L9218A [AGERE]

Low-Cost Line Interface; 低成本线接口
L9218A
型号: L9218A
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

Low-Cost Line Interface
低成本线接口

文件: 总30页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Features  
Description  
Basic forward battery only SLIC functionality at a  
This general-purpose electronic subscriber loop  
low cost  
interface circuit (SLIC) is optimized for low cost, while  
still providing a satisfactory set of features.  
Pin compatible with Agere Systems Inc. L9219 and  
L9217 SLIC  
The L9218 is pin-for-pin compatible with the Agere  
L9219 and L9217 SLICs.  
Low active power (typical 138 mW during on-hook  
transmission)  
The L9218 requires a 5 V power supply and single  
battery to operate. This is a forward battery only  
device. Additionally, a low-power scan mode,  
wherein all circuitry except the off-hook supervision is  
shut down to conserve power, is available.  
Low-power scan mode for low-power, on-hook  
power dissipation (59 mW typical)  
Minimal external components  
Distortion-free, on-hook transmission  
Via the logic inputs, a low or high current limit may be  
selected. The low value is set via a single external  
resistor, and the high value is 1.4 times the low value.  
Convenient operating states:  
— Forward battery low current limit  
— Forward battery high current limit  
— Low-power scan  
Device overhead is fixed and is adequate for  
3.14 dBm into 900 of on-hook transmission.  
— Disconnect (high impedance)  
Both the loop supervision and ring trip supervision  
functions are offered with user-controlled thresholds  
via external resistors.  
Adjustable supervision functions:  
— Off-hook detector with hysteresis  
— Ring trip detector  
The L9218 is offered with a receive gain that is opti-  
mized for interface to a first-generation type codec  
(L9218A). It is also offered with a gain option that is  
optimized for interface to a third- or fourth-generation  
type codec (L9218G). In both cases, minimizing  
external components required at this interface. In the  
receive direction, the device may be dc-coupled to a  
third-generation codec. No dc blocking capacitors  
are needed.  
Logic controlled high and low current limit  
Two gain options to optimize the codec interface  
Thermal protection with thermal shutdown indica-  
tion  
Data control is via a parallel data control scheme.  
The device is available in a 28-pin PLCC package. It  
is built by using a 90 V complementary bipolar  
(CBIC) process.  
Data Sheet  
L9218A/G Low-Cost Line Interface  
Contents  
November 2001  
Table of Contents  
Page Figures  
Page  
Features ......................................................................1  
Description...................................................................1  
Pin Information ............................................................4  
Functional Description.................................................6  
Figure 15. Ring Trip Equivalent Circuit and  
Equivalent Application ........................... 21  
Figure 16. ac Equivalent Circuit.............................. 23  
Figure 17. Interface Circuit Using First-  
A
Absolute Maximum Ratings (at T = 25 °C) ................7  
Generation Codec (±5 V Battery) .......... 26  
Figure 18. Interface Circuit Using First-  
Recommended Operating Conditions .........................7  
Electrical Characteristics .............................................8  
Ring Trip Requirements..........................................12  
Test Configurations ...................................................13  
Applications ...............................................................15  
dc Applications....................................................... 19  
Battery Feed.........................................................19  
Current Limit.........................................................19  
Overhead Voltage ............................................... 19  
Loop Range..........................................................20  
Off-Hook Detection...............................................20  
Ring Trip Detection...............................................21  
Longitudinal Balance.............................................. 21  
ac Design............................................................... 22  
Codec Types........................................................22  
ac Interface Network ............................................22  
Receive Interface .................................................22  
Example 1: Real Termination (First-  
Generation Codec (5 V Only Codec)..... 26  
Tables  
Page  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 9.  
Pin Descriptions ...................................... 4  
Input State Coding .................................. 6  
Supervision Coding ................................. 6  
Power Supply .......................................... 8  
2-Wire Port .............................................. 9  
Analog Pin Characteristics .................... 10  
ac Feed Characteristics ...................... 11  
Parts List for Loop Start Application  
Circuit Using T7504-Type Codec .......... 16  
Table 10. 200 Ω + 680 Ω || 0.1 µF First-  
Generation Codec Design Parameters . 17  
Table 11. Parts List for Loop Start Application  
Circuit Using T8536-Type Codec .......... 18  
Generation Codec).............................................. 23  
Example 2: Complex Termination (First-  
Generation Codec)...............................................25  
Power Derating ...................................................... 27  
Pin-for-Pin Compatibility with L9217/L9219........... 27  
PCB Layout Information ............................................27  
Outline Diagram.........................................................28  
28-Pin PLCC.......................................................... 28  
Ordering Information..................................................29  
Figures  
Page  
Figure 1. Functional Diagram...................................3  
Figure 2. 28-Pin PLCC.............................................4  
Figure 3. Ring Trip Circuits ....................................12  
Figure 4. L9218 Basic Test Circuit.........................13  
Figure 5. Metallic PSRR.........................................13  
Figure 6. Longitudinal PSRR .................................13  
Figure 7. Longitudinal Balance ..............................14  
Figure 8. RFI Rejection..........................................14  
Figure 9. Longitudinal Impedance..........................14  
Figure 10. ac Gains..................................................14  
