AD8285 [ADI]

6-Channel LNA/PGA/AAF with ADC;
AD8285
型号: AD8285
厂家: ADI    ADI
描述:

6-Channel LNA/PGA/AAF with ADC

文件: 总27页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Radar Receive Path AFE:  
6-Channel LNA/PGA/AAF with ADC  
Data Sheet  
AD8283  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
6 channels of LNA, PGA, AAF  
1 channel of direct-to-ADC  
Programmable gain amplifier (PGA)  
Includes low noise preamplifier (LNA)  
SPI-programmable gain = 16 dB to 34 dB in 6 dB steps  
Antialiasing filter (AAF)  
Programmable third-order low-pass elliptic filter (LPF) from  
1 MHz to 12 MHz  
Analog-to-digital converter (ADC)  
12 bits of accuracy up to 72 MSPS  
SNR = 67 dB  
INA+  
INA–  
REFERENCE  
LNA  
LNA  
LNA  
LNA  
LNA  
PGA  
PGA  
PGA  
PGA  
PGA  
AAF  
AAF  
AAF  
INB+  
INB–  
DSYNC  
D[0:11]  
INC+  
INC–  
12-BIT  
ADC  
MUX  
DRV  
IND+  
IND–  
AAF  
AAF  
AAF  
SFDR = 68 dB  
INE+  
INE–  
Low power, 170 mW per channel at 12 bits/72 MSPS  
Low noise, 3.5 nV/√Hz maximum of input referred  
voltage noise  
INF+  
INF–  
LNA  
PGA  
INADC+  
INADC–  
Power-down mode  
72-lead, 10 mm × 10 mm, LFCSP package  
Specified from −40°C to +105°C  
Qualified for automotive applications  
SPI  
AD8283  
APPLICATIONS  
Automotive radar  
Adaptive cruise control  
Collision avoidance  
Blind spot detection  
Self-parking  
Figure 1.  
Electronic bumper  
GENERAL DESCRIPTION  
The AD8283 is designed for low cost, low power, compact size,  
flexibility, and ease of use. It contains six channels of a low noise  
preamplifier (LNA) with a programmable gain amplifier (PGA)  
and an antialiasing filter (AAF) plus one direct-to-ADC  
channel, all integrated with a single 12-bit analog-to-digital  
converter (ADC).  
Fabricated in an advanced CMOS process, the AD8283 is  
available in a 10 mm × 10 mm, RoHS-compliant, 72-lead  
LFCSP. It is specified over the automotive temperature range  
of −40°C to +105°C.  
Table 1. Related Devices  
Part No.  
Description  
Each channel features a gain range of 16 dB to 34 dB in 6 dB  
increments and an ADC with a conversion rate of up to 72 MSPS.  
The combined input-referred noise voltage of the entire channel  
is 3.5 nV/√Hz at maximum gain. The channel is optimized for  
dynamic performance and low power in applications where a  
small package size is critical.  
AD8285  
4-Channel LNA/PGA/AAF, pseudosimultaneous  
channel sampling with ADC  
4-Channel LNA/PGA/AAF, sequential channel  
sampling with ADC  
AD8284  
ADA8282 4-Channel LNA/PGA  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8283  
Data Sheet  
TABLE OF CONTENTS  
Features.....................................................................................1  
Clock Jitter Considerations..................................................17  
SDIO Pin .............................................................................17  
SCLK Pin .............................................................................17  
CS Pin..................................................................................17  
RBIAS Pin............................................................................17  
Voltage Reference................................................................17  
Power and Ground Recommendations................................18  
Exposed Paddle Thermal Heat Slug Recommendations......18  
Serial Peripheral Interface (SPI) ..............................................19  
Hardware Interface..............................................................19  
Memory Map...........................................................................21  
Reading the Memory Map Table..........................................21  
Logic Levels.........................................................................21  
Reserved Locations..............................................................21  
Default Values......................................................................21  
Application Diagrams..............................................................25  
Outline Dimensions ................................................................27  
Ordering Guide ...................................................................27  
Automotive Products...........................................................27  
Applications...............................................................................1  
Functional Block Diagram.........................................................1  
General Description ..................................................................1  
Revision History........................................................................2  
Specifications.............................................................................3  
AC Specifications...................................................................3  
Digital Specifications .............................................................5  
Switching Specifications.........................................................6  
Absolute Maximum Ratings......................................................7  
ESD Caution..........................................................................7  
Pin Configuration and Function Descriptions...........................8  
Typical Performance Characteristics.......................................10  
Theory of Operation................................................................14  
Radar Receive Path AFE......................................................14  
Channel Overview ...............................................................15  
ADC.....................................................................................16  
Clock Input Considerations.................................................16  
Clock Duty Cycle Considerations........................................17  
REVISION HISTORY  
8/15—Rev. B to Rev. C  
Changed AD951x/AD952x to AD9515/AD9520-0... Throughout  
Added Table 1; Renumbered Sequentially .................................1  
10/14—Rev. A to Rev. B  
Changes to Addr. (Hex) 0x15, Table 8......................................23  
Changes to Ordering Guide.....................................................27  
11/13—Rev. 0 to Rev. A  
Changed Maximum fSAMPLE from 80 MSPS to 72 MSPS  
................................................................................. Throughout  
Changed Clock Pulse Width High/Low (tEH/tEL) at 72 MSPS  
from 6.25 ns to 6.94ns; Table 3...................................................6  
Changes to Figure 25 ...............................................................14  
Changes to Register Address 10 Bits[5:0] and Register  
Address 0x12, Bit 3; Table 8 .....................................................23  
Updated Outline Dimensions..................................................27  
4/11—Revision0: Initial Version  
Rev. C | Page 2 of 27  
 
Data Sheet  
AD8283  
SPECIFICATIONS  
AC SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, DVDD18x = 1.8 V, DVDD33x = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE  
=
72 MSPS, RS = 50 Ω, LNA + PGA gain = 34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to  
+105°C, unless otherwise noted.  
Table 2.  
AD8283W  
Parameter1  
Conditions  
Min  
Typ  
Max  
Unit  
ANALOG CHANNEL CHARACTERISTICS  
LNA, PGA, and AAF channel  
Gain  
Gain Range  
Gain Error  
16/22/28/34  
18  
dB  
dB  
dB  
−1.25  
+1.25  
Input VoltageRange  
Channel gain =16 dB  
0.25  
V p-p  
Channel gain = 22 dB  
Channel gain = 28 dB  
Channel gain = 34 dB  
0.125  
0.0625  
0.03125  
0.230  
200  
Input Resistance  
200 Ω input impedance selected  
200 kΩ input impedance selected  
0.180  
160  
0.280  
240  
kΩ  
Input Capacitance  
22  
pF  
Input-ReferredVoltage Noise  
Max gain at1 MHz  
1.85  
nV/√Hz  
Min gain at 1 MHz  
6.03  
7.1  
12.7  
nV/√Hz  
dB  
dB  
Noise Figure  
Max gain, RS = 50 Ω, unterminated  
Max Gain, RS=RIN = 50 Ω  
Gain= 16 dB  
Gain= 34 dB  
−3 dB, programmable  
Output Offset  
−60  
−250  
+60  
+250  
LSB  
LSB  
MHz  
%
AAF Low-Pass Filter Cutoff  
1.0 to 12.0  
5
AAF Low-PassFilter CutoffTole rance After filter autotune  
−10  
+10  
AAF Attenuation in Stop Band  
Third order elliptical filter  
2× cutoff  
30  
dB  
3× cutoff  
40  
dB  
Group Delay Variation  
Channel-to-Channel Phase Variation Frequencies up to −3 dB  
¼ of −3 dB frequency  
Filter set at 2 MHz  
400  
0.5  
ns  
−5  
−1  
+5  
+1  
Degrees  
Degrees  
dB  
dB  
dBm  
dBc  
Channel-to-Channel Gain Matching  
Frequencies up to −3 dB  
1/4 of −3 dB frequency  
Relative to output  
−0.5  
−0.25  
0.1  
+0.5  
+0.25  
1 dB Compression  
Crosstalk  
POWER SUPPLY  
AVDD18x  
AVDD33x  
DVDD18x  
DVDD33x  
IAVDD18  
9.8  
−70  
−55  
1.7  
3.1  
1.7  
3.1  
1.8  
3.3  
1.8  
3.3  
1.9  
3.5  
1.9  
3.5  
190  
190  
22  
V
V
V
V
Full-channelmode  
Full-channelmode  
mA  
mA  
mA  
mA  
mW  
IAVDD33  
IDVDD18  
IDVDD33  
2
170  
Total Power Dissipation – per  
channel  
Full-channelmode, no signal, typical  
supply voltage × maximum supply  
current; excludesoutputcurrent  
Power-DownDissipation  
5
mW  
Power Supply RejectionRatio(PSRR)  
Relative to input  
1.6  
mV/V  
Rev. C | Page 3 of 27  
 
