TMPR28051 [AGERE]

TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 5 of the Device; TMPR28051 STS - 1 / AU - 3 ( STM- 0 ) Mapper设备,咨询了设备第5版
TMPR28051
型号: TMPR28051
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 5 of the Device
TMPR28051 STS - 1 / AU - 3 ( STM- 0 ) Mapper设备,咨询了设备第5版

文件: 总90页 (文件大小:1071K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advisory  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 5 of the Device  
Register Architecture (RA) Map  
RA-1. Reset Bit  
The software reset bit (bit 0) of register 0x00 is not functional.  
RA-2. Transmit Path AIS Insert Bit  
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.  
RA-3. STS-1 Loss of Pointer Mask Bit  
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.  
RA-4. STS-1 Loss of Frame Mask Bit  
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.  
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits  
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of  
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).  
Error Insertion (EI)  
EI-1. DS1/E1 Alarm Indication Signal  
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1  
signal.  
EI-2. LOC Condition in E1 Loopback Mode  
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the  
loopback path is selected (the loopback signal is overwritten by TU-AIS).  
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 5 of the Device  
Advisory  
August 5, 1999  
Error Insertion (EI) (continued)  
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion  
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain  
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.  
VT Alarms (VT)  
VT-1. VT Path Payload Label Mismatch  
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-  
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with  
GR-253 Section 6.2.1.1.8.C.  
VT-2. Failure in the Detection of VT Loss of Pointer Defects  
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of  
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In  
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V fail-  
ure (nonconformance to GR 253, R6-71).  
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition  
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be  
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,  
R6-75).  
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition  
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to  
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in  
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-  
mance to GR 253, R6-183).  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai  
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
August 5, 1999  
AY99-025SONT (Must accompany DS99-068SONT)  
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 2 of the Device  
Register Architecture (RA) Map  
RA-1. Reset Bit  
The software reset bit (bit 0) of register 0x00 is not functional.  
RA-2. Transmit Path AIS Insert Bit  
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.  
RA-3. STS-1 Loss of Pointer Mask Bit  
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.  
RA-4. STS-1 Loss of Frame Mask Bit  
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.  
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits  
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of  
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).  
Error Insertion (EI)  
EI-1. DS1/E1 Alarm Indication Signal  
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1  
signal.  
EI-2. LOC Condition in E1 Loopback Mode  
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the  
loopback is selected (the loopback signal is overwritten by TU-AIS).  
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 2 of the Device  
Advisory, Rev. 2  
August 5, 1999  
Error Insertion (EI) (continued)  
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion  
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain  
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.  
EI-4. Forcing AIS Condition  
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of  
0x1E must be programmed for E1 AIS.  
VT Mapping (VT)  
VT-1. VT Path Payload Label Mismatch  
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-  
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with  
GR-253 Section 6.2.1.1.8.C.  
VT-2. Failure in the Detection of VT Loss of Pointer Defects  
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT  
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).  
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of  
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In  
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V  
failure (nonconformance to GR 253, R6-71).  
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition  
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be  
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,  
R6-75).  
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition  
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to  
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in  
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-  
mance to GR 253, R6-183).  
2
Lucent Technologies Inc.  
 
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 2 of the Device  
VT Mapping (VT) (continued)  
VT-5. C-Bit Decoding  
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.  
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of  
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be  
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result  
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This  
will force downstream equipment to experience a reframe.  
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).  
Table VT-5. Minimum Time (in Seconds) to  
False Decode Severity of the C Bit  
BER  
Theoretical  
Actual  
10–3  
10–4  
10–5  
10–6  
10–7  
10–8  
10–9  
10–10  
125  
0.25  
2.5  
12500  
1250000  
1.25e+8  
1.25e+10  
1.25e+12  
1.25e+14  
1.25e+16  
25  
250  
2500  
2.5e+4  
2.5e+5  
2.5e+6  
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.  
Test Pattern (TP) Generator/Monitor  
TP-1. Test Pattern Insert  
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.  
TP-2. Test Pattern Drop  
The test pattern detector always inverts the clock coming into the block before retiming the data.  
Jitter Attenuation (JA)  
JA-1. Jitter Attenuator  
The digital jitter attenuator buffers are not functional. The DJACTL bit in register 0x01 should be set to 0 in this  
device. Putting the device in the jitter attenuator mode (DJACTL = 1) causes loss of transmission.  
Lucent Technologies Inc.  
3
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 2 of the Device  
Advisory, Rev. 2  
August 5, 1999  
STS Path Overhead (POH)  
POH-1. False H4LOMF Indication  
Forcing a SONET/SDH line level decrement (H1, H2) from a value of either 348 or 347 results in false H4LOMF  
indications.  
Loss of Data (LOD)  
LOD-1. Loss of DS1/E1 Data  
Simultaneously forcing VT pointer adjustments while forcing SONET/SDH decrements from values of 348 and 347  
results in loss of DS1/E1 data.  
AY99-026SONT-2 Replaces AY99-026SONT to Incorporate the Following Updates  
Added issues RA-5 and EI-3 to the document.  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai  
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
August 5, 1999  
AY99-026SONT-2 (Replaces AY99-026SONT and must accompany DS99-068SONT)  
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 3 of the Device  
Register Architecture (RA) Map  
RA-1. Reset Bit  
The software reset bit (bit 0) of register 0x00 is not functional.  
RA-2. Transmit Path AIS Insert Bit  
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.  
RA-3. STS-1 Loss of Pointer Mask Bit  
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.  
RA-4. STS-1 Loss of Frame Mask Bit  
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.  
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits  
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of  
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).  
Error Insertion (EI)  
EI-1. DS1/E1 Alarm Indication Signal  
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1  
signal.  
EI-2. LOC Condition in E1 Loopback Mode  
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the  
loopback is selected (the loopback signal is overwritten by TU-AIS).  
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 3 of the Device  
Advisory, Rev. 2  
August 5, 1999  
Error Insertion (EI) (continued)  
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion  
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain  
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.  
EI-4. Forcing AIS Condition  
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of  
0x1E must be programmed for E1 AIS.  
VT Mapping (VT)  
VT-1. VT Path Payload Label Mismatch  
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-  
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with  
GR-253 Section 6.2.1.1.8.C.  
VT-2. Failure in the Detection of VT Loss of Pointer Defects  
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT  
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).  
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of  
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In  
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V  
failure (nonconformance to GR 253, R6-71).  
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition  
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be  
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,  
R6-75).  
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition  
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to  
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in  
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-  
mance to GR 253, R6-183).  
2
Lucent Technologies Inc.  
 
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 3 of the Device  
VT Mapping (VT) (continued)  
VT-5. C-Bit Decoding  
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.  
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of  
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be  
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result  
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This  
will force downstream equipment to experience a reframe.  
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).  
Table VT-5. Minimum Time (in Seconds) to  
False Decode Severity of the C Bit  
BER  
Theoretical  
Actual  
10–3  
10–4  
10–5  
10–6  
10–7  
10–8  
10–9  
10–10  
125  
0.25  
2.5  
12500  
1250000  
1.25e+8  
1.25e+10  
1.25e+12  
1.25e+14  
1.25e+16  
25  
250  
2500  
2.5e+4  
2.5e+5  
2.5e+6  
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.  
Test Pattern (TP) Generator/Monitor  
TP-1. Test Pattern Insert  
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.  
TP-2. Test Pattern Drop  
The test pattern detector always inverts the clock coming into the block before retiming the data.  
Device Version (DV)  
DV-1. Device Version Report  
The device version register, 0x16, reports the device version as 0x02.  
Lucent Technologies Inc.  
3
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 3 of the Device  
Advisory, Rev. 2  
August 5, 1999  
AY99-027SONT-2 Replaces AY99-027SONT to Incorporate the Following Updates  
Added issues RA-5 and EI-3 to the document.  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai  
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
August 5, 1999  
AY99-027SONT-2 (Replaces AY99-027SONT and must accompany DS99-068SONT)  
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 4 of the Device  
Register Architecture (RA) Map  
RA-1. Reset Bit  
The software reset bit (bit 0) of register 0x00 is not functional.  
RA-2. Transmit Path AIS Insert Bit  
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.  
RA-3. STS-1 Loss of Pointer Mask Bit  
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.  
RA-4. STS-1 Loss of Frame Mask Bit  
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.  
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits  
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of  
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).  
Error Insertion (EI)  
EI-1. DS1/E1 Alarm Indication Signal  
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1  
signal.  
EI-2. LOC Condition in E1 Loopback Mode  
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the  
loopback is selected (the loopback signal is overwritten by TU-AIS).  
 
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 4 of the Device  
Advisory, Rev. 2  
August 5, 1999  
Error Insertion (EI) (continued)  
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion  
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain  
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.  
VT Mapping (VT)  
VT-1. VT Path Payload Label Mismatch  
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in com-  
pliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with  
GR-253 Section 6.2.1.1.8.C.  
VT-2. Failure in the Detection of VT Loss of Pointer Defects  
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT  
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).  
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of  
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In  
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V  
failure (nonconformance to GR 253, R6-71).  
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition  
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be  
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,  
R6-75).  
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition  
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer  
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to  
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in  
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconfor-  
mance to GR 253, R6-183).  
2
Lucent Technologies Inc.  
 
Advisory, Rev. 2  
August 5, 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Device Advisory for Version 4 of the Device  
VT Mapping (VT) (continued)  
VT-5. C-Bit Decoding  
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.  
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of  
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be  
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result  
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This  
will force downstream equipment to experience a reframe.  
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).  
Table VT-5. Minimum Time (in Seconds) to  
False Decode Severity of the C Bit  
BER  
Theoretical  
Actual  
10–3  
10–4  
10–5  
10–6  
10–7  
10–8  
10–9  
10–10  
125  
0.25  
2.5  
12500  
1250000  
1.25e+8  
1.25e+10  
1.25e+12  
1.25e+14  
1.25e+16  
25  
250  
2500  
2.5e+4  
2.5e+5  
2.5e+6  
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.  
Device Version (DV)  
DV-1. Device Version Report  
The device version register, 0x16, reports the device version as 0x03.  
AY99-028SONT-2 Replaces AY99-028SONT to Incorporate the Following Updates  
Added issues RA-5 and E1-3 to the document.  
Lucent Technologies Inc.  
3
 
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai  
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
August 5, 1999  
AY99-028SONT-2 (Replaces AY99-028SONT and must accompany DS99-068SONT)  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Automatic receive monitoring functions can be  
configured to provide an interrupt to the control  
system, or the device can be operated in a polled  
Features  
Maps signals in one of the following ways:  
— Maps up to 28 asynchronous DS1 signals to  
SONET STS-1 via VT Groups, or SDH AU-3 via  
TUG-2.  
— Maps up to 21 asynchronous E1 signals to SDH  
AU-3 via TUG-2, or SONET STS-1 via VT  
Groups.  
mode.  
User configurable for VT/TU label, AIS-V, RDI-V,  
REI-V, force BIP-2 errors, or unequipped tributary  
insertion.  
Typical 3.3 V operation with 5 V TTL tolerant I/O  
and boundary scan.  
— Maps any valid combination of DS1/E1 signals  
at the VT Group/TUG-2 level.  
–40 °C to +85 °C temperature range.  
208-pin shrink quad flat pack (SQFP) package.  
PLL-free receive operation using built-in digital jit-  
ter attenuators.  
Provides alarm and control features to easily  
implement the latest release of the following stan-  
dards:  
High-speed microprocessor interface configurable  
to operate with most commercial microprocessors.  
GR253-CORE (12/97 with the exception of  
Inserts valid B1, B2, and B3 bit interleaved parity  
(BIP) in the transmit direction.  
G.707 (3/96),  
GR-253 section 6.2.1.1.8.C),  
G.783 (1/94), G.823.393, T1.105-1995,  
T1.105.02-1995, T1.105.03-1994,  
T1.105.03A-1995, T1.105.07-1996,  
T1.105.09-1996, ETS300.147 (1/95),  
ETS300.417-1-1 (1/96).  
Detects and counts B1, B2, and B3 BIP-8 errors on  
either a bit or block basis for performance monitor-  
ing in the receive direction.  
Detects and counts V5 BIP-2 errors on either a bit  
or block basis for performance monitoring.  
Configurable continuous B1, B2, B3, and V5 BIP-2  
error insertion.  
Applications  
SONET/SDH path termination multiplexers  
SONET/SDH add/drop multiplexers  
SONET/SDH cross connects  
Digital access cross connects  
DS1/E1 broadcast  
Configurable remote error indication (REI) inser-  
tion for B2, B3, and V5 BIP-2 errors.  
Detects and counts remote errors.  
Built-in test pattern insertion and drop for setup  
and maintenance.  
Configurable VT1.5/TU-11 slot selection for DS1  
insertion and drop.  
SONET/SDH test equipment  
Configurable VT2/TU-12 slot selection for E1  
insertion and drop.  
Description  
Detects STS-1 path loss of pointer (LOP-P), loss of  
H4 multiframe (H4LOMF), path alarm indication  
signal (AIS-P), and path remote defect indication  
(RDI-P).  
The Lucent Technologies Microelectronics Group  
TMPR28051 device is designed to map any valid  
combination of DS1 and E1 signals into a stream at a  
rate of 51.84 Mbits/s. This device provides all of the  
functions necessary to insert and drop any valid com-  
bination up to 28 asynchronous DS1 signals or 21  
asynchronous E1 signals into an SPE.  
Automatic receive monitor functions include VT/TU  
remote defect indication (RDI-V), VT/TU remote  
error indication (REI-V), BIP-2 errors, VT/TU AIS  
(AIS-V), and VT/TU loss of pointer (LOP-V).  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Table of Contents  
Contents  
Page  
Features ...................................................................................................................................................................1  
Applications ..............................................................................................................................................................1  
Description ................................................................................................................................................................1  
Block Diagram ..........................................................................................................................................................5  
Pin Information .........................................................................................................................................................6  
Nomenclature Assumptions ....................................................................................................................................10  
DS1/E1 to STS-1 Block Descriptions .....................................................................................................................10  
LOC and AIS Monitor .........................................................................................................................................10  
DS1/E1 Loopback Select Logic ..........................................................................................................................10  
Input Select Logic ...............................................................................................................................................10  
Elastic Store .......................................................................................................................................................11  
VT Generate .......................................................................................................................................................11  
STS-1/AU-3 Generate ........................................................................................................................................13  
SPE Insertion Logic ............................................................................................................................................14  
STS-1 to DS1/E1 Block Descriptions .....................................................................................................................16  
Loopback Select Logic .......................................................................................................................................16  
SPE Locate .........................................................................................................................................................16  
STS-1/AU-3 Terminate .......................................................................................................................................16  
SPE Drop Logic ..................................................................................................................................................17  
VT Terminate ......................................................................................................................................................17  
Jitter Attenuate ...................................................................................................................................................18  
Drop Select Logic ...............................................................................................................................................18  
Test Pattern Block Descriptions .............................................................................................................................19  
Test Pattern Insert ..............................................................................................................................................19  
Test Pattern Drop ...............................................................................................................................................19  
Microprocessor Interface Description .....................................................................................................................20  
Overview .............................................................................................................................................................20  
Microprocessor Configuration Modes .................................................................................................................20  
Microprocessor Interface Pins ............................................................................................................................21  
Register Architecture Map ..................................................................................................................................23  
Register Architecture Description .......................................................................................................................37  
I/O Timing ...........................................................................................................................................................60  
Absolute Maximum Ratings ....................................................................................................................................65  
Handling Precautions .............................................................................................................................................65  
Operating Conditions ..............................................................................................................................................66  
Electrical Characteristics ........................................................................................................................................66  
Timing Characteristics ............................................................................................................................................67  
Operational Timing .............................................................................................................................................67  
Transmit Sync Timing .........................................................................................................................................70  
Receive Sync Timing ..........................................................................................................................................71  
Typical Uses ...........................................................................................................................................................72  
Path Termination Multiplex .................................................................................................................................72  
Digital Cross Connect .........................................................................................................................................72  
Test Pattern Use—Complete System .................................................................................................................73  
Test Pattern Use—End to End ...........................................................................................................................73  
Outline Diagram ......................................................................................................................................................74  
208-Pin SQFP ....................................................................................................................................................74  
Ordering Information ...............................................................................................................................................75  
DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates ...................................................75  
2
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
List of Figures  
Figures  
Page  
Figure 1. Block Diagram ...........................................................................................................................................5  
Figure 2. Pin Diagram of 208-Pin SQFP ..................................................................................................................6  
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61  
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61  
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62  
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62  
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63  
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63  
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) ...................................................................64  
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) .................................................................64  
Figure 11. Interface Data Timing ............................................................................................................................68  
Figure 12. Serial Mode Transmit Sync Timing .......................................................................................................70  
Figure 13. Bus Mode Transmit Sync Timing ..........................................................................................................70  
Figure 14. Nonbus Parallel Mode Transmit Sync Timing .......................................................................................71  
Figure 15. Bus Parallel Mode Receive Sync Timing ..............................................................................................71  
Figure 16. SDH/SONET Path Termination Multiplex Application ...........................................................................72  
Figure 17. Digital Cross Connect Application .........................................................................................................72  
Figure 18. Test Pattern Usage for Complete System ............................................................................................73  
Figure 19. Test Pattern Usage for End-to-End Operation ......................................................................................73  
Lucent Technologies Inc.  
3
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
List of Tables  
Tables  
Page  
Table 1. Pin Descriptions ......................................................................................................................................... 7  
Table 2. VT1.5 Overhead Byte Format (V5) .......................................................................................................... 11  
Table 3. RFI-V, RDI-V Description ........................................................................................................................ 11  
Table 4. VT1.5 Superframe ................................................................................................................................... 12  
Table 5. VT2 Superframe ...................................................................................................................................... 12  
Table 6. STS-1 Overhead Byte Allocation ............................................................................................................. 13  
Table 7. G1 Path Condition/Performance Byte Format ......................................................................................... 13  
Table 8. VT1.5 SPE Insertion Format .................................................................................................................... 15  
Table 9. Mapping of VT1.5 # to (VT Group #, VT #) .............................................................................................. 15  
Table 10. VT2 SPE Insertion Format ..................................................................................................................... 15  
Table 11. Mapping of VT2 # to (VT Group #, VT #) ............................................................................................... 15  
Table 12. Microprocessor Configuration Modes .................................................................................................... 20  
Table 13. Mode [1—4] Microprocessor Pin Definitions ......................................................................................... 21  
Table 14. Device Register Map ............................................................................................................................. 23  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits .................................................... 37  
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection ............................................................................. 47  
Table 17. DS1/E1 Insertion Selection Format ....................................................................................................... 49  
Table 18. Registers 0x33—0x4E: VT Drop Selection ............................................................................................ 49  
Table 19. VT Drop Selection Format ..................................................................................................................... 50  
Table 20. VT to Address Mapping ......................................................................................................................... 50  
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control ................................................................... 51  
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring .................................................................................... 52  
Table 23. Registers 0x88—0x89: Signal Override Control .................................................................................... 53  
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls ...................................................................... 54  
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control .............................................................. 55  
Table 26. Register 0xBF: Block Control ................................................................................................................ 56  
Table 27. Registers 0xC0—0xFD: Detected BIP Errors ........................................................................................ 57  
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value .............................................................. 57  
Table 29. Registers 0xC0—0xFD: Detected REI Errors ........................................................................................ 58  
Table 30. Registers 0xFE—0xFF: Reserved ......................................................................................................... 58  
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes .......................................................................... 59  
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes ......................................................................... 59  
Table 33. Microprocessor Interface I/O Timing Specifications .............................................................................. 60  
Table 34. Absolute Maximum Ratings ................................................................................................................... 65  
Table 35. ESD Threshold Voltage ......................................................................................................................... 65  
Table 36. Recommended Operating Conditions ................................................................................................... 66  
Table 37. Logic Interface Characteristics .............................................................................................................. 66  
Table 38. Input Clock Specifications ..................................................................................................................... 67  
Table 39. Input Timing Specifications .................................................................................................................... 68  
Table 40. Output Clock Specifications ................................................................................................................... 69  
Table 41. Output Timing Specifications ................................................................................................................. 69  
4
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Description (continued)  
On the STS-1 side, the device can be configured for either a serial bit stream or an 8-bit parallel bus. This allows  
the device to drive an OC-1 optical signal directly and also allows for modular growth in terminal or add/drop appli-  
cations.  
On the DS1/E1 side, the device is designed to interface with the Lucent T7698FL3/T7693 Quad Line Transceiver,  
or equivalent, using the internal digital jitter attenuator buffer for PLL-free operation.  
The TMPR28051 device contains built-in test pattern insertion and drop that allows end-to-end testing for initial  
setup or maintenance without the need for external test equipment. Built-in loopbacks at both the STS-1 and DS1/  
E1 sides provide maximum flexibility for use in a number of SONET/SDH or DS1/E1 products including terminal  
multiplexers, add/drop multiplexers, and digital cross connects. A high-speed microprocessor interface and full  
user programmability for VT slot insertion and drop provide maximum flexibility for DS1/E1 I/O configuration.  
Block Diagram  
The block diagram is shown in Figure 1. For illustration purposes, only two of the DS1/E1 bidirectional blocks are  
shown.  
STS-1/AU-3  
GENERATE  
LOC AND  
AIS  
MONITOR  
DS1/E1 #1 IN  
LOOP-  
BACK  
SELECT  
LOGIC  
INPUT  
SELECT  
LOGIC  
ELASTIC  
STORE  
VT  
GENERATE  
SPE  
STS-1/AU-3 OUT  
INSERTION  
LOGIC  
INPUT  
SELECT  
LOGIC  
VT  
LOC AND  
AIS  
MONITOR  
ELASTIC  
STORE  
DS1/E1 #n IN  
LOOP-  
BACK  
GENERATE  
SELECT  
LOGIC  
MICROPROCESSOR  
INTERFACE  
TEST  
PATTERN  
INSERT  
TEST  
PATTERN  
DROP  
DROP  
SELECT  
LOGIC  
VT  
JITTER  
ATTENUATE  
DS1/E1 #1 OUT  
TERMINATE  
SPE  
LOOP-  
SPE  
LOCATE  
BACK  
DROP  
LOGIC  
SELECT  
LOGIC  
STS-1/AU-3 IN  
DROP  
SELECT  
LOGIC  
JITTER  
ATTENUATE  
VT  
DS1/E1 #n OUT  
TERMINATE  
STS-1/AU-3  
TERMINATE  
5-4875(F).ar.10  
Note: “n” represents 28 or 21 for DS1 or E1, respectively.  
Figure 1. Block Diagram  
Lucent Technologies Inc.  
5
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Pin Information  
ICT  
VSS  
VSS  
1
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
VSS  
2
TCLK19  
TDATA19  
RCLK19  
RDATA19  
VDD  
RDATA20  
RCLK20  
TDATA20  
TCLK20  
TCLK21  
VDD  
TDATA21  
RCLK21  
RDATA21  
RDATA22  
RCLK22  
TDATA22  
TCLK22  
TCLK23  
VSS  
TDATA23  
RCLK23  
RDATA23  
RDATA24  
VDD  
RCLK24  
TDATA24  
TCLK24  
TCLK25  
VSS  
TDATA25  
RCLK25  
RDATA25  
VDD  
RDATA26  
RCLK26  
TDATA26  
TCLK26  
VDD  
TCLK27  
TDATA27  
RCLK27  
RDATA27  
VDD  
TCLK10  
TDATA10  
RCLK10  
RDATA10  
RDATA9  
RCLK9  
TDATA9  
TCLK9  
TCLK8  
VDD  
TDATA8  
RCLK8  
RDATA8  
RDATA7  
RCLK7  
TDATA7  
TCLK7  
TCLK6  
VSS  
TDATA6  
RCLK6  
RDATA6  
RDATA5  
VDD  
RCLK5  
TDATA5  
TCLK5  
TCLK4  
VSS  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
TDATA4  
RCLK4  
RDATA4  
RDATA3  
RCLK3  
TDATA3  
TCLK3  
TCLK2  
VDD  
TDATA2  
RCLK2  
RDATA2  
RDATA1  
RCLK1  
TDATA1  
TCLK1  
AD7  
RDATA28  
RCLK28  
TDATA28  
TCLK28  
RESET  
VSS  
AD6  
AD5  
VSS  
VDD  
5-4873(F).cr.5  
Figure 2. Pin Diagram of 208-Pin SQFP  
6
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Pin Information (continued)  
Table 1. Pin Descriptions  
Pin  
Symbol  
Type*  
Name/Description  
47, 39, 38, 30,  
29, 20, 19, 11,  
10, 3, 206, 199,  
198, 190, 175,  
167, 166, 159,  
154, 146, 145,  
137, 136, 127,  
126, 117, 115,  
107  
TCLK[1:28]  
O
Transmit DS1/E1 Clock. DS1/E1 clock output. E1 signals can only  
occupy TCLK[1:21].  
46, 41, 37, 32,  
28, 22, 18, 13, 9,  
4, 205, 200, 197,  
191, 174, 169,  
165, 160, 153,  
147, 143, 138,  
134, 128, 124,  
118, 114, 108  
TDATA[1:28]  
RCLK[1:28]  
RDATA[1:28]  
DS1_E1N  
O
Transmit DS1/E1 Data. Transmit data output. E1 signals can only  
occupy TDATA[1:21].  
Iu  
45, 42, 36, 33,  
27, 23, 17, 14, 8,  
5, 204, 201, 195,  
192, 173, 170,  
164, 161, 152,  
148, 142, 139,  
133, 129, 123,  
119, 113, 109  
Receive DS1/E1 Clock. Receive clock input. These pins have an  
internal 20 k pull-up resistor. E1 signals can only occupy RCLK[1:21].  
Iu  
44, 43, 35, 34,  
25, 24, 16, 15, 7,  
6, 203, 202, 194,  
193, 172, 171,  
163, 162, 151,  
149, 141, 140,  
132, 131, 122,  
120, 112, 110  
Receive DS1/E1 Data. Receive data input. These pins have an inter-  
nal 20 k pull-up resistor. E1 signals can only occupy RDATA[1:21].  
102  
I
DS1/E1 Input Identifier. If this pin is pulled high, the device will default  
to DS1 to STS-1 mode and transmit 0s in the unused overhead bytes  
and 00 in the SS bits of H1. If pulled low, the device will default to E1 to  
AU-3 mode and transmit 1s in the unused overhead bytes and 10 in  
the SS bits of H1. This default selection can be overridden by setting  
TOVERRIDE and ROVERRIDE bits in registers 0x88 (bit 0) and 0x89  
(bit 0), respectively. The seven VT Groups can then be individually pro-  
grammed to carry either DS1 (TVTG-1. . . 7 = 1, RVTG-1. . . 7 = 1) or  
E1 (TVTG-1. . . 7 = 0, RVTG-1. . . 7 = 0) signals.  
101  
DS1BLUECLK  
I
I
DS1 Blue Signal Clock. In the event of a loss of input DS1 clock or an  
unprovisioned DS1 output, this clock signal is used to generate the  
DS1 blue signal (all 1s). This clock must be 1.544 MHz ± 32 ppm or 16  
times this rate when using the digital jitter attenuator.  
208  
E1BLUECLK  
E1 Blue Signal Clock. In the event of a loss of input E1 clock or an  
unprovisioned E1 output, this clock signal is used to generate the E1  
blue signal (all 1s). This clock must be 2.048 MHz ± 50 ppm or 16  
times this rate when using the digital jitter attenuator.  
u
d
* I indicates an internal pull-up; I indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will  
tolerate 5 V at their inputs.  
Lucent Technologies Inc.  
7
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Name/Description  
179  
MPMUX  
I
Microprocessor Multiplex Mode. Setting MPMUX = 1 allows the micropro-  
cessor interface to accept the multiplexed address and data signals. Setting  
MPMUX = 0 allows the microprocessor interface to accept demultiplexed  
(separate) address and data signals.  
180  
MPMODE  
I
Microprocessor Mode. When MPMODE = 1, the device uses the address  
latch enable type microprocessor read/write protocol with separate read and  
write controls. Setting MPMODE = 0 allows the device to use the address  
strobe type microprocessor read/write protocol with a separate data strobe  
and a combined read/write control.  
181  
178  
RD_R/W  
ALE_AS  
I
I
Read (Active-Low). If MPMODE = 1, this pin is asserted low by the micropro-  
cessor to initiate a read cycle.  
Read/Write. If MPMODE = 0, this pin is asserted high by the microprocessor  
to indicate a read cycle or asserted low to indicate a write cycle.  
