AD8220BRMZ [ADI]

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package; JFET输入仪表放大器具有轨到轨输出,采用MSOP封装
AD8220BRMZ
型号: AD8220BRMZ
厂家: ADI    ADI
描述:

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
JFET输入仪表放大器具有轨到轨输出,采用MSOP封装

仪表放大器 放大器电路 光电二极管
文件: 总28页 (文件大小:1184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
JFET Input Instrumentation Amplifier with  
Rail-to-Rail Output in MSOP Package  
AD8220  
FEATURES  
PIN CONFIGURATION  
Low input currents  
AD8220  
1
2
3
4
8
7
6
5
–IN  
+V  
V
10 pA maximum input bias current (B grade)  
0.6 pA maximum input offset current (B grade)  
High CMRR  
100 dB CMRR (minimum), G = 10 (B grade)  
80 dB CMRR (minimum) to 5 kHz, G = 1 (B grade)  
Excellent ac specifications and low power  
1.5 MHz bandwidth (G = 1)  
S
R
G
OUT  
R
G
REF  
+IN  
–V  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
14 nV/√Hz input noise (1 kHz)  
Slew rate 2 V/μs  
750 μA quiescent supply current (maximum)  
Versatile  
MSOP package  
10n  
1n  
Rail-to-rail output  
I
BIAS  
Input voltage range to below negative supply rail  
4 kV ESD protection  
4.5 V to 36 V single supply  
2.25 V to 18 V dual supply  
Gain set with single resistor (G = 1 to 1000)  
100p  
10p  
1p  
I
OS  
0.1p  
APPLICATIONS  
Medical instrumentation  
Precision data acquisition  
Transducer interface  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 2. Input Bias Current and Offset Current Temperature  
GENERAL DESCRIPTION  
Gain is set from 1 to 1000 with a single resistor. Increasing the  
gain increases the common-mode rejection. Measurements that  
need higher CMRR when reading small signals benefit when  
the AD8220 is set for large gains.  
The AD8220 is the first single-supply JFET input  
instrumentation amplifier available in an MSOP package.  
Designed to meet the needs of high performance, portable  
instrumentation, the AD8220 has a minimum common-mode  
rejection ratio (CMRR) of 86 dB at dc and a minimum CMRR  
of 80 dB at 5 kHz for G = 1. Maximum input bias current is 10  
pA and typically remains below 300 pA over the entire  
industrial temperature range. Despite the JFET inputs, the  
AD8220 typically has a noise corner of only 10 Hz.  
A reference pin allows the user to offset the output voltage. This  
feature is useful when interfacing with analog-to-digital  
converters.  
The AD8220 is available in an MSOP that takes roughly half the  
board area of an SOIC. Performance is specified over the  
industrial temperature range of −40°C to +85°C.  
With the proliferation of mixed-signal processing, the number of  
power supplies required in each system has grown. The AD8220 is  
designed to alleviate this problem. The AD8220 can operate on a  
18 V dual supply, as well as on a single +5 V supply. Its rail-to-rail  
output stage maximizes dynamic range on the low voltage supplies  
common in portable applications. Its ability to run on a single 5 V  
supply eliminates the need to use higher voltage, dual supplies. The  
AD8220 draws a maximum of 750 μA of quiescent current, making  
it ideal for battery-powered devices.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8220  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Reference Terminal .................................................................... 21  
Power Supply Regulation and Bypassing ................................ 21  
Input Bias Current Return Path ............................................... 21  
Input Protection ......................................................................... 21  
RF Interference ........................................................................... 22  
Common-Mode Input Voltage Range..................................... 22  
Driving an Analog-to-Digital Converter ................................ 22  
Applications..................................................................................... 23  
AC-Coupled Instrumentation Amplifier................................ 23  
Differential Output .................................................................... 23  
Electrocardiogram Signal Conditioning................................. 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configuration............................................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 19  
Gain Selection............................................................................. 20  
Layout........................................................................................... 20  
REVISION HISTORY  
4/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD8220  
SPECIFICATIONS  
VS+ = +15 V, VS− = −15 V, VREF = 0 V, TA = +25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 1.  
A Grade  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
CMRR DC to 60 Hz with 1 kΩ  
Source Imbalance  
VCM  
=
=
10 V  
G = 1  
78  
94  
94  
94  
86  
dB  
dB  
dB  
dB  
G = 10  
100  
100  
100  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
VCM  
10 V  
74  
84  
84  
84  
80  
90  
90  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
NOISE  
RTI noise = √(eni2 + (eno/G)2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eni  
Output Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = 1  
VIN+, VIN− = 0 V  
VIN+, VIN− = 0 V  
14  
90  
14  
90  
17  
nV√Hz  
nV√Hz  
100  
5
5
μV p-p  
μV p-p  
fA/√Hz  
G = 1000  
0.8  
1
0.8  
1
Current Noise  
f = 1 kHz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Average TC  
250  
10  
125  
5
μV  
T = −40°C to +85°C  
T = −40°C to +85°C  
μV/°C  
μV  
Output Offset, VOSO  
750  
10  
500  
5
Average TC  
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
86  
96  
96  
96  
86  
dB  
dB  
dB  
dB  
G = 10  
100  
100  
100  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
25  
2
10  
pA  
pA  
T = −40°C to +85°C  
T = −40°C to +85°C  
300  
5
300  
5
Input Offset Current  
Over Temperature  
0.6  
pA  
pA  
DYNAMIC RESPONSE  
Small Signal Bandwidth –  
3 dB  
G = 1  
1500  
800  
120  
14  
1500  
800  
120  
14  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Rev. 0 | Page 3 of 28  
 