Figure 11. Basic Loop Start Application  
Circuit Using T7504-Type Codec............15  
Figure 12. Basic Loop Start Application  
Circuit Using T8536-Type Codec............17  
Figure 13. Loop Current vs. Loop Voltage...............19  
Figure 14. Off-Hook Detection Circuit......................20  
2
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Description (continued)  
POWER CONDITIONING AND REFERENCE  
FORWARD AND REVERSE BATTERY  
DCOUT  
VTX  
RECTIFIER  
3
+
AX  
β = 41 V/A  
TG  
TXI  
AAC  
VITR  
PT  
PR  
A = 1  
β = 9.66  
+
TIP/RING  
+
RCVN  
RCVP  
CURRENT  
SENSE  
A VERSION GAIN = 3.93  
G VERSION GAIN = 1  
+
A = –1  
B0  
BATTERY FEED  
STATE CONTROL  
B1  
B2/NC  
LOOP CLOSURE DETECTOR  
+
LCTH  
THERMAL  
SHUTDOWN  
TSD  
+
RTSP  
RTSN  
NSTAT  
RING TRIP DETECTOR  
12-3557 (F).d  
Figure 1. Functional Diagram  
Agere Systems Inc.  
3
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Pin Information  
4
3
2
1
28  
27  
26  
5
6
25  
24  
23  
22  
21  
20  
19  
VTX  
RCVP  
RCVN  
LCTH  
DCOUT  
VBAT  
TXI  
7
VITR  
NSTAT  
NC  
8
28-PIN PLCC  
9
PR  
10  
11  
RTSP  
RTSN  
CF2  
12  
13  
14  
15  
16  
17  
18  
12-3552 (F)  
Figure 2. 28-Pin PLCC  
Table 1. Pin Descriptions  
PLCC  
Symbol Type  
Description  
PROG  
I
1
I
Current-Limit Program Input. A resistor to DCOUT sets the dc current limit of  
the device.  
2
3
4
5
NC  
NC  
I
No Connect.  
No Connect.  
CC  
V
5 V Power Supply.  
RCVP  
Receive ac Signal Input (Noninverting). This high-impedance input controls  
the ac differential voltage on tip and ring.  
6
RCVN  
I
Receive ac Signal Input (Inverting). This high-impedance input controls the  
ac differential voltage on tip and ring.  
4
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
PLCC  
Symbol Type  
Description  
7
LCTH  
I
Loop Closure Threshold Input. Connect a resistor to VTX to set off-hook  
threshold.  
8
DCOUT  
O
dc Output Voltage. This output is a voltage that is directly proportional to the  
absolute value of the differential tip/ring current.  
BAT  
9
V
Battery Supply. Negative high-voltage power supply.  
10  
PR  
I/O Protected Ring. The output of the ring driver amplifier and input to loop sens-  
ing circuitry. Connect to the loop through overvoltage protection.  
11  
12  
13  
CF2  
CF1  
Filter Capacitor 2. Connect a 0.1 µF capacitor from this pin to AGND.  
Filter Capacitor 1. Connect a 0.47 µF capacitor from this pin to pin CF2.  
B2/NC  
Dummy Pin. Used for exact pin-for-pin compatibility with L9219. There is no  
physical connection to this pin, however, it may be connected to the B2 control  
latch to get an exact PWB footprint match with L9219.  
14  
15  
B1  
B0  
I
I
State Control Input. B0 and B1 determine the state of the SLIC. See Table 2.  
Pin B1 has an internal pull-down.  
State Control Input. B0 and B1 determine the state of the SLIC. See Table 2.  
Pin B0 has an internal pull-down.  
16  
17  
18  
AGND  
BGND  
PT  
Analog Signal Ground.  
Battery Ground. Ground return for the battery supply.  
I/O Protected Tip. The output of the tip driver amplifier and input to loop-sensing  
circuitry. Connect to loop through overvoltage protection.  
19  
20  
RTSN  
RTSP  
I
I
Ring Trip Sense Negative. Connect this pin to the ringing generator signal  
through a high-value resistor.  
Ring Trip Sense Positive. Connect this pin to the ring relay and the ringer  
series resistor through a high-value resistor.  
21  
22  
NC  
O
No Connect.  
NSTAT  
Loop Detector Output/Ring Trip Detector Output. When low, this logic out-  
put indicates that an off-hook condition exists or that ringing is tripped.  
23  
VITR  
O
Transmit ac Output Voltage. This output is a voltage that is directly propor-  
tional to the differential tip/ring current.  
ac/dc Separation. Connect a 0.1 µF capacitor from this point to VTX.  
24  
25  
TXI  
O
VTX  
Transmit ac/dc Output Voltage. This output is a voltage that is directly pro-  
portional to the differential tip/ring current.  
26  
27  
TG  
O
Transmit Gain. Connect an 8.06 kfrom TG to VTX to set the transmit gain of  
the SLIC.  
TSD  
Thermal Shutdown. When high, this logic output indicates the device is in  
thermal shutdown.  
28  
NC  
No Connect.  
Agere Systems Inc.  
5
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Functional Description  
Table 2. Input State Coding  
B0 B1  
State/Definition  
1
1
0
0
1
0
0
1
Powerup, Forward Battery. Normal talk and battery feed state. Pin PT is positive with respect to PR.  
On-hook transmission is enabled. Low current limit is selected.  
Powerup, Forward Battery. Normal talk and battery feed state. Pin PT is positive with respect to PR.  
On-hook transmission is enabled. High current limit is selected.  
Disconnect. The tip and ring amplifiers are turned off, and the SLIC goes to a high-impedance state  
(>100 k). Supervision outputs read on hook. Device will power up in this state.  
Low-Power Scan. Except for off-hook detection, all circuits are shut down to conserve power. Pin PT  
is positive with respect to pin PR. On-hook transmission is disabled.  
Table 3. Supervision Coding  
NSTAT  
TSD  
0 = Normal device operation.  
1 = Device is in thermal shutdown.  
0 = off-hook or ring trip.  
1 = on-hook and no ring trip.  
6
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
A
Absolute Maximum Ratings (at T = 25 °C)  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Symbol  
Min  
Typ  
Max  
7.0  
–75  
7.0  
7.0  
Unit  
V
CC  
V
5 V Power Supply  
Battery (talking) Supply  
VBAT  
V
Logic Input Voltage  
–0.5  
–7.0  
150  
V
Analog Input Voltage  
V
J
Maximum Junction Temperature  
Storage Temperature Range  
Relative Humidity Range  
T
°C  
°C  
%
V
stg  
T
–40  
125  
95  
H
R
5
Ground Potential Difference (BGND to AGND)  
PT or PR Fault Voltage (dc)  
PT or PR Fault Voltage (10 x 1000 µs)  
Current into Ring Trip Inputs  
±3  
VPT, VPR  
VPT, VPR  
IRTSP, IRTSN  
VBAT – 5  
VBAT – 15  
3
V
15  
V
±240  
µA  
Note: The IC can be damaged unless all ground connections are applied before, and removed after, all other connections. Furthermore, when  
powering the device, the user must guarantee that no external potential creates a voltage on any pin of the device that exceeds the  
device ratings. Some of the known examples of conditions that cause such potentials during powerup are the following:  
1. An inductor connected to tip and ring can force an overvoltage on VBAT through the protection devices if the VBAT connection chatters.  
2. Inductance in the VBAT lead could resonate with the VBAT filter capacitor to cause a destructive overvoltage.  
Recommended Operating Conditions  
Parameter  
Min  
–40  
4.75  
–24  