Address Latch Enable. If MPMODE = 1, this pin becomes the address latch  
enable for the microprocessor. When this pin transitions from high to low, the  
address bus inputs are latched into the internal registers.  
Address Strobe (Active-Low). If MPMODE = 0, this pin becomes the  
address strobe for the microprocessor. When this pin transitions from high to  
low, the address bus inputs are latched into the internal registers.  
Iu  
O
87  
86  
CS  
INT  
Chip Select (Active-Low). This pin is asserted low by the microprocessor to  
enable the microprocessor interface (see Microprocessor Configuration  
Modes section on page 20). This pin has an internal 100 k pull-up resistor.  
Interrupt. This pin is asserted high to indicate an interrupt produced by an  
alarm condition in register 3 or 5. The activation of this pin can be masked by  
microprocessor registers 4 and 6.  
183  
RDY_DTACK  
O
Ready. If MPMODE = 1, this pin is asserted high to indicate the device has  
completed a read or write operation. This pin is in a high-impedance state  
when CS is high.  
Data Transfer Acknowledge (Active-Low). If MPMODE = 0, this pin is  
asserted low to indicate the device has completed a read or write operation.  
48—50,  
55—59  
AD[7:0]  
I/O Microprocessor Interface Address/Data Bus. If MPMUX = 0, these pins  
become the bidirectional, 3-statable data bus. If MPMUX = 1, these pins  
become the multiplexed address/data bus.  
60—64,  
66—68  
A[7:0]  
I
Microprocessor Interface Address. If MPMUX = 0, these pins become the  
address bus for the microprocessor interface registers.  
176  
WR_DS  
I
Write (Active-Low). If MPMODE = 1, this pin is asserted low by the micro-  
processor to initiate a write cycle.  
Data Strobe (Active-Low). If MPMODE = 0, this pin becomes the data  
strobe for the microprocessor. When R/W = 0 (write), a low applied to this pin  
latches the signal on the data bus into internal registers.  
Iu  
106  
RESET  
TCK  
Hardware Reset (Active-Low). If RESET is forced low, all internal states in  
the transceiver paths are reset and data flow through each channel will be  
interrupted (see Device-Level Control, Alarm, and Mask Bits (0x00—0x16)  
section on page 37). This pin has an internal 20 k pull-up resistor.  
Iu  
Boundary-Scan Clock. This pin has an internal 20 k pull-up resistor.  
184  
u
d
* I indicates an internal pull-up; I indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will  
tolerate 5 V at their inputs.  
8
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Name/Description  
Iu  
185  
TDI  
Boundary-Scan Input Data. This pin has an internal 20 k pull-up  
resistor.  
Iu  
Id  
186  
188  
TMS  
Boundary-Scan Mode Select. This pin has an internal 20 k pull-up  
resistor.  
TRST  
Boundary-Scan Reset (Active-Low). This pin has an internal 20 k  
pull-down resistor.  
189  
89  
TDO  
O
I
Boundary-Scan Output Data.  
TSTS1CLKIN  
Transmit STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial  
input data, or 19.44 MHz or 6.48 MHz for byte-wide data.  
90  
TSTS1SYNC  
I
Transmit STS-1 Sync. The STS-1 sync pulse can be either J0 for  
8 kHz only or a composite of J0J1V1 for 2 kHz.  
92,  
94—99  
TSTS1DATA[6:0]  
O
Transmit STS-1 Data. In the byte-wide output mode, this is bit 6—bit 0  
of the data bus. TSTS1DATA7 is the most significant bit of the output  
byte.  
100  
91  
TSTS1PAR  
O
O
Transmit STS-1 Parity. The parity output is only defined for byte-wide  
data. The device can be provisioned to source either an odd or even  
parity.  
TSTS1SERIAL/  
TSTS1DATA7  
Transmit STS-1 Serial Data/Transmit STS-1 Data Bit 7 (MSB). In  
serial mode, this pin provides 51.84 Mbits/s serial data. In parallel  
mode, this pin provides TSTS1DATA7.  
88  
82  
TSTS1CLKOUT  
RSTS1CLK  
O
I
Transmit STS-1 Output Clock.  
Receive STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial  
input data, or 19.44 MHz or 6.48 MHz for byte-wide data.  
Iu  
80, 78—75, RSTS1DATA[7:0]  
73—71  
Receive STS-1 Data. In the byte-wide input mode, this is the data bus  
with RSTS1DATA7 as the most significant bit of the input byte. This pin  
has an internal 100 k pull-up resistor.  
Iu  
70  
85  
RSTS1PAR  
Receive STS-1 Parity. The parity input is only defined for byte-wide  
data. The device can be provisioned to accept either an odd or even  
parity. This pin has an internal 100 k pull-up resistor.  
RSTS1SERIAL  
I
Receive STS-1 Serial Data. If the device is operating in the serial  
mode, then RSTS1SERIAL is used as the input data pin. In the bus  
mode, this pin is used to synchronize byte 1 of 3 (see Figure 15,  
page 71).  
Iu  
156  
ICT  
In-Circuit Test Control (Active-Low). If ICT is forced low, all output  
pins are placed in the high-impedance state. This pin has an internal  
20 k pull-up resistor.  
SS  
1, 2, 21, 31,  
51, 53, 54, 74,  
79, 81, 84,  
V
I
Ground Reference for Digital Circuitry.  
103, 105, 125,  
135, 155, 157,  
158, 177, 182,  
187, 207  
DD  
12, 26, 40, 52,  
65, 69, 83, 93,  
104, 111, 116,  
121, 130, 144,  
150, 168, 196  
u
V
I
Power Supply for Digital Circuitry.  
d
* I indicates an internal pull-up; I indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will  
tolerate 5 V at their inputs.  
Lucent Technologies Inc.  
9
 
Data Sheet  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Nomenclature Assumptions  
August 1999  
microprocessor via the AISLOCCOM composite bit in  
register 0x05 (bit 1) and the individual  
DS1/E1AIS[1:21] and DS1AIS[22:28] bits in registers  
0x17—0x32 (bit 7).  
The mapping methods (VT1.5, VT2, and VT Group in  
ANSI nomenclature; TU-11, TU-12, and TUG-2 in ITU  
nomenclature) are analogous, and for the rest of this  
document will be referred to as VT1.5, VT2, or VT  
Group. STS-1 and AU-3 are also analogous with a few  
minor differences.  
The blue signal clock input signal to the device can be  
at the exact DS1/E1 rate (1.544/2.048 MHz) or at 16  
times the DS1/E1 rate (24.704/32.768 MHz), with a tol-  
erance of 32 ppm or 50 ppm for DS1 or E1, respec-  
tively. This allows users of the Lucent Technologies  
T7698FL3/T7693 devices to reuse the XCLK on the  
board. The TMPR28051 is provisioned to accept the  
exact DS1 rate by default (BLUECLKSEL = 0 in bit 2 of  
register 0x00), but can be changed to perform the  
divide-by-16 function (BLUECLKSEL = 1 in bit 2 of reg-  
ister 0x00). The duty cycle of the clock can be 45%/  
55% because the data is retimed internally in the  
device. The duty cycle requires a much tighter toler-  
ance when used for XCLK as described earlier.  
For the remainder of this document, the 51.84 Mbits/s  
signals are referred to as STS-1.  
DS1/E1 to STS-1 Block Descriptions  
In the descriptions of the block diagram of Figure 1,  
some of the control bits exist for each of the DS1/E1 or  
VT signals.  
Upon start-up, the device will set all of the input data  
types (DS1 or E1) based on the level of the DS1_E1N  
pin (pin 102). DS1_E1N controls the value transmitted  
in the unused overhead bytes and the value of the  
transmitted spare bits (SS) in the H1 byte. If this pin is  
high, then all of the VT Groups are populated with DS1  
signals. If this pin is low, then all of the VT Groups are  
populated with E1 signals.  
DS1/E1 Loopback Select Logic  
The first stage after retiming the signal into the device  
is selection of the externally received DS1/E1  
(DS1/E1LB[1:21] or DS1LB[22:28] = 0) or the looped  
back DS1/E1 (DS1/E1LB[1:21] or DS1LB[22:28] = 1).  
This selection is provisionable per DS1/E1 input in reg-  
isters 0x17—0x32 (bit 5).  
This default selection can be overridden by setting  
TOVERRIDE and ROVERRIDE bits in registers 0x88  
(bit 0) and 0x89 (bit 0), respectively. The seven VT  
Groups can then be individually programmed to carry  
either DS1 (TVTG-1 . . . 7 = 1, RVTG-1 . . . 7 = 1) or E1  
(TVTG-1 . . . 7 = 0, RVTG-1 . . . 7 = 0) signals.  
Input Select Logic  
Once the DS1/E1 data sources have been selected,  
the DS1/E1 for each VT tributary is selected. This  
selection requires 5 bits per slot to determine  
which DS1/E1 input to use by provisioning  
LOC and AIS Monitor  
DS1/E1INS[4:0]_[1:21] or DS1INS[4:0]_[22:28] bits in  
registers 0x17—0x32 (bits 4 through 0). The range  
[1:28] following the _ refers to the target VT #. Refer to  
Table 8 on page 15 and Table 10 on page 15 for details  
on the VT locations within the SPE.  
The incoming DS1/E1 signal is first checked for loss of  
clock (LOC). LOC is reported to the microprocessor via  
the DS1/E1LOC[1:21] and DS1LOC[22:28] bit  
(LOC = 1, 0 otherwise) in registers 0x17—0x32 (bit 6)  
and also via the AISLOCCOM composite bit in register  
0x05 (bit 1). If LOC is present, the device inserts DS1/  
E1 AIS towards the STS-1 using the blue signal clock.  
The numbering scheme for the five provisioned bits  
ranges from 00001 to 11100 where the binary value of  
the 5 bits corresponds to the DS1/E1 input. For  
instance, the value 00001 corresponds to selecting  
DS1/E1 #1.  
The incoming DS1/E1 data (RDATA[28:1]) is  
retimed immediately by the associated DS1/E1 clock  
(RCLK[28:1]). The edge of the clock that is used to  
retime the data is user-provisionable at the device level  
to either the rising edge (RXDS1EDGE = 1) in register  
0x02 (bit 1) or falling edge (RXDS1EDGE = 0) in regis-  
ter 0x02 (bit 1).  
The unused value of 00000 results in VT unequipped  
being transmitted. This is the default value for all the  
VT slots at powerup. VT unequipped has a valid  
pointer and all-zero payload.  
The unused values of 11101—11110 will cause AIS-V  
to be inserted for that VT slot.  
After being retimed, the incoming data stream is  
checked for AIS. The device will declare AIS if the input  
data is at logic 1 for 3 ms. The device will withstand up  
to eight errors in the 3 ms period. AIS is reported to the  
10  
Lucent Technologies Inc.  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
In this block, the DS1/E1 data is placed into the VT,  
and the VT overhead is generated. The format of the  
VT overhead byte, V5, is shown in Table 2.  
DS1/E1 to STS-1 Block Descriptions  
(continued)  
Input Select Logic (continued)  
Table 2. VT1.5 Overhead Byte Format (V5)  
Bit # 1  
2
3
4
5
6
7
8
The value of 11111 will cause the internally generated  
test pattern to be inserted for that VT slot.  
BIP-2 REI-V RFI-V  
Signal  
Label  
RDI-V  
There are no restrictions on the number of VT slots that  
any given DS1/E1 input can supply (e.g., up to 28  
VT1.5 slots can select the same DS1 input).  
Each VT can be provisioned to insert AIS-V by assign-  
ing VTAISINS[1:28] = 1 in registers 0x4F—0x6A (bit 3).  
AIS-V consists of overwriting the entire VT payload and  
overhead with ones.  
This block can also be used to insert the test pattern  
(see Test Pattern Insert section on page 19).  
RDI-V can be automatically inserted by the device  
(VTRFIRDIEN[1:28] = 1 in registers 0x4F—0x6A, bit 6)  
or written into the V5 byte under control of the micro-  
processor (VTRFIRDIEN[1:28] = 0 in registers  
0x4F—0x6A, bit 6). In the automatic mode, the values  
for bit 4 (RFI-V) and bit 8 (RDI-V) are defined in  
Table 3. The automatic insertion mode may not meet  
the different standards body requirements unless the  
VT PTE at both ends of the path (and any intermediate  
NEs provisioned to perform intermediate-path PM on  
that path) support the protocol defined in Table 3. To  
meet the different standards requirements, the micro-  
processor mode allows programming the RDI-V and  
RFI-V bits in registers 0x4F—0x6A by programming  
VTRFIINS[1:28] (bit 5) and VTRDIINS[1:28] (bit 4),  
respectively.  
Elastic Store  
The selected DS1/E1 clock and data signals are fed to  
an elastic store that is used to synchronize the incom-  
ing DS1/E1 to the local STS-1 clock. This block deter-  
mines the need for positive/zero/negative (P/Z/N)  
stuffing for each input. Data that is transmitted from this  
block is synchronized to the local transmit STS-1 clock  
(TSTS1CLK). This block allows the device to accept  
DS1 signals at 1.544 Mbits/s ± 130 ppm with up to ±5  
unit intervals peak jitter, or E1 signals at 2.048 Mbits/s  
± 130 ppm with up to ±5 unit intervals peak jitter.  
VT Generate  
Table 3. RFI-V, RDI-V Description  
This block generates the VT superframe. Unless AIS-V  
is being forced, the superframe is built with a fixed out-  
put pointer value of decimal 78 in all the VT1.5 slots.  
The VT size field is set to 11 binary, and the new data  
flag is set to 0110 binary. This corresponds to 0x6C4E  
for the V1 and V2 bytes within the VT1.5 superframe.  
Bit 4  
Bit 8  
Description  
No alarm  
0
0
1
1
0
1
0
1
AIS-V or LOP-V  
VT payload mismatch  
VT unequipped  
Also, unless AIS-V is being forced, the superframe is  
built with a fixed output pointer value of decimal 105 in  
all the VT2 slots. The VT size field is set to 10 binary,  
and the new data flag is set to 0110 binary. This corre-  
sponds to 0x6869 for the V1 and V2 bytes within the  
VT2 superframe.  
The VT label for each VT is also provisionable through  
the microprocessor by programming the  
VTLABINS[2:0]_[1:28] in registers 0x4F—0x6A, bit 2  
through bit 0.  
Lucent Technologies Inc.  
11  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Table 5. VT2 Superframe  
DS1/E1 to STS-1 Block Descriptions  
(continued)  
V1  
V5  
RRRRRRRR  
VT Generate (continued)  
Byte 1  
:
Byte 32  
RRRRRRRR  
V2  
In addition to generating the superframe, this block  
automatically generates the BIP-2 signal. Each VT can  
be configured to intentionally insert continuous BIP-2  
errors for troubleshooting purposes (BIP2ERINS[1:28]  
= 1 in bit 7 of registers 0x4F—0x6A). This BIP error  
insert field forces errors on both BIP-2 bits.  
J2  
C1C2OOOORR  
Byte 1  
The resultant VT1.5 and VT2 superframes are shown  
in Table 4 and Table 5,  
:
Byte 32  
RRRRRRRR  
V3  
Z6/N2  
C1C2OOOORR  
Byte 1  
VT2  
Superframe  
Where:  
Byte[24/32:1] = information bit  
O = overhead bit  
R = fixed stuff bit  
:
V1, V2, V3 = pointer and pointer action bytes  
S1, S2 = stuff opportunity bits  
V4 = reserved  
Byte 32  
RRRRRRRR  
V4  
Z7/K4  
C1, C2 = stuff indication bits  
V5 = VT overhead byte  
C1C2RRRRRS1  
S2 Byte 1[6:0]  
:
Byte 32  
RRRRRRRR  
J2, Z6/N2, Z7/K4 = unused  
Table 4. VT1.5 Superframe  
V1  
V5  
RRRRRRIR  
Byte 1  
:
Byte 24  
V2  
J2  
C1C2OOOOIR  
Byte 1  
:
VT1.5  
Byte 24  
Superframe  
V3  
Z6/N2  
C1C2OOOOIR  
Byte 1  
:
Byte 24  
V4  
Z7/K4  
C1C2RRRS1S2R  
Byte 1  
:
Byte 24  
12  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
The device inserts the correct frame pattern of 0xF628  
into the A1 and A2 bytes.  
DS1/E1 to STS-1 Block Descriptions  
(continued)  
The device inserts a fixed value of 0x01 into the J0  
byte.  
VT Generate (continued)  
The device generates and inserts valid B1, B2, and B3  
BIP-8 even parity bytes into the STS-1 overhead.  
These bytes are forced to odd parity when  
The device would transmit 0 in each of the O bits when  
the DS1_E1N pin is pulled high. If DS1_E1N is pulled  
low, the device will transmit 1 in each of the O bits.  
B[1:3]ERRINS = 1 in bit 6 through bit 4 of register 0x00.  
The R bits are always set to 1.  
The device will provide an STS-1 pointer with a fixed  
value of 522 (decimal) with 0110 in the new data flag  
(NDF) bits. The SS bits are determined by the level of  
the DS1_E1N pin. When this pin is high, the device  
puts 00 in the SS bits. When this pin is low, the device  
puts 10 in the SS bits. This pointer value indicates that  
the J1 path overhead byte follows immediately after the  
J0 line overhead byte.  
The device transmits all 1s in the J2, Z6/N2, and Z7/K4  
bytes.  
The device can be configured such that any detected  
BIP-2 errors in the VT receive side result in REI-V  
being written into the corresponding transmit VT slot  
(when REI_EN = 1 in bit 7 of register 0x01).  
The J1 byte is used for path trace. This byte repetitively  
transmits a 64-byte fixed length sequence to verify  
end-to-end connectivity. These 64 bytes are program-  
mable by the microprocessor by provisioning  
TJ1BYTE[7:0]_[64:1] in registers 0xC0—0xFF (when  
TJ1BYTE = 1 in register 0xBF). The method for pro-  
gramming these bits is described in detail in the regis-  
ter description of the transmit J1 path trace bytes,  
page 59.  
STS-1/AU-3 Generate  
The device generates an STS-1 signal based on an  
incoming clock (TSTS1CLK) and frame sync pulse  
(TSTS1SYNC). The frame sync pulse can be a single  
clock-period wide to indicate an 8 kHz sync, or it can  
contain pulses in three clock periods to indicate a com-  
posite 2 kHz sync. (See the Transmit Sync Timing sec-  
tion, page 70.)  
The F2 byte can be provisioned by the microprocessor  
(F2INS-[7:0]) in register 0x10.  
The STS-1 frame is 9 rows x 90 columns that repeats  
at an 8 kHz rate. Each column is 1-byte wide. The  
STS-1 frame contains three columns of transport over-  
head, one column of path overhead, and 86 columns of  
payload.  
The device inserts a value of 0x02 into the C2 byte,  
indicating VT structured STS-1 SPE.  
The three least significant bits of the K2 byte can be  
provisioned by the microprocessor (K2INS-[6:8]) in reg-  
ister 0x11.  
The 36 bytes of STS-1 overhead are allocated as  
shown in Table 6.  
Table 6. STS-1 Overhead Byte Allocation  
The four least significant bits of the S1 byte can be pro-  
visioned by the microprocessor (S1INS-[3:0]) in regis-  
ter 0x13.  
Col. 1  
Col. 2  
Col. 3  
Col. 4  
Row 1  
Row 2  
Row 3  
Row 4  
Row 5  
Row 6  
Row 7  
Row 8  
Row 9  
A1  
B1  
D1  
H1  
B2  
D4  
D7  
D10  
S1  
A2  
E1  
J0  
F1  
J1  
B3  
The M0 byte is used to report B2 line REI (REI-L) when  
REI_EN = 1 in register 0x01. This register contains the  
number of B2 BIP-8 errors detected in the current  
receive frame circuitry when REI_EN = 1 (bit 7 0f regis-  
ter 0x01). Valid values for these 4 bits are 0000—1000.  
D2  
H2  
K1  
D3  
H3  
K2  
D6  
D9  
D12  
E2  
C2  
G1  
F2  
D5  
D8  
D11  
M0  
H4  
The G1 byte is used to convey path condition and per-  
formance back to the far end. The format of the G1  
byte is shown in Table 7.  
Z3/F3  
Z4/K3  
Z5/N1  
Table 7. G1 Path Condition/Performance Byte  
Format  
The overhead bytes that are inserted by the device are  
described below. All of the remaining overhead bytes  
are given a fixed value of all 0s when DS1_E1N (bit 0  
in register 0x07) is high, or all 1s when DS1_E1N is  
low.  
Bit #  
1
2
3
4
5
6
7
8
REI-P  
User-Provisioned  
RDI-P  
Lucent Technologies Inc.  
13  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
SPE Insertion Logic  
DS1/E1 to STS-1 Block Descriptions  
(continued)  
In addition to the one column of path overhead and 84  
columns of VT payload, the STS-1 SPE also contains  
two columns of fixed stuff bytes. The path overhead is  
located in column #1, while column #30 and column  
#59 contain the fixed stuff bytes. The remaining col-  
umns contain the interleaved VT data as shown in  
Table 8.  
STS-1/AU-3 Generate (continued)  
Path remote error indicator (REI-P) reports the number  
of remote errors. The four REI-P bits contain the num-  
ber of B3 BIP-8 errors detected in the current frame  
when REI_EN = 1 (bit 7 of register 0x01). Valid values  
for these 4 bits are 0000—1000. The path remote  
defect indicator (RDI-P) bits report back such condi-  
tions as receive AIS-P, signal failure, and path trace  
mismatch. These bits, 5 through 8 of the G1 byte  
(G1INS-[5:8] in register 0x11), are user programmable  
by the microprocessor and are not inserted automati-  
cally by the device.  
The SPE insertion logic block acts in conjunction with  
the STS-1 frame generate block to place the VT infor-  
mation in the transmitted data stream.  
The cross-referencing between the VT1.5 # listed in  
Table 8 and the standard format (VT Group #, VT #)  
listed in GR-253-CORE section 3.2.4 is shown in  
Table 9.  
The H4 byte is inserted using the reduced H4 coding  
sequence format, where the 6 most significant bits are  
ones, and the 2 least significant bits take on the follow-  
ing values: 00-01-10-11-00, etc. The value of 00 indi-  
cates that the next STS-1 SPE contains the V1  
overhead byte.  
The cross-referencing between the VT2 # listed in  
Table 10 and the standard format (VT Group #, VT #)  
listed in GR-253-CORE section 3.2.4 is shown in  
Table 11.  
The STS-1 can be provisioned to send AIS-P  
(TXPAISINS = 1 in bit 5 of register 0x01). Writing AIS-P  
consists of writing all 1s into the H1—H3 bytes and the  
entire SPE.  
The transmitted STS-1 can be configured to scramble  
the output data (STS1SCR = 1 in bit 2 of register 0x01)  
or transmit the data without scrambling (STS1SCR = 0  
in bit 2, register 0x01). It is useful to turn off SONET  
scrambling if the data is going to be immediately multi-  
plexed into a higher rate SONET signal. When  
STS1SCR = 1 in register 0x01, the device scrambles  
the outgoing STS-1 frame according to the SONET  
frame synchronous scrambling sequence 1 + x6 + x7.  
The sequence is reset to 1111111 at the beginning of  
the byte following the C1 byte and scrambles all of the  
STS-1 data except the A1, A2, and C1 bytes. When  
this bit is 0, then the transmit data is not scrambled by  
the device.  
14  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
DS1/E1 to STS-1 Block Descriptions (continued)  
SPE Insertion Logic (continued)  
Table 8. VT1.5 SPE Insertion Format  
SPE Column # 1 2 3 4 5 6 7 8 9 1 1  
0 1  
2 2 3 3 3  
8 9 0 1 2  
5 5 5 6 6 6  
7 8 9 0 1 2  
8 8 8 8 8 8 8  
1 2 3 4 5 6 7  
P V V V V V V V V V V • • • V V F V V • • • V V F V V V • • • V V V V V V V  
A T T T T T T T T T T  
T 1 1 1 1 1 1 1 1 1 1  
H . . . . . . . . . .  
5 5 5 5 5 5 5 5 5 5  
O # # # # # # # # # #  
H 1 2 3 4 5 6 7 8 9 1  
0
T T I T T  
1 1 X 1 1  
. . E . .  
5 5 D 5 5  
T T I T T T  
1 1 X 1 1 1  
. . E . . .  
5 5 D 5 5 5  
T T T T T T T  
1 1 1 1 1 1 1  
. . . . . . .  
5 5 5 5 5 5 5  
# # # # # # #  
2 2 2 2 2 2 2  
2 3 4 5 6 7 8  
# #  
2 2  
7 8  
# #  
1 2  
# #  
2 2  
7 8  
# # #  
1 2 3  
Table 9. Mapping of VT1.5 # to (VT Group #, VT #)  
VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #)  
1
2
3
4
5
6
7
1, 1  
2, 1  
3, 1  
4, 1  
5, 1  
6, 1  
7, 1  
8
1, 2  
2, 2  
3, 2  
4, 2  
5, 2  
6, 2  
7, 2  
15  
16  
17  
18  
19  
20  
21  
1, 3  
2, 3  
3, 3  
4, 3  
5, 3  
6, 3  
7, 3  
22  
23  
24  
25  
26  
27  
28  
1, 4  
2, 4  
3, 4  
4, 4  
5, 4  
6, 4  
7, 4  
9
10  
11  
12  
13  
14  
Table 10. VT2 SPE Insertion Format  
SPE Column # 1 2 3 4 5 6 7 8 9 1 1  
0 1  
2 2 3 3 3  
8 9 0 1 2  
5 5 5 6 6 6  
7 8 9 0 1 2  
8 8 8 8 8 8 8  
1 2 3 4 5 6 7  
P V V V V V V V V V V • • • V V F V V • • • V V F V V V • • • V V V V V V V  
A T T T T T T T T T T  
T 2 2 2 2 2 2 2 2 2 2  
H # # # # # # # # # #  
1 2 3 4 5 6 7 8 9 1  
T T I T T  
2 2 X 2 2  
# # E # #  
6 7 D 8 9  
T T I T T T  
2 2 X 2 2 2  
# # E # # #  
1 1 D 1 1 1  
T T T T T T T  
2 2 2 2 2 2 2  
# # # # # # #  
1 1 1 1 1 2 2  
5 6 7 8 9 0 1  
O
H
0
3 4  
5 6 7  
Table 11. Mapping of VT2 # to (VT Group #, VT #)  
VT2 # (VT Group #, VT #) VT2 # (VT Group #, VT #) VT2 # (VT Group #, VT #)  
1
2
3
4
5
6
7
1, 1  
2, 1  
3, 1  
4, 1  
5, 1  
6, 1  
7, 1  
8
1, 2  
2, 2  
3, 2  
4, 2  
5, 2  
6, 2  
7, 2  
15  
16  
17  
18  
19  
20  
21  
1, 3  
2, 3  
3, 3  
4, 3  
5, 3  
6, 3  
7, 3  
9
10  
11  
12  
13  
14  
Lucent Technologies Inc.  
15  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
with the data. This bit is configurable to odd  
DS1/E1 to STS-1 Block Descriptions  
(continued)  
(RXPARITY = 1 in bit 5 of register 0x02) or even  
(RXPARITY = 0 in bit 5 of register 0x02) parity. Errors  
in this bit are reported to the microprocessor  
(RXPARER in bit 6 of register 0x03).  
SPE Insertion Logic (continued)  
The bus mode of operation is similar to normal opera-  
tion in the DS1/E1 to STS-1 direction. The device  
defaults to the bus mode (RBUSMODE = 1 in bit 5 of  
register 0x12) of operation and listens to none of the  
receive channels (RBUSPOS-[1:0] = 00 in bit 4 and  
bit 3 of register 0x12). The sync pulse is used only to  
define time slot #1 of the three that are possible. Bus  
mode operation requires at least one sync pulse to  
define the time slot.  
The device can transmit the data as either a serial bit  
stream (TXSERIAL = 1 in register 0x02, bit 6) or as a  
parallel byte of data (TXSERIAL = 0 in register 0x02,  
bit 6). There are two parallel modes of operation: bus  
mode and nonbus mode. Bus mode allows multiple  
TMPR28051 devices to operate on a 19.44 MHz bus;  
in nonbus mode, the device transmits data in a  
point-to-point fashion at 6.48 MHz. In either parallel  
mode, the device sends a parity bit with the data.  