 
AD8283  
Data Sheet  
AD8283W  
Typ  
Parameter1  
Conditions  
Min  
Max  
Unit  
ADC  
Resolution  
Max Sample Rate  
Signal-to-Noise Ratio (SNR)  
12  
72  
68.5  
66  
Bits  
MSPS  
dB  
fIN = 1 MHz  
Signal-to-Noise and Distortion  
(SINAD)  
dB  
SNRFS  
68  
dB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
Effective Number of Bits (ENOB)  
ADC Output Characteristics  
Maximum Cap Load  
Guaranteed no missing codes  
1
10  
LSB  
LSB  
LSB  
10.67  
20  
Per bit  
pF  
IDVDD33 Peak Current with Cap Load  
Peak current per bit when driving a  
20 pF load; can be programmedvia  
the SPI port if required  
40  
25  
mA  
ADC REFERENCE  
Output VoltageError  
LoadRegulation  
VREF = 1.024 V  
At 1.0 mA, VREF = 1.024 V  
mV  
mV  
kΩ  
2
6
Input Resistance  
FULL CHANNEL CHARACTERISTICS  
LNA, PGA, AAF, and ADC  
SNRFS  
SINAD  
SFDR  
FIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
68  
68  
68  
66  
dB  
dB  
dB  
dB  
FIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
67  
68  
67  
66  
dB  
dB  
dB  
dB  
FIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
68  
74  
74  
73  
dB  
dB  
dB  
dB  
Harmonic Distortion  
Second Harmonic  
FIN =1 MHz at −10 dBFS, gain = 16 dB  
FIN =1 MHz at −10 dBFS, gain = 34 dB  
FIN =1 MHz at −10 dBFS, gain = 16 dB  
FIN =1 MHz at −10 dBFS, gain = 34 dB  
FIN1 = 1 MHz, FIN2 = 1.1 MHz, −1 dBFS,  
gain = 34 dB  
−70  
−70  
−66  
−75  
−69  
dBc  
dBc  
dBc  
dBc  
dBc  
Third Harmonic  
IM3 Distortion  
Gain Response Time  
600  
200  
ns  
ns  
Overdrive RecoveryTime  
1 See the AN-835 Application Note, UnderstandingHighSpeed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. C | Page 4 of 27  
Data Sheet  
AD8283  
DIGITAL SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33 = 3.3 V, DVDD18 = 1.8 V, DVDD33 = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE  
=
72 MSPS, RS = 50 Ω, LNA + PGA gain = 34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to  
+105°C, unless otherwise noted.  
Table 3.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage 2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
250  
mV p-p  
Full  
25°C  
25°C  
1.2  
20  
1.5  
V
kΩ  
pF  
LOGIC INPUTS (PDWN, SCLK, AUX, MUXA, ZSEL)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
25°C  
25°C  
1.2  
1.2  
3.6  
0.3  
V
V
kΩ  
pF  
Input Resistance  
30  
Input Capacitance  
0.5  
LOGIC INPUT (  
)
CS  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
3.6  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
70  
0.5  
kΩ  
pF  
LOGIC INPUT (SDIO)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DVDD33x + 0.3  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO)3  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
LOGIC OUTPUT (D[11:0], DSYNC)  
Logic 1 Voltage (IOH = 2 mA)  
Logic 0 Voltage (IOL = 2 mA)  
Full  
Full  
3.0  
3.0  
V
V
0.3  
Full  
Full  
V
V
0.05  
1 See the AN-835 Application Note, UnderstandingHighSpeed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 Specified for LVDS and LVPECL only.  
3 Specified for 13 SDIO pins sharing the same connection.  
Rev. C | Page 5 of 27  
 
AD8283  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, DVDD18x = 1.8 V, DVDD33x = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE  
=
72 MSPS, RS = 50 Ω, LNA + PGA gain = 34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to  
+105°C, unless otherwise noted.  
Table 4.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate  
Full  
Full  
Full  
Full  
Full  
10  
72  
MSPS  
ns  
ns  
ns  
ns  
Clock Pulse Width High (tEH) at 72 MSPS  
Clock Pulse Width Low (tEL) at 72 MSPS  
Clock Pulse Width High (tEH) at 40 MSPS  
Clock Pulse Width Low (tEL) at 40 MSPS  
OUTPUT PARAMETERS  
6.94  
6.94  
12.5  
12.5  
Propagation Delay (tPD) at 72 MSPS  
Rise Time (tR)  
Fall Time (tF)  
Data Set-Up Time (tDS) at 72 MSPS  
Data Hold Time (tDH) at 72 MSPS  
Data Set-Up Time (tDS) at 40 MSPS  
Data Hold Time (tDH) at 40 MSPS  
Pipeline Latency  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.5  
2.5  
1.9  
1.2  
10.0  
4.0  
22.5  
4.0  
7
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.0  
1.5  
21.5  
1.5  
11.0  
5.0  
23.5  
5.0  
Clock cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
N
N –1  
INAx  
tEH  
tEL  
CLK–  
CLK+  
tDH  
tDS  
tPD  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
D[11:0]  
Figure 2. Timing Definitions for Switching Specifications  
Rev. C | Page 6 of 27  
 
Data Sheet  
AD8283  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 5.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
With  
Respect To  
Parameter  
Electrical  
AVDD18x  
AVDD33x  
DVDD18x  
DVDD33x  
Rating  
GND  
GND  
GND  
GND  
GND  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
−0.3 V to +3.5 V  
Analog Inputs  
INx+, INx−  
ESD CAUTION  
Auxiliary Inputs  
INADC+, INADC-  
GND  
GND  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
Digital Outputs  
D[11:0], DSYNC, SDIO  
CLK+, CLK−  
PDWN, SCLK, , AUX,  
CS  
GND  
GND  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
MUXA, ZSEL  
RBIAS, VREF  
GND  
−0.3 V to +2.0 V  
Environmental  
OperatingTemperature  
Range (Ambient)  
Storage Temperature  
Range (Ambient)  
−40°C to +105°C  
−65°C to +150°C  
150°C  
Maximum Junction  
Temperature  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Rev. C | Page 7 of 27  
 