Typ  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
CC  
V
V
Supply Voltage  
5.0  
–48  
5.25  
–70  
BAT  
Supply Voltage  
V
Agere Systems Inc.  
7
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Electrical Characteristics  
Minimum and maximum values are testing requirements in the temperature range of 25 °C to 85 °C and battery  
range of –24 V to –70 V. These minimum and maximum values are guaranteed to –40 °C based on component  
simulations and design verification of samples, but devices are not tested to –40 °C in production. The test circuit  
shown in Figure 4 is used, unless otherwise noted. Positive currents flow into the device.  
Typical values are characteristics of the device design at 25 °C based on engineering evaluations and are not part  
CC  
BAT  
of the test requirements. Supply values used for typical characterization are V = 5.0 V, V  
= –48 V, unless oth-  
erwise noted.  
Table 4. Power Supply  
Parameter  
Min  
Typ  
Max  
Unit  
Power Supply—Powerup, No Loop Current:  
CC  
I
4.6  
–2.4  
138  
5.6  
–2.7  
158  
mA  
mA  
mW  
BAT  
I
BAT  
(V  
= –48 V)  
BAT  
Power Dissipation (V  
= –48 V)  
Power Supply—Scan, No Loop Current:  
CC  
I
2.8  
–0.8  
52  
3.8  
–1.0  
67  
mA  
mA  
mW  
BAT  
I
BAT  
(V  
= –48 V)  
BAT  
Power Dissipation (V  
= –48 V)  
Power Supply—Disconnect, No Loop Current:  
CC  
I
1.6  
–0.12  
14  
mA  
mA  
mW  
BAT  
I
BAT  
(V  
= –48 V)  
BAT  
Power Dissipation (V  
= –48 V)  
Power Supply Rejection 500 Hz to 3 kHz  
(See Figure 5 and Figure 6)1:  
30  
40  
dB  
dB  
CC  
V
BAT  
V
Thermal Protection Shutdown (Tjc)3  
150  
165  
°C  
2, 3  
JA  
Thermal Resistance, Junction to Ambient (θ )  
Natural Convection 2S2P Board  
:
30  
43  
27  
36  
°C/W  
°C/W  
°C/W  
°C/W  
Natural Convection 2S0P Board  
Wind Tunnel 100 Linear Feet per Minute (LFPM) 2S2P Board  
Wind Tunnel 100 Linear Feet per Minute (LFPM) 2S0P Board  
1. This parameter is not tested in production. It is guaranteed by design and device characterization.  
2. Careful thermal design as a function of maximum battery, loop length, maximum ambient temperature package thermal resistance, airflow,  
PCB board layers, and other related parameters must ensure that thermal shutdown temperature is not exceeded under normal use condi-  
tions.  
3. Airflow, PCB board layers, and other factors can greatly affect this parameter.  
8
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Electrical Characteristics (continued)  
Table 5. 2-Wire Port  
Parameter  
Min  
Typ  
Max  
Unit  
Tip or Ring Drive Current = dc + Longitudinal + Signal  
Currents  
80  
mA  
Signal Current  
15  
mArms  
mArms  
Longitudinal Current Capability per Wire1  
15  
8.5  
dc Loop Current Limit2:  
Allowed Range Including Tolerance3  
15  
±5  
45  
mA  
%
LOOP  
Accuracy (R  
BAT  
= –48 V)  
= 100 , V  
Powerup Open Loop Voltage Levels:  
Common-mode Voltage  
BAT  
V
/2  
V
V
V
Differential Voltage VBAT = –48 V4 (Gain = 2)  
Differential Voltage VBAT = –48 V4 (Gain = 7.86)  
BAT  
BAT  
BAT  
|V  
|V  
+ 7.5| |V  
+ 8.0| |V  
+ 6.5| |V  
+ 6.5| |V  
+ 5.9|  
+ 5.9|  
BAT  
BAT  
BAT  
Disconnect State:  
Leakage  
10  
150  
µA  
LOOP  
dc Feed Resistance (for I  
below regulation level) (does  
80  
100  
not include protection resistor)  
Loop Resistance Range (–3.17 dBm overload into  
900 ; not including protection):  
LOOP  
I
BAT  
= 20 mA at V  
= –48 V  
1800  
Longitudinal to Metallic Balance—IEEE® Std. 455  
(See Figure 7)5:  
200 Hz to 3400 Hz  
61  
58  
40  
dB  
dB  
Metallic to Longitudinal Balance (open loop):  
200 Hz to 4 kHz  
RFI Rejection (See Figure 8)3, 0.5 Vrms, 50 Source,  
30% AM Mod 1 kHz:  
–55  
–45  
dBV  
500 kHz to 100 MHz  
1. The longitudinal current is independent of dc loop current.  
2. Current-limit ILIM is programmed by a resistor, RPROG, from pin IPROG to DCOUT. ILIM is specified at the loop resistance where current limiting  
begins (see Figure 13).  
3. This parameter is not tested in production. It is guaranteed by design and device characterization.  
4. Specification is reduced to |VBAT1 + 10.5 V| minimum when VBAT1 = –70 V at 85 °C.  
5. Longitudinal balance of circuit card will depend on loop series protection resistor matching and magnitude. More information is available in  
the Applications section of this document.  
Agere Systems Inc.  
9
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Electrical Characteristics (continued)  
Table 6. Analog Pin Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Differential PT/PR Current Sense (DCOUT):  
Gain (PT/PR to DCOUT)  
121  
–100  
125  
129  
100  
V/A  
mV  
LOOP  
Offset Voltage at I  
= 0  
1
LCTH  
Loop Closure Detector Threshold (R  
= 22.1 k) :  
8.8  
6.0  
13.6  
10.2  
mA  
mA  
On- to Off-hook Threshold (scan mode)  
Off- to On-hook Threshold (active mode)  
Ring Trip Comparator:  
Input Offset Voltage2  
Internal Voltage Source  
Current at Input RTSP3  
–9.1  
I – 0.5  
±10  
–8.6  
–8.1  
I + 0.6  
mV  
V
µA  
N
N
I
N
RCVN, RCVP:  
Input Bias Current  
Input Resistance  
–0.2  
1
–1  
µA  
MΩ  
1. Loop closure threshold is programmed by resistor RLCTH from pin LCTH to pin DCOUT. The programming equation or relationship between  
off-hook threshold and resistor value is different for active mode versus scan mode (see Applications section for more details).  
2. This parameter is not tested in production. It is guaranteed by design and device characterization.  
3. IN is the sourcing current at RTSN. Guaranteed if IN is within 5 µA to 30 µA.  
10  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Electrical Characteristics (continued)  
Table 7. ac Feed Characteristics  
Parameter  
ac Termination Impedance1  
Longitudinal Impedance at PT/PR2  
Min  
150  
Typ  
0
Max  
1300  
Unit  
Total Harmonic Distortion—200 Hz to 4 kHz2:  
0.3  
1.0  
%
%
Off-hook  
On-hook  
Transmit Gain, f = 1 kHz (PT/PR to VITR) (current limit)  
–391  
–403  
–415  
V/A  
L9218A, Open Loop:  
Receive + Gain, f = 1 kHz (RCVP to PT/PR)3  
7.62  
–7.62  
7.86  
–7.86  
8.09  
–8.09  
Receive – Gain, f = 1 kHz (RCVN to PT/PR)3  
L9218G, Open Loop:  
Receive + Gain, f = 1 kHz (RCVP to PT/PR)4  
Receive – Gain, f = 1 kHz (RCVN to PT/PR)4  
1.94  
–1.94  
2.00  
–2.00  
2.06  
–2.06  
Gain vs. Frequency (transmit and receive)  
(600 termination; reference 1 kHz2):  
200 Hz to 300 Hz  
–1.00  
–0.3  
–3.0  
0.0  
0.0  
–0.1  
0.05  
0.05  
0.3  
dB  
dB  
dB  
dB  
300 Hz to 3.4 kHz  
3.4 kHz to 16 kHz  
16 kHz to 266 kHz  
2.5  
Gain vs. Level (transmit and receive)(reference 0 dBV2):  
–55 dB to +3 dB  
–0.05  
0
0.05  
dB  
2-Wire Idle-channel Noise (600 termination):  
Psophometric2  
C-message  