This parity bit is configurable to be either odd  
The STS-1 locate block performs the functions neces-  
sary to locate the SPE. The device will frame on the  
incoming STS-1 signal, and indicate when it is in the  
out of frame (OOF) condition (STS1OOF = 1 in bit 0 of  
register 0x03) or loss of frame (LOF) condition  
(STS1LOF = 1 in bit 1 of register 0x03). Loss of frame  
is defined as being in the OOF condition for 3 ms or  
more. Both the OOF and LOF are current state condi-  
(TXPARITY = 1 in register 0x02, bit position 4) or even  
(TXPARITY = 0 in register 0x02, bit position 4) parity.  
The bus mode of operation requires the device to  
select which STS-1 time slot of the three that are avail-  
able to transmit data. The TBUSMODE bit (bit 2) in reg-  
ister 0x12 determines whether the device operates in  
bus mode (TBUSMODE = 1) or nonbus mode  
(TBUSMODE = 0). By default, the device powers up in  
bus mode. The TBUSPOS bits (bit 1 and bit 0) in regis-  
ter 0x12 determine in which of the three time slots the  
device transmits. By default, the device does not trans-  
mit (TBUSPOS-[1:0] = 00 in register 0x12), but it can  
be configured to transmit during any of the three STS-1  
time slots on the 19.44 MHz bus.  
µ
tions; they hold their value for a minimum of 500 s  
after the event. The indications reset if the condition is  
no longer true.  
The device monitors the received data bytes for contin-  
uous ones or zeros. If the number of continuous data  
bytes exceeds the provisioned value (LOSDET-[7:0] in  
register 0x91), then loss of signal (STS1LOS = 1 in  
bit 0 of register 0x05) is declared. If the value in  
LOSDET-[7:0] in register 0x91 is 0x00, then LOS is not  
declared.  
In all three modes, the device frame sync input allows  
the 8 kHz STS-1 frames as well as the 2 kHz VT super-  
frames to be aligned.  
STS-1/AU-3 Terminate  
STS-1 to DS1/E1 Block Descriptions  
The STS-1 terminate block can descramble the output  
data (STS1DSCR = 1 in bit 1 of register 0x01) or output  
the received data without descrambling  
(STS1DSCR = 0 in bit 1 of register 0x01). It is useful to  
turn off descrambling if the data is received locally from  
a higher-rate signal where descrambling has already  
taken place.  
Loopback Select Logic  
The device can be configured to loop back the transmit  
STS-1 (STS1LB = 1 in bit 0 of register 0x01) or accept  
the receive STS-1 signal (STS1LB = 0 in bit 0 of regis-  
ter 0x01). When the receive STS-1 signal is selected,  
the user can configure which edge of the clock to use  
to retime the data (RXSTS1EDGE = 1 in bit 3 of regis-  
ter 0x02 uses the rising edge; RXSTS1EDGE = 0 in  
bit 3 of register 0x02 uses the falling edge).  
For performance monitoring purposes, there are a  
number of BIP and REI error counters (registers  
0xC0—0xFF) in the receive section of the device. All of  
these internal counters are comprised of a running  
error counter and a hold register that presents stable  
results to the microprocessor. The counts in all of the  
running counters are latched to the hold registers when  
LATCH_CNT (bit 3) in register 0x00 is written from 0 to  
1. This also resets all of the running counters. The  
results are then held until read by the microprocessor.  
SPE Locate  
The device can receive data as either a serial bit  
stream (RXSERIAL = 1 in bit 7 of register 0x02) or as a  
parallel byte (RXSERIAL = 0 in bit 7 of register 0x02).  
In the parallel mode, the device receives a parity bit  
16  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
The device can be provisioned to count bits in error  
(BIPBLKCNT = 0 in bit 1 of register 0x00) or blocks in  
error (BIPBLKCNT = 1 in bit 0 of register 0x00).  
STS-1 to DS1/E1 Block Descriptions  
(continued)  
The J1 byte is terminated within the device. This con-  
sists of writing the receive J1 sequentially in a 64-byte  
register (modulo 64).  
STS-1/AU-3 Terminate (continued)  
All of the internal counters have the ability to store  
more than one second of counts. As long as the  
LATCH_CNT (bit 3) in register 0x00 occurs every sec-  
ond or faster, no counts will be lost. In case this does  
not happen, all of the running counters will hold their  
maximum value rather than roll over to zeros.  
At start-up, the receive J1 byte register is all 0s. When-  
ever the received J1 byte value does not match the  
current J1 byte in the register, the path trace mismatch  
TRACEER bit (bit 7 in register 0x03) is set to logic 1.  
This allows the user to read the 64-byte register once,  
and then ignore it unless differences are received.  
TRACEER bit (bit 7 in register 0x03) is masked during  
AIS-P and LOP-P.  
The device performs pointer interpretation on the  
incoming signal to locate the start of the SPE. The  
pointer interpretation block will indicate when the  
device is in the path loss of pointer (LOP-P) or path AIS  
(AIS-P) condition.  
The F2 byte (F2-[7:0] in register 0x0B), the C2 byte  
(C2-[7:0] in register 0x0C), the 3 least significant bits of  
the K2 byte (K2-[6:8] in register 0x0D), the 4 least sig-  
nificant bits of the S1 byte (S1-[3:0] in register 0x14),  
and the 4 least significant bits of the G1 byte (G1-[5:8]  
in register 0x0D) are monitored by the microprocessor.  
The number of consistent, consecutive frames to  
update the values of all of these monitored bytes can  
be set by the user to anywhere between 2 and 15  
frames (F2#DET-[3:0] in register 0x0E, C2#DET-[3:0]  
in register 0x0E, K2#DET-[3:0] in register 0x0F,  
G1#DET-[3:0] in register 0x0F). None of these regis-  
ters will update during OOF condition.  
Loss of pointer condition is declared as the result of  
either of the following conditions:  
1. Continuous NDF—If the device receives 1001 in the  
NDF field for nine consecutive frames, then LOP-P  
is declared.  
2. Invalid pointer values—If the device receives nine  
frames consecutively of a pointer that is not a nor-  
mal value, NDF, AIS-P, increment, or decrement,  
then LOP-P is declared. The SS bits do not contrib-  
ute to LOP-P when DS1_E1N is high; otherwise, a  
non-10 value in the SS bits will contribute to  
LOP-P.  
SPE Drop Logic  
AIS-P is declared on three consecutive frames with all  
1s in the H1 and H2 bytes.  
The SPE drop logic uses the H4 multiframe indicator to  
identify the V1 byte and drop the data to the correct VT  
termination blocks. Loss of multiframe synchronization  
will be reported to the microprocessor (H4LOMF = 1 in  
bit 4 of register 0x03).  
AIS-P and LOP-P are mutually exclusive conditions. If  
neither STS1PAIS (bit 3 in register 0x03) or STS1LOP  
(bit 2 in register 0x03) is a logic 1, then the pointer  
interpreter declares a normal pointer. As part of the  
normal operation, the device will respond appropriately  
to valid NDF, increment, and decrement indications.  
Increment and decrement operations will be counted  
by the device and presented to the microprocessor via  
the SPTR+[7:0] and SPTR–[7:0] bits in registers 0xFE  
and 0xFF, respectively.  
VT Terminate  
The VT terminate block performs VT pointer interpreta-  
tion on the received signal to locate the VT overhead.  
LOP-V (VTLOP[1:28] bit 6 in registers 0x6B—0x86)  
and AIS-V (VTAIS[1:28] bit 3 in registers 0x6B—0x86)  
are reported to the microprocessor. LOP-V is declared  
as a result of either of the following conditions:  
The B1, B2, and B3 BIP-8 values are recalculated and  
compared to the received values. Any differences are  
counted by the appropriate error counter  
(B[1:3]BIPCNT-[15:0] in registers 0xC0—0xC5 when  
BIP_CNTS = 1 in register 0xBF). In addition, B2 and  
B3 REI errors are also counted in registers  
0xC2—0xC5 (B[2:3]REI-[15:0]; register 0xBF settings:  
REI_CNTS = 1 and BIP_CNTS = 0). The running and  
latched counts for both B1 and B2 counters are held at  
zero during OOF. The running and latched counts for  
B3 counters are held at zero during OOF as well as  
LOP-P.  
1. Continuous NDF—If the device receives 1001 in the  
NDF field for nine consecutive superframes, then  
LOP-V is declared.  
2. Invalid pointer values—If the device receives nine  
frames consecutively of a pointer that is not a nor-  
mal value, NDF, AIS-V, increment, or decrement,  
then LOP-V is declared. The SS bits do contribute  
to LOP-V.  
Lucent Technologies Inc.  
17  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Jitter Attenuate  
STS-1 to DS1/E1 Block Descriptions  
(continued)  
Each of the 28 VTs has a built-in digital jitter attenuator  
to remove the effects of mapping jitter and pointer  
adjustment jitter. The bits in registers 0x8A—0x8F are  
used to control various aspects of the digital jitter atten-  
uator. Two programmable terms are used to set the  
2nd-order loop damping factor and natural frequency of  
the PLL. These terms are the gain threshold, set by  
DJAGTHR[23:0] in registers 0x8D—0x8F, and scale  
value, set by DJASCALE[15:0] in registers  
VT Terminate (continued)  
AIS-V is declared on three consecutive superframes  
with all 1s in the V1 and V2 bytes.  
AIS-V and LOP-V are mutually exclusive conditions. If  
neither VTAIS[1:28] (bit 3 in registers 0x6B—0x86) or  
VTLOP[1:28] (bit 6 in registers 0x6B—0x86) is a  
logic 1, then the pointer interpreter declares a normal  
pointer. As part of the normal operation, the device will  
respond appropriately to valid NDF, increment, and  
decrement indications. Increment and decrement oper-  
ations will be counted by the device and presented to  
the microprocessor via bits VT[1:28]PTR+[3:0] in regis-  
ters 0xC6—0xFF (BIP_CNTS = 1), and via  
0x8B—0x8C. The PLL bandwidth can be set using the  
above registers to accommodate various system con-  
straints.  
The digital jitter attenuator block can be enabled by  
setting the bit DJACTL = 1 (bit 4) in register 0x01.  
These digital jitter attenuators require a blue signal  
clock that runs at 16 times the nominal output rate.  
VT[1:28]PTR–[3:0] in registers 0xC6—0xFF  
(REI_CNTS = 1 and BIP_CNTS = 0), respectively.  
The digital jitter attenuators are designed to meet cur-  
rent jitter specifications as well as maximum time inter-  
val error (MTIE) requirements. The clock transmitted  
from this block nominally has a 50% duty cycle. The jit-  
ter attenuator block can be bypassed by setting  
Mismatches between the expected VT size bits, bit 11  
for VT1.5 and bit 10 for VT2, and the actual received  
SS size bits are reported to the microprocessor  
VTSIZEER[1:28] bit (bit 7 in registers 0x6B—0x86).  
DJACTL = 0 (bit 4) in register 0x01. If this block is  
bypassed, the output produces gapped clock and data.  
Once the V5 byte is located, the device checks for  
received BIP-2 errors (B2BIPCNT-[15:0] in registers  
0xC0—0xC1 when BIP_CNTS bit in register 0xBF is  
set to 1) and received REI (B[2:3]REI-[15:0] in registers  
0xC2—0xC5 when REI_CNTS and BIP_CNTS in reg-  
ister 0xBF are set to a 1 and 0, respectively). In addi-  
tion to reporting the occurrence of BIP-2 errors and  
REI, the device also maintains a count of each of these  
on a per VT basis (VTREI[7:0]_[1:28] in registers  
0xC7—0xFD: REI_CNTS = 1, BIP_CNTS = 0, and  
BIP2CNT[7:0]_[1:28] in registers 0xC7—0xFD:  
BIP_CNTS = 1). These running and latched counts for  
both BIP-2 and REI counters are held at zero during  
OOF, LOP-P, LOP-V, and AIS-V.  
Drop Select Logic  
Once the VT has been terminated, the source VT for  
each DS1/E1 output is selected. This selection  
requires 5 bits per slot to determine which VT to use by  
programming VTDROP[4:0]_[1:28] bits (bits 4 through  
0 in registers 0x33—0x4E). The numbering scheme for  
the five provisioned bits ranges from 00001 to 11100,  
where the binary value of the 5 bits corresponds to the  
VT source. For instance, the value 00001 corresponds  
to selecting VT Group 1, VT #1.  
The unused values of 00000 and 11101—11110 will  
cause AIS to be inserted for that DS1 output. By  
default, all DS1/E1 outputs reset to a value of 00000 on  
powerup, which causes all of the DS1/E1s to transmit  
AIS (all 1s) using the blue signal clock.  
Additionally, the device checks for received RFI-V and  
RDI-V (bit 5 and bit 4, respectively, in registers  
0x6B—0x86) and received VT label  
(VTLAB[2:0]_[1:28], bit 2 through bit 0 in registers  
0x6B—0x86). Whenever the device receives three  
consecutive consistent values for the VT label fields  
that are different from the current values, it latches the  
new value and reports the change to the microproces-  
sor. When a 1 is received in VTRDI0_[1:28], bit 4 in  
registers 0x6B—0x86 (represents bit 8 of the VT V5  
overhead byte), for 10 consecutive superframes, it  
declares an RDI-V condition.  
The value of 11111 will insert the test pattern as  
described next.  
18  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Test Pattern Drop  
Test Pattern Block Descriptions  
The test pattern detector can detect the same four test  
sequences generated by the test pattern generator  
(RCV_PAT-[1:0] in bit positions 4 and 5 of register  
0x08). When the detector is out of synchronization, the  
device continuously monitors the input data signal for  
matches with the expected data signal. When the  
device detects 32 matches in a row, it declares itself in  
sync (TPOOS = 0 in bit 7 of register 0x0A), and the  
error detector is enabled. If the device detects eight  
consecutive bit mismatches, the test pattern detector  
declares itself out of sync (TPOOS = 1), and starts  
searching again.  
The device contains a test pattern generator and a test  
pattern detector for use in maintenance and trouble-  
shooting.  
Test Pattern Insert  
The test pattern generator is capable of transmitting  
four different test patterns (XMT_PAT-[1:0] in bit posi-  
tions 0 and 1 of register 0x08). In addition to a 215 – 1,  
a 220 – 1, and a 223 – 1 sequence, the device can also  
transmit a QRSS sequence. The QRSS pattern is a  
220 – 1 pseudorandom bit sequence defined by the  
equation 1 + x17 + x20 = 0, with a 14 zero limit.  
The test pattern detector can be configured to look for  
a framed (RCV_FRAME = 1 in bit 6 of register 0x08) or  
unframed (RCV_FRAME = 0 in bit 6 of register 0x08)  
signal.  
As can be seen in Figure 1 on page 5, this test pattern  
can be inserted in the place of any of the transmitted or  
received DS1/E1 signals. The test pattern can also be  
provisioned to be framed (XMT_FRAME = 1 in bit 2 of  
register 0x08) or unframed (XMT_FRAME = 0 in bit 2  
of register 0x08). The framed sequence can be either  
DS1 SF format (TP_DS1E1N = 1 in bit 7 of register  
0x09) or E1 format (TP_DS1E1N = 0 in bit 7 of register  
0x09). The test pattern can also be forced to transmit a  
bit error (ERROR_INS bit in register 0x08, bit position  
3, is forced to make low to high transition). The test  
patterns are O.151 compliant, so they can be used to  
drive external test equipment as well as to perform  
internal maintenance and troubleshooting.  
While in sync, the device counts the number of times  
the input data differs from the expected data in a 7-bit  
counter, TPERR-[6:0] (bit 0 through bit 6 in register  
0x0A), that holds its count when it reaches the maxi-  
mum value of 128. This counter is reset when the  
LATCH_TP bit (bit 7) in register 0x08 makes a 0 to 1  
transition.  
Lucent Technologies Inc.  
19  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description  
Overview  
The device is equipped with an asynchronous microprocessor interface that allows operation with most commer-  
cially available microprocessors. Inputs MPMUX and MPMODE are used to configure this interface into one of four  
possible modes. The MPMUX setting selects either a multiplexed 8-bit address/data bus (AD[7:0]), or a demulti-  
plexed 8-bit address bus (A[7:0]) and an 8-bit data bus (AD[7:0]). The MPMODE setting selects the associated set  
of registers within the device.  
The microprocessor interface can operate at speeds up to 33 MHz in interrupt-driven or polled mode without  
wait-states. To conform to standards, there are a limited number of default powerup or reset states. All read/write  
registers must be written by the microprocessor on system start-up to guarantee proper device functionality.  
Microprocessor Configuration Modes  
Table 12 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs.  
Table 12. Microprocessor Configuration Modes  
Mode  
MPMODE MPMUX  
Address/Data  
Bus  
Generic Control, Data, and Output Pin Names  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
0
0
1
1
0
1
0
1
DeMUXed  
MUXed  
CS, AS, DS, R/W, A[7:0], AD[7:0], INT, DTACK  
CS, AS, DS, R/W, AD[7:0], INT, DTACK  
CS, ALE, RD, WR, A[7:0], AD[7:0], INT, RDY  
CS, ALE, RD, WR, AD[7:0], INT, RDY  
DeMUXed  
MUXed  
20  
Lucent Technologies Inc.  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Microprocessor Interface Pins  
The mode [1—4] specific pin definitions are given in Table 13. Note that the microprocessor interface uses the  
same set of pins in all modes.  
Table 13. Mode [1—4] Microprocessor Pin Definitions  
Configuration  
Device Pin  
Name  
Generic Pin  
Name  
Pin Type Assertion  
Sense  
Function  
Mode 1  
WR_DS  
RD_R/W  
DS  
Input  
Input  
Active-Low Data Strobe  
R/W  
Read/Write  
R/W = 1 for Read  
R/W = 0 for Write  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Output  
Output  
I/O  
Address Strobe  
Active-Low Chip Select  
Active-High Interrupt  
INT  
INT  
RDY_DTACK  
AD[7:0]  
A[7:0]  
DTACK  
AD[7:0]  
A[7:0]  
DS  
Active-Low Data Acknowledge  
Data Bus  
Input  
Input  
Input  
Address Bus  
Mode 2  
WR_DS  
RD_R/W  
Active-Low Data Strobe  
R/W  
Read/Write  
R/W = 1 for Read  
R/W = 0 for Write  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Output  
Output  
I/O  
Address Strobe  
Active-Low Chip Select  
Active-High Interrupt  
INT  
INT  
RDY_DTACK  
AD[7:0]  
DTACK  
AD[7:0]  
Active-Low Data Acknowledge  
Address/Data Bus  
Lucent Technologies Inc.  
21  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Microprocessor Interface Pins (continued)  
Table 13. Mode [1—4] Microprocessor Pin Definitions (continued)  
Configuration  
Device Pin  
Name  
Generic Pin  
Name  
Pin  
Type  
Assertion  
Sense  
Function  
Mode 3  
WR_DS  
RD_R/W  
ALE_AS  
WR  
RD  
Input  
Input  
Input  
Active-Low Write  
Read  
ALE  
Address Latch  
Enable  
CS  
INT  
CS  
INT  
Input  
Active-Low Chip Select  
Output Active-High Interrupt  
Output Active-Low Ready  
RDY_DTACK  
AD[7:0]  
A[7:0]  
RDY  
AD[7:0]  
A[7:0]  
WR  
I/O  
Data Bus  
Input  
Input  
Input  
Input  
Address Bus  
Mode 4  
WR_DS  
RD_R/W  
ALE_AS  
Active-Low Write  
RD  
Read  
ALE  
Address Latch  
Enable  
CS  
INT  
CS  
INT  
Input  
Active-Low Chip Select  
Output Active-High Interrupt  
Output Active-Low Ready  
RDY_DTACK  
AD[7:0]  
RDY  
AD[7:0]  
I/O  
Address/Data Bus  
22  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map  
The register bank architecture of the microprocessor interface is shown in Table 14. All addresses referred to in  
this section are given in hexadecimal and binary notation, where hexadecimal is the left column and binary is the  
right column under Address.  
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register  
0xBF (see the Register Architecture Description section, page 57—page 59).  
Table 14. Device Register Map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Control, Alarm, and Mask Bit Registers  
00 00000000 TEST_CNT  
01 00000001 REI_EN  
B1ERRINS  
AUTO_LRDI  
TXSERIAL  
B2ERRINS  
B3ERRINS  
DJACTL  
LATCH_CNT BLUECLKSEL BIPBLKCNT  
STS1SCR STS1DSCR  
0
TXPAISINS  
0
STS1LB  
02 00000010 RXSERIAL  
03 00000011 TRACEER  
RXPARITY  
TXPARITY RXSTS1EDGE TXSTS1EDGE RXDS1EDGE TXDS1EDGE  
RXPARER  
0
0
H4LOMF  
H4LOMFMSK  
VTRFIRDICOM  
VTRFIRDIMSK  
0
STS1PAIS  
STS1PAISMSK  
VTAISCOM  
VTAISMSK  
0
STS1LOP  
STS1LOPMSK STS1LOFMSK STS1OOFMSK  
VTLABCOM AISLOCCOM STS1LOS  
VTLABMSK AISLOCMSK STS1LOSMSK  
STS1LOF  
STS1OOF  
TRACEERMSK  
04 00000100  
RXPARERMSK  
05 00000101 ESOFCOM  
06 00000110 ESOFMSK  
VTSIZECOM VTLOPCOM  
VTSIZEMSK VTLOPMSK  
07 00000111  
08 00001000 LATCH_TP RCV_FRAME RCV_PAT-1  
09 00001001 TP_DS1E1N TP_INVERT TPDROPSIDE TPDROP-4  
0
0
0
0
0
DS1_E1N  
XMT_PAT-0  
TPDROP-0  
TPERR-0  
F2-0  
RCV_PAT-0 ERROR_INS XMT_FRAME XMT_PAT-1  
TPDROP-3  
TPERR-3  
F2-3  
TPDROP-2  
TPERR-2  
F2-2  
TPDROP-1  
TPERR-1  
F2-1  
0A 00001010  
0B 00001011  
0C 00001100  
0D 00001101  
TPOOS  
F2-7  
TPERR-6  
F2-6  
TPERR-5  
F2-5  
TPERR-4  
F2-4  
C2-7  
C2-6  
C2-5  
C2-4  
C2-3  
C2-2  
C2-1  
C2-0  
G1-5  
G1-6  
G1-7  
G1-8  
0
K2-6  
K2-7  
K2-8  
0E 00001110 C2#DET-3  
0F 00001111 G1#DET-3  
C2#DET-2  
G1#DET-2  
F2INS-6  
G1INS-6  
0
C2#DET-1  
G1#DET-1  
F2INS-5  
G1INS-7  
C2#DET-0  
G1#DET-0  
F2INS-4  
G1INS-8  
F2#DET-3  
K2#DET-3  
F2INS-3  
0
F2#DET-2  
K2#DET-2  
F2INS-2  
K2INS-6  
F2#DET-1  
K2#DET-1  
F2INS-1  
K2INS-7  
F2#DET-0  
K2#DET-0  
F2INS-0  
K2INS-8  
TBUSPOS-0  
S1INS-0  
S1-0  
10 00010000  
11 00010001  
12 00010010  
13 00010011  
F2INS-7  
G1INS-5  
0
0
RBUSMODE RBUSPOS-1 RBUSPOS-0 TBUSMODE TBUSPOS-1  
0
0
0
S1INS-3  
S1-3  
S1INS-2  
S1-2  
S1INS-1  
S1-1  
14 00010100 S1#DET-3  
S1#DET-2  
DEVID-6  
0
S1#DET-1  
DEVID-5  
0
S1#DET-0  
DEVID-4  
0
15 00010101  
16 00010110  
DEVID-7  
0
DEVID-3  
DEVVER-3  
DEVID-2  
DEVVER-2  
DEVID-1  
DEVVER-1  
DEVID-0  
DEVVER-0  
Lucent Technologies Inc.  