 
AD8283  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL 10  
TEST1 11  
TEST2 12  
DVDD33SPI 13  
AVDD18 14  
AVDD33A 15  
INA– 16  
1
2
3
4
5
6
7
8
9
54 NC  
PIN 1  
INDICATOR  
53 TEST4  
52 DVDD18CLK  
51 CLK+  
50 CLK–  
49 DVDD33CLK  
48 AVDD33REF  
47 VREF  
46 RBIAS  
45 BAND  
44 APOUT  
43 ANOUT  
42 TEST3  
41 AVDD18ADC  
40 AVDD18  
39 INADC+  
38 INADC–  
37 NC  
AD8283  
(TOP VIEW)  
INA+ 17  
NC 18  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PADDLE SHOULD BE TIED TO ANALOG/DIGITAL GROUND PLANE.  
Figure 3.  
Table 6. Pin Function Descriptions  
Pin No.  
Name  
Description  
0
GND  
Ground. Exposed paddle on the bottom side; should be tied to the analog/digital ground plane.  
No Connection. Pin can be tied to any potential.  
Data Out Synchronization.  
Full Power-Down. Logic high overrides SPI and powers down the part, logic low allows selection through SPI.  
1.8 V Digital Supply.  
1
2
3
NC  
DSYNC  
PDWN  
DVDD18  
SCLK  
4
5
Serial Clock.  
6
SDIO  
Serial Data Input/Output.  
7
CS  
Chip Select Bar.  
8
AUX  
Logic high forces to Channel ADC (INADC+/INADC−); AUX has a higher priority than MUXA.  
Logic high forces to Channel A unless AUX is asserted.  
Input Impedance Select. Logic high overrides SPI and sets it to 200 kΩ;logic low allows selection through SPI.  
Pin should not be used; tie to ground.  
9
MUXA  
ZSEL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA−  
Pin should not be used; tie to ground.  
3.3 V Digital Supply, SPI Port.  
1.8 V Analog Supply.  
3.3 V Analog Supply, Channel A.  
Negative LNA Analog Input for Channel A.  
Positive LNA Analog Input for Channel A.  
No Connect. Pin can be tiedto any potential.  
No Connect. Pin can be tiedto any potential.  
No Connect. Pin can be tiedto any potential.  
3.3 V Analog Supply, Channel B.  
INA+  
NC  
NC  
NC  
AVDD33B  
INB−  
INB+  
AVDD33C  
INC−  
INC+  
Negative LNA Analog Input for Channel B.  
Positive LNA Analog Input for Channel B.  
3.3 V Analog Supply, Channel C.  
Negative LNA Analog Input for Channel C.  
Positive LNA Analog Input for Channel C.  
Rev. C | Page 8 of 27  
 
Data Sheet  
AD8283  
Pin No.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Name  
AVDD33D  
IND−  
Description  
3.3 V Analog Supply, Channel D.  
Negative LNA Analog Input for Channel D.  
Positive LNA Analog Input for Channel D.  
3.3 V Analog Supply, Channel E.  
Negative LNA Analog Input for Channel E.  
Positive LNA Analog Input for Channel E.  
3.3 V Analog Supply, Channel F.  
Negative LNA Analog Input for Channel F.  
Positive LNA Analog Input for Channel F.  
No Connect, Pin can be tiedto any potential.  
No Connect. Pin can be tiedto any potential.  
Negative Analog Input for Alternate Channel F (ADC Only).  
Positive Analog Input for Alternate Channel F (ADC Only).  
1.8 V Analog Supply.  
IND+  
AVDD33E  
INE−  
INE+  
AVDD33F  
INF−  
INF+  
NC  
NC  
INADC−  
INADC+  
AVDD18  
AVDD18ADC  
TEST3  
ANOUT  
APOUT  
BAND  
RBIAS  
VREF  
1.8 V Analog Supply, ADC.  
Pin should not be used; tie to ground.  
Analog Outputs (Debug Purposes Only). Pinshould be floated.  
Analog Outputs (Debug Purposes Only). Pinshould be floated.  
Band Gap Voltage (Debug Purposes Only). Pinshould be floated.  
External resistor to set the internal ADC core bias current.  
Voltage Reference Input/Output.  
3.3 V Analog Supply, References.  
3.3 V Digital Supply, Clock.  
AVDD33REF  
DVDD33CLK  
CLK−  
Clock Input Complement.  
Clock Input True.  
1.8 V Digital Supply, Clock.  
CLK+  
DVDD18CLK  
TEST4  
NC  
Pin should not be used; tie to ground.  
No Connect. Pin can be tiedto any potential.  
No Connect. Pin can be tied to any potential.  
3.3 V Digital Supply, Output Driver.  
ADC Data Out (MSB).  
NC  
DVDD33DRV  
D11  
D10  
ADC Data Out.  
ADC Data Out.  
D9  
D8  
D7  
D6  
ADC Data Out.  
ADC Data Out.  
ADC Data Out.  
D5  
D4  
D3  
D2  
ADC Data Out.  
ADC Data Out.  
ADC Data Out.  
ADC Data Out.  
D1  
D0  
NC  
ADC Data Out.  
ADC Data Out (LSB).  
No Connect. Pin should be left open.  
No Connect. Pin should be left open.  
3.3 V Supply, Output Driver.  
NC  
DVDD33DRV  
NC  
No Connect. Pin can be tied to any potential.  
Rev. C | Page 9 of 27  
AD8283  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 3.3 V, 1.8 V, TA = 25°C, FS = 72 MSPS, RIN =200 kΩ, VREF = 1.0 V.  
50  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
40  
34dB  
28dB  
30  
22dB  
20  
10  
16dB  
0
–10  
–20  
–30  
–40  
6
4
2
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
33.50  
33.66  
33.82  
33.98  
34.14  
34.30  
34.46  
33.58  
33.74  
33.90  
34.06  
34.22  
34.38  
(LSB)  
Figure 4. Channel Gain vs. Frequency  
Figure 7. Gain Error Histogram (Gain = 34 dB)  
1.0  
20  
34dB  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
28dB  
22dB  
16dB  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
8
7
6
5
4
3
2
1
0
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24  
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
(dB)  
Figure 5. Gain Error vs. Temperature at All Gains  
Figure 8. Channel-to-Channel Gain Matching (Gain = 16 dB)  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
6
4
2
0
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24  
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25  
16.00  
16.16  
16.32  
16.48  
16.64  
16.8  
16.96  
16.08  
16.24  
16.4  
16.56  
16.72  
16.88  
(dB)  
(dB)  
Figure 6. Gain Error Histogram (Gain = 16 dB)  
Figure 9. Channel-to-Channel Gain Matching (Gain = 34 dB)  
Rev. C | Page 10 of 27  
 