3 kHz Flat2  
–87  
2
–77  
12  
dBmp  
dBrnC  
dBrn  
10  
20  
Transmit Idle-channel Noise:  
Psophometric2  
–82  
7
–77  
12  
dBmp  
dBrnC  
dBrn  
C-message  
3 kHz Flat2  
15  
20  
1. With a first-generation codec, this parameter is set by external components. Any complex impedance R1 + R2 || C between 150 and  
1300 can be synthesized. With a third-generation codec, this parameter is set by a codec or by a combination of a codec and an external  
network.  
2. This parameter is not tested in production. It is guaranteed by design and device characterization.  
3. Use this gain option with a first-generation or third-generation codec.  
4. Use this gain option with an Agere third-generation codec.  
Agere Systems Inc.  
11  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Electrical Characteristics (continued)  
Table 8. Logic Inputs and Outputs  
All outputs are open collectors with internal, 30 kpull-down resistor. Input pins have internal pull-down or some  
way to power up in disconnect state.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input Voltages:  
IL  
Low Level (permissible range)  
High Level (permissible range)  
V
V
–0.5  
2.0  
0.4  
2.4  
0.7  
V
V
IH  
CC  
V
Input Currents:  
Low Level (V = 5.25 V, V = 0.4 V)  
CC  
I
IL  
I
I
0
+10  
+4  
+24  
+10  
+50  
µA  
µA  
CC  
I
IH  
High Level (V = 5.25 V, V = 2.4 V)  
Output Voltages (open collector with internal pull-up resistor):  
CC  
OL  
OL  
Low Level (V = 4.75 V, I = 200 µA)  
V
V
0
2.4  
0.2  
0.4  
V
V
CC  
OH  
OH  
CC  
High Level (V = 4.75 V, I = –20 µA)  
V
Ring Trip Requirements  
8 µF  
TIP  
TIP  
RING  
Ringing signal:  
— Voltage, minimum 35 Vrms, maximum 100 Vrms.  
— Frequency, 17 Hz to 33 Hz.  
— Crest factor, 1.2 to 1.6.  
10 kΩ  
Ring trip:  
100 ms (typical).  
2 µF  
100 Ω  
RING  
Pretrip:  
12-2572 (F).f  
— The circuits in Figure 3 will not cause ring trip.  
Figure 3. Ring Trip Circuits  
12  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Test Configurations  
VBAT  
0.1 µF  
VCC  
0.1 µF  
VBAT  
PT  
BGND VCC AGND  
VITR  
50 Ω  
TIP  
XMT  
75 kΩ  
RLOOP  
100 /600 Ω  
RCVN  
RCVP  
46 kΩ  
L9218  
SLIC  
RCV  
50 Ω  
19.4 kΩ  
RING  
PR  
DCOUT  
IPROG  
8.06 kΩ  
TG  
43.2 kΩ  
22.1 kΩ  
2 MΩ  
VTX  
0.1 µF  
TXI  
LCTH  
B0  
B1  
B2  
RTSP  
RTSN  
NSTAT  
TSD  
402 Ω  
274 kΩ  
CF1  
2 MΩ  
0.47 µF  
CF2  
VBAT  
0.1 µF  
2796 (F)  
Figure 4. L9218 Basic Test Circuit  
VBAT OR VCC  
VBAT OR VCC  
100 Ω  
4.7 µF  
DISCONNECT  
BYPASS CAPACITOR  
DISCONNECT  
BYPASS CAPACITOR  
100 Ω  
4.7 µF  
VS  
VS  
VBAT OR  
VCC  
VBAT OR  
VCC  
67.5 Ω  
TIP  
TIP  
+
BASIC  
TEST CIRCUIT  
10 µF  
BASIC  
TEST CIRCUIT  
900 Ω  
VT/R  
67.5 Ω  
56.3 Ω  
+
RING  
RING  
VM  
10 µF  
VS  
VT/R  
VS  
VM  
PSRR = 20 log  
PSRR = 20 log  
12-2583 (F).b  
12-2582 (F).b  
Figure 6. Longitudinal PSRR  
Figure 5. Metallic PSRR  
Agere Systems Inc.  
13  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Test Configurations (continued)  
ILONG  
100 µF  
TIP  
+
VPT  
TIP  
VS  
368 Ω  
368 Ω  
+
BASIC  
TEST CIRCUIT  
BASIC  
TEST CIRCUIT  
VM  
ILONG  
VPR  
+
RING  
100 µF  
RING  
VS  
VM  
VPT  
ILONG  
VPR  
ILONG  
LONGITUDINAL BALANCE = 20 log  
ZLONG =  
OR  
12-2584 (F).c  
12-2585 (F).a  
Figure 7. Longitudinal Balance  
Figure 9. Longitudinal Impedance  
0.01 µF  
0.01 µF  
82.5 Ω  
TIP  
600 Ω  
1
XMT  
6, 7  
2
50 Ω  
VS  
TIP  
BASIC TEST  
CIRCUIT  
L7591  
4
+
VBAT  
BASIC  
TEST CIRCUIT  
600 Ω  
VT/R  
2.15 µF  
RING  
82.5 Ω  
RCV  
RING  
®
HP 4935A  
TIMS  
VS  
VS = 0.5 Vrms 30% AM 1 kHz modulation,  
f = 500 kHz—1 MHz  
device in powerup mode, 600 termination.  
VXMT  
VT/R  
GXMT =  
VT/R  
VRCV  
GRCV =  
Figure 8. RFI Rejection  
12-2587 (F).e  
Figure 10. ac Gains  
14  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications  
A basic loop start reference circuit, using bused ringing with the L9218 SLIC and the T7504 first-generation codec,  
is shown in Figure 11. This circuit is designed for a 200 Ω + 680 Ω || 0.1 µF complex termination impedance and  
transhybrid. Transmit gain is set at 0 dBm and receive gain is set at –7 dBm.  
VBAT  
VCC  
CBAT  
0.1 µF  
CCC  
0.1 µF  
RPROG  
CGS  
RGS  
1
IPROG  
LCTH  
9
4
2.37 kΩ  
6.8 nF  
35.7 kΩ  
RLCTH  
26  
25  
VBAT  
VCC  
TG  
7
8
RGP1  
8.06 kΩ  
22.1 kΩ  
VTX  
RX  
CB  
158.0 kΩ  
DCOUT  
0.1 µF  
RT2  
80.6 kΩ  
GSX  
DX  
24  
23  
CB1  
0.47 µF  
TXI  
VITR  
+
RT1  
RHB1  
RPT  
TIP  
18  
10  
71.5 kΩ  
357 k  
PT  
PCM  
HIGHWAY  
+2.4 V  
50 Ω  
RRCV  
137.0 kΩ  
5
L9218  
SLIC  
RCVP  
RCVN  
DR  
L7591  
LCAS  
EMR  
CB2  
RGP  
30.1 kΩ  
RN1  
FSX CONTROL  
143.0 k0.47 µF  
AND  
CLOCK  
FSR  
MCLK  
RPR  
VFRO  
RING  
CGN  
0.1 nF  
RN2  
PR  
18.2 kΩ  
6
50 Ω  
RTSP  
2.94 MΩ  
27  
22  
SUPERVISION  
TSD  
20  
19  
OUTPUTS  
RTSP  
RTSN  
NSTAT  
1/4 T7504  
CODEC  
CRTS1  
0.015 µF  
RTS1  
402 Ω  
B2/NC 13  
B1 14  
CONTROL  
INPUTS  
RTSN  
3.32 MΩ  
B0 15  
CF2  
11  
CF1  
12  
CF1  
0.47 µF  
AGND BGND  
16  
17  
VRING  
CF2  
0.1 µF  
VBAT  
2797 (F).a  
Figure 11. Basic Loop Start Application Circuit Using T7504-Type Codec  
Table 9 shows the design parameters of the application circuit shown in Figure 11. Components that are adjusted  
to program these values are also shown.  
Table 9. 200 Ω + 680 Ω || 0.1 µF First-Generation Codec Design Parameters  
Design Parameter  
Loop Closure Threshold  
Parameter Value  
10 mA  
Components Adjusted  
LCTH  
R
PROG  
dc Loop Current Limit  
2-wire Signal Overload Level  
ac Termination Impedance  
Hybrid Balance Line Impedance  
Transmit Gain  
20 mA  
R
3.14 dBm  
T1  
GP  
RCV, GP1, GS, GS  
200 Ω + 680 Ω || 0.1 µF  
200 Ω + 680 Ω || 0.1 µF  
0 dBm  
R , R , R  
R
R
C
HB1  
R
T2  
X, N1, N2,  
N
R , R R  
R
C
RCV  
GP  
, R , R  
T1  
Receive Gain  
–7 dBm  
R
Agere Systems Inc.  
15  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
Table 10. Parts List for Loop Start Application Circuit Using T7504-Type Codec  
Name  
Integrated Circuits  
SLIC  
Value  
Function  
L9218  
Subscriber loop interface circuit (SLIC).  
Secondary protection.  
Protector  
Agere L7591  
Ringing Relay  
Codec  
Agere L7581/2/3 or EMR  
T7504  
Switches ringing signals.  
First-generation codec.  
Overvoltage Protection  
PT  
R
50 , Fusible  
50 , Fusible  
Protection resistor.  
Protection resistor.  
PR  
R
Power Supply  
BAT1  
BAT  
C
0.1 µF, 20%, 100 V  
0.1 µF, 20%, 10 V  
0.47 µF, 20%, 100 V  
0.1 µF, 20%, 100 V  
V
filter capacitor.  
filter capacitor.  
F2  
CC  
CC  
V
C
F1  
C
With C , improves idle-channel noise.  
F2  
F1  
C
With C , improves idle-channel noise.  
dc Profile  
PROG  
R
35.7 k, 1%, 1/16 W  
Sets dc loop current limit.  