23  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DS1/E1 Insertion Selection Registers  
17 00010111 DS1/E1AIS1 DS1/E1LOC1 DS1/E1LB1 DS1/E1INS4_1 DS1/E1INS3_1 DS1/E1INS2_1 DS1/E1INS1_1 DS1/E1INS0_1  
18 00011000 DS1/E1AIS2 DS1/E1LOC2 DS1/E1LB2 DS1/E1INS4_2 DS1/E1INS3_2 DS1/E1INS2_2 DS1/E1INS1_2 DS1/E1INS0_2  
19 00011001 DS1/E1AIS3 DS1/E1LOC3 DS1/E1LB3 DS1/E1INS4_3 DS1/E1INS3_3 DS1/E1INS2_3 DS1/E1INS1_3 DS1/E1INS0_3  
1A 00011010 DS1/E1AIS4 DS1/E1LOC4 DS1/E1LB4 DS1/E1INS4_4 DS1/E1INS3_4 DS1/E1INS2_4 DS1/E1INS1_4 DS1/E1INS0_4  
1B 00011011 DS1/E1AIS5 DS1/E1LOC5 DS1/E1LB5 DS1/E1INS4_5 DS1/E1INS3_5 DS1/E1INS2_5 DS1/E1INS1_5 DS1/E1INS0_5  
1C 00011100 DS1/E1AIS6 DS1/E1LOC6 DS1/E1LB6 DS1/E1INS4_6 DS1/E1INS3_6 DS1/E1INS2_6 DS1/E1INS1_6 DS1/E1INS0_6  
1D 00011101 DS1/E1AIS7 DS1/E1LOC7 DS1/E1LB7 DS1/E1INS4_7 DS1/E1INS3_7 DS1/E1INS2_7 DS1/E1INS1_7 DS1/E1INS0_7  
1E 00011110 DS1/E1AIS8 DS1/E1LOC8 DS1/E1LB8 DS1/E1INS4_8 DS1/E1INS3_8 DS1/E1INS2_8 DS1/E1INS1_8 DS1/E1INS0_8  
1F 00011111 DS1/E1AIS9 DS1/E1LOC9 DS1/E1LB9 DS1/E1INS4_9 DS1/E1INS3_9 DS1/E1INS2_9 DS1/E1INS1_9 DS1/E1INS0_9  
DS1/E1INS4_10 DS1/E1INS3_10 DS1/E1INS2_10 DS1/E1INS1_10 DS1/E1INS0_10  
DS1/E1INS4_11 DS1/E1INS3_11 DS1/E1INS2_11 DS1/E1INS1_11 DS1/E1INS0_11  
DS1/E1INS4_12 DS1/E1INS3_12 DS1/E1INS2_12 DS1/E1INS1_12 DS1/E1INS0_12  
DS1/E1INS4_13 DS1/E1INS3_13 DS1/E1INS2_13 DS1/E1INS1_13 DS1/E1INS0_13  
DS1/E1INS4_14 DS1/E1INS3_14 DS1/E1INS2_14 DS1/E1INS1_14 DS1/E1INS0_14  
DS1/E1INS4_15 DS1/E1INS3_15 DS1/E1INS2_15 DS1/E1INS1_15 DS1/E1INS0_15  
DS1/E1INS4_16 DS1/E1INS3_16 DS1/E1INS2_16 DS1/E1INS1_16 DS1/E1INS0_16  
DS1/E1INS4_17 DS1/E1INS3_17 DS1/E1INS2_17 DS1/E1INS1_17 DS1/E1INS0_17  
DS1/E1INS4_18 DS1/E1INS3_18 DS1/E1INS2_18 DS1/E1INS1_18 DS1/E1INS0_18  
DS1/E1INS4_19 DS1/E1INS3_19 DS1/E1INS2_19 DS1/E1INS1_19 DS1/E1INS0_19  
DS1/E1INS4_20 DS1/E1INS3_20 DS1/E1INS2_20 DS1/E1INS1_20 DS1/E1INS0_20  
DS1/E1INS4_21 DS1/E1INS3_21 DS1/E1INS2_21 DS1/E1INS1_21 DS1/E1INS0_21  
DS1INS4_22 DS1INS3_22 DS1INS2_22 DS1INS1_22 DS1INS0_22  
DS1INS4_23 DS1INS3_23 DS1INS2_23 DS1INS1_23 DS1INS0_23  
DS1INS4_24 DS1INS3_24 DS1INS2_24 DS1INS1_24 DS1INS0_24  
DS1INS4_25 DS1INS3_25 DS1INS2_25 DS1INS1_25 DS1INS0_25  
DS1INS4_26 DS1INS3_26 DS1INS2_26 DS1INS1_26 DS1INS0_26  
DS1INS4_27 DS1INS3_27 DS1INS2_27 DS1INS1_27 DS1INS0_27  
DS1INS4_28 DS1INS3_28 DS1INS2_28 DS1INS1_28 DS1INS0_28  
20 00100000 DS1/E1AIS10 DS1/E1LOC10 DS1/E1LB10  
21 00100001 DS1/E1AIS11 DS1/E1LOC11 DS1/E1LB11  
22 00100010 DS1/E1AIS12 DS1/E1LOC12 DS1/E1LB12  
23 00100011 DS1/E1AIS13 DS1/E1LOC13 DS1/E1LB13  
24 00100100 DS1/E1AIS14 DS1/E1LOC14 DS1/E1LB14  
25 00100101 DS1/E1AIS15 DS1/E1LOC15 DS1/E1LB15  
26 00100110 DS1/E1AIS16 DS1/E1LOC16 DS1/E1LB16  
27 00100111 DS1/E1AIS17 DS1/E1LOC17 DS1/E1LB17  
28 00101000 DS1/E1AIS18 DS1/E1LOC18 DS1/E1LB18  
29 00101001 DS1/E1AIS19 DS1/E1LOC19 DS1/E1LB19  
2A 00101010 DS1/E1AIS20 DS1/E1LOC20 DS1/E1LB20  
2B 00101011 DS1/E1AIS21 DS1/E1LOC21 DS1/E1LB21  
2C 00101100 DS1AIS22  
2D 00101101 DS1AIS23  
2E 00101110 DS1AIS24  
2F 00101111 DS1AIS25  
30 00110000 DS1AIS26  
31 00110001 DS1AIS27  
32 00110010 DS1AIS28  
DS1LOC22  
DS1LOC23  
DS1LOC24  
DS1LOC25  
DS1LOC26  
DS1LOC27  
DS1LOC28  
DS1LB22  
DS1LB23  
DS1LB24  
DS1LB25  
DS1LB26  
DS1LB27  
DS1LB28  
24  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VT Drop Selection Registers  
33 00110011  
34 00110100  
35 00110101  
36 00110110  
37 00110111  
38 00111000  
39 00111001  
3A 00111010  
3B 00111011  
3C 00111100  
3D 00111101  
3E 00111110  
3F 00111111  
40 01000000  
41 01000001  
42 01000010  
43 01000011  
44 01000100  
45 01000101  
46 01000110  
47 01000111  
48 01001000  
49 01001001  
4A 01001010  
4B 01001011  
4C 01001100  
4D 01001101  
4E 01001110  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXESOF1  
RXESOF2  
RXESOF3  
RXESOF4  
RXESOF5  
RXESOF6  
RXESOF7  
RXESOF8  
RXESOF9  
RXESOF10  
RXESOF11  
RXESOF12  
RXESOF13  
RXESOF14  
RXESOF15  
RXESOF16  
RXESOF17  
RXESOF18  
RXESOF19  
RXESOF20  
RXESOF21  
RXESOF22  
RXESOF23  
RXESOF24  
RXESOF25  
RXESOF26  
RXESOF27  
RXESOF28  
TXESOF1  
TXESOF2  
TXESOF3  
TXESOF4  
TXESOF5  
TXESOF6  
TXESOF7  
TXESOF8  
TXESOF9  
VTDROP4_1 VTDROP3_1 VTDROP2_1 VTDROP1_1 VTDROP0_1  
VTDROP4_2 VTDROP3_2 VTDROP2_2 VTDROP1_2 VTDROP0_2  
VTDROP4_3 VTDROP3_3 VTDROP2_3 VTDROP1_3 VTDROP0_3  
VTDROP4_4 VTDROP3_4 VTDROP2_4 VTDROP1_4 VTDROP0_4  
VTDROP4_5 VTDROP3_5 VTDROP2_5 VTDROP1_5 VTDROP0_5  
VTDROP4_6 VTDROP3_6 VTDROP2_6 VTDROP1_6 VTDROP0_6  
VTDROP4_7 VTDROP3_7 VTDROP2_7 VTDROP1_7 VTDROP0_7  
VTDROP4_8 VTDROP3_8 VTDROP2_8 VTDROP1_8 VTDROP0_8  
VTDROP4_9 VTDROP3_9 VTDROP2_9 VTDROP1_9 VTDROP0_9  
TXESOF10 VTDROP4_10 VTDROP3_10 VTDROP2_10 VTDROP1_10 VTDROP0_10  
TXESOF11 VTDROP4_11 VTDROP3_11 VTDROP2_11 VTDROP1_11 VTDROP0_11  
TXESOF12 VTDROP4_12 VTDROP3_12 VTDROP2_12 VTDROP1_12 VTDROP0_12  
TXESOF13 VTDROP4_13 VTDROP3_13 VTDROP2_13 VTDROP1_13 VTDROP0_13  
TXESOF14 VTDROP4_14 VTDROP3_14 VTDROP2_14 VTDROP1_14 VTDROP0_14  
TXESOF15 VTDROP4_15 VTDROP3_15 VTDROP2_15 VTDROP1_15 VTDROP0_15  
TXESOF16 VTDROP4_16 VTDROP3_16 VTDROP2_16 VTDROP1_16 VTDROP0_16  
TXESOF17 VTDROP4_17 VTDROP3_17 VTDROP2_17 VTDROP1_17 VTDROP0_17  
TXESOF18 VTDROP4_18 VTDROP3_18 VTDROP2_18 VTDROP1_18 VTDROP0_18  
TXESOF19 VTDROP4_19 VTDROP3_19 VTDROP2_19 VTDROP1_19 VTDROP0_19  
TXESOF20 VTDROP4_20 VTDROP3_20 VTDROP2_20 VTDROP1_20 VTDROP0_20  
TXESOF21 VTDROP4_21 VTDROP3_21 VTDROP2_21 VTDROP1_21 VTDROP0_21  
TXESOF22 VTDROP4_22 VTDROP3_22 VTDROP2_22 VTDROP1_22 VTDROP0_22  
TXESOF23 VTDROP4_23 VTDROP3_23 VTDROP2_23 VTDROP1_23 VTDROP0_23  
TXESOF24 VTDROP4_24 VTDROP3_24 VTDROP2_24 VTDROP1_24 VTDROP0_24  
TXESOF25 VTDROP4_25 VTDROP3_25 VTDROP2_25 VTDROP1_25 VTDROP0_25  
TXESOF26 VTDROP4_26 VTDROP3_26 VTDROP2_26 VTDROP1_26 VTDROP0_26  
TXESOF27 VTDROP4_27 VTDROP3_27 VTDROP2_27 VTDROP1_27 VTDROP0_27  
TXESOF28 VTDROP4_28 VTDROP3_28 VTDROP2_28 VTDROP1_28 VTDROP0_28  
Lucent Technologies Inc.  
25  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Tx VT Overhead Insertion Control Registers  
4F 01001111 BIP2ERINS1 VTRFIRDIEN1 VTRFIINS1 VTRDIINS1 VTAISINS1 VTLABINS2_1 VTLABINS1_1 VTLABINS0_1  
50 01010000 BIP2ERINS2 VTRFIRDIEN2 VTRFIINS2 VTRDIINS2 VTAISINS2 VTLABINS2_2 VTLABINS1_2 VTLABINS0_2  
51 01010001 BIP2ERINS3 VTRFIRDIEN3 VTRFIINS3 VTRDIINS3 VTAISINS3 VTLABINS2_3 VTLABINS1_3 VTLABINS0_3  
52 01010010 BIP2ERINS4 VTRFIRDIEN4 VTRFIINS4 VTRDIINS4 VTAISINS4 VTLABINS2_4 VTLABINS1_4 VTLABINS0_4  
53 01010011 BIP2ERINS5 VTRFIRDIEN5 VTRFIINS5 VTRDIINS5 VTAISINS5 VTLABINS2_5 VTLABINS1_5 VTLABINS0_5  
54 01010100 BIP2ERINS6 VTRFIRDIEN6 VTRFIINS6 VTRDIINS6 VTAISINS6 VTLABINS2_6 VTLABINS1_6 VTLABINS0_6  
55 01010101 BIP2ERINS7 VTRFIRDIEN7 VTRFIINS7 VTRDIINS7 VTAISINS7 VTLABINS2_7 VTLABINS1_7 VTLABINS0_7  
56 01010110 BIP2ERINS8 VTRFIRDIEN8 VTRFIINS8 VTRDIINS8 VTAISINS8 VTLABINS2_8 VTLABINS1_8 VTLABINS0_8  
57 01010111 BIP2ERINS9 VTRFIRDIEN9 VTRFIINS9 VTRDIINS9 VTAISINS9 VTLABINS2_9 VTLABINS1_9 VTLABINS0_9  
VTRFIRDIEN10 VTRFIINS10 VTRDIINS10  
VTRFIRDIEN11 VTRFIINS11 VTRDIINS11  
VTRFIRDIEN12 VTRFIINS12 VTRDIINS12  
VTRFIRDIEN13 VTRFIINS13 VTRDIINS13  
VTRFIRDIEN14 VTRFIINS14 VTRDIINS14  
VTRFIRDIEN15 VTRFIINS15 VTRDIINS15  
VTRFIRDIEN16 VTRFIINS16 VTRDIINS16  
VTRFIRDIEN17 VTRFIINS17 VTRDIINS17  
VTRFIRDIEN18 VTRFIINS18 VTRDIINS18  
VTRFIRDIEN19 VTRFIINS19 VTRDIINS19  
VTRFIRDIEN20 VTRFIINS20 VTRDIINS20  
VTRFIRDIEN21 VTRFIINS21 VTRDIINS21  
VTRFIRDIEN22 VTRFIINS22 VTRDIINS22  
VTRFIRDIEN23 VTRFIINS23 VTRDIINS23  
VTRFIRDIEN24 VTRFIINS24 VTRDIINS24  
VTRFIRDIEN25 VTRFIINS25 VTRDIINS25  
VTRFIRDIEN26 VTRFIINS26 VTRDIINS26  
VTRFIRDIEN27 VTRFIINS27 VTRDIINS27  
VTRFIRDIEN28 VTRFIINS28 VTRDIINS28  
VTLABINS2_10 VTLABINS1_10 VTLABINS0_10  
VTLABINS2_11 VTLABINS1_11 VTLABINS0_11  
VTLABINS2_12 VTLABINS1_12 VTLABINS0_12  
VTLABINS2_13 VTLABINS1_13 VTLABINS0_13  
VTLABINS2_14 VTLABINS1_14 VTLABINS0_14  
VTLABINS2_15 VTLABINS1_15 VTLABINS0_15  
VTLABINS2_16 VTLABINS1_16 VTLABINS0_16  
VTLABINS2_17 VTLABINS1_17 VTLABINS0_17  
VTLABINS2_18 VTLABINS1_18 VTLABINS0_18  
VTLABINS2_19 VTLABINS1_19 VTLABINS0_19  
VTLABINS2_20 VTLABINS1_20 VTLABINS0_20  
VTLABINS2_21 VTLABINS1_21 VTLABINS0_21  
VTLABINS2_22 VTLABINS1_22 VTLABINS0_22  
VTLABINS2_23 VTLABINS1_23 VTLABINS0_23  
VTLABINS2_24 VTLABINS1_24 VTLABINS0_24  
VTLABINS2_25 VTLABINS1_25 VTLABINS0_25  
VTLABINS2_26 VTLABINS1_26 VTLABINS0_26  
VTLABINS2_27 VTLABINS1_27 VTLABINS0_27  
VTLABINS2_28 VTLABINS1_28 VTLABINS0_28  
58 01011000 BIP2ERINS10  
59 01011001 BIP2ERINS11  
5A 01011010 BIP2ERINS12  
5B 01011011 BIP2ERINS13  
5C 01011100 BIP2ERINS14  
5D 01011101 BIP2ERINS15  
5E 01011110 BIP2ERINS16  
5F 01011111 BIP2ERINS17  
60 01100000 BIP2ERINS18  
61 01100001 BIP2ERINS19  
62 01100010 BIP2ERINS20  
63 01100011 BIP2ERINS21  
64 01100100 BIP2ERINS22  
65 01100101 BIP2ERINS23  
66 01100110 BIP2ERINS24  
67 01100111 BIP2ERINS25  
68 01101000 BIP2ERINS26  
69 01101001 BIP2ERINS27  
6A 01101010 BIP2ERINS28  
VTAISINS10  
VTAISINS11  
VTAISINS12  
VTAISINS13  
VTAISINS14  
VTAISINS15  
VTAISINS16  
VTAISINS17  
VTAISINS18  
VTAISINS19  
VTAISINS20  
VTAISINS21  
VTAISINS22  
VTAISINS23  
VTAISINS24  
VTAISINS25  
VTAISINS26  
VTAISINS27  
VTAISINS28  
26  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Rx VT Drop Monitoring Registers  
VTRDI1_1 VTAIS1  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
6B 01101011 VTSIZEER1  
6C 01101100 VTSIZEER2  
6D 01101101 VTSIZEER3  
6E 01101110 VTSIZEER4  
6F 01101111 VTSIZEER5  
70 01110000 VTSIZEER6  
71 01110001 VTSIZEER7  
72 01110010 VTSIZEER8  
73 01110011 VTSIZEER9  
74 01110100 VTSIZEER10  
75 01110101 VTSIZEER11  
76 01110110 VTSIZEER12  
77 01110111 VTSIZEER13  
78 01111000 VTSIZEER14  
79 01111001 VTSIZEER15  
7A 01111010 VTSIZEER16  
7B 01111011 VTSIZEER17  
7C 01111100 VTSIZEER18  
7D 01111101 VTSIZEER19  
7E 01111110 VTSIZEER20  
7F 01111111 VTSIZEER21  
80 10000000 VTSIZEER22  
81 10000001 VTSIZEER23  
82 10000010 VTSIZEER24  
83 10001000 VTSIZEER25  
84 10000100 VTSIZEER26  
85 10000101 VTSIZEER27  
86 10000110 VTSIZEER28  
VTLOP1  
VTLOP2  
VTLOP3  
VTLOP4  
VTLOP5  
VTLOP6  
VTLOP7  
VTLOP8  
VTLOP9  
VTLOP10  
VTLOP11  
VTLOP12  
VTLOP13  
VTLOP14  
VTLOP15  
VTLOP16  
VTLOP17  
VTLOP18  
VTLOP19  
VTLOP20  
VTLOP21  
VTLOP22  
VTLOP23  
VTLOP24  
VTLOP25  
VTLOP26  
VTLOP27  
VTLOP28  
VTRDI0_1  
VTRDI0_2  
VTRDI0_3  
VTRDI0_4  
VTRDI0_5  
VTRDI0_6  
VTRDI0_7  
VTRDI0_8  
VTRDI0_9  
VTRDI0_10  
VTRDI0_11  
VTRDI0_12  
VTRDI0_13  
VTRDI0_14  
VTRDI0_15  
VTRDI0_16  
VTRDI0_17  
VTRDI0_18  
VTRDI0_19  
VTRDI0_20  
VTRDI0_21  
VTRDI0_22  
VTRDI0_23  
VTRDI0_24  
VTRDI0_25  
VTRDI0_26  
VTRDI0_27  
VTRDI0_28  
Reserved Register  
0
VTLAB2_1  
VTLAB2_2  
VTLAB2_3  
VTLAB2_4  
VTLAB2_5  
VTLAB2_6  
VTLAB2_7  
VTLAB2_8  
VTLAB2_9  
VTLAB2_10  
VTLAB2_11  
VTLAB2_12  
VTLAB2_13  
VTLAB2_14  
VTLAB2_15  
VTLAB2_16  
VTLAB2_17  
VTLAB2_18  
VTLAB2_19  
VTLAB2_20  
VTLAB2_21  
VTLAB2_22  
VTLAB2_23  
VTLAB2_24  
VTLAB2_25  
VTLAB2_26  
VTLAB2_27  
VTLAB2_28  
VTLAB1_1  
VTLAB1_2  
VTLAB1_3  
VTLAB1_4  
VTLAB1_5  
VTLAB1_6  
VTLAB1_7  
VTLAB1_8  
VTLAB1_9  
VTLAB0_1  
VTLAB0_2  
VTLAB0_3  
VTLAB0_4  
VTLAB0_5  
VTLAB0_6  
VTLAB0_7  
VTLAB0_8  
VTLAB0_9  
VTRDI1_2  
VTRDI1_3  
VTRDI1_4  
VTRDI1_5  
VTRDI1_6  
VTRDI1_7  
VTRDI1_8  
VTRDI1_9  
VTRDI1_10  
VTRDI1_11  
VTRDI1_12  
VTRDI1_13  
VTRDI1_14  
VTRDI1_15  
VTRDI1_16  
VTRDI1_17  
VTRDI1_18  
VTRDI1_19  
VTRDI1_20  
VTRDI1_21  
VTRDI1_22  
VTRDI1_23  
VTRDI1_24  
VTRDI1_25  
VTRDI1_26  
VTRDI1_27  
VTRDI1_28  
VTAIS2  
VTAIS3  
VTAIS4  
VTAIS5  
VTAIS6  
VTAIS7  
VTAIS8  
VTAIS9  
VTAIS10  
VTAIS11  
VTAIS12  
VTAIS13  
VTAIS14  
VTAIS15  
VTAIS16  
VTAIS17  
VTAIS18  
VTAIS19  
VTAIS20  
VTAIS21  
VTAIS22  
VTAIS23  
VTAIS24  
VTAIS25  
VTAIS26  
VTAIS27  
VTAIS28  
VTLAB1_10 VTLAB0_10  
VTLAB1_11 VTLAB0_11  
VTLAB1_12 VTLAB0_12  
VTLAB1_13 VTLAB0_13  
VTLAB1_14 VTLAB0_14  
VTLAB1_15 VTLAB0_15  
VTLAB1_16 VTLAB0_16  
VTLAB1_17 VTLAB0_17  
VTLAB1_18 VTLAB0_18  
VTLAB1_19 VTLAB0_19  
VTLAB1_20 VTLAB0_20  
VTLAB1_21 VTLAB0_21  
VTLAB1_22 VTLAB0_22  
VTLAB1_23 VTLAB0_23  
VTLAB1_24 VTLAB0_24  
VTLAB1_25 VTLAB0_25  
VTLAB1_26 VTLAB0_26  
VTLAB1_27 VTLAB0_27  
VTLAB1_28 VTLAB0_28  
87 10000111  
0
0
0
0
0
0
0
Signal Override Control Registers  
88 10001000  
89 10001001  
TVTG-7  
RVTG-7  
TVTG-6  
RVTG-6  
TVTG-5  
RVTG-5  
TVTG-4  
RVTG-4  
TVTG-3  
RVTG-3  
TVTG-2  
RVTG-2  
TVTG-1  
RVTG-1  
TOVERRIDE  
ROVERRIDE  
Jitter Attenuator Control Registers  
8A 10001010 SCALETHR-7 SCALETHR-6 SCALETHR-5 SCALETHR-4 SCALETHR-3 SCALETHR-2 SCALETHR-1 SCALETHR-0  
DJASCALE-15 DJASCALE-14 DJASCALE-13 DJASCALE-12 DJASCALE-11 DJASCALE-10 DJASCALE-9 DJASCALE-8  
8B 10001011  
8C 10001100 DJASCALE-7 DJASCALE-6 DJASCALE-5 DJASCALE-4 DJASCALE-3 DJASCALE-2 DJASCALE-1 DJASCALE-0  
8D 10001101 DJAGTHR-23 DJAGTHR-22 DJAGTHR-21 DJAGTHR-20 DJAGTHR-19 DJAGTHR-18 DJAGTHR-17 DJAGTHR-16  
8E 10001110 DJAGTHR-15 DJAGTHR-14 DJAGTHR-13 DJAGTHR-12 DJAGTHR-11 DJAGTHR-10 DJAGTHR-9 DJAGTHR-8  
8F 10001111 DJAGTHR-7  
DJAGTHR-6 DJAGTHR-5 DJAGTHR-4 DJAGTHR-3 DJAGTHR-2 DJAGTHR-1 DJAGTHR-0  
Lucent Technologies Inc.  
27  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0  
0
Reserved Register  
90 10010000  
0
0
0
0
0
0
STS-1 LOS Detect/Test Pattern Edge Control Register  
LOSDET-6 LOSDET-5 LOSDET-4 LOSDET-3 LOSDET-2  
LOSDET-1/  
LOSDET-0/  
91 10010001 LOSDET-7  
TP_EDGE-1 TP_EDGE-0  
Reserved Registers  
92 10010010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
93 10010011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
94 10010100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
95 10010101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
96 10010110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
97 10010111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
98 10011000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
99 10011001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9A 10011010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9B 10011011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9C 10011100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9D 10011101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9E 10011110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
9F 10011111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A0 10100000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A1 10100001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A2 10100010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A3 10100011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A4 10100100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A5 10100101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A6 10100110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A7 10100111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A8 10101000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
A9 10101001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AA 10101010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AB 10101011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AC 10101100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AD 10101101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AE 10101110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
AF 10101111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
B0 10110000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
B1 10110001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
B2 10110010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
B3 10110011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
B4 10110100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
28  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved Registers (continued)  
B5 10110101 RESERVED RESERVED RESERVED RESERVED  
B6 10110110 RESERVED RESERVED RESERVED RESERVED  
B7 10110111 RESERVED RESERVED RESERVED RESERVED  
B8 10111000 RESERVED RESERVED RESERVED RESERVED  
B9 10111001 RESERVED RESERVED RESERVED RESERVED  
BA 10111010 RESERVED RESERVED RESERVED RESERVED  
BB 10111011 RESERVED RESERVED RESERVED RESERVED  
BC 10111100 RESERVED RESERVED RESERVED RESERVED  
BD 10111101 RESERVED RESERVED RESERVED RESERVED  
BE 10111110 RESERVED RESERVED RESERVED RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Block Control Register  
TJ1BYTE  
BF 10111111  
0
0
0
0
RJ1BYTE  
REI_CNTS  
BIP_CNTS  
Block Registers 0xC0—0xFF: Detected BIP Errors  
Register 0xBF Setting: BIP_CNTS = 1  
C0 11000000 B1BIPCNT-15 B1BIPCNT-14 B1BIPCNT-13 B1BIPCNT-12 B1BIPCNT-11 B1BIPCNT-10 B1BIPCNT-9 B1BIPCNT-8  
C1 11000001 B1BIPCNT-7 B1BIPCNT-6 B1BIPCNT-5 B1BIPCNT-4 B1BIPCNT-3 B1BIPCNT-2 B1BIPCNT-1 B1BIPCNT-0  
C2 11000010 B2BIPCNT-15 B2BIPCNT-14 B2BIPCNT-13 B2BIPCNT-12 B2BIPCNT-11 B2BIPCNT-10 B2BIPCNT-9 B2BIPCNT-8  
C3 11000011 B2BIPCNT-7 B2BIPCNT-6 B2BIPCNT-5 B2BIPCNT-4 B2BIPCNT-3 B2BIPCNT-2 B2BIPCNT-1 B2BIPCNT-0  
C4 11000100 B3BIPCNT-15 B3BIPCNT-14 B3BIPCNT-13 B3BIPCNT-12 B3BIPCNT-11 B3BIPCNT-10 B3BIPCNT-9 B3BIPCNT-8  
C5 11000101 B3BIPCNT-7 B3BIPCNT-6 B3BIPCNT-5 B3BIPCNT-4 B3BIPCNT-3 B3BIPCNT-2 B3BIPCNT-1 B3BIPCNT-0  
C6 11000110 VT1PTR+3  
C7 11000111 BIP2CNT7_1 BIP2CNT6_1 BIP2CNT5_1 BIP2CNT4_1 BIP2CNT3_1 BIP2CNT2_1 BIP2CNT1_1 BIP2CNT0_1  
C8 11001000 VT2PTR+3 VT2PTR+2 VT2PTR+1 VT2PTR+0 BIP2CNT11_2 BIP2CNT10_2 BIP2CNT9_2 BIP2CNT8_2  
C9 11001001 BIP2CNT7_2 BIP2CNT6_2 BIP2CNT5_2 BIP2CNT4_2 BIP2CNT3_2 BIP2CNT2_2 BIP2CNT1_2 BIP2CNT0_2  
CA 11001010 VT3PTR+3 VT3PTR+2 VT3PTR+1 VT3PTR+0 BIP2CNT11_3 BIP2CNT10_3 BIP2CNT9_3 BIP2CNT8_3  
CB 11001011 BIP2CNT7_3 BIP2CNT6_3 BIP2CNT5_3 BIP2CNT4_3 BIP2CNT3_3 BIP2CNT2_3 BIP2CNT1_3 BIP2CNT0_3  
CC 11001100 VT4PTR+3 VT4PTR+2 VT4PTR+1 VT4PTR+0 BIP2CNT11_4 BIP2CNT10_4 BIP2CNT9_4 BIP2CNT8_4  
CD 11001101 BIP2CNT7_4 BIP2CNT6_4 BIP2CNT5_4 BIP2CNT4_4 BIP2CNT3_4 BIP2CNT2_4 BIP2CNT1_4 BIP2CNT0_4  
CE 11001110 VT5PTR+3 VT5PTR+2 VT5PTR+1 VT5PTR+0 BIP2CNT11_5 BIP2CNT10_5 BIP2CNT9_5 BIP2CNT8_5  
CF 11001111 BIP2CNT7_5 BIP2CNT6_5 BIP2CNT5_5 BIP2CNT4_5 BIP2CNT3_5 BIP2CNT2_5 BIP2CNT1_5 BIP2CNT0_5  
D0 11010000 VT6PTR+3 VT6PTR+2 VT6PTR+1 VT6PTR+0 BIP2CNT11_6 BIP2CNT10_6 BIP2CNT9_6 BIP2CNT8_6  
D1 11010001 BIP2CNT7_6 BIP2CNT6_6 BIP2CNT5_6 BIP2CNT4_6 BIP2CNT3_6 BIP2CNT2_6 BIP2CNT1_6 BIP2CNT0_6  
D2 11010010 VT7PTR+3 VT7PTR+2 VT7PTR+1 VT7PTR+0 BIP2CNT11_7 BIP2CNT10_7 BIP2CNT9_7 BIP2CNT8_7  
D3 11010011 BIP2CNT7_7 BIP2CNT6_7 BIP2CNT5_7 BIP2CNT4_7 BIP2CNT3_7 BIP2CNT2_7 BIP2CNT1_7 BIP2CNT0_7  
D4 11010100 VT8PTR+3 VT8PTR+2 VT8PTR+1 VT8PTR+0 BIP2CNT11_8 BIP2CNT10_8 BIP2CNT9_8 BIP2CNT8_8  
D5 11010101 BIP2CNT7_8 BIP2CNT6_8 BIP2CNT5_8 BIP2CNT4_8 BIP2CNT3_8 BIP2CNT2_8 BIP2CNT1_8 BIP2CNT0_8  
D6 11010110 VT9PTR+3 VT9PTR+2 VT9PTR+1 VT9PTR+0 BIP2CNT11_9 BIP2CNT10_9 BIP2CNT9_9 BIP2CNT8_9  
D7 11010111 BIP2CNT7_9 BIP2CNT6_9 BIP2CNT5_9 BIP2CNT4_9 BIP2CNT3_9 BIP2CNT2_9 BIP2CNT1_9 BIP2CNT0_9  
BIP2CNT11_10 BIP2CNT10_10  
VT1PTR+2  
VT1PTR+1  
VT1PTR+0 BIP2CNT11_1 BIP2CNT10_1 BIP2CNT9_1 BIP2CNT8_1  
D8 11011000 VT10PTR+3 VT10PTR+2 VT10PTR+1 VT10PTR+0  
BIP2CNT9_10 BIP2CNT8_10  
BIP2CNT6_10 BIP2CNT5_10 BIP2CNT4_10 BIP2CNT3_10 BIP2CNT2_10 BIP2CNT1_10 BIP2CNT0_10  
BIP2CNT7_10  
D9 11011001  
Lucent Technologies Inc.  