AD8220  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Settling Time 0.01%  
G = 1  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
10 V step  
5
5
μs  
μs  
μs  
μs  
G = 10  
4.3  
8.1  
58  
4.3  
8.1  
58  
G = 100  
G = 1000  
Settling Time 0.001%  
G = 1  
10 V step  
6
6
μs  
μs  
μs  
μs  
G = 10  
4.6  
9.6  
74  
4.6  
9.6  
74  
G = 100  
G = 1000  
Slew Rate  
G = 1 to 100  
GAIN  
2
1
2
1
V/μs  
V/V  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
Gain Error  
G = 1  
1000  
1000  
VOUT  
= 10 V  
0.06  
0.3  
0.04  
0.2  
%
%
%
%
G = 10  
G = 100  
0.3  
0.2  
G = 1000  
Gain Nonlinearity  
G = 1  
0.3  
0.2  
VOUT = −10 V to +10 V  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
10  
5
15  
10  
60  
500  
15  
15  
75  
10  
5
15  
10  
60  
500  
15  
15  
75  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
30  
400  
10  
10  
50  
30  
400  
10  
10  
50  
G = 1000  
G = 1  
G = 10  
RL = 2 kΩ  
G = 100  
RL = 2 kΩ  
Gain vs. Temperature  
G = 1  
3
10  
2
5
ppm/°C  
ppm/°C  
G > 10  
−50  
−50  
INPUT  
Impedance (Pin to Ground)1  
104||5  
104||5  
GΩ||pF  
V
Input Operating Voltage  
Range2  
VS = 2.25 V to 18 V for  
dual supplies  
−VS − 0.1  
−VS − 0.1  
+VS − 2  
−VS − 0.1  
−VS − 0.1  
+VS − 2  
Over Temperature  
T = −40°C to +85°C  
+VS − 2.1  
+VS − 2.1  
V
OUTPUT  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
RL = 2 kΩ  
−14.3  
−14.3  
−14.7  
−14.6  
+14.3  
+14.1  
+14.7  
+14.6  
−14.3  
−14.3  
−14.7  
−14.6  
+14.3  
+14.1  
+14.7  
+14.6  
V
V
T = −40°C to +85°C  
RL = 10 kΩ  
V
T = −40°C to +85°C  
V
15  
40  
15  
40  
mA  
kΩ  
μA  
V
IIN  
VIN+, VIN− = 0 V  
70  
70  
Voltage Range  
Gain to Output  
−VS  
+VS  
−VS  
+VS  
1
0.0001  
1
0.0001  
V/V  
Rev. 0 | Page 4 of 28  
AD8220  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
2.253  
Max  
Min  
2.253  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
For Specified Performance  
Operational4  
18  
750  
850  
18  
750  
850  
V
μA  
μA  
T = −40°C to +85°C  
−40  
−40  
+85  
−40  
−40  
+85  
°C  
°C  
+125  
+125  
1 Differential and common-mode input impedance can be calculated from the pin impedance: ZDIFF = 2(ZPIN); ZCM = ZPIN/2.  
2 The AD8220 can operate up to a diode drop below the negative supply but the bias current increases sharply. The input voltage range reflects the maximum  
allowable voltage where the input bias current is within the specification.  
3 At this supply voltage, ensure that the input common-mode voltage is within the input voltage range specification.  
4 The AD8220 is characterized from −40°C to +125°C. See the Typical Performance Characteristics section for expected operation in this temperature range.  
VS + = 5 V, VS− = 0 V, VREF = 2.5 V, TA = +25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
CMRR DC to 60 Hz with  
1 kΩ Source Imbalance  
VCM = 0 to 2.5 V  
G = 1  
G = 10  
78  
94  
94  
94  
86  
dB  
dB  
dB  
dB  
100  
100  
100  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
74  
84  
84  
84  
80  
90  
90  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
NOISE  
2
RTI noise = √(eni  
+
(eno/G)2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eni  
Output Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = 1  
VIN+, VIN− = 0 V, VREF = 0 V  
VIN+, VIN− = 0 V, VREF = 0 V  
14  
90  
14  
90  
17  
nV√Hz  
nV√Hz  
100  
5
0.8  
1
5
0.8  
1
μV p-p  
μV p-p  
fA/√Hz  
G = 1000  
Current Noise  
f = 1 kHz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Average TC  
300  
10  
200  
5
μV  
μV/°C  
μV  
T = −40°C to +85°C  
T = −40°C to +85°C  
Output Offset, VOSO  
Average TC  
800  
10  
600  
5
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
86  
96  
96  
96  
86  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
100  
100  
Rev. 0 | Page 5 of 28  
 
AD8220  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
25  
Min  
Max  
10  
Unit  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Input Offset Current  
Over Temperature  
DYNAMIC RESPONSE  
pA  
pA  
pA  
pA  
T = −40°C to +85°C  
T = −40°C to +85°C  
300  
5
300  
5
2
0.6  
Small Signal Bandwidth –  
3 dB  
G = 1  
1500  
800  
120  
14  
1500  
800  
120  
14  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1  
3 V step  
4 V step  
4 V step  
4 V step  
2.5  
2.5  
7.5  
30  
2.5  
2.5  
7.5  
30  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
Settling Time 0.001%  
G = 1  
3 V step  
4 V step  
4 V step  
4 V step  
3.5  
3.5  
8.5  
37  
3.5  
3.5  
8.5  
37  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
Slew Rate  
G = 1 to 100  
GAIN  
2
1
2
1
V/μs  
V/V  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
Gain Error  
1000  
1000  
VOUT = 0.3 V to 2.9 V for  
G = 1  
VOUT = 0.3 V to 3.8 V for  
G > 1  
G = 1  
0.06  
0.3  
0.04  
0.2  
%
%
%
%
G = 10  
G = 100  
G = 1000  
Nonlinearity  
0.3  
0.2  
0.3  
0.2  
VOUT = 0.3 V to 2.9 V for  
G = 1  
VOUT = 0.3 V to 3.8 V for  
G > 1  
G = 1  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ  
35  
35  
50  
650  
35  
35  
50  
50  
50  
75  
750  
50  
50  
75  
35  
35  
50  
650  
35  
35  
50  
50  
50  
75  
750  
50  
50  
75  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
G = 1  
G = 10  
G = 100  
Gain vs. Temperature  
G = 1  
3
10  
2
5
ppm/°C  
ppm/°C  
G > 10  
−50  
−50  
INPUT  
Impedance (Pin to Ground)1  
Input Voltage Range2  
Over Temperature  
104||6  
104||6  
GΩ||pF  
−0.1  
−0.1  
+VS − 2  
−0.1  
+VS − 2  
V
V
T = −40°C to +85°C  
+VS − 2.1 −0.1  
+VS − 2.1  
Rev. 0 | Page 6 of 28  
AD8220  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT  
Output Swing  
Over Temperature  
Output Swing  
RL = 2 kΩ  
0.25  
0.3  
4.75  
4.70  
4.85  
4.80  
0.25  
0.3  
4.75  
4.70  
4.85  
4.80  
V
V
T = −40°C to +85°C  
RL = 10 kΩ  
0.15  
0.2  
0.15  
0.2  
V
Over Temperature  
Short-Circuit Current  
T = −40°C to +85°C  
V
15  
40  
15  
40  
mA  
REFERENCE INPUT  
RIN  
kΩ  
μA  
V
VIN+, VIN− = 0 V  
IIN  
70  
70  
Voltage Range  
Gain to Output  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
For Specified Performance  
Operational3  
−VS  
+VS  
−VS  
+VS  
1
0.0001  
1
0.0001  
V/V  
+4.5  
+36  
750  
850  
+4.5  
+36  
750  
850  
V
μA  
μA  
T = −40°C to +85°C  
−40  
−40  
+85  
−40  
−40  
+85  
°C  
°C  
+125  
+125  
1 Differential and common-mode impedance can be calculated from the pin impedance: ZDIFF = 2(ZPIN); ZCM = ZPIN/2.  
2 The AD8220 can operate up to a diode drop below the negative supply but the bias current increases sharply. The input voltage range reflects the maximum  
allowable voltage where the input bias current is within the specification.  
3 The AD8220 is characterized from −40°C to +125°C. See the Typical Performance Characteristics section for expected operation in that temperature range.  
Rev. 0 | Page 7 of 28  
 