ac Characteristics  
B1  
C
0.47 µF, 20%, 10 V  
0.47 µF, 20%, 10 V  
71.5 k, 1%, 1/16 W  
137 k, 1%, 1/16 W  
30.1 k, 1%, 1/16 W  
ac/dc separation capacitor.  
ac/dc separation capacitor.  
B2  
C
T1  
GP  
RCV  
R
With R and R , sets ac termination impedance.  
RCV  
GP  
T1  
R
With R and R , sets receive gain.  
GP  
T1  
RCV  
R
With R and R , sets ac termination impedance  
and receive gain.  
T2  
X
R
80.6 k, 1%, 1/16 W  
158 k, 1%, 1/16 W  
357 k, 1%, 1/16 W  
6.8 nF, 10%, 10 V  
With R , sets transmit gain in codec.  
X
T2  
R
With R , sets transmit gain in codec.  
HB1  
R
Sets hybrid balance.  
GS  
GS  
C
With R , provides gain shaping for termination  
impedance matching.  
GS  
GS  
R
2.37 k, 1%, 1/16 W  
With C , provides gain shaping for termination  
impedance matching.  
GP1  
R
8.06 k, 1%, 1/16 W  
0.1 nF, 20%, 10 V  
Sets transmit gain of SLIC.  
N
N1  
N2  
C
With R and R high frequency compensation.  
N1  
N
N2  
R
143 k, 1%, 1/16 W  
18.2 k, 1%, 1/16 W  
With C and R high frequency compensation.  
N2  
N1  
N
R
With R and C high frequency compensation.  
Supervision  
LCTH  
R
22.1 k, 1%, 1/16 W  
402 , 5%, 2 W  
Sets loop closure (off-hook) threshold.  
Ringing source series resistor.  
TS1  
R
RTS1  
TSN  
TSP  
C
0.015 µF, 20%, 10 V  
3.32 M, 1%, 1/16 W  
2.94 M, 1%, 1/16 W  
With R , R , forms filter pole.  
TSN  
TSP  
R
With R , sets threshold.  
TSP  
RTS1  
With C  
TSN  
R
, R , sets threshold.  
16  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
A basic loop start reference circuit, using bused ringing with the L9218 SLIC and the T8536 third-generation codec,  
is shown in Figure 12.  
VBAT  
VCC  
CBAT  
0.1 µF  
CCC  
0.1 µF  
RPROG  
1
IPROG  
LCTH  
9
4
35.7 kΩ  
RLCTH  
VBAT  
VCC  
7
8
26  
25  
TG  
RGP1  
22.1 kΩ  
8.06 kΩ  
VTX  
DCOUT  
CB  
0.1 µF  
24  
TXI  
DX1  
CB1  
0.1 µF  
1/4 T8536  
CODEC  
RCIN  
20 MΩ  
RPT  
DX2  
DR1  
DR2  
TIP  
PCM  
18  
10  
23  
5
PT  
HIGHWAY  
VITR  
VFXI  
50 Ω  
L9218  
SLIC  
RCVP  
VFROP  
VFRON  
SLIC0a  
SLIC3a  
SLIC2a  
SLIC4a  
L7591  
6
LCAS  
EMR  
RCVN  
NSTAT  
B0  
CONTROL  
AND  
CLOCK  
FS  
BCLK  
VDD  
22  
15  
14  
RPR  
RING  
PR  
50 Ω  
RTSP  
2.94 MΩ  
CVDD  
0.1 µF  
20  
19  
B1  
RTSP  
RTSN  
13 (OPTIONAL*)  
DGND  
CRTS1  
0.015 µF  
RTS1  
510 Ω  
B2/NC  
RTSN  
3.4 MΩ  
CF2  
11  
CF1  
12  
AGND BGND  
16  
17  
CF1  
VRING  
0.47 µF  
CF2  
0.1 µF  
VBAT  
2798 (F).a  
* Optional nonfunctional connection for exact footprint match with L9219.  
Figure 12. Basic Loop Start Application Circuit Using T8536-Type Codec  
Agere Systems Inc.  
17  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
Table 11. Parts List for Loop Start Application Circuit Using T8536-Type Codec  
Name  
Integrated Circuits  
SLIC  
Value  
Function  
L9218  
Subscriber loop interface circuit (SLIC).  
Secondary protection.  
Protector  
Agere L7591  
Ringing Relay  
Codec  
Agere L7581/2/3 or EMR  
T8536  
Switches ringing signals.  
Third-generation codec.  
Overvoltage Protection  
PT  
R
50 , Fusible  
50 , Fusible  
Protection resistor.  
Protection resistor.  
PR  
R
Power Supply  
BAT1  
BAT  
C
0.1 µF, 20%, 100 V  
0.1 µF, 20%, 10 V  
0.47 µF, 20%, 100 V  
0.1 µF, 20%, 100 V  
V
filter capacitor.  
filter capacitor.  
F2  
CC  
CC  
V
C
F1  
C
With C , improves idle-channel noise.  
F2  
F1  
C
With C , improves idle-channel noise.  
dc Profile  
PROG  
R
35.7 k, 1%, 1/16 W  
Sets dc loop current limit.  
ac Characteristics  
B3  
C
0.1 µF, 20%, 10 V  
8.06 k, 1%, 1/16 W  
20 M, 5%, 1/16 W  
ac/dc separation capacitor.  
Sets transmit gain of SLIC.  
dc bias.  
GP1  
R
CIN  
R
Supervision  
LCTH  
R
22.1 k, 1%, 1/16 W  
510 , 5%, 2 W  
Sets loop closure (off-hook) threshold.  
Ringing source series resistor.  
TS1  
R
RTS1  
TSN  
TSP  
C
0.015 µF, 20%, 10 V  
3.4 M, 1%, 1/16 W  
2.94 M, 1%, 1/16 W  
With R  
and R , forms second 2 Hz filter pole.  
TSN  
TSP  
R
With R , sets threshold.  
TSP  
TSN  
R
With R , sets threshold.  
18  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Starting from the on-hook condition and going through  
to a short circuit, the curve passes through the follow-  
ing two regions:  
Applications (continued)  
dc Applications  
Region 1: On-hook and low-loop currents. The slope  
corresponds to the dc resistance of the  
Battery Feed  
dc1  
SLIC, R (70 typical). The open circuit  
voltage is the battery voltage minus the over-  
The dc feed characteristic can be described by:  
OH  
head voltage of the device, V (6.5 V typi-  
BAT OH  
V
) × R  
dc  
L
( V  
cal). These values are suitable for most  
applications but can be adjusted if needed.  
T/R  
V
= ---------------------------------------------  
L
P
R + 2R + R  
Region 2: Current limit. The dc current is limited to a  
starting value determined by external resis-  
PROG  
V
BAT OH  
V
L
I = ---------------------------------  
L
P
dc  
R + 2R + R  
tor R  
, an internal current source, and  
the gain from tip/ring to pin DCOUT.  
where:  
L
I = dc loop current.  
T/R  
V
= dc loop voltage.  
Current Limit  
|VBAT| = battery voltage magnitude.  
OH  
V
= overhead voltage. This is the difference between  
the battery voltage and the open loop tip/ring  
voltage.  
With the B0/B1 logic inputs set to 11 (low current limit),  
current limit with a 100 load is given by the following  
equation:  
L
R = loop resistance, not including protection resistors.  
P
R = protection resistor value.  
PROG  
LIM  
0.637 R  
(k) + 2 mA= I x (mA)  
dc  
R
= SLIC internal dc feed resistance.  
The relationship between low current limit (B0 = 1,  
B1 = 1) and high current limit (B0 = 1, B1 = 0) is  
The design begins by drawing the desired dc template.  
An example is shown in Figure 13.  
ILIMIT(Low)  
---------------------------------  
= 0.7  
ILIMIT(High)  
50  
40  
Overhead Voltage  
ILIM ONSET  
ILIM TESTED  
In order to drive an on-hook ac signal, the SLIC must  
set up the tip and ring voltage to a value less than the  
battery voltage. The amount that the open loop voltage  
is decreased relative to the battery is referred to as the  
overhead voltage, expressed as the following equation:  
1
30  
20  
12.5 kΩ  
–1  
Rdc1  
10  
0
OH  
BAT  
PT  
PR  
V
= |V | – (V – V )  
Without this buffer voltage, amplifier saturation will  
occur and the signal will be clipped. The L9218 is auto-  
matically set at the factory to allow undistorted on-hook  
transmission of a 3.14 dBm signal into a 900 loop  
impedance.  
0
10  
20  
30  
40  
50  
LOOP VOLTAGE (V)  
12-3050 (F).i  
Notes:  
VBAT = –48 V.  
ILIM = 22 mA.  
Rdc1 = 115 .  
Figure 13. Loop Current vs. Loop Voltage  
Agere Systems Inc.  