29  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Block Registers 0xC0—0xFF: Detected BIP Errors (continued)  
BIP2CNT11_11 BIP2CNT10_11  
BIP2CNT9_11 BIP2CNT8_11  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DA 11011010 VT11PTR+3  
BIP2CNT7_11  
VT11PTR+2  
BIP2CNT6_11 BIP2CNT5_11 BIP2CNT4_11 BIP2CNT3_11 BIP2CNT2_11 BIP2CNT1_11 BIP2CNT0_11  
BIP2CNT11_12 BIP2CNT10_12  
VT11PTR+1  
VT11PTR+0  
DB 11011011  
DC 11011100 VT12PTR+3 VT12PTR+2  
BIP2CNT7_12  
VT12PTR+1 VT12PTR+0  
BIP2CNT6_12 BIP2CNT5_12 BIP2CNT4_12 BIP2CNT3_12 BIP2CNT2_12 BIP2CNT1_12 BIP2CNT0_12  
BIP2CNT11_13 BIP2CNT10_13  
BIP2CNT9_12 BIP2CNT8_12  
DD 11011101  
DE 11011110 VT13PTR+3 VT13PTR+2  
BIP2CNT7_13  
VT13PTR+1 VT13PTR+0  
BIP2CNT6_13 BIP2CNT5_13 BIP2CNT4_13 BIP2CNT3_13 BIP2CNT2_13 BIP2CNT1_13 BIP2CNT0_13  
BIP2CNT11_14 BIP2CNT10_14  
BIP2CNT9_13 BIP2CNT8_13  
DF 11011111  
E0 11100000 VT14PTR+3 VT14PTR+2  
BIP2CNT7_14  
VT14PTR+1 VT14PTR+0  
BIP2CNT6_14 BIP2CNT5_14 BIP2CNT4_14 BIP2CNT3_14 BIP2CNT2_14 BIP2CNT1_14 BIP2CNT0_14  
BIP2CNT11_15 BIP2CNT10_15  
BIP2CNT9_14 BIP2CNT8_14  
E1 11100001  
E2 11100010 VT15PTR+3 VT15PTR+2  
BIP2CNT7_15  
VT15PTR+1 VT15PTR+0  
BIP2CNT6_15 BIP2CNT5_15 BIP2CNT4_15 BIP2CNT3_15 BIP2CNT2_15 BIP2CNT1_15 BIP2CNT0_15  
BIP2CNT11_16 BIP2CNT10_16  
BIP2CNT9_15 BIP2CNT8_15  
E3 11100011  
E4 11100100 VT16PTR+3 VT16PTR+2  
BIP2CNT7_16  
VT16PTR+1 VT16PTR+0  
BIP2CNT6_16 BIP2CNT5_16 BIP2CNT4_16 BIP2CNT3_16 BIP2CNT2_16 BIP2CNT1_16 BIP2CNT0_16  
BIP2CNT11_17 BIP2CNT10_17  
BIP2CNT9_16 BIP2CNT8_16  
E5 11100101  
E6 11100110 VT17PTR+3 VT17PTR+2  
BIP2CNT7_17  
VT17PTR+1 VT17PTR+0  
BIP2CNT6_17 BIP2CNT5_17 BIP2CNT4_17 BIP2CNT3_17 BIP2CNT2_17 BIP2CNT1_17 BIP2CNT0_17  
BIP2CNT11_18 BIP2CNT10_18  
BIP2CNT9_17 BIP2CNT8_17  
E7 11100111  
E8 11101000 VT18PTR+3 VT18PTR+2  
BIP2CNT7_18  
VT18PTR+1 VT18PTR+0  
BIP2CNT6_18 BIP2CNT5_18 BIP2CNT4_18 BIP2CNT3_18 BIP2CNT2_18 BIP2CNT1_18 BIP2CNT0_18  
BIP2CNT11_19 BIP2CNT10_19  
BIP2CNT9_18 BIP2CNT8_18  
E9 11101001  
EA 11101010 VT19PTR+3 VT19PTR+2  
BIP2CNT7_19  
VT19PTR+1 VT19PTR+0  
BIP2CNT6_19 BIP2CNT5_19 BIP2CNT4_19 BIP2CNT3_19 BIP2CNT2_19 BIP2CNT1_19 BIP2CNT0_19  
BIP2CNT11_20 BIP2CNT10_20  
BIP2CNT9_19 BIP2CNT8_19  
EB 11101011  
EC 11101100 VT20PTR+3 VT20PTR+2  
BIP2CNT7_20  
VT20PTR+1 VT20PTR+0  
BIP2CNT6_20 BIP2CNT5_20 BIP2CNT4_20 BIP2CNT3_20 BIP2CNT2_20 BIP2CNT1_20 BIP2CNT0_20  
BIP2CNT11_21 BIP2CNT10_21  
BIP2CNT9_20 BIP2CNT8_20  
ED 11101101  
EE 11101110 VT21PTR+3 VT21PTR+2  
BIP2CNT7_21  
VT21PTR+1 VT21PTR+0  
BIP2CNT6_21 BIP2CNT5_21 BIP2CNT4_21 BIP2CNT3_21 BIP2CNT2_21 BIP2CNT1_21 BIP2CNT0_21  
BIP2CNT11_22 BIP2CNT10_22  
BIP2CNT9_21 BIP2CNT8_21  
EF 11101111  
F0 11110000 VT22PTR+3 VT22PTR+2  
BIP2CNT7_22  
VT22PTR+1 VT22PTR+0  
BIP2CNT6_22 BIP2CNT5_22 BIP2CNT4_22 BIP2CNT3_22 BIP2CNT2_22 BIP2CNT1_22 BIP2CNT0_22  
BIP2CNT11_23 BIP2CNT10_23  
BIP2CNT9_22 BIP2CNT8_22  
F1 11110001  
F2 11110010 VT23PTR+3 VT23PTR+2  
BIP2CNT7_23  
VT23PTR+1 VT23PTR+0  
BIP2CNT6_23 BIP2CNT5_23 BIP2CNT4_23 BIP2CNT3_23 BIP2CNT2_23 BIP2CNT1_23 BIP2CNT0_23  
BIP2CNT11_24 BIP2CNT10_24  
BIP2CNT9_23 BIP2CNT8_23  
F3 11110011  
F4 11110100 VT24PTR+3 VT24PTR+2  
BIP2CNT7_24  
VT24PTR+1 VT24PTR+0  
BIP2CNT6_24 BIP2CNT5_24 BIP2CNT4_24 BIP2CNT3_24 BIP2CNT2_24 BIP2CNT1_24 BIP2CNT0_24  
BIP2CNT11_25 BIP2CNT10_25  
BIP2CNT9_24 BIP2CNT8_24  
F5 11110101  
F6 11110110 VT25PTR+3 VT25PTR+2  
BIP2CNT7_25  
VT25PTR+1 VT25PTR+0  
BIP2CNT6_25 BIP2CNT5_25 BIP2CNT4_25 BIP2CNT3_25 BIP2CNT2_25 BIP2CNT1_25 BIP2CNT0_25  
BIP2CNT11_26 BIP2CNT10_26  
BIP2CNT9_25 BIP2CNT8_25  
F7 11110111  
F8 11111000 VT26PTR+3 VT26PTR+2  
BIP2CNT7_26  
VT26PTR+1 VT26PTR+0  
BIP2CNT6_26 BIP2CNT5_26 BIP2CNT4_26 BIP2CNT3_26 BIP2CNT2_26 BIP2CNT1_26 BIP2CNT0_26  
BIP2CNT11_27 BIP2CNT10_27  
BIP2CNT9_26 BIP2CNT8_26  
F9 11111001  
FA 11111010 VT27PTR+3 VT27PTR+2  
BIP2CNT7_27  
VT27PTR+1 VT27PTR+0  
BIP2CNT6_27 BIP2CNT5_27 BIP2CNT4_27 BIP2CNT3_27 BIP2CNT2_27 BIP2CNT1_27 BIP2CNT0_27  
BIP2CNT11_28 BIP2CNT10_28  
BIP2CNT9_27 BIP2CNT8_27  
FB 11111011  
FC 11111100 VT28PTR+3 VT28PTR+2  
VT28PTR+1 VT28PTR+0  
BIP2CNT9_28 BIP2CNT8_28  
BIP2CNT7_28  
FD 11111101  
BIP2CNT6_28 BIP2CNT5_28 BIP2CNT4_28 BIP2CNT3_28 BIP2CNT2_28 BIP2CNT1_28 BIP2CNT0_28  
Received SONET/SDH Pointer Value Registers  
Register 0xBF Setting: BIP_CNTS = 1  
FE 11111110  
FF 11111111  
SPTR+7  
SPTR–7  
SPTR+6  
SPTR–6  
SPTR+5  
SPTR–5  
SPTR+4  
SPTR–4  
SPTR+3  
SPTR–3  
SPTR+2  
SPTR–2  
SPTR+1  
SPTR–1  
SPTR+0  
SPTR–0  
30  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Block Registers 0xC0—0xFF: Detected REI Errors  
Register 0xBF Settings: REI_CNTS = 1, BIP_CNTS = 0  
C0 11000000  
C1 11000001  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C2 11000010 B2REI-15  
C3 11000011 B2REI-7  
C4 11000100 B3REI-15  
C5 11000101 B3REI-7  
B2REI-14  
B2REI-6  
B2REI-13  
B2REI-5  
B2REI-12  
B2REI-4  
B2REI-11  
B2REI-10  
B2REI-9  
B2REI-8  
B2REI-3  
B2REI-2  
B2REI-1  
B2REI-0  
B3REI-14  
B3REI-6  
B3REI-13  
B3REI-5  
B3REI-12  
B3REI-4  
B3REI-11  
B3REI-10  
B3REI-9  
B3REI-8  
B3REI-3  
B3REI-2  
B3REI-1  
B3REI-0  
C6 11000110 VT1PTR–3  
C7 11000111 VTREI7_1  
C8 11001000 VT2PTR–3  
C9 11001001 VTREI7_2  
CA 11001010 VT3PTR–3  
CB 11001011 VTREI7_3  
CC 11001100 VT4PTR–3  
CD 11001101 VTREI7_4  
CE 11001110 VT5PTR–3  
CF 11001111 VTREI7_5  
D0 11010000 VT6PTR–3  
D1 11010001 VTREI7_6  
D2 11010010 VT7PTR–3  
D3 11010011 VTREI7_7  
D4 11010100 VT8PTR–3  
D5 11010101 VTREI7_8  
D6 11010110 VT9PTR–3  
D7 11010111 VTREI7_9  
VT1PTR–2  
VTREI6_1  
VT2PTR–2  
VTREI6_2  
VT3PTR–2  
VTREI6_3  
VT4PTR–2  
VTREI6_4  
VT5PTR–2  
VTREI6_5  
VT6PTR–2  
VTREI6_6  
VT7PTR–2  
VTREI6_7  
VT8PTR–2  
VTREI6_8  
VT9PTR–2  
VTREI6_9  
VT1PTR–1  
VTREI5_1  
VT2PTR–1  
VTREI5_2  
VT3PTR–1  
VTREI5_3  
VT4PTR–1  
VTREI5_4  
VT5PTR–1  
VTREI5_5  
VT6PTR–1  
VTREI5_6  
VT7PTR–1  
VTREI5_7  
VT8PTR–1  
VTREI5_8  
VT9PTR–1  
VTREI5_9  
VT1PTR–0  
VTREI4_1  
VT2PTR–0  
VTREI4_2  
VT3PTR–0  
VTREI4_3  
VT4PTR–0  
VTREI4_4  
VT5PTR–0  
VTREI4_5  
VT6PTR–0  
VTREI4_6  
VT7PTR–0  
VTREI4_7  
VT8PTR–0  
VTREI4_8  
VT9PTR–0  
VTREI4_9  
0
VTREI10_1  
VTREI2_1  
VTREI10_2  
VTREI2_2  
VTREI10_3  
VTREI2_3  
VTREI10_4  
VTREI2_4  
VTREI10_5  
VTREI2_5  
VTREI10_6  
VTREI2_6  
VTREI10_7  
VTREI2_7  
VTREI10_8  
VTREI2_8  
VTREI10_9  
VTREI2_9  
VTREI10_10  
VTREI2_10  
VTREI10_11  
VTREI2_11  
VTREI10_12  
VTREI2_12  
VTREI10_13  
VTREI2_13  
VTREI10_14  
VTREI2_14  
VTREI10_15  
VTREI2_15  
VTREI10_16  
VTREI2_16  
VTREI10_17  
VTREI2_17  
VTREI10_18  
VTREI2_18  
VTREI10_19  
VTREI9_1  
VTREI1_1  
VTREI9_2  
VTREI1_2  
VTREI9_3  
VTREI1_3  
VTREI9_4  
VTREI1_4  
VTREI9_5  
VTREI1_5  
VTREI9_6  
VTREI1_6  
VTREI9_7  
VTREI1_7  
VTREI9_8  
VTREI1_8  
VTREI9_9  
VTREI1_9  
VTREI9_10  
VTREI1_10  
VTREI9_11  
VTREI1_11  
VTREI9_12  
VTREI1_12  
VTREI9_13  
VTREI1_13  
VTREI9_14  
VTREI1_14  
VTREI9_15  
VTREI1_15  
VTREI9_16  
VTREI1_16  
VTREI9_17  
VTREI1_17  
VTREI9_18  
VTREI1_18  
VTREI9_19  
VTREI8_1  
VTREI0_1  
VTREI8_2  
VTREI0_2  
VTREI8_3  
VTREI0_3  
VTREI8_4  
VTREI0_4  
VTREI8_5  
VTREI0_5  
VTREI8_6  
VTREI0_6  
VTREI8_7  
VTREI0_7  
VTREI8_8  
VTREI0_8  
VTREI8_9  
VTREI0_9  
VTREI8_10  
VTREI0_10  
VTREI8_11  
VTREI0_11  
VTREI8_12  
VTREI0_12  
VTREI8_13  
VTREI0_13  
VTREI8_14  
VTREI0_14  
VTREI8_15  
VTREI0_15  
VTREI8_16  
VTREI0_16  
VTREI8_17  
VTREI0_17  
VTREI8_18  
VTREI0_18  
VTREI8_19  
VTREI3_1  
0
VTREI3_2  
0
VTREI3_3  
0
VTREI3_4  
0
VTREI3_5  
0
VTREI3_6  
0
VTREI3_7  
0
VTREI3_8  
0
VTREI3_9  
D8 11011000 VT10PTR–3 VT10PTR–2  
VT10PTR–1 VT10PTR–0  
0
D9 11011001 VTREI7_10  
DA 11011010 VT11PTR–3  
DB 11011011 VTREI7_11  
VTREI6_10  
VT11PTR–2  
VTREI6_11  
VTREI5_10  
VT11PTR–1  
VTREI5_11  
VTREI4_10  
VT11PTR–0  
VTREI4_11  
VTREI3_10  
0
VTREI3_11  
DC 11011100 VT12PTR–3 VT12PTR–2  
DD 11011101 VTREI7_12 VTREI6_12  
DE 11011110 VT13PTR–3 VT13PTR–2  
DF 11011111 VTREI7_13 VTREI6_13  
E0 11100000 VT14PTR–3 VT14PTR–2  
E1 11100001 VTREI7_14 VTREI6_14  
E2 11100010 VT15PTR–3 VT15PTR–2  
E3 11100011 VTREI7_15 VTREI6_15  
E4 11100100 VT16PTR–3 VT16PTR–2  
E5 11100101 VTREI7_16 VTREI6_16  
E6 11100110 VT17PTR–3 VT17PTR–2  
E7 11100111 VTREI7_17 VTREI6_17  
E8 11101000 VT18PTR–3 VT18PTR–2  
E9 11101001 VTREI7_18 VTREI6_18  
VT12PTR–1 VT12PTR–0  
VTREI5_12 VTREI4_12  
VT13PTR–1 VT13PTR–0  
VTREI5_13 VTREI4_13  
VT14PTR–1 VT14PTR–0  
VTREI5_14 VTREI4_14  
VT15PTR–1 VT15PTR–0  
VTREI5_15 VTREI4_15  
VT16PTR–1 VT16PTR–0  
VTREI5_16 VTREI4_16  
VT17PTR–1 VT17PTR–0  
VTREI5_17 VTREI4_17  
VT18PTR–1 VT18PTR–0  
VTREI5_18 VTREI4_18  
VT19PTR–1 VT19PTR–0  
0
VTREI3_12  
0
VTREI3_13  
0
VTREI3_14  
0
VTREI3_15  
0
VTREI3_16  
0
VTREI3_17  
0
VTREI3_18  
0
EA 11101010 VT19PTR–3 VT19PTR–2  
Lucent Technologies Inc.  
31  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Block Registers 0xC0—0xFF: Detected REI Errors (continued)  
EB 11101011 VTREI7_19  
EC 11101100 VT20PTR–3 VT20PTR–2  
ED 11101101 VTREI7_20 VTREI6_20  
EE 11101110 VT21PTR–3 VT21PTR–2  
EF 11101111 VTREI7_21 VTREI6_21  
F0 11110000 VT22PTR–3 VT22PTR–2  
F1 11110001 VTREI7_22 VTREI6_22  
F2 11110010 VT23PTR–3 VT23PTR–2  
F3 11110011 VTREI7_23 VTREI6_23  
F4 11110100 VT24PTR–3 VT24PTR–2  
F5 11110101 VTREI7_24 VTREI6_24  
F6 11110110 VT25PTR–3 VT25PTR–2  
F7 11110111 VTREI7_25 VTREI6_25  
F8 11111000 VT26PTR–3 VT26PTR–2  
F9 11111001 VTREI7_26 VTREI6_26  
FA 11111010 VT27PTR–3 VT27PTR–2  
FB 11111011 VTREI7_27 VTREI6_27  
FC 11111100 VT28PTR–3 VT28PTR–2  
VTREI6_19  
VTREI5_19  
VT20PTR–1 VT20PTR–0  
VTREI5_20 VTREI4_20  
VT21PTR–1 VT21PTR–0  
VTREI5_21 VTREI4_21  
VT22PTR–1 VT22PTR–0  
VTREI5_22 VTREI4_22  
VT23PTR–1 VT23PTR–0  
VTREI5_23 VTREI4_23  
VT24PTR–1 VT24PTR–0  
VTREI5_24 VTREI4_24  
VT25PTR–1 VT25PTR–0  
VTREI5_25 VTREI4_25  
VT26PTR–1 VT26PTR–0  
VTREI5_26 VTREI4_26  
VT27PTR–1 VT27PTR–0  
VTREI5_27 VTREI4_27  
VT28PTR–1 VT28PTR–0  
VTREI4_19  
VTREI3_19  
VTREI2_19  
VTREI10_20  
VTREI2_20  
VTREI10_21  
VTREI2_21  
VTREI10_22  
VTREI2_22  
VTREI10_23  
VTREI2_23  
VTREI10_24  
VTREI2_24  
VTREI10_25  
VTREI2_25  
VTREI10_26  
VTREI2_26  
VTREI10_27  
VTREI2_27  
VTREI10_28  
VTREI2_28  
0
VTREI1_19  
VTREI9_20  
VTREI1_20  
VTREI9_21  
VTREI1_21  
VTREI9_22  
VTREI1_22  
VTREI9_23  
VTREI1_23  
VTREI9_24  
VTREI1_24  
VTREI9_25  
VTREI1_25  
VTREI9_26  
VTREI1_26  
VTREI9_27  
VTREI1_27  
VTREI9_28  
VTREI1_28  
0
VTREI0_19  
VTREI8_20  
VTREI0_20  
VTREI8_21  
VTREI0_21  
VTREI8_22  
VTREI0_22  
VTREI8_23  
VTREI0_23  
VTREI8_24  
VTREI0_24  
VTREI8_25  
VTREI0_25  
VTREI8_26  
VTREI0_26  
VTREI8_27  
VTREI0_27  
VTREI8_28  
VTREI0_28  
0
0
VTREI3_20  
0
VTREI3_21  
0
VTREI3_22  
0
VTREI3_23  
0
VTREI3_24  
0
VTREI3_25  
0
VTREI3_26  
0
VTREI3_27  
0
FD 11111101 VTREI7_28  
VTREI6_28  
VTREI5_28  
VTREI4_28  
VTREI3_28  
FE 11111110  
FF 11111111  
0
0
0
0
0
0
0
0
0
0
0
0
0
32  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes  
Register 0xBF Settings: RJ1BYTE = 1, BIP_CNTS = 0, REI_CNTS = 0  
RJ1BYTE7_64  
RJ1BYTE7_63  
RJ1BYTE7_62  
RJ1BYTE7_61  
RJ1BYTE7_60  
RJ1BYTE7_59  
RJ1BYTE7_58  
RJ1BYTE7_57  
RJ1BYTE7_56  
RJ1BYTE7_55  
RJ1BYTE7_54  
RJ1BYTE7_53  
RJ1BYTE7_52  
RJ1BYTE7_51  
RJ1BYTE7_50  
RJ1BYTE7_49  
RJ1BYTE7_48  
RJ1BYTE7_47  
RJ1BYTE7_46  
RJ1BYTE7_45  
RJ1BYTE7_44  
RJ1BYTE7_43  
RJ1BYTE7_42  
RJ1BYTE7_41  
RJ1BYTE7_40  
RJ1BYTE7_39  
RJ1BYTE7_38  
RJ1BYTE7_37  
RJ1BYTE7_36  
RJ1BYTE7_35  
RJ1BYTE7_34  
RJ1BYTE7_33  
RJ1BYTE7_32  
RJ1BYTE7_31  
RJ1BYTE7_30  
RJ1BYTE7_29  
RJ1BYTE7_28  
RJ1BYTE7_27  
RJ1BYTE7_26  
RJ1BYTE7_25  
RJ1BYTE5_64  
RJ1BYTE5_63  
RJ1BYTE5_62  
RJ1BYTE5_61  
RJ1BYTE5_60  
RJ1BYTE5_59  
RJ1BYTE5_58  
RJ1BYTE5_57  
RJ1BYTE5_56  
RJ1BYTE5_55  
RJ1BYTE5_54  
RJ1BYTE5_53  
RJ1BYTE5_52  
RJ1BYTE5_51  
RJ1BYTE5_50  
RJ1BYTE5_49  
RJ1BYTE5_48  
RJ1BYTE5_47  
RJ1BYTE5_46  
RJ1BYTE5_45  
RJ1BYTE5_44  
RJ1BYTE5_43  
RJ1BYTE5_42  
RJ1BYTE5_41  
RJ1BYTE5_40  
RJ1BYTE5_39  
RJ1BYTE5_38  
RJ1BYTE5_37  
RJ1BYTE5_36  
RJ1BYTE5_35  
RJ1BYTE5_34  
RJ1BYTE5_33  
RJ1BYTE5_32  
RJ1BYTE5_31  
RJ1BYTE5_30  
RJ1BYTE5_29  
RJ1BYTE5_28  
RJ1BYTE5_27  
RJ1BYTE5_26  
RJ1BYTE5_25  
C0 11000000  
C1 11000001  
C2 11000010  
C3 11000011  
C4 11000100  
C5 11000101  
C6 11000110  
C7 11000111  
C8 11001000  
C9 11001001  
CA 11001010  
CB 11001011  
CC 11001100  
CD 11001101  
CE 11001110  
CF 11001111  
D0 11010000  
D1 11010001  
D2 11010010  
D3 11010011  
D4 11010100  
D5 11010101  
D6 11010110  
D7 11010111  
D8 11011000  
D9 11011001  
DA 11011010  
DB 11011011  
DC 11011100  
DD 11011101  
DE 11011110  
DF 11011111  
E0 11100000  
E1 11100001  
E2 11100010  
E3 11100011  
E4 11100100  
E5 11100101  
E6 11100110  
E7 11100111  
RJ1BYTE6_64  
RJ1BYTE6_63  
RJ1BYTE6_62  
RJ1BYTE6_61  
RJ1BYTE6_60  
RJ1BYTE6_59  
RJ1BYTE6_58  
RJ1BYTE6_57  
RJ1BYTE6_56  
RJ1BYTE6_55  
RJ1BYTE6_54  
RJ1BYTE6_53  
RJ1BYTE6_52  
RJ1BYTE6_51  
RJ1BYTE6_50  
RJ1BYTE6_49  
RJ1BYTE6_48  
RJ1BYTE6_47  
RJ1BYTE6_46  
RJ1BYTE6_45  
RJ1BYTE6_44  
RJ1BYTE6_43  
RJ1BYTE6_42  
RJ1BYTE6_41  
RJ1BYTE6_40  
RJ1BYTE6_39  
RJ1BYTE6_38  
RJ1BYTE6_37  
RJ1BYTE6_36  
RJ1BYTE6_35  
RJ1BYTE6_34  
RJ1BYTE6_33  
RJ1BYTE6_32  
RJ1BYTE6_31  
RJ1BYTE6_30  
RJ1BYTE6_29  
RJ1BYTE6_28  
RJ1BYTE6_27  
RJ1BYTE6_26  
RJ1BYTE6_25  
RJ1BYTE4_64 RJ1BYTE3_64 RJ1BYTE2_64 RJ1BYTE1_64 RJ1BYTE0_64  
RJ1BYTE4_63 RJ1BYTE3_63 RJ1BYTE2_63 RJ1BYTE1_63 RJ1BYTE0_63  
RJ1BYTE4_62 RJ1BYTE3_62 RJ1BYTE2_62 RJ1BYTE1_62 RJ1BYTE0_62  
RJ1BYTE4_61 RJ1BYTE3_61 RJ1BYTE2_61 RJ1BYTE1_61 RJ1BYTE0_61  
RJ1BYTE4_60 RJ1BYTE3_60 RJ1BYTE2_60 RJ1BYTE1_60 RJ1BYTE0_60  
RJ1BYTE4_59 RJ1BYTE3_59 RJ1BYTE2_59 RJ1BYTE1_59 RJ1BYTE0_59  
RJ1BYTE4_58 RJ1BYTE3_58 RJ1BYTE2_58 RJ1BYTE1_58 RJ1BYTE0_58  
RJ1BYTE4_57 RJ1BYTE3_57 RJ1BYTE2_57 RJ1BYTE1_57 RJ1BYTE0_57  
RJ1BYTE4_56 RJ1BYTE3_56 RJ1BYTE2_56 RJ1BYTE1_56 RJ1BYTE0_56  
RJ1BYTE4_55 RJ1BYTE3_55 RJ1BYTE2_55 RJ1BYTE1_55 RJ1BYTE0_55  
RJ1BYTE4_54 RJ1BYTE3_54 RJ1BYTE2_54 RJ1BYTE1_54 RJ1BYTE0_54  
RJ1BYTE4_53 RJ1BYTE3_53 RJ1BYTE2_53 RJ1BYTE1_53 RJ1BYTE0_53  
RJ1BYTE4_52 RJ1BYTE3_52 RJ1BYTE2_52 RJ1BYTE1_52 RJ1BYTE0_52  
RJ1BYTE4_51 RJ1BYTE3_51 RJ1BYTE2_51 RJ1BYTE1_51 RJ1BYTE0_51  
RJ1BYTE4_50 RJ1BYTE3_50 RJ1BYTE2_50 RJ1BYTE1_50 RJ1BYTE0_50  
RJ1BYTE4_49 RJ1BYTE3_49 RJ1BYTE2_49 RJ1BYTE1_49 RJ1BYTE0_49  
RJ1BYTE4_48 RJ1BYTE3_48 RJ1BYTE2_48 RJ1BYTE1_48 RJ1BYTE0_48  
RJ1BYTE4_47 RJ1BYTE3_47 RJ1BYTE2_47 RJ1BYTE1_47 RJ1BYTE0_47  
RJ1BYTE4_46 RJ1BYTE3_46 RJ1BYTE2_46 RJ1BYTE1_46 RJ1BYTE0_46  
RJ1BYTE4_45 RJ1BYTE3_45 RJ1BYTE2_45 RJ1BYTE1_45 RJ1BYTE0_45  
RJ1BYTE4_44 RJ1BYTE3_44 RJ1BYTE2_44 RJ1BYTE1_44 RJ1BYTE0_44  
RJ1BYTE4_43 RJ1BYTE3_43 RJ1BYTE2_43 RJ1BYTE1_43 RJ1BYTE0_43  
RJ1BYTE4_42 RJ1BYTE3_42 RJ1BYTE2_42 RJ1BYTE1_42 RJ1BYTE0_42  
RJ1BYTE4_41 RJ1BYTE3_41 RJ1BYTE2_41 RJ1BYTE1_41 RJ1BYTE0_41  
RJ1BYTE4_40 RJ1BYTE3_40 RJ1BYTE2_40 RJ1BYTE1_40 RJ1BYTE0_40  
RJ1BYTE4_39 RJ1BYTE3_39 RJ1BYTE2_39 RJ1BYTE1_39 RJ1BYTE0_39  
RJ1BYTE4_38 RJ1BYTE3_38 RJ1BYTE2_38 RJ1BYTE1_38 RJ1BYTE0_38  
RJ1BYTE4_37 RJ1BYTE3_37 RJ1BYTE2_37 RJ1BYTE1_37 RJ1BYTE0_37  
RJ1BYTE4_36 RJ1BYTE3_36 RJ1BYTE2_36 RJ1BYTE1_36 RJ1BYTE0_36  
RJ1BYTE4_35 RJ1BYTE3_35 RJ1BYTE2_35 RJ1BYTE1_35 RJ1BYTE0_35  
RJ1BYTE4_34 RJ1BYTE3_34 RJ1BYTE2_34 RJ1BYTE1_34 RJ1BYTE0_34  
RJ1BYTE4_33 RJ1BYTE3_33 RJ1BYTE2_33 RJ1BYTE1_33 RJ1BYTE0_33  
RJ1BYTE4_32 RJ1BYTE3_32 RJ1BYTE2_32 RJ1BYTE1_32 RJ1BYTE0_32  
RJ1BYTE4_31 RJ1BYTE3_31 RJ1BYTE2_31 RJ1BYTE1_31 RJ1BYTE0_31  
RJ1BYTE4_30 RJ1BYTE3_30 RJ1BYTE2_30 RJ1BYTE1_30 RJ1BYTE0_30  
RJ1BYTE4_29 RJ1BYTE3_29 RJ1BYTE2_29 RJ1BYTE1_29 RJ1BYTE0_29  
RJ1BYTE4_28 RJ1BYTE3_28 RJ1BYTE2_28 RJ1BYTE1_28 RJ1BYTE0_28  
RJ1BYTE4_27 RJ1BYTE3_27 RJ1BYTE2_27 RJ1BYTE1_27 RJ1BYTE0_27  
RJ1BYTE4_26 RJ1BYTE3_26 RJ1BYTE2_26 RJ1BYTE1_26 RJ1BYTE0_64  
RJ1BYTE4_25 RJ1BYTE3_25 RJ1BYTE2_25 RJ1BYTE1_25 RJ1BYTE0_25  
Lucent Technologies Inc.  