AD8220  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
18 V  
See Figure 3  
Indefinite1  
Vs  
Supply Voltage  
Power Dissipation  
Output Short Circuit Current  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature  
Operating Temperature Range2  
Lead Temperature Range (Soldering 10 sec)  
Junction Temperature  
Vs  
−65°C to +125°C  
−40°C to +125°C  
300°C  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the MSOP on a 4-layer  
JEDEC standard board. θJA values are approximations.  
140°C  
θJA (4-layer JEDEC Standard Board)  
Package Glass Transition Temperature  
ESD (Human Body Model)  
ESD (Charge Device Model)  
ESD (Machine Model)  
135°C/W  
140°C  
4 kV  
1 kV  
0.4 kV  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1 Assumes the load is referenced to mid-supply.  
2 Temperature for specified performance is −40°C to +85°C. For performance  
to +125°C, see the Typical Performance Characteristics section.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 8 of 28  
 
 
 
AD8220  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8220  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input Terminal (true differential input).  
Gain Setting Terminals (place resistor across the RG pins).  
Positive Input Terminal (true differential input).  
Negative Power Supply Terminal.  
Reference Voltage Terminal (drive this terminal with a low impedance voltage source to level shift the output.)  
Output Terminal.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Positive Power Supply Terminal.  
Rev. 0 | Page 9 of 28  
 
AD8220  
TYPICAL PERFORMANCE CHARACTERISTICS  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
–40  
–20  
0
20  
40  
0
1
2
3
4
5
CMRR (µV/V)  
I
(pA)  
BIAS  
Figure 5. Typical Distribution of CMRR (G = 1)  
Figure 8. Typical Distribution of Input Bias Current  
1200  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
–200  
–100  
0
100  
200  
–0.2  
–0.1  
0
0.1  
0.2  
I
(pA)  
V
15V (µV)  
S
OS  
OSI  
Figure 6. Typical Distribution of Input Offset Voltage  
Figure 9. Typical Distribution of Input Offset Current  
1000  
100  
10  
1000  
800  
600  
400  
200  
0
GAIN = 100 BANDWIDTH ROLL-OFF  
GAIN = 1  
GAIN = 10  
GAIN = 100/GAIN = 1000  
GAIN = 1000 BANDWIDTH ROLL-OFF  
1
1
10  
100  
1k  
10k  
100k  
–1000  
–500  
0
500  
1000  
FREQUENCY (Hz)  
V
15V (µV)  
S
OSO  
Figure 10. Voltage Spectral Density vs. Frequency  
Figure 7. Typical Distribution of Output Offset Voltage  
Rev. 0 | Page 10 of 28  
 
 
 
AD8220  
XX  
150  
130  
110  
90  
GAIN = 1000  
BANDWIDTH  
LIMITED  
GAIN = 100  
GAIN = 10  
GAIN = 1  
70  
50  
30  
5µV/DIV  
1s/DIV  
XX  
XX  
10  
XX  
1
10  
100  
1k  
10k  
100k  
1M  
XXX (X)  
FREQUENCY (Hz)  
Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
Figure 14. Positive PSRR vs. Frequency, RTI  
XX  
150  
130  
110  
90  
GAIN = 1000  
GAIN = 1  
70  
GAIN = 10  
50  
GAIN = 100  
30  
1µV/DIV  
1s/DIV  
XX  
XX  
10  
XX  
1
10  
100  
1k  
10k  
100k  
1M  
XXX (X)  
FREQUENCY (Hz)  
Figure 12. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 15. Negative PSRR vs. Frequency, RTI  
8
7
6
5
4
3
2
1
0
0.3  
INPUT OFFSET  
CURRENT ±15  
9
7
0.2  
INPUT OFFSET  
CURRENT ±5  
0.1  
0
5
–15.1V  
–5.1V  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
3
INPUT BIAS  
INPUT BIAS  
CURRENT ±5  
CURRENT ±15  
1
–1  
–16  
0.1  
1
10  
100  
1k  
–12  
–8  
–4  
0
4
8
12  
16  
TIME (s)  
COMMON-MODE VOLTAGE (V)  
Figure 13. Change in Input Offset Voltage vs. Warm Up Time  
Figure 16. Input Current vs. Common-Mode Voltage  
Rev. 0 | Page 11 of 28  
AD8220  
160  
140  
120  
100  
80  
10n  
1n  
GAIN = 1000  
GAIN = 100  
I
BIAS  
100p  
10p  
1p  
BANDWIDTH  
LIMITED  
GAIN = 1  
I
GAIN = 10  
OS  
60  
0.1p  
40  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. Input Bias Current and Offset Current Temperature,  
VS = 15 V, VREF = 0 V  
Figure 20. CMRR vs. Frequency, 1 kΩ Source Imbalance  
10  
8
6
10n  
1n  
4
I
BIAS  
2
100p  
10p  
1p  
0
–2  
–4  
–6  
–8  
–10  
I
OS  
0.1p  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Input Bias Current and Offset Current vs. Temperature,  
VS = +5 V, VREF = 2.5 V  
Figure 21. Change in CMRR vs. Temperature, G = 1  
160  
70  
60  
GAIN = 1000  
GAIN = 1000  
140  
50  
40  
GAIN = 100  
120  
GAIN = 100  
GAIN = 10  
GAIN = 1  
30  
GAIN = 10  
20  
BANDWIDTH  
LIMITED  
100  
10  
GAIN = 1  
80  
0
–10  
–20  
–30  
–40  
60  
40  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. CMRR vs. Frequency  
Figure 22. Gain vs. Frequency  
Rev. 0 | Page 12 of 28  
AD8220  
R
= 2k  
LOAD  
R
= 10kΩ  
LOAD  
R
= 2kΩ  
LOAD  
R
= 10kΩ  
LOAD  
V
= ±15V  
–8  
V
= ±15V  
–8  
S
S
–10  
–6  
–4  
–2  
0
VIN (V)  
2
4
6
8
10  
–10  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 23. Gain Nonlinearity, G = 1  
Figure 26. Gain Nonlinearity, G = 1000  
18  
+13V  
12  
6
±15V SUPPLIES  
–14.8V, +5.5V  
–4.8V, +0.6V  
+3V  
+14.9V, +5.5V  
+4.95V, +0.6V  
R
= 2kΩ  
LOAD  
0
±5V SUPPLIES  
–4.8V, –3.3V  
–14.8V, –8.3V  
+4.95V, –3.3V  
+14.9V, –8.3V  
R
= 10kΩ  
LOAD  
–6  
–12  
–18  
–5.3V  
V
S
= ±15V  
–8  
–15.3V  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
–10  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
VIN (V)  
Figure 24. Gain Nonlinearity, G = 10  
Figure 27. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 1, VREF = 0 V  
4
+3V  
3
R
= 2kΩ  
LOAD  
2
+0.1V, +1.7V  
+0.1V, +0.5V  
+4.9V, +1.7V  
+4.9V, +0.5V  
R
= 10kΩ  
LOAD  
+5V SINGLE SUPPLY,  
V
= +2.5V  
REF  
1
0
–0.3V  
V
S
= ±15V  
–8  
–1  
–1  
0
1
2
3
4
5
6
–10  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 28. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 1, VS = +5 V, VREF = 2.5 V  
Figure 25. Gain Nonlinearity, G = 100  
Rev. 0 | Page 13 of 28  
 