19  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
dc Applications (continued)  
Loop Range  
The equation below can be rearranged to provide the loop range for a required loop current:  
V
BAT OH  
V
L
---------------------------- –  
R =  
2R R  
P DC  
L
I
Off-Hook Detection  
The loop closure comparator has built-in longitudinal rejection, eliminating the need for an external 60 Hz filter. The  
LCTH  
loop closure detection threshold is set by resistor R  
. The supervision output bit NSTAT is high in an on-hook  
condition. The off-hook comparator goes low during an off-hook condition:  
TR  
LCTH  
LCTH  
I
I
(mA) = 0.4167 R  
(mA) = 0.4167 R  
(k) – 1.9 mA ACTIVE off-hook to on-hook  
(k) + 2.7 mA SCAN on-hook to off-hook  
TR  
RP  
TIP  
0.125 V/mA  
DCOUT  
ITR  
RL  
+
RLCTH  
RING  
LCTH  
RP  
+
0.05 mA  
NSTAT  
12-2553 (F).f  
Figure 14. Off-Hook Detection Circuit  
20  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
dc Applications (continued)  
Ring Trip Detection  
The ring trip circuit is a comparator that has a special input section optimized for this application. The equivalent  
circuit is shown in Figure 15, along with its use in an application using unbalanced, battery-backed ringing.  
PHONE  
HOOK SWITCH  
RLOOP  
RTSP  
+
RTSP  
2.94 M  
NSTAT  
8.6 V  
RC PHONE  
I
P
= I  
N
RS  
C
0.015  
RTS1  
+
402 510  
Ω/  
F
µ
IN  
VBAT  
VRING  
RTSN  
RTSN  
15 k  
3.32 M 3.40 M  
Ω/  
2799 (F)  
Figure 15. Ring Trip Equivalent Circuit and Equivalent Application  
Ring trip detection threshold is given by the following equation:  
[RTSN(M) + 0.015 RTSP(M)] × [ VBAT 8.6] × 1000  
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
(mA) =  
TH  
I
[RTSN(M) + 0.015] × RS  
Longitudinal Balance  
The SLIC is graded to certain longitudinal balance specifications. The numbers are guaranteed by testing (Figure  
5 and Figure 8). However, for specific applications, the longitudinal balance may also be determined by termination  
impedance, protection resistance, and especially by the mismatch between protection resistors at tip and ring. This  
can be illustrated by the following equation:  
(368 + RP) × (368 + ZT RP)  
-------------------------------------------------------------------------------------------  
LB = 20 x log  
where:  
368 × (2 × [ZT 2 × RP] × + ε)  
LB: longitudinal balance.  
RP: protection resistor value in .  
ZT: magnitude of the termination impedance in .  
ε: protection resistor mismatch in .  
: SLIC internal tip/ring sensing mismatch.  
The can be calculated using the above equation with these exceptions: ε = 0, ZT = 600 Ω, RP = 100 Ω, and the  
longitudinal balance specification on a specific code.  
Now with available, the equation will predict the actual longitudinal balance for RP, ZT, and ε.  
Be aware that ZT may vary with frequency for complex impedance applications.  
Agere Systems Inc.  
21  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
ac Interface Network  
Applications (continued)  
The ac interface network between the L9218 and the  
codec will vary depending on the codec selected. With  
a first-generation codec, the interface between the  
L9218 and codec actually sets the ac parameters. With  
a third-generation codec, all ac parameters are set dig-  
itally, internal to the codec; thus, the interface between  
the L9218 and this type of codec is designed to avoid  
overload at the codec input in the transmit direction,  
and to optimize signal-to-noise ratio (S/N) in the  
receive direction.  
ac Design  
Codec Types  
At this point in the design, the codec needs to be  
selected. The interface network between the SLIC and  
codec can then be designed. There are four key ac  
design parameters. Termination impedance is the  
impedance looking into the 2-wire port of the line card.  
It is set to match the impedance of the telephone loop  
in order to minimize echo return to the telephone set.  
Transmit gain is measured from the 2-wire port to the  
PCM highway, while receive gain is done from the PCM  
highway to the transmit port. Finally, the hybrid balance  
network cancels the unwanted amount of the receive  
signal that appears at the transmit port.  
Receive Interface  
Because the design requirements are very different  
with a first- or third-generation codec, the L9218 is  
offered with two different receive gains. Each receive  
gain was chosen to optimize, in terms of external com-  
ponents required, the ac interface between the L9218  
and the codec.  
Below is a brief codec feature summary.  
First-Generation Codecs. These perform the basic fil-  
tering, A/D (transmit), D/A (receive), and µ-law/A-law  
companding. They all have an op amp in front of the  
A/D converter for transmit gain setting and hybrid bal-  
ance (cancellation at the summing node). Depending  
on the type, some have differential analog input stages,  
differential analog output stages, 5 V only or ±5 V oper-  
ation, and µ-law/A-law selectability. These are avail-  
able in single and quad designs. This type of codec  
requires continuous time analog filtering via external  
resistor/capacitor networks to set the ac design param-  
eters. An example of this type of codec is the Agere  
T7504 quad 5 V only codec.  
With a first-generation codec, the termination imped-  
ance is set by providing gain shaping through a feed-  
back network from the SLIC VITR output to the SLIC  
RCVN/RCVP inputs. The L9218 provides a transcon-  
ductance from T/R to VITR in the transmit direction and  
a single-ended to differential gain in the receive direc-  
tion from either RCVN or RCVP to T/R. Assuming a  
short from VITR to RCVN or RCVP, the maximum  
impedance that is seen looking into the SLIC is the  
product of the SLIC transconductance times the SLIC  
receive gain, plus the protection resistors. The various  
specified termination impedance can range over the  
voice band as low as 300 up to over 1000 . Thus, if  
the SLIC gains are too low, it will be impossible to syn-  
thesize the higher termination impedances. Further-  
more, the termination that is achieved will be far less  
than what is calculated by assuming a short for SLIC  
output to SLIC input. In the receive direction, in order to  
control echo, the gain is typically a loss, which requires  
a loss network at the SLIC RCVN/RCVP inputs, which  
will reduce the amount of gain that is available for ter-  
mination impedance. For this reason, a high-gain SLIC  
is required with a first-generation codec.  
This type of codec tends to be the most economical in  
terms of piece part price, but tends to require more  
external components than a third-generation codec.  