33  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes (continued)  
RJ1BYTE7_24  
RJ1BYTE7_23  
RJ1BYTE7_22  
RJ1BYTE7_21  
RJ1BYTE7_20  
RJ1BYTE7_19  
RJ1BYTE7_18  
RJ1BYTE7_17  
RJ1BYTE7_16  
RJ1BYTE7_15  
RJ1BYTE7_14  
RJ1BYTE7_13  
RJ1BYTE7_12  
RJ1BYTE7_11  
RJ1BYTE7_10  
RJ1BYTE7_9  
RJ1BYTE7_8  
RJ1BYTE7_7  
RJ1BYTE7_6  
RJ1BYTE7_5  
RJ1BYTE7_4  
RJ1BYTE7_3  
RJ1BYTE7_2  
RJ1BYTE5_24  
RJ1BYTE5_23  
RJ1BYTE5_22  
RJ1BYTE5_21  
RJ1BYTE5_20  
RJ1BYTE5_19  
RJ1BYTE5_18  
RJ1BYTE5_17  
RJ1BYTE5_16  
RJ1BYTE5_15  
RJ1BYTE5_14  
RJ1BYTE5_13  
RJ1BYTE5_12  
RJ1BYTE5_11  
RJ1BYTE5_10  
RJ1BYTE5_9  
RJ1BYTE5_8  
RJ1BYTE5_7  
RJ1BYTE5_6  
RJ1BYTE5_5  
RJ1BYTE5_4  
RJ1BYTE5_3  
RJ1BYTE5_2  
E8 11101000  
E9 11101001  
EA 11101010  
EB 11101011  
EC 11101100  
ED 11101101  
EE 11101110  
EF 11101111  
F0 11110000  
F1 11110001  
F2 11110010  
F3 11110011  
F4 11110100  
F5 11110101  
F6 11110110  
F7 11110111  
F8 11111000  
F9 11111001  
FA 11111010  
FB 11111011  
FC 11111100  
FD 11111101  
FE 11111110  
RJ1BYTE6_24  
RJ1BYTE6_23  
RJ1BYTE6_22  
RJ1BYTE6_21  
RJ1BYTE6_20  
RJ1BYTE6_19  
RJ1BYTE6_18  
RJ1BYTE6_17  
RJ1BYTE6_16  
RJ1BYTE6_15  
RJ1BYTE6_14  
RJ1BYTE6_13  
RJ1BYTE6_12  
RJ1BYTE6_11  
RJ1BYTE6_10  
RJ1BYTE6_9  
RJ1BYTE6_8  
RJ1BYTE6_7  
RJ1BYTE6_6  
RJ1BYTE6_5  
RJ1BYTE6_4  
RJ1BYTE6_3  
RJ1BYTE6_2  
RJ1BYTE4_24 RJ1BYTE3_24 RJ1BYTE2_24 RJ1BYTE1_24 RJ1BYTE0_24  
RJ1BYTE4_23 RJ1BYTE3_23 RJ1BYTE2_23 RJ1BYTE1_23 RJ1BYTE0_23  
RJ1BYTE4_22 RJ1BYTE3_22 RJ1BYTE2_22 RJ1BYTE1_22 RJ1BYTE0_22  
RJ1BYTE4_21 RJ1BYTE3_21 RJ1BYTE2_21 RJ1BYTE1_21 RJ1BYTE0_21  
RJ1BYTE4_20 RJ1BYTE3_20 RJ1BYTE2_20 RJ1BYTE1_20 RJ1BYTE0_20  
RJ1BYTE4_19 RJ1BYTE3_19 RJ1BYTE2_19 RJ1BYTE1_19 RJ1BYTE0_19  
RJ1BYTE4_18 RJ1BYTE3_18 RJ1BYTE2_18 RJ1BYTE1_18 RJ1BYTE0_18  
RJ1BYTE4_17 RJ1BYTE3_17 RJ1BYTE2_17 RJ1BYTE1_17 RJ1BYTE0_17  
RJ1BYTE4_16 RJ1BYTE3_16 RJ1BYTE2_16 RJ1BYTE1_16 RJ1BYTE0_16  
RJ1BYTE4_15 RJ1BYTE3_15 RJ1BYTE2_15 RJ1BYTE1_15 RJ1BYTE0_15  
RJ1BYTE4_14 RJ1BYTE3_14 RJ1BYTE2_14 RJ1BYTE1_14 RJ1BYTE0_14  
RJ1BYTE4_13 RJ1BYTE3_13 RJ1BYTE2_13 RJ1BYTE1_13 RJ1BYTE0_13  
RJ1BYTE4_12 RJ1BYTE3_12 RJ1BYTE2_12 RJ1BYTE1_12 RJ1BYTE0_12  
RJ1BYTE4_11 RJ1BYTE3_11 RJ1BYTE2_11 RJ1BYTE1_11 RJ1BYTE0_11  
RJ1BYTE4_10 RJ1BYTE3_10 RJ1BYTE2_10 RJ1BYTE1_10 RJ1BYTE0_10  
RJ1BYTE4_9 RJ1BYTE3_9 RJ1BYTE2_9 RJ1BYTE1_9 RJ1BYTE0_9  
RJ1BYTE4_8 RJ1BYTE3_8 RJ1BYTE2_8 RJ1BYTE1_8 RJ1BYTE0_8  
RJ1BYTE4_7 RJ1BYTE3_7 RJ1BYTE2_7 RJ1BYTE1_7 RJ1BYTE0_7  
RJ1BYTE4_6 RJ1BYTE3_6 RJ1BYTE2_6 RJ1BYTE1_6 RJ1BYTE0_6  
RJ1BYTE4_5 RJ1BYTE3_5 RJ1BYTE2_5 RJ1BYTE1_5 RJ1BYTE0_5  
RJ1BYTE4_4 RJ1BYTE3_4 RJ1BYTE2_4 RJ1BYTE1_4 RJ1BYTE0_4  
RJ1BYTE4_3 RJ1BYTE3_3 RJ1BYTE2_3 RJ1BYTE1_3 RJ1BYTE0_3  
RJ1BYTE4_2 RJ1BYTE3_2 RJ1BYTE2_2 RJ1BYTE1_2 RJ1BYTE0_2  
FF 11111111 RJ1BYTE7_1 RJ1BYTE6_1 RJ1BYTE5_1 RJ1BYTE4_1 RJ1BYTE3_1 RJ1BYTE2_1 RJ1BYTE1_1 RJ1BYTE0_1  
34  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes  
Register 0xBF Settings: TJ1BYTE_RD = 1, BIP_CNTS = 0, REI_CNTS = 0, RJ1BYTE = 0  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TJ1BYTE7_64  
TJ1BYTE7_63  
TJ1BYTE7_62  
TJ1BYTE7_61  
TJ1BYTE7_60  
TJ1BYTE7_59  
TJ1BYTE7_58  
TJ1BYTE7_57  
TJ1BYTE7_56  
TJ1BYTE7_55  
TJ1BYTE7_54  
TJ1BYTE7_53  
TJ1BYTE7_52  
TJ1BYTE7_51  
TJ1BYTE7_50  
TJ1BYTE7_49  
TJ1BYTE7_48  
TJ1BYTE7_47  
TJ1BYTE7_46  
TJ1BYTE7_45  
TJ1BYTE7_44  
TJ1BYTE7_43  
TJ1BYTE7_42  
TJ1BYTE7_41  
TJ1BYTE7_40  
TJ1BYTE7_39  
TJ1BYTE7_38  
TJ1BYTE7_37  
TJ1BYTE7_36  
TJ1BYTE7_35  
TJ1BYTE7_34  
TJ1BYTE7_33  
TJ1BYTE7_32  
TJ1BYTE7_31  
TJ1BYTE7_30  
TJ1BYTE7_29  
TJ1BYTE7_28  
TJ1BYTE7_27  
TJ1BYTE7_26  
C0 11000000  
C1 11000001  
C2 11000010  
C3 11000011  
C4 11000100  
C5 11000101  
C6 11000110  
C7 11000111  
C8 11001000  
C9 11001001  
CA 11001010  
CB 11001011  
CC 11001100  
CD 11001101  
CE 11001110  
CF 11001111  
D0 11010000  
D1 11010001  
D2 11010010  
D3 11010011  
D4 11010100  
D5 11010101  
D6 11010110  
D7 11010111  
D8 11011000  
D9 11011001  
DA 11011010  
DB 11011011  
DC 11011100  
DD 11011101  
DE 11011110  
DF 11011111  
E0 11100000  
E1 11100001  
E2 11100010  
E3 11100011  
E4 11100100  
E5 11100101  
E6 11100110  
TJ1BYTE6_64 TJ1BYTE5_64 TJ1BYTE4_64 TJ1BYTE3_64 TJ1BYTE2_64 TJ1BYTE1_64 TJ1BYTE0_64  
TJ1BYTE6_63 TJ1BYTE5_63 TJ1BYTE4_63 TJ1BYTE3_63 TJ1BYTE2_63 TJ1BYTE1_63 TJ1BYTE0_63  
TJ1BYTE6_62 TJ1BYTE5_62 TJ1BYTE4_62 TJ1BYTE3_62 TJ1BYTE2_62 TJ1BYTE1_62 TJ1BYTE0_62  
TJ1BYTE6_61 TJ1BYTE5_61 TJ1BYTE4_61 TJ1BYTE3_61 TJ1BYTE2_61 TJ1BYTE1_61 TJ1BYTE0_61  
TJ1BYTE6_60 TJ1BYTE5_60 TJ1BYTE4_60 TJ1BYTE3_60 TJ1BYTE2_60 TJ1BYTE1_60 TJ1BYTE0_60  
TJ1BYTE6_59 TJ1BYTE5_59 TJ1BYTE4_59 TJ1BYTE3_59 TJ1BYTE2_59 TJ1BYTE1_59 TJ1BYTE0_59  
TJ1BYTE6_58 TJ1BYTE5_58 TJ1BYTE4_58 TJ1BYTE3_58 TJ1BYTE2_58 TJ1BYTE1_58 TJ1BYTE0_58  
TJ1BYTE6_57 TJ1BYTE5_57 TJ1BYTE4_57 TJ1BYTE3_57 TJ1BYTE2_57 TJ1BYTE1_57 TJ1BYTE0_57  
TJ1BYTE6_56 TJ1BYTE5_56 TJ1BYTE4_56 TJ1BYTE3_56 TJ1BYTE2_56 TJ1BYTE1_56 TJ1BYTE0_56  
TJ1BYTE6_55 TJ1BYTE5_55 TJ1BYTE4_55 TJ1BYTE3_55 TJ1BYTE2_55 TJ1BYTE1_55 TJ1BYTE0_55  
TJ1BYTE6_54 TJ1BYTE5_54 TJ1BYTE4_54 TJ1BYTE3_54 TJ1BYTE2_54 TJ1BYTE1_54 TJ1BYTE0_54  
TJ1BYTE6_53 TJ1BYTE5_53 TJ1BYTE4_53 TJ1BYTE3_53 TJ1BYTE2_53 TJ1BYTE1_53 TJ1BYTE0_53  
TJ1BYTE6_52 TJ1BYTE5_52 TJ1BYTE4_52 TJ1BYTE3_52 TJ1BYTE2_52 TJ1BYTE1_52 TJ1BYTE0_52  
TJ1BYTE6_51 TJ1BYTE5_51 TJ1BYTE4_51 TJ1BYTE3_51 TJ1BYTE2_51 TJ1BYTE1_51 TJ1BYTE0_51  
TJ1BYTE6_50 TJ1BYTE5_50 TJ1BYTE4_50 TJ1BYTE3_50 TJ1BYTE2_50 TJ1BYTE1_50 TJ1BYTE0_50  
TJ1BYTE6_49 TJ1BYTE5_49 TJ1BYTE4_49 TJ1BYTE3_49 TJ1BYTE2_49 TJ1BYTE1_49 TJ1BYTE0_49  
TJ1BYTE6_48 TJ1BYTE5_48 TJ1BYTE4_48 TJ1BYTE3_48 TJ1BYTE2_48 TJ1BYTE1_48 TJ1BYTE0_48  
TJ1BYTE6_47 TJ1BYTE5_47 TJ1BYTE4_47 TJ1BYTE3_47 TJ1BYTE2_47 TJ1BYTE1_47 TJ1BYTE0_47  
TJ1BYTE6_46 TJ1BYTE5_46 TJ1BYTE4_46 TJ1BYTE3_46 TJ1BYTE2_46 TJ1BYTE1_46 TJ1BYTE0_46  
TJ1BYTE6_45 TJ1BYTE5_45 TJ1BYTE4_45 TJ1BYTE3_45 TJ1BYTE2_45 TJ1BYTE1_45 TJ1BYTE0_45  
TJ1BYTE6_44 TJ1BYTE5_44 TJ1BYTE4_44 TJ1BYTE3_44 TJ1BYTE2_44 TJ1BYTE1_44 TJ1BYTE0_44  
TJ1BYTE6_43 TJ1BYTE5_43 TJ1BYTE4_43 TJ1BYTE3_43 TJ1BYTE2_43 TJ1BYTE1_43 TJ1BYTE0_43  
TJ1BYTE6_42 TJ1BYTE5_42 TJ1BYTE4_42 TJ1BYTE3_42 TJ1BYTE2_42 TJ1BYTE1_42 TJ1BYTE0_42  
TJ1BYTE6_41 TJ1BYTE5_41 TJ1BYTE4_41 TJ1BYTE3_41 TJ1BYTE2_41 TJ1BYTE1_41 TJ1BYTE0_41  
TJ1BYTE6_40 TJ1BYTE5_40 TJ1BYTE4_40 TJ1BYTE3_40 TJ1BYTE2_40 TJ1BYTE1_40 TJ1BYTE0_40  
TJ1BYTE6_39 TJ1BYTE5_39 TJ1BYTE4_39 TJ1BYTE3_39 TJ1BYTE2_39 TJ1BYTE1_39 TJ1BYTE0_39  
TJ1BYTE6_38 TJ1BYTE5_38 TJ1BYTE4_38 TJ1BYTE3_38 TJ1BYTE2_38 TJ1BYTE1_38 TJ1BYTE0_38  
TJ1BYTE6_37 TJ1BYTE5_37 TJ1BYTE4_37 TJ1BYTE3_37 TJ1BYTE2_37 TJ1BYTE1_37 TJ1BYTE0_37  
TJ1BYTE6_36 TJ1BYTE5_36 TJ1BYTE4_36 TJ1BYTE3_36 TJ1BYTE2_36 TJ1BYTE1_36 TJ1BYTE0_36  
TJ1BYTE6_35 TJ1BYTE5_35 TJ1BYTE4_35 TJ1BYTE3_35 TJ1BYTE2_35 TJ1BYTE1_35 TJ1BYTE0_35  
TJ1BYTE6_34 TJ1BYTE5_34 TJ1BYTE4_34 TJ1BYTE3_34 TJ1BYTE2_34 TJ1BYTE1_34 TJ1BYTE0_34  
TJ1BYTE6_33 TJ1BYTE5_33 TJ1BYTE4_33 TJ1BYTE3_33 TJ1BYTE2_33 TJ1BYTE1_33 TJ1BYTE0_33  
TJ1BYTE6_32 TJ1BYTE5_32 TJ1BYTE4_32 TJ1BYTE3_32 TJ1BYTE2_32 TJ1BYTE1_32 TJ1BYTE0_32  
TJ1BYTE6_31 TJ1BYTE5_31 TJ1BYTE4_31 TJ1BYTE3_31 TJ1BYTE2_31 TJ1BYTE1_31 TJ1BYTE0_31  
TJ1BYTE6_30 TJ1BYTE5_30 TJ1BYTE4_30 TJ1BYTE3_30 TJ1BYTE2_30 TJ1BYTE1_30 TJ1BYTE0_30  
TJ1BYTE6_29 TJ1BYTE5_29 TJ1BYTE4_29 TJ1BYTE3_29 TJ1BYTE2_29 TJ1BYTE1_29 TJ1BYTE0_29  
TJ1BYTE6_28 TJ1BYTE5_28 TJ1BYTE4_28 TJ1BYTE3_28 TJ1BYTE2_28 TJ1BYTE1_28 TJ1BYTE0_28  
TJ1BYTE6_27 TJ1BYTE5_27 TJ1BYTE4_27 TJ1BYTE3_27 TJ1BYTE2_27 TJ1BYTE1_27 TJ1BYTE0_27  
TJ1BYTE6_26 TJ1BYTE5_26 TJ1BYTE4_26 TJ1BYTE3_26 TJ1BYTE2_26 TJ1BYTE1_26 TJ1BYTE0_26  
Lucent Technologies Inc.  
35  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Map (continued)  
Table 14. Device Register Map (continued)  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes (continued)  
TJ1BYTE7_25  
TJ1BYTE7_24  
TJ1BYTE7_23  
TJ1BYTE7_22  
TJ1BYTE7_21  
TJ1BYTE7_20  
TJ1BYTE7_19  
TJ1BYTE7_18  
TJ1BYTE7_17  
TJ1BYTE7_16  
TJ1BYTE7_15  
TJ1BYTE7_14  
TJ1BYTE7_13  
TJ1BYTE7_12  
TJ1BYTE7_11  
TJ1BYTE7_10  
TJ1BYTE7_9  
TJ1BYTE7_8  
TJ1BYTE7_7  
TJ1BYTE7_6  
TJ1BYTE7_5  
TJ1BYTE7_4  
TJ1BYTE7_3  
TJ1BYTE7_2  
TJ1BYTE7_1  
E7 11100111  
E8 11101000  
E9 11101001  
EA 11101010  
EB 11101011  
EC 11101100  
ED 11101101  
EE 11101110  
EF 11101111  
F0 11110000  
F1 11110001  
F2 11110010  
F3 11110011  
F4 11110100  
F5 11110101  
F6 11110110  
F7 11110111  
F8 11111000  
F9 11111001  
FA 11111010  
FB 11111011  
FC 11111100  
FD 11111101  
FE 11111110  
FF 11111111  
TJ1BYTE6_25 TJ1BYTE5_25 TJ1BYTE4_25 TJ1BYTE3_25 TJ1BYTE2_25 TJ1BYTE1_25 TJ1BYTE0_25  
TJ1BYTE6_24 TJ1BYTE5_24 TJ1BYTE4_24 TJ1BYTE3_24 TJ1BYTE2_24 TJ1BYTE1_24 TJ1BYTE0_24  
TJ1BYTE6_23 TJ1BYTE5_23 TJ1BYTE4_23 TJ1BYTE3_23 TJ1BYTE2_23 TJ1BYTE1_23 TJ1BYTE0_23  
TJ1BYTE6_22 TJ1BYTE5_22 TJ1BYTE4_22 TJ1BYTE3_22 TJ1BYTE2_22 TJ1BYTE1_22 TJ1BYTE0_22  
TJ1BYTE6_21 TJ1BYTE5_21 TJ1BYTE4_21 TJ1BYTE3_21 TJ1BYTE2_21 TJ1BYTE1_21 TJ1BYTE0_21  
TJ1BYTE6_20 TJ1BYTE5_20 TJ1BYTE4_20 TJ1BYTE3_20 TJ1BYTE2_20 TJ1BYTE1_20 TJ1BYTE0_20  
TJ1BYTE6_19 TJ1BYTE5_19 TJ1BYTE4_19 TJ1BYTE3_19 TJ1BYTE2_19 TJ1BYTE1_19 TJ1BYTE0_19  
TJ1BYTE6_18 TJ1BYTE5_18 TJ1BYTE4_18 TJ1BYTE3_18 TJ1BYTE2_18 TJ1BYTE1_18 TJ1BYTE0_18  
TJ1BYTE6_17 TJ1BYTE5_17 TJ1BYTE4_17 TJ1BYTE3_17 TJ1BYTE2_17 TJ1BYTE1_17 TJ1BYTE0_17  
TJ1BYTE6_16 TJ1BYTE5_16 TJ1BYTE4_16 TJ1BYTE3_16 TJ1BYTE2_16 TJ1BYTE1_16 TJ1BYTE0_16  
TJ1BYTE6_15 TJ1BYTE5_15 TJ1BYTE4_15 TJ1BYTE3_15 TJ1BYTE2_15 TJ1BYTE1_15 TJ1BYTE0_15  
TJ1BYTE6_14 TJ1BYTE5_14 TJ1BYTE4_14 TJ1BYTE3_14 TJ1BYTE2_14 TJ1BYTE1_14 TJ1BYTE0_14  
TJ1BYTE6_13 TJ1BYTE5_13 TJ1BYTE4_13 TJ1BYTE3_13 TJ1BYTE2_13 TJ1BYTE1_13 TJ1BYTE0_13  
TJ1BYTE6_12 TJ1BYTE5_12 TJ1BYTE4_12 TJ1BYTE3_12 TJ1BYTE2_12 TJ1BYTE1_12 TJ1BYTE0_12  
TJ1BYTE6_11 TJ1BYTE5_11 TJ1BYTE4_11 TJ1BYTE3_11 TJ1BYTE2_11 TJ1BYTE1_11 TJ1BYTE0_11  
TJ1BYTE6_10 TJ1BYTE5_10 TJ1BYTE4_10 TJ1BYTE3_10 TJ1BYTE2_10 TJ1BYTE1_10 TJ1BYTE0_10  
TJ1BYTE6_9 TJ1BYTE5_9 TJ1BYTE4_9 TJ1BYTE3_9 TJ1BYTE2_9 TJ1BYTE1_9 TJ1BYTE0_9  
TJ1BYTE6_8 TJ1BYTE5_8 TJ1BYTE4_8 TJ1BYTE3_8 TJ1BYTE2_8 TJ1BYTE1_8 TJ1BYTE0_8  
TJ1BYTE6_7 TJ1BYTE5_7 TJ1BYTE4_7 TJ1BYTE3_7 TJ1BYTE2_7 TJ1BYTE1_7 TJ1BYTE0_7  
TJ1BYTE6_6 TJ1BYTE5_6 TJ1BYTE4_6 TJ1BYTE3_6 TJ1BYTE2_6 TJ1BYTE1_6 TJ1BYTE0_6  
TJ1BYTE6_5 TJ1BYTE5_5 TJ1BYTE4_5 TJ1BYTE3_5 TJ1BYTE2_5 TJ1BYTE1_5 TJ1BYTE0_5  
TJ1BYTE6_4 TJ1BYTE5_4 TJ1BYTE4_4 TJ1BYTE3_4 TJ1BYTE2_4 TJ1BYTE1_4 TJ1BYTE0_4  
TJ1BYTE6_3 TJ1BYTE5_3 TJ1BYTE4_3 TJ1BYTE3_3 TJ1BYTE2_3 TJ1BYTE1_3 TJ1BYTE0_3  
TJ1BYTE6_2 TJ1BYTE5_2 TJ1BYTE4_2 TJ1BYTE3_2 TJ1BYTE2_2 TJ1BYTE1_2 TJ1BYTE0_2  
TJ1BYTE6_1 TJ1BYTE5_1 TJ1BYTE4_1 TJ1BYTE3_1 TJ1BYTE2_1 TJ1BYTE1_1 TJ1BYTE0_1  
36  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description  
Hexadecimal notation is used in both the Address and the Reset Default columns in all the register description  
tables in this section.  
Device-Level Control, Alarm, and Mask Bits (0x00—0x16)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x00  
7
The bits in the register 0x00 are used for device-level con-  
trol and error reporting.  
0x00  
TEST_CNT  
Factory Test Mode. TEST_CNT = 1 forces all internal  
counters to test mode and is intended for factory use only.  
This bit should always be set to 0.  
6
5
4
3
B1ERRINS  
B2ERRINS  
B3ERRINS  
LATCH_CNT  
B1ERRINS, B2ERRINS, and B3ERRINS. B1ERRINS,  
B2ERRINS, and B3ERRINS all cause continuous BIP-8  
errors to be transmitted in their respective BIP-8 values.  
Latch Count. The device has a number of BIP, REI, and  
pointer adjustment counters that are all updated when the  
LATCH_CNT bit is written from 0 to 1. Nothing happens  
when the bit is written from 1 to 0. The only internal counter  
that is not updated by this bit is the test pattern counter.  
2
1
BLUECLKSEL The device can accept a blue signal clock at either the  
exact DS1 rate (BLUECLKSEL = 0), or at 16 times the DS1  
rate (BLUECLKSEL = 1).  
BIPBLKCNT  
BIP Error Counter or BIP Block Counter. The  
BIPBLKCNT bit is used to determine whether the BIP  
counters count the number of BIP errors (BIPBLKCNT = 0)  
or the number of BIP blocks that contain errors  
(BIPBLKCNT = 1).  
0
Reserved.  
Lucent Technologies Inc.  
37  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x01  
The bits in register 0x01 are used to provision device-level  
control bits. The functions of these bits are described  
below.  
0x00  
7
REI_EN  
REI_Enable. When REI_EN = 1, the device will automati-  
cally insert the appropriate REI into the transmitted Z2, G1,  
V5 overhead bytes whenever it receives BIP errors. If  
REI_EN = 0, then the automatic insertion of REI is dis-  
abled.  
6
5
AUTO_LRDI  
TXPAISINS  
When AUTO_LRDI = 1, the device will automatically insert  
line RDI.  
When TXPAISINS = 1, the device will write all 1s into the  
pointer bytes (H1—H3) and all of the synchronous payload  
envelope (SPE).  
4
DJACTL  
The DJACTL is used to enable the use of the built-in digital  
jitter attenuators. When DJACTL = 0, the gapped DS1/E1  
clock and data are transmitted by the device; otherwise,  
the smoothed clock and data are transmitted.  
3
2
Reserved.  
STS1SCR  
STS-1_Scramble. When STS1SCR = 1, the device scram-  
bles the outgoing STS-1 frame according to the SONET  
frame synchronous scrambling sequence 1 + x6 + x7. The  
sequence is reset to 1111111 at the beginning of the byte  
following the C1 byte and scrambles all of the STS-1 data  
except the A1, A2, and C1 bytes. When this bit is 0, then  
the transmit data is not scrambled.  
1
0
STS1DSCR  
STS-1_Descramble. When STS1DSCR = 1, the device  
descrambles the incoming STS-1 frame according to the  
SONET frame synchronous descrambling sequence  
1 + x6 + x7. The sequence is reset to 1111111 at the begin-  
ning of the byte following the C1 byte and descrambles all  
of the STS-1 data except the A1, A2, and C1 bytes. When  
this bit is 0, then the received data is not descrambled.  
STS1LB  
STS-1_Loopback. When STS1LB = 1, the transmitted data  
is looped back to the receive side. When this bit is 0, the  
device uses the received data.  
38  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x02  
The bits in register 0x02 are used to set the edges that  
retime data into and out of the device.  