AD8220  
18  
12  
6
V +  
S
–1  
–2  
–3  
–4  
+13V  
+85°C  
–40°C  
±15V SUPPLIES  
+25°C  
+125°C  
–14.9V, +5.4V  
+3V  
+14.9V, +5.4V  
+4.9V, +0.5V  
–4.9V, +0.4V  
–4.9V, –4.1V  
0
±5V SUPPLIES  
–5.3V  
+4  
+3  
+2  
+1  
+4.9V, –4.1V  
+14.9V, –9V  
–6  
–12  
–14.8V, –9V  
+125°C  
–40°C  
16  
+85°C  
+25°C  
14  
–15.3V  
–18  
–16  
V –  
S
–12  
–8  
–4  
0
4
8
12  
16  
2
4
6
8
10  
12  
18  
OUTPUT VOLTAGE (V)  
DUAL SUPPLY VOLTAGE (±V)  
Figure 29. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 100, VREF = 0 V  
Figure 32. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ, G = 10,  
REF = 0 V  
V
4
V +  
S
–0.2  
–0.4  
+125°C  
+3V  
+85°C  
3
+25°C  
–40°C  
2
+0.1V, +1.7V  
+4.9V, +1.7V  
+5V SINGLE SUPPLY,  
= +2.5V  
1
0
V
REF  
+0.4  
+0.2  
+125°C  
+85°C  
–40°C  
10  
+25°C  
8
+0.1V, –0.5V  
1
+4.9V, –0.5V  
4
–0.3V  
–1  
–1  
V –  
S
0
2
3
5
6
2
4
6
12  
14  
16  
18  
OUTPUT VOLTAGE (V)  
DUAL SUPPLY VOLTAGE (±V)  
Figure 30. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 100, VS = +5 V, VREF = 2.5 V  
Figure 33. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ, G = 10,  
REF = 0 V  
V
V +  
S
15  
10  
5
–1  
–2  
–40°C  
+25°C  
+125°C  
+85°C  
–40°C  
+25°C  
+85°C  
+125°C  
+125°C  
NOTES  
1. THE AD8220 CAN OPERATE UP TO A V BELOW  
THE NEGATIVE SUPPLY, BUT THE BIAS CURRENT  
WILL INCREASE SHARPLY.  
BE  
0
–5  
–10  
–15  
+1  
+85°C  
–40°C +25°C  
+85°C  
+125°C  
+25°C  
–40°C  
V –  
S
–1  
2
4
6
8
10  
12  
14  
16  
18  
100  
1k  
10k  
VOLTAGE SUPPLY (V)  
R
()  
LOAD  
Figure 31. Input Voltage Limit vs. Supply Voltage, G = 1, VREF =0 V  
Figure 34. Output Voltage Swing vs. Load Resistance VS = 15 V, VREF = 0 V  
Rev. 0 | Page 14 of 28  
 