Furthermore, ac parameters are fixed by the external  
R/C network, so software control of ac parameters is  
difficult.  
Third-Generation Codecs. This class of devices  
includes all ac parameters set digitally under micropro-  
cessor control. Depending on the device, it may or may  
not have data control latches. Additional functionality  
sometimes offered includes tone plant generation and  
reception, TTX generation, test algorithms, and echo  
cancellation. Again, this type of codec may be 5 V  
only or ±5 V operation, single quad or 16-channel, and  
µ-law/A-law or 16-bit linear coding selectable. Exam-  
ples of this type of codec are the Agere T8535/6 (5 V  
only, quad, standard features), T8533/4 (5 V only, quad  
with echo-cancellation), and the T8531/36 (5 V only  
16-channel with self-test).  
22  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
better the S/N. The problem is, if the codec is feeding a  
high-gain SLIC, either an external resistor divider is  
needed to knock the gain down to meet the TLP  
requirements, or the codec is not operating near maxi-  
mum signal levels, thus compromising the S/N.  
Applications (continued)  
ac Design (continued)  
Receive Interface (continued)  
It appears the solution is to have a SLIC with a low  
gain, especially in the receive direction. This will allow  
the codec to operate near its maximum output signal  
(to optimize S/N), without an external resistor divider  
(to minimize cost).  
With a third-generation codec, the line card designer  
has different concerns. To design the ac interface, the  
designer must first decide upon all termination imped-  
ance, hybrid balances, and transmission-level points  
(TLP) requirements that the line card must meet. In the  
transmit direction, the only concern is that the SLIC  
does not provide a signal that is too hot and overloads  
the codec input. Thus, for the highest TLP that is being  
designed to, given the SLIC gain, the designer, as a  
function of voice band frequency, must ensure that the  
codec is not overloaded. With a given TLP and a given  
SLIC gain (if the signal will cause a codec overload),  
the designer must insert some sort of loss, typically a  
resistor divider, between the SLIC output and codec  
input.  
Note also that some third-generation codecs require  
the designer to provide an inherent resistive termina-  
tion via external networks. The codec will then provide  
gain shaping, as a function of frequency to meet the  
return loss requirements. Further stability issues may  
add external components or excessive ground plane  
requirements to the design.  
To meet the unique requirements of both types of  
codecs, the L9218 offers two receive gain choices.  
These receive gains are mask-programmable at the  
factory and are offered as two different code variations.  
For interface with a first-generation codec, the L9218A  
is offered with a receive gain of 7.86. For interface with  
a third-generation codec, the L9218G is offered with a  
receive gain of 2. In either case, the transconductance  
in the transmit direction, or the transmit gain is 403 .  
In the receive direction, the issue is to optimize S/N.  
Again, the designer must consider all the considered  
TLPs. The idea is, for all desired TLPs, to run the  
codec at or as close as possible to its maximum output  
signal, to optimize the S/N. Remember noise floor is  
constant, so the hotter the signal from the codec, the  
Example 1: Real Termination (First-Generation Codec)  
ac equivalent circuits for real termination using a T7504 codec is shown in Figure 15.  
RX  
VGSX  
–0.403 V/mA  
RT2  
VFXIN  
VFXIP  
+
VITR  
RT1  
RCVN  
RHB1  
2.4 V  
V =  
ZT/R  
RP  
TIP  
A
AV = 1  
RRCV  
3.93  
RCVP  
VFR  
+
+
IT/R  
+
CURRENT  
SENSE  
VS  
ZT  
VT/R  
RG  
+
AV = –1  
RP  
RING  
L9218 SLIC  
1/4 T7504 CODEC  
12-3581 (F).d  
Figure 16. ac Equivalent Circuit  
Agere Systems Inc.  
23  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
ac Design (continued)  
Example 1: Real Termination (First-Generation Codec) (continued)  
The following design equations refer to the circuit in Figure 16. Use these to synthesize real termination imped-  
ance.  
Termination Impedance:  
T R  
V
I  
--------------  
ZT =  
T R  
3168  
P
ZT = 2R + ----------------------------------  
T3  
T3  
R
R
1 +  
+
-------- -----------  
GP  
RCV  
R
R
Receive Gain:  
T R  
V
-------------  
rcv  
g
g
=
=
fr  
V
7.86  
rcv  
-------------------------------------------------------------------------------------  
RCV  
RCV  
R
R
Z
T
Z
T/R  
--------------- --------------- ------------  
1 +  
1 +  
+
T3  
GP  
R
R
Transmit Gain:  
GSX  
V
--------------  
tx  
g =  
T R  
V
X
R
R
403  
----------  
x
----------  
tx  
g =  
T6  
Z
T
Hybrid Balance:  
GSX  
V
--------------  
bal  
h
= 20log  
T R  
V
To optimize the hybrid balance, the sum of the currents at the VFX input of the codec op amp should be set to 0.  
The following expressions assume the test network is the same as the termination impedance:  
X
R
------------------------  
HB  
R
=
tx × rcv  
g
g
X
R
R
-----------  
bal  
h
tx × rcv  
g
= 20log  
g  
HB  
24  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
ac Design (continued)  
Example 2: Complex Termination (First-Generation Codec)  
Below are design equations for complex termination (see Figure 17 and Figure 18).  
T
T1  
T2  
T
Z = R + R || C  
7.86  
-----------  
201.2  
1
1
---------------------------------- -----------------  
T1  
T2  
=
P
TGP  
TGS  
TGS  
R
R
= 2R +  
R
|| R  
T3  
T3  
N1  
R
R
R
1 +  
+
-------- -----------  
--------  
1 +  
GP  
RCV  
N2  
R
R
R
7.86  
TGP  
TGS  
R
R  
1
-----------  
TGP  
=
---------------------------------- + -----------------  
R
|| R  
201.2  
T3  
T3  
N1  
R
R
R
1 +  
+
-------- -----------  
--------  
1 +  
GP  
RCV  
N2  
R
R
R
2
N2  
TGP  
1
7.86  
1
R
N1  
1
R
TGP  
1
T3  
1
TGP ||  
------  
CT  
---------------- ----------------------------------------------  
---------- ------------------------------------  
---------------------------------------------- ---------------------  
TGS  
R
R
+
(
R
N2)2  
+ R  
C
N1  
CTG  
TGS  
T3  
N1  
201.2  
R
+ R  
R
R
R
1 + ----------- + ---------------  
----------  
1 +  
GP  
RCV  
N2  
R
R
R
X
TG  
R
R
1
Z
---------- ---------------- ----------  
tx  
g =  
T6  
201.2  
Z
T
7.86  
1
----------------------------------------------- -----------------------  
rcv =  
×
g
h
RCV  
RCV  
T
R
R
Z
--------------- ---------------  
-------------  
1 +  
+
1 +  
T3  
GP  
T R  
R
R
Z
X
R
-----------  
bal  
tx × rcv  
= 20log  
g  
g
HB  
R
where:  
T/R  
1
2
Z
Z
= R + R || C  
TG  
TGP  
TGS  
G
= R  