Data Sheet  
AD8283  
12000  
10000  
8000  
6000  
4000  
2000  
0
70  
65  
60  
55  
50  
45  
40  
SNR  
SINAD  
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
16  
22  
28  
34  
CODE  
GAIN (dB)  
Figure 10. Output Referred Noise Histogram (Gain = 16 dB)  
Figure 13. SNR vs. Gain  
7000  
20  
6000  
5000  
4000  
3000  
2000  
1000  
0
10  
0
–10  
–20  
–30  
–40  
–50  
12MHz  
8MHz  
4MHz  
2MHz  
1MHz  
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
0.1  
1
10  
100  
CODE  
FREQUENCY (Hz)  
Figure 11. Output Referred Noise Histogram (Gain = 34 dB)  
Figure 14. Filter Response  
15  
200  
180  
160  
140  
120  
100  
80  
34dB  
10  
16dB  
28dB  
22dB  
16dB  
5
60  
22dB  
28dB  
40  
34dB  
20  
0
0.1  
0
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Short Circuit Input-Referred Noise vs. Frequency  
Figure 15. Short-Circuit Output-Referred Noise vs. Frequency  
Rev. C | Page 11 of 27  
AD8283  
Data Sheet  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
1.5  
1.0  
1MHz  
2MHz  
4MHz  
8MHz  
12MHz  
0.5  
0
–0.5  
–1.0  
–1.5  
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (µs)  
Figure 16. Group Delay vs. Frequency  
Figure 19. Overdrive Recovery  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
SECOND –1dBFS  
SECOND –10dBFS  
THIRD –1dBFS  
LEVEL  
560mV  
THIRD –10dBFS  
TRIG HOLDOFF  
1.5µs  
MEAN(C2) 7.177mV  
µ: 7.1773964m  
m: 7177m M: 7.177m  
σ: 0  
SDO  
MEAN(C2) 220mV  
µ: 220m  
m: 220m M: 220m  
σ: 0  
3
2
ANALOG  
OUTPUT  
FREQ(C2) 997.8kHz  
µ: 997.75504k  
m: 997.8k M: 997.8k  
σ: 0  
–80  
0
1
2
3
4
5
6
7
CH2 500mV  
M1µs 1.25GS/s  
A CH2 560mV  
800ps/pt  
INPUT FREQUENCY (MHz)  
CH3 1V  
Figure 17. Harmonic Distortion vs. Frequency  
Figure 20. Gain Step Response  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200000  
180000  
160000  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
30  
25  
20  
15  
10  
5
34dB 50Ω TERMINATED  
34dB UNTERMINATED  
0
0.01  
0
0.1  
0.1  
1
10  
100  
1
FREQUENCY (MHz)  
10  
FREQUENCY (MHz)  
Figure 18. RIN vs. Frequency  
Figure 21. Noise Figure vs. Frequency  
Rev. C | Page 12 of 27  
Data Sheet  
AD8283  
10  
9
8
7
6
5
4
3
2
1
0
12  
11  
10  
9
8
7
6
5
4
3
2
1
–60 –52 –44 –36 –28 –20 –12 –4  
–56 –48 –40 –32 –24 –16 –8  
4
12 20 28 36 44 52 60  
8 16 24 32 40 48 56  
0
–200 –160 –120  
–80  
–40  
0
40  
80  
120  
160  
200  
0
–180 –140 –100  
–60  
–20  
20  
60  
100  
140  
180  
(LSB)  
(LSB)  
Figure 22. Channel Offset Distribution (Gain = 16 dB)  
Figure 23. Channel Offset Distribution (Gain = 34 dB)  
Rev. C | Page 13 of 27  
AD8283  
Data Sheet  
THEORY OF OPERATION  
AAF cutoff characteristics, and ADC sample rate and  
resolution.  
RADAR RECEIVE PATH AFE  
The primary application for the AD8283 is high-speed ramp,  
frequency modulated, continuous wave radar (HSR-FMCW  
radar). Figure 25 shows a simplified block diagram of an HSR-  
FMCW radar system. The signal chain requires multiple  
channels, each including a low noise amplifier (LNA), a  
programmable gain amplifier (PGA), an antialiasing filter  
(AAF), and an analog-to-digital converter (ADC). The AD8283  
provides all of these key components in a single 10 × 10 LFCSP  
package.  
The AD8283 includes a multiplexer (mux) in front of the ADC  
as a cost saving alternative to having an ADC for each channel.  
The mux automatically switches between each active channel  
after each ADC sample. The DSYNC output indicates when  
Channel A data is at the ADC output, and data for each active  
channel follows sequentially with each clock cycle.  
The effective sample rate for each channel is reduced by a factor  
equal to the number of active channels. The ADC resolution of  
12 bits with up to 72 MSPS sampling satisfies the requirements  
for most HSR-FMCW approaches.  
The performance of each component is designed to meet the  
demands of an HSR-FMCW radar system. Some examples of  
these performance metrics are the LNA noise, PGA gain range,  
REF.  
OSCILLATOR  
PA  
VCO  
CHIRP RAMP  
GENERATOR  
LNA  
LNA  
PGA  
AAF  
PGA  
AAF  
12-BIT  
ADC  
DSP  
MUX  
LNA  
PGA  
AAF  
AD8283  
ANTENNA  
Figure 24. Radar System Overview  
SDIO  
SCLK  
AD8283  
SPI  
MUX  
DSYNC  
D11:D0  
INTERFACE  
CONTROLLER  
200/  
200kΩ  
INx+  
INx–  
PIPELINE  
ADC  
PARALLEL  
3.3V CMOS  
MUX  
LNA  
22dB  
PGA  
AAF  
–6dB,  
0dB,  
6dB,  
12dB  
THIRD-ORDER  
ELLIPTICAL FILTER  
12-BIT  
72MSPS  
Figure 25. Simplified Block Diagram of a Single Channel  
Rev. C | Page 14 of 27  
 
 
Data Sheet  
AD8283  
The antialiasing filter uses a combination of poles and zeros to  
create a third-order elliptical filter. An elliptical filter is used to  
achieve a sharp roll off after the cutoff frequency. The filter uses  
on-chip tuning to trim the capacitors to set the desired cutoff  
frequency. This tuning method reduces variations in the cutoff  
frequency due to standard IC process tolerances of resistors  
and capacitors. The default −3 dB low-pass filter cutoff is 1/3 or  
1/4 the ADC sample clock rate. The cutoff can be scaled to 0.7,  
0.8, 0.9, 1, 1.1, 1.2, or 1.3 times this frequency through the SPI.  
CHANNEL OVERVIEW  
Each channel contains an LNA, a PGA, and an AAF in the  
signal path. The LNA input impedance can be either 200 Ω or  
200 kΩ. The PGA has selectable gains that result in channel  
gains ranging from 16 dB to 34 dB. The AAF has a three-pole  
elliptical response with a selectable cutoff frequency. The mux  
is synchronized with the ADC and automatically selects the  
next active channel after the ADC acquires a sample.  
The signal path is fully differential throughout to maximize  
signal swing and reduce even-order distortion including the  
LNA, which is designed to be driven from a differential signal  
source.  
Tuning is normally off to avoid changing the capacitor settings  
during critical times. The tuning circuit is enabled and disabled  
through the SPI. Initializing the tuning of the filter must be  
performed after initial power-up and after reprogramming the  
filter cutoff scaling or ADC sample rate. Occasional retuning  
during an idle time is recommended to compensate for  
temperature drift.  
Low Noise Amplifier(LNA)  
Good noise performance relies on a proprietary ultralow noise  
LNA at the beginning of the signal chain, which minimizes the  
noise contributions on the following PGA and AAF. The input  
impedance can be either 200 Ω or 200 kΩ and isselected through  
the SPI port or by the ZSEL pin.  
A cut-off range of 1 MHz to 12 MHz is possible. An example  
follows:  
Four channels selected: A, B, C, and AUX  
ADC clock: 30 MHz  
Per channel sample rate = 30/4 = 7.5 MSPS  
Default tuned cutoff frequency = 7.5/4 = 1.88 MHz  
The LNA supports differential output voltages as high as 4.0 V p-p  
with positive and negative excursions of 1.0 V from a common-  
mode voltage of 1.5 V. With the output saturation level fixed,  
the channel gain sets the maximum input signal before  
saturation.  
Muxand Mux Controller  
Low value feedback resistors and the current-driving capability  
of the output stage allow the LNA to achieve a low input-  
referred noise voltage of 3.5 nV/√Hz at a channel gain of 34 dB.  
The use of a fully differential topology and negative feedback  
minimizes second-order distortion. Differential signaling  
enables smaller swings at each output, further reducing third-  
order distortion.  
The mux is designed to automatically scan through each active  
channel. The mux remains on each channel for one clockcycle,  
then switches to the nextactive channel. The mux switching is  
synchronized to the ADC sampling so that the mux switching  
and channel settling time do not interfere with ADC sampling.  
As indicated in Table 9, Register Address 0C, Flex Mux Control,  
Channel A, is usually the first converted input. The one  
exceptions occurs when Channel AUX is the sole input (see  
Figure 26 for timing). Channel AUX is always forced to be the  
last converted input. Unselected codes put the respective  
channels (LNA, PGA, and Filter) in power-down mode unless  
Register Address 0C, Bit 6, is set to 1. Figure 26 shows the  
timing of the clock input and data/DSYNC outputs.  
Recommendation  
To achieve the best possible noise performance, it is important  
to match the impedances seen by the positive and negative  
inputs. Matching the impedances ensures that any common-  
mode noise is rejected by the signal path.  
AntialiasingFilter(AAF)  
The filter that the signal reaches prior to the ADC is used to  
band limit the signal for antialiasing.  
Rev. C | Page 15 of 27  
 
