER1  
RESERVED  
ORDER2  
RESERVED  
ORDER3  
RESERVED  
ORDER4  
RESERVED  
ORDER5  
RESERVED  
ORDER6  
RESERVED  
ORDER7  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
FILTCON2  
FILTCON3  
FILTCON4  
FILTCON5  
FILTCON6  
FILTCON7  
[15:8]  
[7:0]  
ENHFILTEN2  
ENHFILTEN3  
ENHFILTEN4  
ENHFILTEN5  
ENHFILTEN6  
ENHFILTEN7  
ENHFILT2  
ENHFILT3  
ENHFILT4  
ENHFILT5  
ENHFILT6  
ENHFILT7  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
0x0500  
RW  
RW  
RW  
RW  
RW  
RW  
ODR2  
ODR3  
ODR4  
ODR5  
ODR6  
ODR7  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
OFFSET REGISTER 0  
Address: 0x30, Reset: 0x800000, Name: OFFSET0  
The offset (zero-scale) registers are 24-bit registers that can be used to compensate for any offset error in the ADC or in the system.  
Table 39. Bit Descriptions for OFFSET0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
OFFSET0  
Offset calibration coefficient for Setup 0.  
0x800000 RW  
OFFSET REGISTER 1 TO OFFSET REGISTER 7  
Address: 0x31 to 0x37, Reset: 0x800000, Name: OFFSET1 to OFFSET7  
The remaining seven offset registers share the same layout as Offset Register 0.  
Table 40. OFFSET1 to OFFSET7 Register Map  
Reg.  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
OFFSET0  
OFFSET1  
OFFSET2  
OFFSET3  
OFFSET4  
OFFSET5  
OFFSET6  
OFFSET7  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
OFFSET0[23:0]  
OFFSET1[23:0]  
OFFSET2[23:0]  
OFFSET3[23:0]  
OFFSET4[23:0]  
OFFSET5[23:0]  
OFFSET6[23:0]  
OFFSET7[23:0]  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
0x800000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GAIN REGISTER 0  
Address: 0x38, Reset: 0x5XXXX0, Name: GAIN0  
The gain (full-scale) registers are 24-bit registers that can be used to compensate for any gain error in the ADC or in the system.  
Table 41. Bit Descriptions for GAIN0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[23:0]  
GAIN0  
Gain calibration coefficient for Setup 0.  
0x5XXXX0 RW  
Rev. 0 | Page 62 of 64  
 
 
 
 
Data Sheet  
AD7175-8  
GAIN REGISTER 1 TO GAIN REGISTER 7  
Address: 0x39 to 0x3F, Reset: 0x5XXXX0, Name: GAIN1 to GAIN7  
The remaining seven gain registers share the same layout as Gain Register 0.  
Table 42. GAIN1 to GAIN7 Register Map  
Reg.  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
Name  
GAIN0  
GAIN1  
GAIN2  
GAIN3  
GAIN4  
GAIN5  
GAIN6  
GAIN7  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
GAIN0[23:0]  
GAIN1[23:0]  
GAIN2[23:0]  
GAIN3[23:0]  
GAIN4[23:0]  
GAIN5[23:0]  
GAIN6[23:0]  
GAIN7[23:0]  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
[23:0]  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
0x5XXXX0  
Rev. 0 | Page 63 of 64  
 
AD7175-8  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.05  
3.90 SQ  
3.75  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 72. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD7175-8BCPZ  
AD7175-8BCPZ-RL  
AD7175-8BCPZ-RL7  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-40-14  
CP-40-14  
CP-40-14  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12911-0-10/15(0)  
Rev. 0 | Page 64 of 64  
 
 

相关型号:

AD7175-8BCPZ-RL7

24-Bit, 8-/16-Channel, 250 kSPS, Sigma-Delta ADC with True Rail-to-Rail Buffers
ADI

AD7176-2

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7176-2BRUZ

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7176-2BRUZ-RL

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed Σ-Δ analog-to-digital converter (ADC) for low band-width input signals.
ADI

AD7177-2

32-Bit, 10 kSPS, Sigma-Delta ADC with Settling and True Rail-to-Rail Buffers
ADI

AD7177-2BRUZ

32-Bit, 10 kSPS, Sigma-Delta ADC with 100 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7177-2BRUZ-RL7

32-Bit, 10 kSPS, Sigma-Delta ADC with 100 &#181;s Settling and True Rail-to-Rail Buffers
ADI

AD7177-2_17

32-Bit, 10 kSPS, Sigma-Delta ADC with Settling and True Rail-to-Rail Buffers
ADI

AD7183

Advanced Video Decoder with 10-Bit ADC and Component Input Support
ADI

AD7190

4.8 kHz Ultra-Low Noise 24-Bit Sigma-Delta ADC with PGA
ADI

AD7190BRUZ

4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADC with PGA
ADI

AD7190BRUZ-REEL

4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADC with PGA
ADI