 
AD8220  
5
4
3
2
1
0
XX  
47pF  
–40°C  
NO LOAD  
+85°C  
100pF  
+25°C  
+125°C  
+125°C  
–40°C  
+25°C  
+85°C  
1k  
20mV/DIV  
XX  
5µs/DIV  
XX  
100  
10k  
XX  
R
()  
XXX (X)  
LOAD  
Figure 38. Small Signal Pulse Response for Various Capacitive Loads,  
VS = 15 V, VREF = 0 V  
Figure 35. Output Voltage Swing vs. Load Resistance VS = +5 V, VREF = 2.5 V  
V +  
S
XX  
–40°C  
47pF  
–1  
–2  
–3  
–4  
100pF  
NO LOAD  
+125°C  
+85°C  
+25°C  
+4  
+3  
+2  
+1  
+85°C +25°C  
+125°C  
10  
–40°C  
14 16  
20mV/DIV  
XX  
5µs/DIV  
V –  
S
XX  
0
2
4
6
8
12  
XX  
I
(mA)  
OUT  
XXX (X)  
Figure 36. Output Voltage Swing vs. Output Current, VS = 15 V, VREF = 0 V  
Figure 39. Small Signal Pulse Response for Various Capacitive Loads,  
VS = +5 V, VREF = 2.5 V  
V +  
S
35  
GAIN = 10, 100, 1000  
30  
–1  
–2  
+2  
+1  
+25°C  
GAIN = 1  
25  
+85°C  
+125°C  
20  
15  
10  
5
+25°C  
+85°C  
+125°C  
–40°C  
V –  
0
100  
S
0
2
4
6
8
10  
12  
14  
16  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
FREQUENCY (Hz)  
OUT  
Figure 40. Output Voltage Swing vs. Large Signal Frequency Response  
Figure 37. Output Voltage Swing vs. Output Current, VS = +5 V, VREF = 2.5 V  
Rev. 0 | Page 15 of 28  
AD8220  
XX  
XX  
5V/DIV  
5V/DIV  
5µs TO 0.01%  
6µs TO 0.001%  
58µs TO 0.01%  
74µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
200µs/DIV  
20µs/DIV  
XX  
XX  
XX  
XX  
XX  
XX  
XXX (X)  
XXX (X)  
Figure 41. Large Signal Pulse Response and Settle Time, G = 1,  
RL = 10 kΩ, VS = 15 V, VREF = 0 V  
Figure 44. Large Signal Pulse Response and Settle Time, G = 1000,  
RL = 10 kΩ, VS = 15 V, VREF = 0 V  
XX  
5V/DIV  
4.3µs TO 0.01%  
4.6µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
20µs/DIV  
XX  
XX  
4µs/DIV  
XX  
XXX  
XXX (X)  
Figure 45. Small Signal Pulse Response, G = 1, RL = 2 kΩ, CL = 100 pF,  
VS = 15 V, VREF = 0 V  
Figure 42. Large Signal Pulse Response and Settle Time, G = 10,  
RL = 10 kΩ, VS = 15 V, VREF = 0 V  
XX  
5V/DIV  
8.1µs TO 0.01%  
9.6µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
20µs/DIV  
XX  
XX  
4µs/DIV  
XX  
XXX  
XXX (X)  
Figure 46. Small Signal Pulse Response, G = 10, RL = 2 kΩ, CL = 100 pF,  
VS = 15 V, VREF = 0 V.  
Figure 43. Large Signal Pulse Response and Settle Time, G = 100,  
RL = 10 kΩ, VS = 15 V, VREF = 0 V  
Rev. 0 | Page 16 of 28  
AD8220  
20mV/DIV  
20mV/DIV  
4µs/DIV  
4µs/DIV  
XXX  
XXX  
Figure 47 Small Signal Pulse Response, G = 100, RL = 2 kΩ, C L= 100 pF,  
VS = 15 V, VREF =0 V  
Figure 50. Small Signal Pulse Response, G = 10, RL = 2 kΩ, CL = 100 pF,  
VS = +5 V, VREF = 2.5 V  
20mV/DIV  
20mV/DIV  
4µs/DIV  
40µs/DIV  
XXX  
XXX  
Figure 51. Small Signal Pulse Response, G = 100, RL = 2 kΩ, CL = 100 pF,  
VS = +5 V, VREF = 2.5 V  
Figure 48. Small Signal Pulse Response, G = 1000, RL = 2 kΩ, CL = 100 pF,  
VS = 15 V, VREF = 0 V  
20mV/DIV  
20mV/DIV  
40µs/DIV  
4µs/DIV  
XXX  
XXX  
Figure 52. Small Signal Pulse Response, G = 1000,RL = 2 kΩ, CL = 100 pF,  
VS = +5 V, VREF = 2.5 V  
Figure 49. Small Signal Pulse Response, G = 1, RL = 2 kΩ, CL = 100 pF,  
VS = +5 V, VREF = 2.5 V  
Rev. 0 | Page 17 of 28  
AD8220  
15  
100  
10  
1
10  
SETTLED TO 0.001%  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
5
SETTLED TO 0.01%  
0
0
5
10  
15  
20  
1
10  
100  
1000  
OUTPUT VOLTAGE STEP SIZE (V)  
GAIN (V/V)  
Figure 53. Settling Time vs. Step Size (G = 1) 15 V, VREF = 0 V  
Figure 54. Settling Time vs. Gain for a 10 V Step, VS = 15 V, VREF = 0 V  
Rev. 0 | Page 18 of 28  
AD8220  
THEORY OF OPERATION  
+V  
+V  
+V  
–V  
+V  
S
S
S
S
NODE A  
NODE B  
RG  
20k  
NODE F  
R2  
24.7kꢀ  
+V  
–V  
R1  
24.7kꢀ  
S
20kꢀ  
20kꢀ  
–V  
S
S
OUTPUT  
A3  
+V  
–V  
+V  
–V  
S
S
S
S
NODE E  
+V  
–V  
NODE C  
NODE D  
S
+IN  
J1  
V
Q2  
V
J2  
–IN  
Q1  
C1  
C2  
REF  
20kꢀ  
A1  
A2  
PINCH  
PINCH  
S
S
I
VB  
I
–V  
S
Figure 55. Simplified Schematic  
The AD8220 is a JFET input, monolithic instrumentation amplifier  
based on the classic three op amp topology (see Figure 55). Input  
Transistor J1 and Input Transistor J2 are biased at a fixed current,  
so that any input signal forces the output voltages of A1 and A2 to  
change accordingly; the input signal creates a current through RG  
that flows in R1 and R2 such that the outputs of A1 and A2 provide  
the correct, gained signal. Topologically, J1, A1, R1 and J2, A2, R2  
can be viewed as precision current feedback amplifiers that have a  
gain bandwidth of 1.5 MHz. The common-mode voltage and  
amplified differential signal from A1 and A2 are applied to a  
difference amplifier that rejects the common-mode voltage but  
amplifies the differential signal. The difference amplifier employs  
20 kΩ laser trimmed resistors that result in an in-amp with gain  
error less than 0.04%. New trim techniques were developed to  
ensure that CMRR exceeds 86 dB (G = 1).  
The AD8220 has extremely low load induced nonlinearity. All  
amplifiers that comprise the AD8220 have rail-to-rail output  
capability for enhanced dynamic range. The input of the AD8220  
can amplify signals with wide common-mode voltages even  
slightly lower than the negative supply rail. The AD8220 operates  
over a wide supply voltage range. It can operate from either a  
single +4.5 V to +36 V supply or a dual 2.25 V to 18 V. The  
transfer function of the AD8220 is  
49.4 kΩ  
G = 1+  
RG  
Users can easily and accurately set the gain using a single,  
standard resistor. Since the input amplifiers employ a current  
feedback architecture, the AD8220 gain-bandwidth product  
increases with gain, resulting in a system that does not suffer as  
much bandwidth loss as voltage feedback architectures at higher  
gains. A unique pinout enables the AD8220 to meet a CMRR  
specification of 80 dB through 5 kHz (G = 1). The balanced  
pinout, shown in Figure 56, reduces parasitics that adversely  
affect CMRR performance. In addition, the new pinout  
simplifies board layout because associated traces are grouped  
together. For example, the gain setting resistor pins are adjacent  
to the inputs, and the reference pin is next to the output.  
Using JFET transistors, the AD8220 offers extremely high input  
impedance, extremely low bias currents of 10 pA maximum,  
low offset current of 0.6 pA maximum, and no input bias  
current noise. In addition, input offset is less than 125 μV and  
drift is less than 5 μV/°C. Ease of use and robustness were  
considered. A common problem for instrumentation amplifiers  
is that at high gains, when the input is overdriven,3 an excessive  
milliampere input bias current can result and the output can  
undergo phase reversal. The AD8220 has none of these  
problems; its input bias current is limited to less than 10 μA and  
the output does not phase reverse under overdrive fault  
conditions.  
AD8220  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 56. Pin Configuration  
3 Overdriving the input at high gains refers to when the input signal is within  
the supply voltages but the amplifier cannot output the gained signal. For  
example, at a gain of 100, driving the amplifier with 10 V on 15 V  
constitutes overdriving the inputs since the amplifier cannot output 100 V.  
Rev. 0 | Page 19 of 28  
 