AD8283  
Data Sheet  
N
N + 1  
INAx  
CLK–  
CLK+  
XXXX  
OUTA  
tPD  
OUTB  
OUTC  
OUTD  
OUTE  
OUTF  
OUTA  
OUTB  
D[11:0]  
N – 1  
N
DSYNC  
NOTES  
tDS  
tDH  
1. FOR ABOVE CONFIGURATION REGISTER ADDRESS 0C SET TO 1010 (CHANNEL A, B, C, D, E AND F ENABLED).  
2. DSYNC IS ALWAYS ALIGNED WITH CHANNEL A UNLESS CHANNEL A OR CHANNEL AUX IS THE ONLY CHANNEL SELECTED, IN WHICH CASE DSYNC IS NOT ACTIVE.  
3. THERE IS A SEVEN CLOCK CYCLE LATENCY FROM SAMPLING A CHANNEL TO ITS DIGITAL DATA BEING PRESENT ON THE PARALLEL BUS PINS.  
Figure 26. Data and DSYNC Timing  
3.3V  
ADC  
®
MINI-CIRCUITS  
ADT1-1WT, 1:1Z  
The AD8283 uses a pipelined ADC architecture. The quantized  
output from each stage is combined into a 12-bit result in the  
digital correction logic. The pipelined architecture permits the  
first stage to operate on a new input sample and the remaining  
stages to operate on preceding samples. Sampling occurs on the  
rising edge of the clock. The output staging block aligns the  
data, corrects errors, and passes the data to the output buffers.  
0.1µF  
0.1µF  
XFMR  
OUT  
CLK+  
100  
ADC  
AD8283  
50Ω  
0.1µF  
VFAC3  
CLK–  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
Figure 27. Transformer-Coupled Differential Clock  
If a low jitter clock is available, another option is to ac-couple a  
differential PECL or LVDS signal to the sample clock input pins  
as shown in and Figure 28 and Figure 29. The AD9515/  
AD9520-0 family of clock drivers offers excellent jitter  
performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD8283 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or using capacitors. These pins are biased  
internally and require no additional bias.  
3.3V  
*
50Ω  
AD9515/AD9520-0  
VFAC3  
Figure 27 shows the preferred method for clocking the AD8283.  
A low jitter clock source, such as the Valpey Fisher oscillator  
VFAC3-BHL-50MHz, is converted from single ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD8283 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD8283, and it preserves the  
fast rise and fall times of the signal, which are critical to low  
jitter performance.  
0.1µF  
0.1µF  
0.1µF  
OUT  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
AD8283  
100Ω  
0.1µF  
CLK–  
240Ω  
240Ω  
*
50RESISTOR IS OPTIONAL.  
Figure 28. Differential PECL Sample Clock  
3.3V  
*
50Ω  
AD9515/AD9520-0  
VFAC3  
OUT  
0.1µF  
0.1µF  
0.1µF  
CLK  
CLK+  
ADC  
AD8283  
100Ω  
LVDS DRIVER  
CLK  
0.1µF  
CLK–  
*
50RESISTOR IS OPTIONAL.  
Figure 29. Differential LVDS Sample Clock  
Rev. C | Page 16 of 27  
 
 
 
 
 
 
Data Sheet  
AD8283  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be driven directly from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 30). Although the  
CLK+ input circuit supply is AVDD18, this input is designed to  
withstand input voltages of up to 3.3 V, making the selection of  
the drive logic voltage very flexible. The AD9515/AD9520-0  
family of parts can be used to provide 3.3 V inputs (see Figure 31).  
In this case, 39 kΩ is not needed.  
CLOCK JITTER CONSIDERATIONS  
High speed, high resolution ADCsare sensitive tothe quality of the  
clock input. The degradation in SNR at a given input frequency (fA)  
due only to aperture jitter (tJ) can be calculated by  
SNR Degradation = 20 × log 10[1/2 × π × fA × tJ]  
In this equation, the RMS aperture jitter represents the rootmean  
square of all jitter sources, including the clockinput, analog input  
signal, and ADC aperture jitter. IF undersampling applications  
are particularly sensitive to jitter.  
3.3V  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of theAD8283.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources, such as the Valpey Fisher VFAC3 series.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), it should be retimed by the  
original clock during the last step.  
AD9515/AD9520-0  
0.1µF  
VFAC3  
OUT  
CLK  
OPTIONAL  
100Ω  
0.1µF  
*
1.8V  
CMOS DRIVER  
50Ω  
CLK+  
ADC  
AD8283  
CLK  
0.1µF  
CLK–  
0.1µF  
39kΩ  
*
50Ω RESISTOR IS OPTIONAL.  
Figure 30. Single-Ended 1.8 V CMOS Sample Clock  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about how  
jitter performance relates to ADCs (visit www.analog.com).  
3.3V  
AD9515/AD9520-0  
0.1µF  
VFAC3  
OUT  
CLK  
OPTIONAL  
100Ω  
0.1µF  
0.1µF  
*
3.3V  
CMOS DRIVER  
50Ω  
SDIO PIN  
CLK+  
The SDIO pin isrequired tooperate the SPI. It has an internal  
30 kΩ pull-down resistorthat pullsthis pin low and is only 1.8 V  
tolerant. If applications require that this pin be driven from a  
3.3 V logic level, insert a 1 kΩ resistor in series with this pin to  
limit the current.  
ADC  
AD8283  
CLK  
0.1µF  
CLK–  
*
50Ω RESISTOR IS OPTIONAL.  
Figure 31. Single-Ended 3.3 V CMOS Sample Clock  
SCLK PIN  
CLOCK DUTY CYCLE CONSIDERATIONS  
The SCLK pin is required to operate the SPI port interface. It has  
an internal 30 kΩ pull-down resistor that pullsthis pin low and is  
both 1.8 V and 3.3 V tolerant.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD8283 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD8283.  
PIN  
CS  
The CS pin is required to operate the SPI port interface. It hasan  
internal 70 kΩ pull-up resistor that pulls thispin high and is both  
1.8 V and 3.3 V tolerant.  
RBIAS PIN  
To set the internal core bias current of the ADC, place a resistor  
nominally equal to 10.0 kΩ to ground at the RBIAS pin. Using  
other than the recommended 10.0 kΩ resistorfor RBIAS  
degrades the performance of the device. Therefore, it is imperative  
that at leasta 1.0% tolerance on this resistor be used to achieve  
consistent performance.  
When the DCS ison, noise and distortion performance are nearly  
flat for a wide range of duty cycles. However, some applications  
may require the DCS function to be off. If so, keep in mind that  
the dynamic range performance can be affected when operated in  
this mode. See Table 9 for more details on using this feature.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles to  
allow the DLL to acquire and lock to the new rate.  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into the  
AD8283. This is gained up internally by a factor of 2, setting  
VREF to 1.0 V, which results in a full-scale differential input  
span of 2.0 V p-p for the ADC. VREF is set internally by  
default, but the VREF pin can be driven externally with a 1.0 V  
Rev. C | Page 17 of 27  
 