|| (R  
+ C )  
TGP  
R
R
= 8.06 kΩ  
1
R
R
-------  
TGS  
TGP  
=
R
2
2
2
R
------------------------------------------  
G
C =  
x C  
TGP(  
1
2)  
R
R + R  
and  
P
2R  
N
N2  
G
TGP  
C R = ------------ C R  
3168  
TGS  
R
R
(3168)  
-------------  
N1  
N2  
1
R
= R -----------------  
TGP  
P
2R  
The equations above do not include the blocking capacitors.  
Agere Systems Inc.  
25  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Applications (continued)  
ac Design (continued)  
Example 2: Complex Termination (First-Generation Codec) (continued)  
RTGS  
CGS  
RX  
RTGP = 8.06 kΩ  
–IT/R  
CB  
201.2  
R
T6  
+
AX  
AAC  
CODEC  
OP AMP  
CN  
RT3  
RN1  
RCVN
RCVP
CODEC  
OUTPUT  
DRIVE  
AMP  
RRCV  
RGP  
RN2  
5-6401 (F).j  
Figure 17. Interface Circuit Using First-Generation Codec (±5 V Battery)  
RTGS  
CG  
RX  
RTGP = 8.06 kΩ  
–IT/R  
201.2  
RT6  
+
AX  
AAC  
CB  
CB1  
CODEC  
OP AMP  
–2.4 V  
CN  
RT3  
RN1  
RCVN  
RCVP  
CODEC  
RRCV  
OUTPUT  
DRIVE  
AMP  
CB2  
RGP  
RN2  
5-6400 (F).n  
Figure 18. Interface Circuit Using First-Generation Codec (5 V Only Codec)  
26  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Loop power = (25 mA 1.05)2 •  
Applications (continued)  
(200 + 100 )  
Power Derating  
Loop power = 0.207 W  
SLIC power = 1.523 W – 0.207 W = 1.28  
SLIC power = 1.28 W < 1.51 W  
Operating temperature range, maximum current limit,  
maximum battery voltage, minimum dc loop, and pro-  
tection resistor values will influence the overall thermal  
performance. This section shows the relevant design  
equations and considerations in evaluating the SLIC  
thermal performance.  
Thus, in this example, the thermal design ensures that  
the SLIC will not enter the thermal shutdown state.  
Consider the L9218 SLIC in a 28-pin PLCC package.  
The still-air thermal resistance on a 2-layer board is  
typically 43 °C/W.  
Pin-for-Pin Compatibility with L9217/L9219  
The L9218 is an exact pin-for-pin replacement for the  
L9217/19. The one minor exception is L9217/19 has  
three logic control inputs: B0, B1, and B2. The L9218  
has only two logic control inputs, B0 and B1. B2 in the  
L9217/19 is pin 13. Pin 13 in L9218 is NC, so a con-  
nection between the controller and pin 13 will not affect  
L9218 operation. This allows an exact footprint match  
with L9217/19.  
The SLIC will enter the thermal shutdown state at a  
minimum of 150 °C. The thermal shutdown design  
should ensure that the SLIC temperature does not  
reach 150 °C under normal operating conditions.  
Assume a maximum ambient operating temperature of  
85 °C, a maximum current limit of 25 mA (including tol-  
erance), and a maximum battery of –52 V. Further-  
more, assume a (worst-case) minimum dc loop of  
200 , and that 50 protection resistors are used at  
both tip and ring.  
PCB Layout Information  
BAT  
Make the leads to BGND and V  
as wide as possible  
TSD  
AMBIENT(max)  
1. T  
– T  
= allowed thermal rise.  
for thermal and electrical reasons. Also, maximize the  
amount of PCB copper in the area of (and specifically  
on) the leads connected to this device for the lowest  
operating temperature.  
150 °C – 85 °C = 65 °C  
2. Allowed thermal rise = package thermal  
impedance SLIC power dissipation.  
When powering the device, make certain that no exter-  
nal potential creates a voltage on any pin of the device  
that exceeds the device ratings. In this application,  
some of the conditions that cause such potentials dur-  
ing powerup are the following:  
65 °C = 43 °C/W SLIC power dissipation  
DISS  
SLIC power dissipation (P  
) = 1.51 W  
Thus, if the total power dissipated in the SLIC is less  
than 1.51 W, it will not enter the thermal shutdown  
state. Total SLIC power is calculated as:  
1. An inductor connected to PT and PR (this can force  
BAT  
an overvoltage on V  
through the protection  
DISS  
Total P  
= maximum battery maximum  
BAT  
devices if the V  
connection chatters).  
current limit (including effects of accuracy)  
+ SLIC quiescent power  
BAT  
2. Inductance in the V  
lead (this could resonate with  
BAT  
the V  
filter capacitor to cause a destructive over-  
Q
For the L9218, SLIC quiescent power (P ) is maximum  
at 0.158 W. Thus,  
voltage).  
This device is normally used on a circuit card that is  
subjected to hot plug-in, meaning the card is plugged  
into a biased backplane connector. In order to prevent  
damage to the IC, all ground connections must be  
applied before, and removed after, all other connec-  
tions.  
DISS  
DISS  
DISS  
Total P  
Total P  
Total P  
= (–52 V [25 mA 1.05]) + 0.158 W  
= 1.365 W + 0.158 W  
= 1.523 W  
The power dissipated in the SLIC is the total power dis-  
sipation minus the power that is dissipated in the loop.  
DISS  
SLIC P  
= total power – loop power  
2
LIM  
dcLOOP  
P
Loop power = (I  
)
(R  
min + 2R )  
Agere Systems Inc.  
27  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Outline Diagram  
28-Pin PLCC  
Dimensions are in millimeters.  
12.446 ± 0.127  
11.506 ± 0.076  
PIN #1 IDENTIFIER  
4
1
26  
ZONE  
25  
5
11.506  
± 0.076  
12.446  
± 0.127  
11  
19  
12  
18  
4.572  
MAX  
SEATING PLANE  
0.10  
0.51 MIN  
TYP  
1.27 TYP  
0.330/0.533  
5-2608(F)  
28  
Agere Systems Inc.  
Data Sheet  
November 2001  
L9218A/G Low-Cost Line Interface  
Ordering Information  
Device  
Package  
Comcode  
LUCL9218AAR-D  
28-Pin PLCC  
(Dry Bag)  
108558271  
Gain of 12  
LUCL9218AAR-DT  
LUCL9218GAR-D  
LUCL9218GAR-DT  
28-Pin PLCC  
(Tape and Reel, Dry Bag)  
Gain of 12  
108558289  
108558156  
108558164  
28-Pin PLCC  
(Dry Bag)  
Gain of 2  
28-Pin PLCC  
(Tape and Reel, Dry Bag)  
Gain of 2  
Agere Systems Inc.  
29  
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.  
HP is a registered trademark of Hewlett-Packard Company.  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 7000 624624, FAX (44) 1344 488 045  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Copyright © 2001 Agere Systems Inc.  
All Rights Reserved  
November 2001  
DS02-039ALC (Replaces DS01-318ALC)  

相关型号:

L9219A

Low-Cost Line Interface with Reverse Battery and Dual Current Limit
AGERE

L9222

QUAD INVERTING TRANSISTOR SWITCH
STMICROELECTR

L9222-D

QUAD INVERTING TRANSISTOR SWITCH
STMICROELECTR

L9222D

1.2A 4 CHANNEL, AND GATE BASED PRPHL DRVR, PDSO20, SO-20
STMICROELECTR

L9222D013TR

L9222D013TR
STMICROELECTR

L9222_04

QUAD INVERTING TRANSISTOR SWITCH
STMICROELECTR

L9230

SPI CONTROLLED H-BRIDGE
STMICROELECTR

L9230-DIE1

SPI CONTROLLED H-BRIDGE
STMICROELECTR

L9230DIE1

SPI CONTROLLED H-BRIDGE
STMICROELECTR

L924GD

Optoelectronic
ETC

L924HD

Optoelectronic
ETC

L924YD

Optoelectronic
ETC