0x00  
7
6
RXSERIAL  
TXSERIAL  
Receive Serial Data, Transmit Serial Data. Both the  
RXSERIAL and TXSERIAL bits are used to set the type of  
STS-1 data. When either serial bit is written to 1, the STS-1  
rail runs in serial mode; otherwise, the STS-1 rail runs in  
parallel mode.  
5
4
RXPARITY  
TXPARITY  
Both the RXPARITY and TXPARITY bits determine the  
type of parity for data buses. When these bits are written  
with 1, odd parity is used; otherwise, even parity is used.  
3
2
1
0
RXSTS1EDGE When the edge register bits are set to 1, the data is retimed  
(either in or out) by the rising clock edge; when set to a  
logic 0, the data is retimed by the falling clock edge. Note  
that the TSTS1SERIAL data always comes out on the ris-  
ing edge of the TSTS1CLKOUT.  
TXSTS1EDGE  
RXDS1EDGE  
TXDS1EDGE  
Note: The TXSTS1EDGE (bit 2) should always be set to 0  
to avoid potential race condition inside the device.  
Lucent Technologies Inc.  
39  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x03  
7
The bits in register 0x03 are used to report problems at the  
receive STS-1 level.  
0x00  
TRACEER  
The device monitors the received J1 byte for path trace  
mismatches. When the received J1 byte pattern does not  
match the previously received pattern, then TRACEER = 1.  
This is an event bit and is held until read.  
6
RXPARER  
RXPARER = 1 reports a parity violation on the receive  
STS-1 data bus when in parallel mode. This is an event bit  
and is held until read.  
5
4
Reserved.  
H4LOMF  
The device monitors the incoming H4 byte for loss of multi-  
frame indication (H4LOMF = 1). This is an event bit and is  
held until read.  
3
STS1PAIS  
STS1PAIS = 1 reports path AIS as detected by the receive  
pointer interpreter. This is a current state bit with a mini-  
µ
mum persistence of 375 s. The indications reset if the  
condition is no longer true.  
2
1
STS1LOP  
STS1LOF  
STS1LOP = 1 reports a loss of STS-1 pointer. This is a cur-  
µ
rent state bit with a minimum persistence of 125 s. The  
indications reset if the condition is no longer true.  
STS1LOF = 1 reports an out of frame condition that per-  
sists for more than 3 ms. This is a current state bit with a  
minimum persistence of 3 ms. The indications reset if the  
condition is no longer true.  
0
STS1OOF  
STS1OOF = 1 reports an out of frame condition on the  
receive STS-1 signal. This is a current state bit with a mini-  
µ
mum persistence of 500 s. The indications reset if the  
condition is no longer true.  
0x04  
7
6
5
4
3
2
1
0
TRACEERMSK The bits in register 0x04 are used to mask the contributions  
0xFF  
of the bits in register 0x03 to the microprocessor interrupt  
output, INT. When any of these bits are at a logic 1 level,  
the corresponding bit in register 0x03 is masked from con-  
tributing to the output interrupt. The reset default for this  
register masks all of the bits in register 0x03.  
RXPARERMSK  
H4LOMFMSK  
STS1PAISMSK  
STS1LOPMSK  
STS1LOFMSK  
STS1OOFMSK  
Bit 5 is reserved.  
40  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x05  
The bits in register 0x05 are used to report problems at the  
receive DS1/E1 and VT level. The bits in this register are  
composite bits. The bits that report the problems at the VT  
level are located in 28 separate registers (one for each VT)  
as described below. These composite bits are placed in the  
register map to determine which type of error was  
0x00  
detected. When any one of the 28 VT bits indicates an  
error, the corresponding composite bit indicates an error.  
7
6
ESOFCOM  
ESOFCOM = 1 reports that the device has experienced  
either a receive or a transmit elastic store overflow. This is  
an event bit and is held until read.  
VTSIZECOM  
VTLOPCOM  
VTSIZECOM = 1 reports incorrect VT size bits. The valid  
VT size bits are 11 for VT1.5 and 10 for VT2.  
5
4
VTLOPCOM = 1 reports LOP-V.  
VTRFIRDICOM VTRFIRDICOM = 1 reports the fact that the VT RFI/RDI  
bits have been received as a new consistent value for three  
consecutive superframes. This is an event bit and is held  
until read.  
3
2
VTAISCOM  
VTAISCOM = 1 reports the fact that the V1 and V2 pointer  
bytes are all 1s for three consecutive superframes.  
VTLABCOM  
VTLABCOM = 1 reports change of state of the VT label. In  
order for this bit to be set, the device must detect three  
consecutive consistent new values for the VT label. This is  
an event bit and is held until read.  
1
0
AISLOCCOM  
STS1LOS  
AISLOCCOM = 1 reports an AIS or LOC condition on DS1/  
E1. This is a current state bit with a minimum persistence  
of 2 ms. The indications reset if the condition is no longer  
true.  
STS1LOS = 1 reports an STS-1 loss of signal. The bits in  
register 0x91 are used to set the number of 6.48 MHz clock  
periods required to declare received STS-1 loss of signal. If  
this value is 0x00, then STS1LOS is not declared. This is a  
µ
current state bit with a minimum persistence of 250 s. The  
indications reset if the condition is no longer true.  
Lucent Technologies Inc.  
41  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x06  
7
6
5
4
3
2
1
0
ESOFMSK  
VTSIZEMSK  
VTLOPMSK  
VTRFIRDIMSK  
VTAISMSK  
The bits in register 0x06 are used to mask the contributions  
of the bits in register 0x05 to the microprocessor interrupt  
output, INT. When any of these bits is 1, the corresponding  
bit in register 0x05 is masked from contributing to the out-  
put interrupt. The reset default for this register masks all of  
the bits in register 0x05.  
0xFF  
VTLABMSK  
AISLOCMSK  
STS1LOSMSK  
0x07  
0x08  
This register reports the hardware selected device mode.  
Reserved. These bits are set to 0 at reset.  
0x01  
0x00  
7—1  
0
DS1_E1N  
This bit reports the DS1_E1N value from the device input  
pin.  
The bits in register 0x08 are used to configure the test pat-  
tern generator and detector.  
7
6
LATCH_TP  
A 0 to 1 transition on LATCH_TP causes the running error  
count to be latched and presented to the microprocessor.  
RCV_FRAME  
RCV_FRAME = 1 causes a framed test pattern to be  
expected; a 0 causes an unframed test pattern to be  
expected.  
5
4
RCV_PAT-1  
RCV_PAT-0  
RCV_PAT[1:0] determines the receive test pattern  
sequence where 00 = QRSS, 01 = 223 – 1,  
10 = 220 – 1, 11 = 215 – 1.  
3
2
ERROR_INS  
XMT_FRAME  
ERROR_INS causes a single error to be inserted in the  
data (not frame) bits after a 0 to 1 transition.  
XMT_FRAME = 1 causes a framed test pattern to be gen-  
erated; a 0 causes an unframed test pattern to be gener-  
ated.  
1
0
XMT_PAT-1  
XMT_PAT-0  
XMTPAT-[1:0] determines the transmit test pattern  
sequence where 00 = QRSS, 01 = 223 – 1,  
10 = 220 – 1, 11 = 215 – 1.  
42  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x09  
7
The bits in register 0x09 are used to set up the test pattern. 0x00  
TP_DS1E1N  
TP_DS1E1N = 1 sets the frame sequence to DS1;  
TP_DS1E1N = 0 sets the frame sequence to E1.  
6
5
TP_INVERT  
TP_INVERT = 1 forces the test pattern sequence to be  
inverted.  
TPDROPSIDE When TPDROPSIDE = 1, the test pattern is dropped from  
the SPE drop logic. The DS1/E1 output that is dropped is  
described in the Microprocessor Interface Description (con-  
tinued) section on page 50. When TPDROPSIDE = 0, the  
DS1/E1 that is dropped is the same as described in the  
DS1/E1 Insertion Selection section on page 47.  
4
3
TPDROP-4  
TPDROP-3  
TPDROP-2  
TPDROP-1  
TPDROP-0  
The TPDROP[4:0] bits are used to select the VT that needs  
to be dropped.  
2
1
0
0x0A  
The bits in register 0x0A indicate the condition of the test  
pattern detector.  
0x80  
7
TPOOS  
If the test pattern detector has been able to synchronize on  
the dropped signal, then TPOOS = 0.  
6
5
TPERR-6  
TPERR-5  
TPERR-4  
TPERR-3  
TPERR-2  
TPERR-1  
TPERR-0  
F2-[7:0]  
When TPOOS = 0, then the TPERR-[6:0] bits are used to  
keep count of the number of bit errors the test pattern  
detector has seen. This error count is cleared when the  
register is read by the microprocessor.  
4
3
2
1
0
0x0B  
0x0C  
7—0  
The F2-[7:0] bits in register 0x0B are used to report the F2  
receive byte in the path overhead.  
0x00  
0x00  
7—0  
C2-[7:0]  
The C2-[7:0] bits in register 0x0C are used to report the  
received C2 label byte in the path overhead. The default  
value for this register indicates path unequipped.  
Lucent Technologies Inc.  
43  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x0D  
The bits in register 0x0D are used to report path and sec-  
tion overhead.  
0x00  
7
6
G1-5  
G1-6  
G1-7  
G1-8  
The G1-[5:8] are used to report the four least significant  
bits of the G1 path overhead byte.  
5
4
3
Reserved.  
2
K2-6  
K2-7  
K2-8  
The K2-[6:8] bits are used to report the three least signifi-  
cant bits of the K2 section overhead byte.  
1
0
0x0E  
The bits in register 0x0E are used to set the number of con- 0x33  
secutive, consistent values required by registers 0x0B and  
0x0C before updating their values.  
7
6
5
4
3
2
1
0
C2#DET-3  
C2#DET-2  
C2#DET-1  
C2#DET-0  
F2#DET-3  
F2#DET-2  
F2#DET-1  
F2#DET-0  
The C2#DET-[3:0] bits are used to set the number of con-  
secutive and consistent values required before updating  
C2-[7:0] bits in register 0x0C.  
The F2#DET-[3:0] bits are used to set the number of con-  
secutive and consistent values required before updating  
F2-[7:0] bits in register 0x0B. Valid values for this register  
range from 3 to 15. Any value less than 3 defaults to 2  
inside the device.  
0x0F  
The bits in register 0x0F are used to set the number of con- 0x33  
secutive, consistent values required by register 0x0D  
before updating their values.  
7
6
5
4
3
2
1
0
G1#DET-3  
G1#DET-2  
G1#DET-1  
G1#DET-0  
K2#DET-3  
K2#DET-2  
K2#DET-1  
K2#DET-0  
The G1#DET-[3:0] bits are used to set the number of con-  
secutive and consistent values required before updating  
G1-[5:8] bits in register 0x0D.  
The K2#DET-[3:0] bits are used to set the number of con-  
secutive and consistent values required before updating  
K2-[6:8] bits in register 0x0D. Valid values for this register  
range from 3 to 15. Any value less than 3 defaults to 2  
inside the device.  
0x10  
7—0  
F2INS-[7:0]  
The F2INS-[7:0] bits in register 0x10 are used to set the  
values to be transmitted in the F2 byte.  
0x00  
44  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x11  
The bits in register 0x11 are used to set the values to be  
transmitted in the G1 and K2 bytes.  
0x00  
7
6
5
4
3
2
1
0
G1INS-5  
G1INS-6  
G1INS-7  
G1INS-8  
The G1INS-[5:8] bits are used to set values to be transmit-  
ted in the four least significant bits of the G1 byte. The  
G1 byte is written by the microprocessor.  
Reserved.  
K2INS-6  
K2INS-7  
K2INS-8  
The K2INS-[6:8] bits are used to set the values to be trans-  
mitted in the three least significant bits of the K2 byte.  
AUTO_LRDI bit (bit 6 of register 0x01) should be set to 0  
for K2INS-[6:8] insertion (i.e., K2 insertion) through the  
microprocessor interface.  
0x12  
The bits in register 0x12 are used to set the bus mode of  
operation for both the transmit and receive sides.  
0x24  
7—6  
5
Reserved.  
RBUSMODE  
The RBUSMODE bit sets the STS-1 receive side of the  
device to the bus mode of operation when a 1; otherwise,  
the device is set to nonbus mode.  
4
3
RBUSPOS-1  
RBUSPOS-0  
The RBUSPOS-[1:0] sets the time slot for the receive side.  
00 causes the receive side not to listen. Otherwise, the  
time slots are determined by the binary value of these bits  
as follows:  
01 = time slot 1  
10 = time slot 2  
11 = time slot 3  
2
TBUSMODE  
The TBUSMODE bit sets the STS-1 transmit side of the  
device to the bus mode of operation when a 1; otherwise,  
the device is set to nonbus mode.  
1
0
TBUSPOS-1  
TBUSPOS-0  
The TBUSPOS-[1:0] sets the time slot for the transmit  
sides. 00 causes the transmit side not to transmit. Other-  
wise, the time slots are determined by the binary value of  
these bits as follows:  
01 = time slot 1  
10 = time slot 2  
11 = time slot 3  
Lucent Technologies Inc.  
45  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x13  
0x14  
7—4  
Reserved.  
0x00  
3
2
1
0
S1INS-3  
S1INS-2  
S1INS-1  
S1INS-0  
The S1INS-[3:0] bits in register 0x13 are used to set the  
four least significant bits of the S1 path overhead byte.  
The bits in register 0x14 are for the S1 path overhead byte. 0x30  
7
6
5
4
S1#DET-3  
S1#DET-2  
S1#DET-1  
S1#DET-0  
The S1#DET-[3:0] bits are used to set the number of con-  
secutive, consistent values required by the receive S1 byte  
before updating the value. Valid values for these registers  
range from 3 to 15. Any value less than 3 defaults to 2  
inside the device.  
3
2
S1-3  
S1-2  
The S1-[3:0] bits are used to report the four least significant  
bits of the S1 path overhead byte.  
1
S1-1  
0
S1-0  
0x15  
0x16  
7—0  
DEVID-[7:0]  
DEVID-[7:0] bits in register 0x15 are used to report the  
device ID.  
0x51  
7—4  
3
The DEVVER-[3:0] bits in register 0x16 are used to report  
the device version. Anytime there are silicon changes that  
modify the operation of this device, this register will be  
incremented by 1.  
DEVVER-3  
DEVVER-2  
DEVVER-1  
DEVVER-0  
2
Notes:  
1
The reset default value is the device version.  
Bits 7—4 are reserved.  
0
46  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
DS1/E1 Insertion Selection  
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x17—0x2B  
7
Registers 0x17—0x2B report DS1 or E1 conditions.  
Value is  
0.  
DS1/E1AIS[1:21] The DS1/E1AIS[1:21] bits report the received DS1/E1  
AIS condition. When any of these bits is 1, the corre-  
sponding DS1/E1 input has an AIS condition. This value  
represents the current received state. The AIS condition  
is not latched by these bits. The indication is reset when  
the condition is no longer true.  
6
5
DS1/E1LOC[1:21] The DS1/E1LOC[1:21] bits in bit 6 report the received  
DS1/E1 loss of clock condition. When any of these bits  
is 1, the corresponding DS1/E1 input has a received  
loss of clock condition. This value represents the cur-  
rent received state. The loss of clock condition is not  
latched by these bits. The indication is reset when the  
condition is no longer true.  
DS1/E1LB[1:21] The DS1/E1LB[1:21] bits in bit 5 are used to force DS1/  
E1 loopback from output to input. When any of these  
bits is 1, the corresponding DS1/E1 input is overwritten  
by the outgoing DS1/E1 signal for that location.  
4
3
2
1
0
DS1/E1INS4_[1:21] The DS1/E1INS[4:0]_[1:21] bits in registers 0x17—  
0x2B are used to select the DS1/E1 input for the trans-  
mit VT1.5 slots. The DS1/E1 selected corresponds to  
the decimal value of the programmed 5 bits. If these bits  
contain 00000, the device will insert unequipped into  
the corresponding VT1.5 slot. If these bits contain  
11101—11110, the device will insert AIS-V into the cor-  
responding VT1.5 slot. Since the device defaults all 28  
of these registers to the value 00000, all of the 28 VT1.5  
slots begin transmitting unequipped following reset. The  
value 11111 inserts the test pattern. Addresses 0x17—  
0x32 correspond to VT1.5s as shown in Table 17,  
page 49.  
DS1/E1INS3_[1:21]  
DS1/E1INS2_[1:21]  
DS1/E1INS1_[1:21]  
DS1/E1INS0_[1:21]  
Lucent Technologies Inc.  
47  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection (continued)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x2C—0x32  
7
Registers 0x17—0x32 report DS1 conditions.  
Value is  
0.  
DS1AIS[22:28] The DS1/E1AIS[1:21] and DS1AIS[22:28] bits report the  
received DS1 AIS condition. When any of these bits is 1,  
the corresponding DS1 input has an AIS condition. This  
value represents the current received state. The AIS condi-  
tion is not latched by these bits. The indication is reset  
when the condition is no longer true.  
6
5
DS1LOC[22:28] The DS1/E1LOC[1:21] and DS1LOC[22:28] bits in bit 6  
report the received DS1 loss of clock condition. When any  
of these bits is 1, the corresponding DS1 input has a  
received loss of clock condition. This value represents the  
current received state. The loss of clock condition is not  
latched by these bits. The indication is reset when the con-  
dition is no longer true.  
DS1LB[22:28]  
The DS1/E1LB[1:21] and DS1LB[22:28] bits in bit 5 are  
used to force DS1 loopback from output to input. When any  
of these bits is 1, the corresponding DS1 input is overwrit-  
ten by the outgoing DS1 signal for that location.  
4
3
2
1
0
DS1INS4_[22:28] The DS1/E1INS[4:0]_[1:21] and DS1INS[4:0]_[22:28] bits  
in registers 0x17—0x32 are used to select the DS1 input  
for the transmit VT1.5 slots. The DS1 selected corresponds  
to the decimal value of the programmed 5 bits. If these bits  
contain 00000, the device will insert unequipped into the  
corresponding VT1.5 slot. If these bits contain 11101—  
11110, the device will insert AIS-V into the corresponding  
VT1.5 slot. Since the device defaults all 28 of these regis-  
ters to the value 00000, all of the 28 VT1.5 slots begin  
transmitting unequipped following reset. The value 11111  
inserts the test pattern. Addresses 0x17—0x32 correspond  
to VT1.5s as shown in Table 17, page 49.  
DS1INS3_[22:28]  
DS1INS2_[22:28]  
DS1INS1_[22:28]  
DS1INS0_[22:28]  
48  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 17. DS1/E1 Insertion Selection Format  
5 Programmed DS1/E1INS[4:0]_x Bits  
VT1.5 # VT Group # VT #  
Address  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
1
2
3
1
2
3
1
1
1
17  
18  
19  
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
26  
27  
28  
5
6
7
4
4
4
30  
31  
32  
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
VT Drop Selection (0x33—0x4E)  
Table 18. Registers 0x33—0x4E: VT Drop Selection  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x33—0x4E  
7
6
Reserved.  
Value is  
0.  
RXESOF[1:28] The RXESOF[1:28] bits (see VT Drop Selection Registers,  
Table 14, page 25) report the receive elastic store overflow  
condition. When any of these bits is 1, the corresponding  
DS1/E1 output has experienced an elastic store overflow.  
This value is latched by these bits until read by the micro-  
processor.  
5
TXESOF[1:28] The TXESOF[1:28] bits (see Control, Alarm, and Mask Bit  
Registers, Table 14, page 23) report the transmit elastic  
store overflow condition. When any of these bits is 1, the  
corresponding DS1/E1 input has experienced an elastic  
store overflow. This value is latched by these bits until read  
by the microprocessor.  
4
3
2
1
0
VTDROP4_[1:28] These bits in registers 0x33—0x4E are used to select the  
VT1.5 slot for the DS1/E1 outputs. The VT1.5 selected in  
Table 17 corresponds to the decimal value of these pro-  
grammed 5 bits. If these bits contain 00000, or 11101—  
11111, then the device inserts the following:  
VTDROP3_[1:28]  
VTDROP2_[1:28]  
VTDROP1_[1:28]  
VTDROP0_[1:28]  
00000 = device does not transmit any clock or data  
11101 = device inserts a DS1 AIS into the corresponding  
DS1/E1 slot  
11110 = device inserts a E1 AIS into the corresponding  
DS1/E1 slot  
11111= device inserts the test pattern  
Since the device defaults these bits in all 28 of these regis-  
ters to 00000, there will be no clock or data in any of the  
28 DS1 or 21 E1 slots after reset. VTDROP[4:0]_[1:28],  
bits 00001—11100, correspond to the specific VT1.5  
streams as shown in Table , page 50. Address 0x33—  
0x4E correspond to VTs as shown in Table 20, also on  
page 50.  
Lucent Technologies Inc.  
49  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 19. VT Drop Selection Format  
5 Programmed DS1/E1INS[4:0]_x or VT Drop Data Bits  
VT1.5 Drop #  
VT Group # VT #  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
2
3
1
2
3
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
26  
27  
28  
5
6
7
4
4
4
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
Table 20. VT to Address Mapping  
VT #  
Address  
1
2
3
33  
34  
35  
26  
27  
28  
4C  
4D  
4E  
50  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Tx VT Overhead Insertion Control (0x4F—0x6A)  
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x4F—0x6A  
7
The bits in these registers provision the transmitted VT  
overhead byte, V5.  
Value is  
0.  
BIP2ERINS[1:28] Each BIP2ERINS[1:28] bit = 1 forces the selected VT to  
transmit inverted BIP-2 bits which causes the down-  
stream receiver to declare continuous BIP-2 errors.  
6
VTRFIRDIEN[1:28] The VTRFIRDIEN[1:28] bits control whether  
RDI-V bits are inserted automatically by the device  
(VTRFIRDIEN[1:28] = 1) or manually by the  
microprocessor (VTRFIRDIEN[1:28] = 0).  
5
4
3
VTRFIINS[1:28] The VTRFIINS[1:28] bits directly program the transmitted  
RFI-V bits when the corresponding VTRFIRDIEN[1:28]  
bits = 1.  
VTRDIINS[1:28] The VTRDIINS[1:28] bits directly program the transmitted  
RDI-V bits when the corresponding VTRFIRDIEN[1:28]  
bits = 1.  
VTAISINS[1:28]  
Each VTAISINS[1:28] bit = 1 forces AIS-V to be written  
into the corresponding VT slot. This consists of writing all  
1s into the selected VT slot.  
2
1
0
VTLABINS2_[1:28] The VTLABINS[2:0]_[1:28] bits directly program the  
transmitted VT label bits. These bits are used to carry  
unequipped information (VTLABINS[2:0]_[1:28] = 000) as  
well as specific payload mappings and AIS-V.  
VTLABINS1_[1:28]  
VTLABINS0_[1:28]  
Lucent Technologies Inc.  
51  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Rx VT Drop Monitoring (0x6B—0x86)  
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x6B—0x86  
7
The bits in register 0x6B—0x86 are used to report the VT Value is  
slot status.  
0.  
VTSIZEER[1:28] The VTSIZEER[1:28] bits report incorrect VT size bits  
when the value is 1. M = 1 reports an AIS or LOC condition  
on DS1/E1. These are current state bits with a minimum  
µ
persistence of 500 s. The indications reset if the condition  
is no longer true.  
6
VTLOP[1:28]  
The VTLOP[1:28] bits report VT loss of pointer when the  
value is 1. These are current state bits with a minimum per-  
µ
sistence of 500 s. The indications reset if the condition is  
no longer true.  
5
4
VTRDI1_[1:28] The VTRDI[1:0]_[1:28] bits report VT RDI. These are cur-  
µ
rent state bits with a minimum persistence of 500 s. The  
VTRDI0_[1:28]  
indications reset if the condition is no longer true.  
3
VTAIS[1:28]  
Each VTAIS[1:28] bit = 1 reports that the V1 and V2 pointer  
bytes are all 1s for three consecutive superframes. These  
are current state bits with a minimum persistence of 1500  
µ
s. The indications reset if the condition is no longer true.  
2
1
VTLAB2_[1:28] The VTLAB[2:0]_[1:28] bits report the received VT labels.  
µ
These bits have a minimum persistence of 500 s.  
VTLAB1_[1:28]  
VTLAB0_[1:28]  
0
0x87  
7—0  
Reserved.  
0x00  
52  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 23. Registers 0x88—0x89: Signal Override Control  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x88  
The bits in register 0x88 are used to override the DS1_E1N  
signal pin. These bits represent the seven VT Groups and  
can be individually programmed as follows.  
0x00  
7
6
5
4
3
2
1
0
TVTG-7  
TVTG-6  
If TVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the  
signal will be E1.  
TVTG-5  
TVTG-4  
TVTG-3  
TVTG-2  
TVTG-1  
TOVERRIDE  
If TOVERRIDE = 1, then the type of signal in each VT  
Group is determined by the 7 TVTG bits.  
0x89  
The bits in register 0x89 are used to override the DS1_E1N  
signal pin. These bits represent the seven VT Groups and  
can be individually programmed as follows.  
0x00  
7
6
5
4
3
2
1
0
RVTG-7  
RVTG-6  
If RVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the  
signal will be E1.  
RVTG-5  
RVTG-4  
RVTG-3  
RVTG-2  
RVTG-1  
ROVERRIDE  
If ROVERRIDE = 1, then the type of signal in each VT  
Group is determined by the 7 RVTG bits.  
Lucent Technologies Inc.  
53  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Digital Jitter Attenuator Controls (0x8A—0x8F)  
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x8A—0x8F  
The bits in registers 0x8A—0x8F are used to control vari-  
See  
ous aspects of the digital jitter attenuator. Two programma- below.  
ble terms are used to set the 2nd order loop damping factor  
and natural frequency of the PLL. These terms are the gain  
threshold, set by DJAGTHR-[23:0] in registers  
0x8D—0x8F, and scale value, set by DJASCALE-[15:0] in  
registers 0x8B—0x8C. The PLL bandwidth can be set,  
using the above registers, to accommodate various system  
constraints.  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
7—0 SCALETHR-[7:0] Scale Threshold.  
7—0 DJASCALE-[15:8] Scale Value.  
0xFF  
0x0F  
0xCA  
0x00  
0xFE  
0x50  
7—0  
7—0  
DJASCALE-[7:0]  
DJAGTHR-[23:16]  
Gain Threshold.  
7—0 DJAGTHR-[15:8]  
7—0 DJAGTHR-[7:0]  
54  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0x91  
The bits in register 0x91 are used to set the number of  
6.48 MHz clock periods required to declare received STS-1  
loss of signal. The two least significant bits have a dual pur-  
pose and can also be used to program the edge on which  
the QRSS pattern generator and detector data is clocked.  
0x00  
If this value is 0x00, then LOS is not declared; otherwise,  
the device looks for an all-zeros or all-ones input signal for  
the binary equivalent of this value in clock periods to  
declare LOS.  
7
6
5
4
3
2
1
LOSDET-7  
LOSDET-6  
LOSDET-5  
LOSDET-4  
LOSDET-3  
LOSDET-2  
These bits are used to set the number of 6.48 MHz clock  
periods required to declare received STS-1 loss of signal.  
LOSDET-1/  
TP_EDGE-1  
This bit has a dual purpose. It can either contribute to the  
above count or can be programmed to set the edge on  
which the test pattern detector data is clocked in. When set  
to 0, the detector uses the rising edge of the selected input  
clock to retime the data, or uses the falling edge otherwise.  
0
LOSDET-0/  
TP_EDGE-0  
This bit has a dual purpose. It can either contribute to the  
above count or can be programmed to set the edge on  
which the test pattern generator data is clocked out. When  
set to 0, the generator uses the rising edge of the blue sig-  
nal clock to retime the data, or uses the falling edge other-  
wise.  
0x92—0xBE 7—0  
Reserved.  
Value is  
0.  
Lucent Technologies Inc.  
55  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Block Control (0xBF)  
Table 26. Register 0xBF: Block Control  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xBF  
The bits in register 0xBF control the information presented  
to the microprocessor from the registers 0xC0—0xFF.  
These last 64 bytes will display different results depending  
on the value programmed into this byte. A hierarchy of  
evaluation of these bytes occurs in the following three ways  
presented in the description of bits 2, 1, 0.  
0x00  
7—4  
3
Reserved. These bits are set to 0.  
TJ1BYTE  
If TJ1BYTE = 1, the transmitted J1 byte values are pre-  
sented. These registers are read/write. Any values written  
into these registers will change the J1 byte values that are  
transmitted.  
2
1
0
RJ1BYTE  
REI_CNTS  
BIP_CNTS  
If RJ1BYTE = 1, the received J1 bytes are presented  
(read only).  