 
 
 
 
 
 
 
 
AD8283  
Data Sheet  
reference to achieve more accuracy. However, this device does  
not support ADC full-scale ranges below 2.0 V p-p.  
A single PC board ground plane should be sufficient when using  
the AD8283. With proper decoupling and smart partitioning of  
the PC boards analog, digital, and clock sections, optimum  
performance can be achieved easily.  
When applying the decoupling capacitors to the VREF pin, use  
ceramic low-ESRcapacitors. These capacitors should be close to  
the reference pin and on the same layer of the PCB as  
the AD8283. The VREF pin should have both a 0.1 µF capacitor  
and a 1 µF capacitor connected in parallel to the analog ground.  
These capacitor values are recommended for the ADC to  
properly settle and acquire the next valid sample.  
EXPOSED PADDLE THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed paddle on the underside of the  
device be connected to a quiet analog ground to achieve the  
best electrical and thermal performance of the AD8283. An  
exposed continuous copper plane on the PCB should mate to  
the AD8283 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be filled or plugged with nonconductive epoxy.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD8283, it is recommended  
that two separate 1.8 V supplies and two separate 3.3 V supplies  
be used: one for analog 1.8 V (AVDD18x) and digital 1.8 V  
(DVDD18x) and one for analog 3.3 V (AVDD33x) and digital  
3.3 V (DVDD33x). If only one supply is available for both analog  
and digital, for example, AVDD18x and DVDD18x, it should be  
routed to the AVDD18x first and then tapped off and isolated  
with a ferrite bead or a filter choke preceded by decoupling  
capacitors for the DVDD18x. The same is true for the analog  
and digital 3.3 V supplies. The user should employ several  
decoupling capacitors on all supplies to cover both high and low  
frequencies. These should be located close to the point of entry  
at the PC board level and close to the parts, with minimal trace  
lengths.  
To maximize the coverage and adhesion between the device and  
PCB, partition the continuous copper pad by overlaying a silk-  
screen or solder maskto divide thisinto several uniform sections.  
This ensuresseveral tie points between the two during the reflow  
process. Using one continuous plane with no partitions only  
guarantees one tie point between the AD8283 and PCB. For  
more detailed information on packaging and for more PCB  
layout examples, see the AN-772 Application Note.  
Rev. C | Page 18 of 27  
 
 
Data Sheet  
AD8283  
SERIAL PERIPHERAL INTERFACE (SPI)  
The AD8283 serial port interface allows the user to configure  
the signal chain for specific functions or operations through a  
structured register space provided inside the chip. This offers  
the user added flexibility and customization depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, as documented  
in the Memory Map section. Detailed operational information  
can be found in the Analog Devices, Inc., AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
In addition to the operation modes, the SPI port can be  
configured to operate in different manners. For applications  
that do not require a control port, the CS line can be tied and  
held high. This places the remainder of the SPI pins in their  
secondary mode as defined in the SDIO Pin and SCLK Pin  
sections. CS can also be tied low to enable 2-wire mode. When  
CS is tied low, SCLK and SDIO are the only pins required for  
communication. Although the device is synchronized during  
power-up, caution must be exercised when using this mode to  
ensure that the serial port remains synchronized with the CS  
line. When operating in 2-wire mode, it is recommended to use  
a 1-, 2-, or 3-byte transfer exclusively. Without an active CS  
line, streaming mode can be entered but not exited.  
There are three pins that define the serial port interface, or SPI.  
They are the SCLK, SDIO, and CS pins. The SCLK (serial clock)  
is used to synchronize the read and write data presented to the  
device. The SDIO (serial data input/output) is a dual-purpose  
pin that allows data to be sent to and read from the devices  
internal memory map registers. The CS (chip select bar) is an  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the serial data input/output (SDIO)  
pin to change direction from an input to an output at the  
appropriate point in the serial frame.  
active low control that enables or disables the read and write  
cycles (see Table 7).  
Table 7. Serial Port Pins  
Pin  
Function  
Data can be sent in MSB- or LSB-first mode. MSB-first mode  
is the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
SCLK  
Serial clock. The serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
SDIO  
CS  
Serial data input/output. A dual-purpose pin. The typical  
role for this pin is as an input or output, depending on  
the instruction sent and the relative position in the  
timingframe.  
HARDWARE INTERFACE  
Chip select bar (active low). This control gates the read  
and write cycles.  
The pins described in Table 7 constitute the physical interface  
between the users programming device and the serial port of  
the AD8283. The SCLK and CS pins function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phasesand as an outputduring readback.  
The falling edge of the CS in conjunction with the rising edge of  
the SCLK determines the startof the framing sequence. During an  
instruction phase, a 16-bitinstruction is transmitted, followed by  
one or more data bytes, which is determined by Bit Field W0 and  
Bit Field W1. An example of the serial timing and its definitions  
can be found in Figure 32 and Table 8.  
This interface is flexible enough to be controlled by either serial  
PROMS or PIC microcontrollers. This provides the user with  
an alternative method, other than a full SPI controller, for  
programming the device (see the AN-812 Application Note).  
In normal operation, CS is used to signal to the device that SPI  
commands are to be received and processed. WhenCS is brought  
low, the device processes SCLK and SDIO toprocessinstructions.  
Normally, CS remains low until the communication cycle is  
complete. However, if connected to a slow device, CS can be  
brought high between bytes, allowing older microcontrollers  
enough time to transfer data into shiftregisters. CS can be stalled  
when transferring one, two, or three bytes of data. When W0 and  
W1 are set to 11, the device enters streaming mode and continues  
to process data, either reading or writing, until CS is taken high  
to end the communication cycle. This allows complete memory  
transfers without having to provide additional instructions.  
Regardless of the mode, if CS is taken high in the middle of any  
byte transfer, the SPI state machine is reset and the devicewaits  
for a new instruction.  
If the user chooses not to use the SPI interface, these pins serve  
a dual function and are associated with secondary functions  
when the CS is strapped to AVDD during device power-up. See  
the SDIO Pin and SCLK Pin sections for details on which pin-  
strappable functions are supported on the SPI pins.  
Rev. C | Page 19 of 27  
 
 
 
AD8283  
Data Sheet  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CS  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 32. Serial Timing Details  
Table 8. Serial Timing Definitions  
Parameter  
Minimum Timing (ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CS and SCLK  
tH  
2
Hold time between CS and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 32).  
tDIS_SDIO  
10  
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure 32)  
Rev. C | Page 20 of 27  
 