 
 
 
AD8220  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the AD8220 gain,  
which can be calculated by referring to Table 5 or by using the  
gain equation  
49.4 kΩ  
RG =  
G 1  
Table 5. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
249  
100  
49.9  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
199.4  
495.0  
Figure 58. Example Layout. Bottom Layer of the AD8220 Evaluation Board  
Common-Mode Rejection  
The AD8220 has high CMRR over frequency which gives it  
greater immunity to disturbances such as line noise and its  
associated harmonics in contrast to typical in-amps whose  
CMRR falls off around 200 Hz. These in-amps often need  
common-mode filters at the inputs to compensate for this  
shortcoming. The AD8220 is able to reject CMRR over a greater  
frequency range, reducing the need for input common-mode  
filtering.  
991.0  
The AD8220 defaults to G = 1 when no gain resistor is used.  
Gain accuracy is determined by the absolute tolerance of RG.  
The TC of the external gain resistor increases the gain drift of  
the instrumentation amplifier. Gain error and gain drift are kept  
to a minimum when the gain resistor is not used.  
A well implemented layout helps to maintain the AD8220’s high  
CMRR over frequency. Input source impedance and capacitance  
should be closely matched. In addition, source resistance and  
capacitance should be placed as close to the inputs as possible.  
LAYOUT  
Careful board layout maximizes system performance. In  
applications that need to take advantage of the AD8220s low  
input bias current, avoid placing metal under the input path to  
minimize leakage current. To maintain high CMRR over  
frequency, layout the input traces symmetrically and layout the  
RG resistor’s traces symmetrically. Ensure that the traces maintain  
resistive and capacitive balance; this holds for additional PCB  
metal layers under the input and RG pins. Traces from the gain  
setting resistor to the RG pins should be kept as short as possible  
to minimize parasitic inductance. An example layout is shown in  
Figure 57 and Figure 58. To ensure the most accurate output, the  
trace from the REF pin should either be connected to the  
AD8220 local ground (see Figure 59) or connected to a voltage  
that is referenced to the AD8220 local ground.  
Grounding  
The AD8220s output voltage is developed with respect to the  
potential on the reference terminal. Care should be taken to tie  
REF to the appropriate local ground (see Figure 59).  
In mixed-signal environments, low level analog signals need to  
be isolated from the noisy digital environment. Many ADCs  
have separate analog and digital ground pins. Although it is  
convenient to tie both grounds to a single ground plane, the  
current traveling through the ground wires and PC board can  
cause a large error. Therefore, separate analog and digital  
ground returns should be used to minimize the current flow  
from sensitive points to the system ground.  
Figure 57. Example Layout. Top Layer of the AD8220 Evaluation Board  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD8220  
REFERENCE TERMINAL  
INPUT BIAS CURRENT RETURN PATH  
The reference terminal, REF, is at one end of a 20 kΩ resistor  
(see Figure 55). The instrumentation amplifiers output is  
referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to voltages other than  
common. For example, a voltage source can be tied to the REF  
pin to level-shift the output so that the AD8220 can interface  
with an ADC. The allowable reference voltage range is a  
function of the gain, common-mode input, and supply voltages.  
The REF pin should not exceed either +VS or −VS by more than  
0.5 V.  
The AD8220 input bias current is extremely small at less than  
10 pA. Nonetheless, the input bias current must have a return  
path to common. When the source, such as a transformer,  
cannot provide a return current path, one should be created  
(see Figure 60).  
+V  
S
AD8220  
For best performance, especially in cases where the output is  
not measured with respect to the REF terminal, source  
impedance to the REF terminal should be kept low, since  
parasitic resistance can adversely affect CMRR and gain  
accuracy.  
REF  
–V  
S
TRANSFORMER  
POWER SUPPLY REGULATION AND BYPASSING  
The AD8220 has high PSRR. However, for optimal  
performance, a stable dc voltage should be used to power the  
instrumentation amplifier. Noise on the supply pins can  
adversely affect performance. As in all linear circuits, bypass  
capacitors must be used to decouple the amplifier.  
+V  
S
C
C
R
R
1
fHIGH-PASS  
=
2πRC  
AD8220  
A 0.1 µF capacitor should be placed close to each supply pin. A  
10 µF tantalum capacitor can be used further away from the  
part (see Figure 59). In most cases, it can be shared by other  
precision integrated circuits.  
REF  
–V  
S
+V  
S
AC-COUPLED  
Figure 60. Creating an IBIAS Path  
0.1µF  
10µF  
INPUT PROTECTION  
All terminals of the AD8220 are protected against ESD.4 In  
addition, the input structure allows for dc overload conditions a  
diode drop above the positive supply and a diode drop below  
the negative supply. Voltages beyond a diode drop of the  
supplies cause the ESD diodes to conduct and enable current to  
flow through the diode. Therefore, an external resistor should  
be used in series with each of the inputs to limit current for  
voltages above +Vs. In either scenario, the AD8220 safely  
handles a continuous 6 mA current at room temperature.  
+IN  
–IN  
V
OUT  
AD8220  
LOAD  
REF  
0.1µF  
10µF  
–V  
S
For applications where the AD8220 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors and low leakage diode clamps such as BAV199Ls,  
FJH1100s, or SP720s should be used.  
Figure 59. Supply Decoupling, REF and Output Referred to Ground  
4 ESD protection is guaranteed to 4 kV (human body model).  
Rev. 0 | Page 21 of 28  
 