 
Data Sheet  
AD8283  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
LOGIC LEVELS  
An explanation of various registers follows: “bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: the  
chip configuration registersmap (Address 0x00 and Address 0x01),  
the device index and transfer registers map (Address 0x04 to  
Address 0xFF), and the ADC channel functionsregisters map  
(Address 0x08 to Address 0x2C).  
RESERVED LOCATIONS  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Addresses that have values marked as 0 should be considered  
reserved and have a 0 written into theirregistersduring power-up.  
The leftmost column of the memory map indicates the register  
address number, and the default value is shown in the second  
rightmost column. The Bit 7 (MSB) column is the start of the  
default hexadecimal value given. For example, Address 0x09,  
the clock register, has a default value of 0x01, meaning that Bit 7  
= 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0,  
and Bit 0 = 1, or 0000 0001 in binary. This setting is the default  
for the duty cycle stabilizer in the on condition. By writing a 0  
to Bit 0 of this address followed by an 0x01 to the SW transfer  
bit in Register 0xFF, the duty cycle stabilizer turns off. It is  
important to follow each writing sequence with a write to the  
SW transfer bit to update the SPI registers.  
DEFAULT VALUES  
After a reset, critical registers are automatically loaded with  
default values. These values are indicated in Table 9, where an X  
refers to an undefined feature.  
Note that all registers except Register 0x00, Register 0x04,  
Register 0x05, and Register 0xFF are buffered with a master  
slave latch and require writing to the transfer bit. For more  
information on this and other functions, consulttheAN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Rev. C | Page 21 of 27  
 
 
 
 
 
AD8283  
Data Sheet  
Table 9. AD8283 Memory Map Register  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Default Notes/  
Value  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
00  
CHIP_PORT_CONFIG  
0
LSB first  
1 = on  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
1 = on  
0
0x18  
The nibbles  
should be  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
0 = off  
(default)  
mirrored so  
that LSB- or  
MSB-first mode  
is set correct  
regardless of  
shift mode.  
01  
CHIP_ID  
Chip ID Bits[7:0]  
(AD8283 = 0xA2, default)  
Read  
only  
The default is a  
unique chip ID,  
specific to the  
AD8283. This is  
a read-only  
register.  
Device Index and Transfer Registers  
04  
05  
FF  
DEVICE_INDEX_2  
DEVICE_INDEX_1  
DEVICE_UPDATE  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Data  
Data  
0x0F  
0x0F  
0x00  
Bits are set to  
determine  
which on-chip  
device receives  
the next write  
command.  
Channel Channel  
F
1 = on  
(default) (default)  
E
1 = on  
0 = off  
0 = off  
Data  
Data  
Data  
Data  
Bits are set to  
determine  
which on-chip  
device receives  
the next write  
command.  
Channel Channel  
D
1 = on  
(default) (default) (default) (default)  
0 = off  
Channel Channel  
B
1 = on  
C
A
1 = on  
1 = on  
0 = off  
0 = off  
0 = off  
X
X
X
SW  
transfer  
Synchronously  
transfers data  
1 = on  
from the  
0 = off  
(default)  
master shift  
register to the  
slave.  
Channel Functions Registers  
08  
GLOBAL_MODES  
X
X
X
X
X
X
X
X
Internal power-  
0x00  
Determines the  
power-down  
mode (global).  
down mode  
00 = chip run  
(default)  
01 = full power-  
down  
11 = reset  
09  
0C  
GLOBAL_CLOCK  
X
X
X
X
X
X
X
X
Duty  
0x01  
0x00  
Turns the  
cycle  
stabilizer  
1 = on  
(default)  
0 = off  
internal duty  
cycle stabilizer  
on and off  
(global).  
FLEX_MUX_CONTROL  
Power-  
down of  
unused  
Mux input active channels  
0000 = A  
0001 =  
0010 = AB  
0011 = A  
0100 = ABC  
0101 = AB  
0110 = ABCD  
0111 = ABC  
1000 = ABCDE  
Sets which mux  
input channel(s)  
are in use and  
whether to  
power down  
unused  
Aux  
Aux  
Aux  
Aux  
channels  
0 = PD  
(power-  
down;  
channels.  
default)  
1 =  
power-on  
1001 = ABCD Aux  
1010 = ABCDEF  
1011 = ABCDE Aux  
Rev. C | Page 22 of 27  
 
Data Sheet  
AD8283  
Addr.  
Bit 7  
Bit 0  
Default Default Notes/  
(Hex)  
(MSB)  
(LSB)  
Value  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0D  
FLEX_TEST_IO  
User test mode  
Reset PN Reset PN  
0x00  
When this  
Output test mode—see Table 10  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
0011 = −FS short  
0100 = checkerboard output  
0101 = PN sequence long  
0110 = PN sequence short  
0111 = one-/zero-word toggle  
1000 = user input  
00 = off (default)  
01 = on, single  
alternate  
10 = on, single once  
11 = on, alternate  
once  
long  
gen  
short  
gen  
register is set,  
the test data is  
placed on the  
output pins in  
place of  
normal data.  
(Local, except  
for PN  
1 = on  
0 = off  
1 = on  
0 = off  
(default) (default)  
sequence.)  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency (format  
determined by the OUTPUT_MODE register)  
0F  
FLEX_CHANNEL_INPUT  
Filter cutoff frequency control  
0000 = 1.3 × 1/4 × fSA MPL EC H  
0001 = 1.2 × 1/4 × fSA MPL EC H  
0010 = 1.1 × 1/4 × fSA MPL EC H  
0011 = 1.0 × 1/4 × fSA MPL EC H (default)  
0100 = 0.9 × 1/4 × fSA MPL EC H  
X
X
X
X
0x30  
Low pass filter  
cutoff (global).  
fSAMPLECH = ADC  
sample rate/  
number of  
active  
0101 = 0.8 × 1/4 × fSA MPL EC H  
0110 = 0.7 × 1/4 × fSA MPL EC H  
0111 = N/A  
channels.  
Note that the  
absolute range  
is limited to  
1 MHz to  
1000 = 1.3 × 1/3 × fSA MPL EC H  
1001 = 1.2 × 1/3 × fSA MPL EC H  
1010 = 1.1 × 1/3 × fSA MPL EC H  
1011 = 1.0 × 1/3 × fSA MPL EC H  
1100 = 0.9 × 1/3 × fSA MPL EC H  
1101 = 0.8 × 1/3 × fSA MPL EC H  
1110 = 0.7 × 1/3 × fSA MPL EC H  
1111 = N/A  
12 MHz.  
10  
FLEX_OFFSET  
X
X
6-bit LNA offset adjustment  
00 0000 for LNA bias high  
01 1111 for LNA mid-high  
0x20  
LNA force  
offset  
correction  
(local).  
10 0000 for LNA mid-low (default)  
11 1111 for LNA bias low  
11  
12  
FLEX_GAIN_1  
X
X
X
X
X
X
X
010 = 16 dB(default)  
0x00  
0x09  
Total LNA +  
011 = 22 dB  
100 = 28 dB  
101 = 34 dB  
PGA gain  
adjustment  
(local)  
FLEX_BIAS_CURRENT  
X
X
X
X
LNA bias  
00 = high  
LNA bias  
current  
01 = mid-high  
(default)  
adjustment  
(global).  
10 = mid-low  
11 = low  
14  
15  
FLEX_OUTPUT_MODE  
FLEX_OUTPUT_ADJUST  
X
X
X
X
X
X
X
X
1 =  
output  
invert  
0 = offset binary  
(default)  
1 = twos comple-  
ment (global)  
0x00  
0x0F  
Configures the  
outputs and  
the format of  
the data.  
(local)  
0 =  
Typical output rise  
time and fall time,  
respectively  
00 = 2.6 ns, 3.4 ns  
01 = 1.1 ns, 1.6 ns  
10 = 0.7 ns, 0.9 ns  
11 = 0.7 ns, 0.7 ns  
(default)  
Typical output drive  
strength  
00 = 45 mA  
01 = 30 mA  
10 = 60 mA  
11 = 60 mA  
(default)  
Used to adjust  
output rise and  
fall times and  
select output  
drive strength,  
limiting the  
noise added to  
the channels  
by output  
enable  
Data  
Bits  
[11:0]  
1 =  
disable  
Data  
Bits  
[11:0]  
switching.  
Rev. C | Page 23 of 27  
AD8283  
Data Sheet  
Addr.  
Bit 7  
Bit 0  
Default Default Notes/  
(Hex)  
(MSB)  
(LSB)  
Value  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
18  
FLEX_VREF  
X
0 =  
X
X
X
X
00 = 0.625 V  
01 = 0.750 V  
10 = 0.875 V  
0x03  
Select internal  
reference  
internal  
reference  
1 =  
external  
reference  
(recommended  
default) or ex-  
ternal reference  
(global); adjust  
internal refer-  
ence.  
11 = 1.024 V  
(default)  
19  
1A  
1B  
1C  
FLEX_USER_PATT1_LSB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB.  
FLEX_USER_PATT1_  
MSB  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B8  
B0  
B8  
User-defined  
pattern, 1 MSB.  
FLEX_USER_PATT2_LSB  
User-defined  
pattern, 2 LSBs.  
FLEX_USER_PATT2_  
MSB  
B15  
B14  
B13  
B12  
B11  
B10  
User-defined  
pattern, 2  
MSBs.  
2B  
FLEX_FILTER  
CH_IN_IMP  
X
X
Enable  
X
X
X
X
0x00  
automatic  
low-pass  
tuning  
1 = on  
(self-  
clearing)  
2C  
X
X
X
0 =  
0x00  
Input imped-  
200Ω  
(default)  
1 =  
ance adjust-  
ment (global).  
200kΩ  
Table 10. Flexible Output Test Modes  
Output Test Mode  
Subject to Data  
Format Select  
Bit Sequence  
Pattern Name  
Off (default)  
Digital Output Word 1  
N/A  
Digital Output Word 2  
0000  
0001  
N/A  
Same  
N/A  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Midscale short  
+Full-scale short  
Full-scale short  
Checkerboardoutput  
PN sequence long  
PN sequence short  
One-/zero-word toggle  
User input  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1010 1010 1010  
N/A  
0010  
0011  
0100  
Same  
Same  
0101 0101 0101  
0101  
0110  
0111  
N/A  
N/A  
N/A  
1111 1111 1111  
0000 0000 0000  
1000  
1001  
1010  
1011  
Register 0x19 to Register 0x1A  
1010 1010 1010  
0000 0011 1111  
Register 0x1Bto Register 0x1C  
1-/0-bit toggle  
1× sync  
One bit high  
N/A  
N/A  
N/A  
N/A  
1000 0000 0000  
1100  
Mixed bit frequency  
1010 0011 0011  
Rev. C | Page 24 of 27  
 
Data Sheet  
AD8283  
APPLICATION DIAGRAMS  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33A  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33B  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
AVDD33C  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD33D  
0.1µF  
AVDD33E  
0.1µF  
AVDD33F  
0.1µF  
54  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
NC  
NC  
NC  
TEST4  
DVDD18CLK  
CLK+  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA–  
DSYNC  
PDWN  
CLK+  
CLK–  
SCLK  
CLK–  
10kΩ  
SDIO  
DVDD33CLK  
AVDD33REF  
VREF  
CS  
AUX  
MUXA  
ZSEL  
0.1µF  
0.1µF  
0.1µF  
10kΩ  
AD8283  
(TOP VIEW)  
RBIAS  
BAND  
APOUT  
ANOUT  
TEST3  
1%  
INADC+  
AVDD18ADC  
AVDD18  
INADC+  
INADC–  
NC  
INA–  
0.1µF  
0.1µF  
INB–  
INA+  
NC  
INADC–  
0.1µF  
INA+  
INF+  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
INB+  
INF–  
INE–  
IND–  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
INE+  
IND+  
INC–  
0.1µF  
INC+  
0.1µF  
NOTES  
1. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART.  
Figure 33. Differential Inputs  
Rev. C | Page 25 of 27  
 
AD8283  
Data Sheet  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33A  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33B  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
AVDD33C  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD33D  
0.1µF  
AVDD33E  
0.1µF  
AVDD33F  
0.1µF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
54  
NC  
NC  
NC  
TEST4  
DVDD18CLK  
CLK+  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA–  
DSYNC  
PDWN  
CLK+  
CLK–  
SCLK  
CLK–  
10kΩ  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
DVDD33CLK  
AVDD33REF  
VREF  
0.1µF  
0.1µF  
0.1µF  
10kΩ  
AD8283  
(TOP VIEW)  
RBIAS  
BAND  
APOUT  
ANOUT  
TEST3  
1%  
INADC+  
AVDD18ADC  
AVDD18  
INADC+  
INADC–  
NC  
INA+  
NC  
R
0.1µF  
INADC–  
0.1µF  
INA  
0.1µF  
INF  
0.1µF  
0.1µF  
0.1µF  
INB  
INC  
0.1µF  
INE  
IND  
0.1µF  
NOTES  
1. RESISTOR R (INx– INPUTS) SHOULD MATCH THE OUTPUT IMPEDANCE OF THE INPUT DRIVER.  
2. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART.  
Figure 34. Single-Ended Inputs  
Rev. C | Page 26 of 27  
Data Sheet  
AD8283  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
8.60  
8.50 SQ  
8.40  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.70  
0.65  
0.60  
12° MAX  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.01 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 35. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(CP-72-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2, 3  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
AD8283WBCPZ-RL  
AD8283WBCPZ  
AD8283CP-EBZ  
72-LeadLFCSP_VQ, 13”Tape and Reel  
72-LeadLFCSP_VQ, Waffle Pack  
Evaluation Board  
CP-72-5  
CP-72-5  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Compliant to JEDEC Standard MO-220-VNND-4.  
AUTOMOTIVE PRODUCTS  
The AD8283WBCPZ models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications thatdiffer from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for this model.  
©2011–2015 Analog Devices, Inc. All rights reserved. Trademarksand  
registered trademarks are the property of their respective owners.  
D09795-0-8/15(C)  
Rev. C | Page 27 of 27  
 
 
 
 
 

相关型号:

AD8285CP-EBZ

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF
ADI

AD8285WBCPZ

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC
ADI

AD8285WBCPZ-RL

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC
ADI

AD8285_17

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF
ADI

AD828AN

Dual, Low Power Video Op Amp
ADI

AD828ANZ

Dual, Low Power Video Op Amp
ADI

AD828AR

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL7

Dual, Low Power Video Op Amp
ADI

AD828ARZ

Dual, Low Power Video Op Amp
ADI

AD828ARZ-REEL

2 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ADI

AD828ARZ-REEL7

Dual, Low Power Video Op Amp
ADI