 
 
 
AD8220  
+15V  
RF INTERFERENCE  
RF rectification is often a problem in applications where there are  
large RF signals. The problem appears as a small dc offset voltage.  
The AD8220 by its nature has a 5 pF gate capacitance, CG, at its  
inputs. Matched series resistors form a natural low-pass filter that  
reduces rectification at high frequency (see Figure 61). The  
relationship between external, matched series resistors and the  
internal gate capacitance is expressed as follows:  
0.1µF  
+IN  
10µF  
C
C
C
1nF  
C
D
C
R
4.02k  
V
OUT  
10nF  
1nF  
AD8220  
R
REF  
–IN  
4.02kꢀ  
1
FilterFreqDIFF  
FilterFreqCM  
=
0.1µF  
10µF  
2πRCG  
–15V  
1
=
Figure 62. RFI Suppression  
2πRCG  
COMMON-MODE INPUT VOLTAGE RANGE  
+15V  
The common-mode input voltage range is a function of the  
input range and the outputs of Internal Amplifier A1, Internal  
Amplifier A2, and Internal Amplifier A3, the reference voltage,  
and the gain. Figure 27, Figure 28, Figure 29, and Figure 30  
show common-mode voltage ranges for various supply voltages  
and gains.  
0.1µF  
+IN  
10µF  
R
R
C
G
V
DRIVING AN ANALOG-TO-DIGITAL CONVERTER  
OUT  
AD8220  
–V  
S
An instrumentation amplifier is often used in front of an analog-to-  
digital converter to provide CMRR and additional conditioning  
such as a voltage level shift and gain (see Figure 63). In this  
example, a 2.7 nF capacitor and a 1 kΩ resistor create an anti-  
aliasing filter for the AD7685. The 2.7 nF capacitor also serves to  
store and deliver necessary charge to the switched capacitor input  
of the ADC. The 1 kΩ series resistor reduces the burden of the  
2.7 nF load from the amplifier. However, large source impedance in  
front of the ADC can degrade THD.  
C
G
REF  
–V  
S
–IN  
0.1µF  
10µF  
–15V  
Figure 61. RFI Filtering Without External Capacitors  
The example shown in Figure 63 is for sub-60 kHz applications.  
For higher bandwidth applications where THD is important, the  
series resistor needs to be small. At worst, a small series resistor  
can load the AD8220, potentially causing the output to overshoot  
or ring. In such cases, a buffer amplifier, such as the AD8615,  
should be used after the AD8220 to drive the ADC.  
To eliminate high frequency common-mode signals while using  
smaller source resistors, a low-pass R-C network can be placed  
at the input of the instrumentation amplifier (see Figure 62).  
The filter limits the input signal bandwidth according to the  
following relationship:  
+5V  
1
FilterFreqDIFF  
=
10µF  
0.1µF  
+IN  
2πR(2 CD +CC + CG )  
ADR435  
+5V  
4.7µF  
1
FilterFreqCM  
=
2πR(CC + CG )  
1k  
±50mV  
1.07kꢀ  
AD8220  
AD7685  
REF  
2.7nF  
–IN  
+2.5V  
Mismatched CC capacitors result in mismatched low-pass filters.  
The imbalance causes the AD8220 to treat what would have  
been a common-mode signal as a differential signal. To reduce  
the effect of mismatched external CC capacitors, select a value of  
CD greater than 10 times CC. This sets the differential filter  
frequency lower than the common-mode frequency.  
Figure 63. Driving an ADC in a Low Frequency Application  
Rev. 0 | Page 22 of 28  
 
 
 
 
 
AD8220  
APPLICATIONS  
When using this circuit to drive a differential ADC, VREF can be  
set using a resistor divider from the ADCs reference to make  
the output ratiometric with the ADC as shown in Figure 66.  
AC-COUPLED INSTRUMENTATION AMPLIFIER  
Measuring small signals that are in the amplifiers noise or offset  
can be a challenge. Figure 64 shows a circuit that can improve  
the resolution of small ac signals. The large gain reduces the  
referred input noise of the amplifier to 14 nV/√Hz. Thus,  
smaller signals can be measured since the noise floor is lower.  
DC offsets that would have been gained by 100 are eliminated  
from the AD8220 output by the integrator feedback network.  
+V  
S
0.1µF  
At low frequencies, the OP1177 forces the AD8220 output to  
0 V. Once a signal exceeds fHIGH-PASS, the AD8220 outputs the  
amplified input signal.  
+IN  
R
1
fHIGH-PASS  
=
2πRC  
AD8220  
499Ω  
R
REF  
15.8kΩ  
DIFFERENTIAL OUTPUT  
–IN  
C
1µF  
In certain applications, it is necessary to create a differential  
signal. New high resolution analog-to-digital converters often  
require a differential input. In other cases, transmission over a  
long distance can require differential processing for better  
immunity to interference.  
+V  
S
0.1µF  
0.1µF  
–V  
S
OP1177  
Figure 65 shows how to configure the AD8220 to output a  
differential signal. An OP1177 op amp is used to create a  
differential voltage. Errors from the op amp are common to  
both outputs and are thus common mode. Likewise, errors from  
using mismatched resistors cause a common-mode dc offset  
error. Such errors are rejected in differential signal processing  
by differential input ADCs or instrumentation amplifiers.  
+V  
–V  
S
S
V
REF  
0.1µF  
–V  
10µF  
10µF  
S
Figure 64. AC-Coupled Circuit  
Rev. 0 | Page 23 of 28  
 
 
AD8220  
+15V  
AMPLITUDE  
0.1µF  
+IN  
+5V  
–5V  
TIME  
V
A = +V + V  
IN  
OUT  
REF  
2
AD8220  
±5V  
AMPLITUDE  
REF  
4.99k  
+5.0V  
+2.5V  
+0V  
–IN  
TIME  
TIME  
0.1µF  
AMPLITUDE  
+5.0V  
REF  
2.5V  
–15V  
+15V  
0.1µF  
–15V  
OP1177  
+5V  
4.99kꢀ  
V
+2.5V  
+0V  
0.1µF  
10µF  
V
B = –V + V  
IN  
OUT  
REF  
2
Figure 65. Differential Output with Level Shift  
+15V  
0.1µF  
+IN  
TIME  
V
A = +V + V  
IN  
OUT  
REF  
2
±5V  
AD8220  
+5V FROM REFERENCE  
TO 0V TO +5V ADC  
+5V FROM REFERENCE  
REF  
4.99k  
–IN  
REF  
V
2.5V  
4.99kꢀ  
4.99kꢀ  
REF  
+AIN  
0.1µF  
–AIN  
10nF  
–15V  
+15V  
–15V  
OP1177  
+5V  
4.99kꢀ  
0.1µF  
0.1µF  
10µF  
TO 0V TO +5V ADC  
V
B = –V + V  
IN  
OUT  
REF  
2
Figure 66. Configuring the AD8220 to Output A Ratiometric, Differential Signal  
Rev. 0 | Page 24 of 28  
 
AD8220  
In addition, the AD8220 JFET inputs have ultralow input bias  
current and no current noise, making it useful for ECG  
applications where there are often large impedances. The MSOP  
package and the AD8220s optimal pinout allow smaller  
footprints and more efficient layout, paving the way for next  
generation portable ECGs.  
ELECTROCARDIOGRAM SIGNAL CONDITIONING  
The AD8220 makes an excellent input amplifier for next  
generation ECGs. Its small size, high CMRR over frequency,  
rail-to-rail output, and JFET inputs are well suited for this  
application. Potentials measured on the skin range from 0.2 mV  
to 2 mV. The AD8220 solves many of the typical challenges of  
measuring these body surface potentials. The AD8220s high  
CMRR helps reject common-mode signals that come in the  
form of line noise or high frequency EMI from equipment in  
the operating room. Its rail-to-rail output offers wide dynamic  
range allowing for higher gains than would be possible using  
other instrumentation amplifiers. JFET inputs offer a large  
input capacitance of 5 pF. A natural RC filter is formed reducing  
high frequency noise when series input resistors are used in  
front of the AD8220 (see the RF Interference section).  
Figure 67 shows an example ECG schematic. Following the  
AD8220 is a 0.03 Hz high-pass filter, formed by the 4.7 μF  
capacitor and the 1 MΩ resistor, which removes the dc offset  
that develops between the electrodes. An additional gain of 50,  
provided by the AD8618, makes use of the 0 V to 5 V input  
range of the ADC. An active, fifth order, low-pass Bessel filter  
removes signals greater than approximately 160 Hz. An OP2177  
buffers, inverts, and gains the common-mode voltage taken at  
the mid-point of the AD8220 gain setting resistors. This right  
leg drive circuit helps cancel common-mode signals by  
inverting the common-mode signal and driving it back into the  
body. A 499 kΩ series resistor at the output of the OP2177  
limits the current driven into the body.  
G = +50  
1.18k57.6k14kꢀ  
LOW-PASS FIFTH ORDER FILTER AT 157Hz  
INSTRUMENTATION  
AMPLIFIER  
33nF  
68nF  
19.3kꢀ  
14.5kꢀ  
14kꢀ  
G = +14  
+5V  
–5V  
2.5V  
47nF  
2.2pF  
HIGH-PASS FILTER 0.033Hz  
+5V  
AD8220  
AD8618  
AD8618  
+5V  
15kꢀ  
AD7685  
ADC  
+5V  
AD8618  
+5V  
+5V  
A
B
10kꢀ  
500ꢀ  
24.9kꢀ  
19.3kꢀ  
14.5kꢀ  
4.12kꢀ  
10pF  
2.7nF  
+5V  
–5V  
24.9kꢀ  
4.7µF  
4.7µF  
AD8618  
REF  
+5V  
1.15kꢀ  
4.99kꢀ  
10kꢀ  
220pF  
–5V  
1Mꢀ  
33nF  
2.2pF  
22nF  
2.5V  
+5V  
REFERENCE  
ADR435  
2.5V  
2.5V  
2.5V  
OP2177  
C
–5V  
OP AMPS  
12.7kꢀ  
68pF  
866kꢀ  
+5V  
499kꢀ  
OP2177  
–5V  
Figure 67. Example ECG Schematic  
Rev. 0 | Page 25 of 28  
 
 
AD8220  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 68. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range1  
Package Description  
Package Option  
RM-8  
RM-8  
RM-8  
RM-8  
Branding  
H01  
H01  
H01  
H0P  
AD8220ARMZ2  
AD8220ARMZ-RL1  
AD8220ARMZ-R72  
AD8220BRMZ2  
AD8220BRMZ-RL2  
AD8220BRMZ-R72  
AD8220-EVAL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
Evaluation Board  
RM-8  
RM-8  
H0P  
H0P  
1 See the Typical Performance Characteristics section for expected operation from 85°C to 125°C.  
2 Z = Pb-free part.  
Rev. 0 | Page 26 of 28  
 
 
AD8220  
NOTES  
Rev. 0 | Page 27 of 28  
AD8220  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03579-0-4/06(0)  
Rev. 0 | Page 28 of 28  

相关型号:

AD8220BRMZ-R7

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220BRMZ-RL

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220TRMZ-EP

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220WARMZ

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220WARMZ-R7

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220WARMZ-RL

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8221

Precision Instrumentation Amplifier
ADI

AD8221-EVAL

Precision Instrumentation Amplifier
ADI

AD8221AC-P7

Precision Instrumentation Amplifier
ADI

AD8221AR

Precision Instrumentation Amplifier
ADI

AD8221AR-REEL

Precision Instrumentation Amplifier
ADI

AD8221AR-REEL7

Precision Instrumentation Amplifier
ADI