If REI_CNTS = 1, REI error information is presented  
(read only).  
If BIP_CNTS = 1, BIP error information is presented,  
regardless of the values of the other bits in this register  
(read only).  
56  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Detected BIP Errors (0xC0—0xFD)  
Table 27. Registers 0xC0—0xFD: Detected BIP Errors  
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register  
0xBF. When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xC0—0xFD are used to count the  
number of BIP errors detected by the device.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
7—0  
B1BIPCNT-[15:8] Registers 0xC0—0xC5. The first six registers in the  
Value is  
0.  
block, 0xC0—0xC5, are the BIP errors detected by B1,  
B2, and B3.  
7—0  
B1BIPCNT-[7:0]  
B2BIPCNT-[15:8]  
B2BIPCNT-[7:0]  
B3BIPCNT-[15:8]  
B3BIPCNT-[7:0]  
VT[1:28]PTR+3  
7—0  
7—0  
7—0  
7—0  
7
0xC6—  
0xFC*  
Registers 0xC6—0xFD. The remaining registers in the  
block indicate the errors seen by the BIP-2 error detec-  
tors in the individual VT1.5 slots.  
Value is  
0.  
6
VT[1:28]PTR+2  
5
VT[1:28]PTR+1  
4
VT[1:28]PTR+0  
Since the BIP-2 errors only require 12 bits, the VT pointer  
increment counts are also presented in these registers.  
The values in all of these counters are latched by the  
LATCH_CNT bit in register 0x00. (See the STS-1/AU-3  
Terminate section, page 16 and page 17.)  
3
BIP2CNT11_[1:28]  
BIP2CNT10_[1:28]  
BIP2CNT9_[1:28]  
BIP2CNT8_[1:28]  
BIP2CNT7_[1:28]  
BIP2CNT6_[1:28]  
BIP2CNT5_[1:28]  
BIP2CNT4_[1:28]  
BIP2CNT3_[1:28]  
BIP2CNT2_[1:28]  
BIP2CNT1_[1:28]  
BIP2CNT0_[1:28]  
2
1
0
0xC7—  
0xFD†  
7
6
5
4
3
2
1
0
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page  
29 and page 30.  
† These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page  
29 and page 30.  
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value  
When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xFE—0xFF are used to report the received  
SONET/SDH pointer value.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xFE  
0xFF  
7—0  
7—0  
SPTR+[7:0]  
SPTR–[7:0]  
Register 0xFE. The SPTR+[7:0] bits report the SONET  
pointer increment value.  
0x00  
Register 0xFF. The SPTR–[7:0] bits report the SONET  
pointer decrement value.  
0x00  
Lucent Technologies Inc.  
57  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Detected REI Errors (0xC0—0xFD)  
Table 29. Registers 0xC0—0xFD: Detected REI Errors  
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register  
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xC0—0xFD  
are used to count the number of REI errors detected by the device.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
7—0  
Reserved. These bits are set to 0.  
Value is  
0.  
7—0  
7—0  
B2REI-[15:8]  
B2REI-[7:0]  
B3REI-[15:8]  
B3REI-[7:0]  
Registers 0xC2—0xC5. The registers, 0xC2—0xC5, are  
the REI errors detected by B2 and B3 (see the STS-1/AU-3  
Terminate section, page 16 and page 17).  
7—0  
7—0  
7—0  
7
0xC6—  
0xFC*  
VT[1:28]PTR–3 Registers 0xC6—0xFD. The remaining registers in the  
block indicate the errors seen by the REI error detectors in  
the individual VT1.5 slots. Since the VT REI errors only  
require 11 bits, the VT pointer decrement counts are also  
presented in these registers. The values in all of these  
counters is latched by the LATCH_CNT bit  
6
VT[1:28]PTR–2  
VT[1:28]PTR–1  
VT[1:28]PTR–0  
5
4
3
2
VTREI10_[1:28]  
(bit 3) in register 0x00. (See the STS-1/AU-3 Terminate  
1
VTREI9_[1:28] section, page 16 and page 17.)  
VTREI8_[1:28]  
0
Note: In registers 0xC6—0xFC, bit 3 is reserved.  
0xC7—  
0xFD†  
7
VTREI7_[1:28]  
VTREI6_[1:28]  
VTREI5_[1:28]  
VTREI4_[1:28]  
VTREI3_[1:28]  
VTREI2_[1:28]  
VTREI1_[1:28]  
VTREI0_[1:28]  
6
5
4
3
2
1
0
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page  
31 and page 32.  
† These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page  
31 and page 32.  
Table 30. Registers 0xFE—0xFF: Reserved  
When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xFE—0xFF are reserved.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xFE  
0xFF  
7—0  
7—0  
Reserved. These bits are set to 0.  
0x00  
0x00  
58  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
Register Architecture Description (continued)  
Receive J1 Path Trace Bytes (0xC0—0xFF)  
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes  
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register  
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 0 and RJ1BYTE = 1, the bytes in reg-  
isters 0xC0—0xFF are used to read the received 64 path trace bytes.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xC0—0xFF  
7
6
5
4
3
2
1
0
RJ1BYTE7_[64:1] The receive J1 path trace byte RJ1BYTE[7:0]_64 corre- Value is  
sponds to the first byte in the 64-byte sequence, while the  
J1 path trace byte RJ1BYTE[7:0]_1 corresponds to the  
last byte in the 64-byte sequence. These specified  
receive J1 byte values are continuously written, modulo  
64, into the 0xC0—0xFF registers. If any received byte  
does not match the previously received byte for its loca-  
0.  
RJ1BYTE6_[64:1]  
RJ1BYTE5_[64:1]  
RJ1BYTE4_[64:1]  
RJ1BYTE3_[64:1]  
RJ1BYTE2_[64:1]  
RJ1BYTE1_[64:1] tion, then TRACEER bit (bit 7) in register 0x03 is set to 1.  
RJ1BYTE0_[64:1]  
Transmit J1 Path Trace Bytes (0xC0—0xFF)  
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes  
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register  
0xBF. When register 0xBF is set for BIP_CNTS = 0 and RJ1BYTE = 1 and TJ1BYTE = 1, the bytes in regis-  
ters 0xC0—0xFF are used to provision the transmit 64 path trace bytes.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
(Hex)  
0xC0—0xFF  
7
6
5
4
3
2
1
0
TJ1BYTE7_[64:1] The transmit J1 path trace byte TJ1BYTE[7:0]_64 corre- Value is  
sponds to the first byte in the 64-byte sequence, while the  
J1 path trace byte TJ1BYTE[7:0]_1 corresponds to the  
last byte in the 64-byte sequence. These registers can be  
written by the microprocessor.  
0.  
TJ1BYTE6_[64:1]  
TJ1BYTE5_[64:1]  
TJ1BYTE4_[64:1]  
TJ1BYTE3_[64:1]  
TJ1BYTE2_[64:1]  
TJ1BYTE1_[64:1]  
TJ1BYTE0_[64:1]  
Lucent Technologies Inc.  
59  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
I/O Timing  
The I/O timing specifications for the microprocessor interface are given in Table 33. The microprocessor interface  
pins use CMOS I/O levels (see pages 20—22 for pin listings). All outputs, except the address/data bus AD[7:0], are  
rated for a capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load. The minimum read and write  
cycle time is 200 ns for all device configurations.  
Table 33. Microprocessor Interface I/O Timing Specifications  
Symbol  
Configuration  
Parameter  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
(Min)  
(Min)  
(Max)  
t1  
Modes 1 & 2  
Address Valid to AS Asserted (Read, Write)  
AS Asserted to Address Invalid (Read, Write)  
AS Asserted to DS Asserted  
5
0
10  
75  
35  
7.5  
35  
10  
25  
150  
100  
100  
20  
24  
44  
15  
15  
20  
90  
75  
25  
25  
16  
73  
22  
t2  
t3  
t4  
R/W High (Read) to DS Asserted  
DS Asserted (Read, Write) to DTACK Asserted  
DTACK Asserted to Data Valid (Read)  
DS Asserted (Read) to Data Valid  
DS Negated (Read, Write) to AS Negated  
DS Negated (Read) to Data Invalid  
DS Negated (Read) to DTACK Negated  
AS (Read, Write) Asserted Width  
DS (Read) Asserted Width  
25  
7
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
t30  
t31  
t32  
t33  
t34  
AS Asserted to R/W Low (Write)  
R/W Low (Write) to DS Asserted  
20  
7.5  
15  
30  
35  
25  
Data Valid to DS Asserted (Write)  
DS Negated to DTACK Negated (Write)  
DS Negated to Data Invalid (Write)  
DS (Write) Asserted Width  
Modes 3 & 4  
Address Valid to ALE Asserted Low (Read, Write)  
ALE Asserted Low (Read, Write) to Address Invalid  
ALE Asserted Low to RD Asserted (Read)  
RD Asserted (Read) to Data Valid  
RD Asserted (Read) to RDY Asserted  
RD Negated to Data Invalid (Read)  
RD Negated to RDY Negated (Read)  
ALE Asserted Low to WR Asserted (Write)  
CS Asserted to RDY Asserted Low  
Data Valid to WR Asserted (Write)  
WR Asserted (Write) to RDY Asserted  
WR Negated to RDY Negated (Write)  
WR Negated to Data Invalid  
ALE Asserted (Read, Write) Width  
RD Asserted (Read) Width  
WR Asserted (Write) Width  
The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 3—10.  
60 Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
I/O Timing (continued)  
MINIMUM READ CYCLE  
CS  
t11  
AS  
t2  
t1  
t8  
A[7:0]  
R/W  
VALID ADDRESS  
t4  
t3  
t12  
DS  
t6  
t5  
t10  
DTACK  
AD[7:0]  
t7  
t9  
VALID DATA  
5-3685(F).br.4  
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)  
MINIMUM WRITE CYCLE  
CS  
AS  
t11  
t2  
t1  
t8  
A[7:0]  
R/W  
VALID ADDRESS  
t13  
t14  
t18  
DS  
t5  
t16  
DTACK  
AD[7:0]  
t15  
t17  
VALID DATA  
5-3686(F).br.5  
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)  
Lucent Technologies Inc.  
61  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
I/O Timing (continued)  
MINIMUM READ CYCLE  
CS  
t11  
AS  
t8  
R/W  
t4  
t3  
t12  
DS  
t7  
t5  
t10  
t6  
DTACK  
t2  
t1  
t9  
VALID  
DATA  
VALID  
ADDRESS  
VALID  
ADDRESS  
AD[7:0]  
VALID DATA  
5-3687(F)r.12  
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)  
MINIMUM WRITE CYCLE  
CS  
AS  
t11  
t13  
t8  
t14  
R/W  
t18  
DS  
t5  
t16  
DTACK  
AD[7:0]  
t2  
t1  
t15  
VALID DATA  
t17  
VALID  
DATA  
VALID  
ADDRESS  
VALID  
ADDRESS  
5-3688(F)r.12  
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)  
Lucent Technologies Inc.  
62  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
I/O Timing (continued)  
MINIMUM READ CYCLE  
CS  
t32  
ALE  
t19  
t20  
A[7:0]  
RD  
VALID ADDRESS  
t21  
t33  
t22  
t24  
AD[7:0]  
RDY  
VALID DATA  
t27  
t23  
t25  
5-3689(F).br.4  
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)  
MINIMUM WRITE CYCLE  
CS  
ALE  
t32  
t19  
t20  
A[7:0]  
WR  
VALID ADDRESS  
t26  
t34  
t28  
t31  
t30  
AD[7:0]  
RDY  
VALID DATA  
t29  
t27  
5-3690(F).br.3  
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)  
Lucent Technologies Inc.  
63  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Microprocessor Interface Description (continued)  
I/O Timing (continued)  
MINIMUM READ CYCLE  
CS  
t32  
ALE  
t21  
t33  
RD  
t19  
t22  
t24  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
DATA  
AD[7:0]  
RDY  
VALID DATA  
t23  
t25  
t27  
t20  
5-3691(F)r.12  
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)  
MINIMUM WRITE CYCLE  
CS  
ALE  
t32  
t26  
t34  
WR  
t19  
t28  
VALID DATA  
t29  
t31  
t30  
t20  
VALID  
DATA  
VALID  
ADDRESS  
VALID  
ADDRESS  
AD[7:0]  
RDY  
t27  
5-3692(F)r.13  
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)  
64  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These  
are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operational sections of this device specification. Exposure to absolute maximum rat-  
ings for extended periods can adversely affect device reliability.  
Table 34. Absolute Maximum Ratings  
Parameter  
Power Supply (dc Voltage)  
Symbol  
Min  
–0.5  
–0.3  
Max  
4.6  
Unit  
V
DD  
V
I
V
Input Voltage  
5.5  
V
O
Output Voltage  
V
3.63  
125  
85  
V
stg  
T
Storage Temperature  
Ambient Operating Temperature Range  
–65  
–40  
°C  
°C  
A
T
Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-  
sure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM)  
and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage  
thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has  
been adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used  
and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by  
using these circuit parameters.  
Table 35. ESD Threshold Voltage  
Model  
Voltage (volts)  
2000  
HBM  
CDM (all pins except corner pins)  
CDM (all corner pins)  
500  
1000  
Lucent Technologies Inc.  
65  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Operating Conditions  
Table 36. Recommended Operating Conditions  
Parameter  
Power Supply (dc Voltage)  
Ground  
Symbol  
Min  
3.14  
Typ  
3.3  
0.0  
Max  
3.46  
Unit  
V
DD  
V
V
V
V
SS  
V
IH  
IL  
DD  
– 1.0  
Input Voltage, High  
Input Voltage, Low  
Ambient Temperature  
Power Dissipation, DS1  
V
5.25  
1.0  
V
SS  
V
V
A
T
P
–40  
85  
°C  
D
A
DD  
(T = 23 °C, V = 3.3 V):  
Full Loopback  
Broadcast  
380  
380  
360  
mW  
mW  
mW  
Standby  
Power Dissipation, E1  
A
DD  
(T = 23 °C, V = 3.3 V):  
Full Loopback  
Broadcast  
450  
450  
430  
mW  
mW  
mW  
Standby  
Electrical Characteristics  
Table 37. Logic Interface Characteristics  
An internal 100 k pull-up is provided on the ICT, RESET, CS, TCK, TDI, TMS, TRST, RSTS1DATA[7:0],  
RSTS1PAR, E1BLUECLK, RCLK[28:1], and RDATA[28:1] pins. This requires these input pins to sink no more than  
20 µA. All buffers use CMOS levels.  
Parameter  
Input Voltage:  
Symbol  
Test Conditions  
Min  
Max  
Unit  
IL  
Low  
High  
V
V
GND  
1.0  
DD  
V
V
V
IH  
DD  
V
V
– 1.0  
L
Input Leakage  
I
1.0  
µA  
Output Voltage:  
Low  
High  
OL  
V
V
–5.0 mA  
5.0 mA  
GND  
0.5  
DD  
V
V
V
OH  
DD  
– 1.0  
I
Input Capacitance  
Load Capacitance*  
C
3.0  
25  
pF  
pF  
L
C
* 100 pF allowed for AD[7:0] (pins 48 to 50 and 55 to 59).  
66  
Lucent Technologies Inc.  
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Timing Characteristics  
Operational Timing  
The operational timing parameters can be grouped separately for clocks, inputs, and outputs.  
Table 38 lists the  
transmit and receive input clock specifications for this device. (For definitions of the signal names, see the pin  
descriptions in Table 1, pages 7—9.)  
Table 38. Input Clock Specifications  
Signal Name  
Parameter  
Min  
Max  
Unit  
Input Clock Signals  
TSTS1CLKIN Frequency  
Clock Pulse High Time  
51.839 51.841  
MHz  
%
40  
60  
1
Peak-to-Peak Jitter  
Frequency  
%
19.439 19.441  
MHz  
%
Clock Pulse High Time  
Peak-to-Peak Jitter  
Frequency  
40  
60  
1
%
6.479  
40  
6.481  
60  
MHz  
%
Clock Pulse High Time  
Peak-to-Peak Jitter  
1
%
RCLK[1:28] Frequency  
1.5437 1.5443  
MHz  
%
(DS1 Mode)  
Clock Pulse High Time  
Peak-to-Peak Jitter  
Frequency  
40  
60  
1
%
2.0484 2.0476  
MHz  
%
RCLK[1:21]  
(E1 Mode)  
Clock Pulse High Time  
Peak-to-Peak Jitter  
40  
60  
1
%
RSTS1CLK Frequency  
Clock Pulse High Time  
Peak-to-Peak Jitter  
JTAG Signal  
51.839 51.841  
MHz  
%
40  
60  
1
%
Frequency  
0.5  
40  
12  
60  
1
MHz  
%
TCK  
Clock Pulse High Time  
Peak-to-Peak Jitter  
Rise/Fall Time  
%
15  
ns  
Lucent Technologies Inc.  
67  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Timing Characteristics (continued)  
Operational Timing (continued)  
Table 39 lists the setup time (tSU) and hold time (tH) specifications for the receive input and JTAG signals. The digi-  
tal system interface timing is shown in Figure 11.  
Table 39. Input Timing Specifications  
Setup Time  
(tSU)  
Hold Time  
(tH)  
Input Name  
Reference CLK*  
Unit  
Min  
Max  
Min  
Max  
Receive Signals  
TSTS1SYNC  
RDATA[1:28]  
TSTS1CLKIN  
RCLK[1:28] ↓  
RSTS1CLK ↓  
RSTS1CLK ↓  
RSTS1CLK ↓  
5
2
40  
2
ns  
ns  
ns  
ns  
ns  
50  
RSTS1DATA[7:0]  
RSTS1PAR  
15  
15  
2
RSTS1SERIAL  
5
JTAG Signal  
50  
2
TDI  
50  
ns  
TCK  
* These clock edges are programmable through the microprocessor interface.  
Notes:  
represents a low-to-high transition.  
represents a high-to-low transition.  
CLOCK IN  
DATA IN  
tSU  
tH  
CLOCK OUT  
DATA OUT  
tPD  
5-5342(F)r.5  
Figure 11. Interface Data Timing  
68  
Lucent Technologies Inc.  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
(continued)  
Timing Characteristics  
(continued)  
Operational Timing  
The output clock specifications are shown in Table 40.  
Table 40. Output Clock Specifications  
Rise Time  
tR  
Fall Time  
tF  
Test  
Conditions  
Signal Name  
Frequency  
Unit  
Min  
Max  
Min  
Max  
30  
TCLK[1:28]  
(DS1 Mode)  
1.544 MHz ± 5%  
2.048 MHz ± 5%  
CL = 50 pF  
CL = 50 pF  
30  
ns  
ns  
TCLK[1:28]  
(E1 Mode)  
30  
30  
TSTS1CLKOUT*  
51.84 MHz ± 5%  
19.44 MHz ± 5%  
6.48 MHz ± 5%  
CL = 15 pF  
CL = 15 pF  
CL = 15 pF  
3
3
3
3
3
3
ns  
ns  
ns  
* The duty-cycle distortion added to the TSTS1CLKOUT signal is 2% worst case when measured from 1.5 V in to 1.5 V out with a 2 ns rise  
time input.  
PD  
Table 41 lists the propagation delay (t ) specifications for the output signals. The digital system interface timing is  
shown in Figure 11, page 68.  
Table 41. Output Timing Specifications  
Propagation Delay *  
Test  
Conditions  
Output Name  
Reference CLK  
tPD  
Unit  
Min  
Max  
Transmit Signals  
CL = 25 pF  
TDATA[28:1]  
TSTS1DATA[7:0]  
TSTS1PAR  
TCLK[1:28] ↓  
TSTS1CLKIN ↑  
TSTS1CLKIN ↑  
TSTS1CLKIN ↑  
40  
2
190  
12  
ns  
ns  
ns  
ns  
CL = 15 pF  
CL = 15 pF  
2
12  
TSTS1DATA7  
CL = 15 pF  
0
3.5  
JTAG Signal  
CL = 50 pF  
TDO  
1.5  
17  
ns  
TCK  
* Propagation delay skew, tPLH—tPHL, is ±200 ps.  
Notes:  
represents a low-to-high transition.  
represents a high-to-low transition.  
Lucent Technologies Inc.  
69  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
(continued)  
Timing Characteristics  
Transmit Sync Timing  
In all transmit modes, the first bit/byte of the J0, J1, and V1 bytes are coincident with the sync pulse. The second  
and third pulses in this composite signal are only needed to force V1 superframe alignment. If there are three sync  
pulses as shown below, then V1 will be forced. The serial mode transmit sync timing is shown below in Figure 12.  
TSTS1CLK  
TSTS1SYNC  
J0-7  
J0-6  
J0-5  
J0-4  
J0-3  
J0-2  
J0-1  
J0-0  
J1-7  
J1-6  
J1-5  
J1-4  
J1-3  
J1-2  
J1-1  
J1-0  
V1-7  
V1-6  
V1-5  
V1-4  
V1-3  
V1-2  
V1-1  
V1-0  
TSTS1DATA  
5-6347(F)r.1  
Note: The - symbol followed by a number represents the bit number in the byte.  
Figure 12. Serial Mode Transmit Sync Timing  
The bus mode transmit sync timing is shown below in Figure 13.  
TSTS1CLK  
TSTS1SYNC  
TSTS1DATA  
J0#1  
J0#2  
J0#3  
J1#1  
J1#2  
J1#3  
V1#1 V1#2  
V1#3  
5-6347(F).a  
Note: The # symbol followed by a number represents the active device on the bus.  
Figure 13. Bus Mode Transmit Sync Timing  
70  
Lucent Technologies Inc.  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
(continued)  
Timing Characteristics  
Transmit Sync Timing (continued)  
The nonbus parallel mode transmit sync timing is shown below in Figure 14.  
TSTS1CLK  
TSTS1SYNC  
J0  
J1  
V1  
TSTS1DATA  
5-6347(F).b  
Figure 14. Nonbus Parallel Mode Transmit Sync Timing  
Receive Sync Timing  
The only receive mode that requires a sync pulse is the bus mode. The sync pulse is required to align the device to  
time slot #1. The bus parallel mode receive sync timing is shown below in Figure 15.  
RSTS1CLK  
RSTS1SERIAL  
J0#1  
J0#2  
J0#3  
J1#1  
J1#2  
J1#3  
V1#1 V1#2 V1#3  
RSTS1DATA  
5-6347(F).cr.1  
Note: The # symbol followed by a number represents the active device on the bus.  
Figure 15. Bus Parallel Mode Receive Sync Timing  
Lucent Technologies Inc.  
71  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Typical Uses  
Path Termination Multiplex  
Using the device without internal loopbacks results in an SDH/SONET path terminating multiplex, as shown in  
Figure 16.  
TMPR28051  
T7693  
QUAD LIU  
SPE  
GENERATE  
TMUX03155  
DS1/E1 #1 IN  
ELASTIC  
STORE  
VT  
LIU  
LIU  
GENERATE  
DS1/E1 #1 OUT  
STS/STM  
MUX  
LOGIC  
SPE  
INSERTION  
LOGIC  
STS-1 OUT  
DS1/E1 #n IN  
ELASTIC  
STORE  
VT  
GENERATE  
DS1/E1 #n OUT  
JITTER  
ATTENUATE  
VT  
TERMINATE  
SPE  
DROP  
LOGIC  
STS/STM  
DEMUX  
LOGIC  
STS-1 IN  
SPE  
LOCATE  
SPE  
TERMINATE  
JITTER  
ATTENUATE  
VT  
TERMINATE  
5-4876(F)r.9  
Note: n represents 28 or 21 for DS1 or E1, respectively.  
Figure 16. SDH/SONET Path Termination Multiplex Application  
Digital Cross Connect  
Using the device with STS-1 internal loopbacks results in a digital cross connect, as shown in Figure 17.  
TMPR28051  
SPE  
GENERATE  
T7693  
QUAD LIU  
T7693  
QUAD LIU  
VT  
ELASTIC  
VT  
DS1/E1  
#1 IN  
DS1/E1  
#1 OUT  
LIU  
LIU  
TERMINATE  
STORE GENERATE  
SPE  
INSERTION  
LOGIC  
SPE  
DROP  
LOGIC  
SPE  
LOCATE  
DS1/E1  
#n OUT  
VT  
ELASTIC  
VT  
DS1/E1  
#n IN  
LIU  
LIU  
TERMINATE  
STORE GENERATE  
SPE  
TERMINATE  
5-4878(F)r.8  
Note: n represents 28 or 21 for DS1 or E1, respectively.  
Figure 17. Digital Cross Connect Application  
72  
Lucent Technologies Inc.  
 
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Typical Uses (continued)  
Test Pattern Use—Complete System  
The internal test pattern generator can be used in conjunction with DS1 or E1 LIU devices that have built-in loop-  
backs (such as the Lucent T7698FL3/T7693) to do a complete system test, as shown in Figure 18.  
TMPR28051  
MAPPER  
TMPR28051  
MAPPER  
LIU  
LIU  
DS1/E1 AIS  
DS1/E1 IN  
DS1/E1 IN  
TEST  
PATTERN PATTERN  
DROP  
INSERT  
TEST  
TEST  
PATTERN  
DROP  
DS1/E1 AIS  
LOOPBACK  
MODE  
LOOPBACK  
MODE  
TEST PATTERN SOURCE  
OPTIONAL TEST PATTERN DROP  
5-4879(F)r.7  
Figure 18. Test Pattern Usage for Complete System  
Test Pattern Use—End to End  
The internal test pattern generator can be used to test connectivity within a link by setting up a test pattern inser-  
tion at one end and a drop at the other, as shown in Figure 19.  
TMPR28051  
MAPPER  
TMPR28051  
MAPPER  
TEST  
PATTERN  
INSERT  
TEST  
PATTERN  
DROP  
TEST PATTERN SOURCE  
TEST PATTERN DROP  
5-4880(F)r.7  
Figure 19. Test Pattern Usage for End-to-End Operation  
Lucent Technologies Inc.  
73  
 
 
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Outline Diagram  
208-Pin SQFP  
Dimensions are in millimeters.  
30.60 ± 0.20  
28.00 ± 0.20  
PIN #1 IDENTIFIER ZONE  
208  
157  
1
156  
28.00  
± 0.20  
30.60  
± 0.20  
105  
52  
53  
104  
DETAIL A  
DETAIL B  
3.40 ± 0.20  
4.10 MAX  
SEATING PLANE  
0.08  
0.50 TYP  
0.25 MIN  
1.30 REF  
0.25  
0.090/0.200  
GAGE PLANE  
SEATING PLANE  
0.17/0.27  
0.50/0.75  
M
0.10  
DETAIL A  
DETAIL B  
5-2196(F)r.14  
74  
Lucent Technologies Inc.  
Data Sheet  
August 1999  
TMPR28051 STS-1/AU-3 (STM-0) Mapper  
Ordering Information  
Device Code  
Package  
Temperature  
Comcode  
(Ordering Number)  
TMPR28051-3-SL5  
208-Pin SQFP  
–40 °C to +85 °C  
108421678  
DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates  
1. Page 1, added bulleted items concerning 3.3 V operation, and alarm and control standards.  
2. Page 5, Description (continued) section, replaced the Lucent T7690/T7693 Quad Line Transceiver interfacing  
device with the Lucent T7698FL3/T7693 Quad Line Transceiver.  
3. Page 5, Figure 1, Block Diagram, clarified block flow.  
4. Page 6, changed pin 184 and all corresponding references to TCK.  
5. Page 7, clarified Pin 102.  
6. Page 10, organized Nomenclature Assumptions section from the text at the beginning of the Description sec-  
tion.  
7. Page 10—page 19, clarified block descriptions.  
8. Page 14, 2nd paragraph, corrected the explanation of the reduced H4 coding sequence format from “alternate  
between” to “take on the following values.”  
9. Page 23—page 36, updated register map.  
10. Page 37page 59, updated register description text and placed text in tables.  
11. Page 42, Table , Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits, corrected the test pat-  
tern sequence for register XMT_PAT-0, bits 01 and 11 combinations.  
12. Page 49, Table 18, Registers 0x33—0x4E: VT Drop Selection, corrected VTxDROP, bits 4 through 0, to  
VT_DROP[4:0]_[1:28].  
13. Page 54, Table 24, Registers 0x8A—0x8F: Digital Jitter Attenuator Controls, added the register default val-  
ues.  
14. Page 65, Table 34, Absolute Maximum Ratings, updated table, including input and output voltages.  
15. Page 65, Table 35, ESD Threshold Voltage, added parameters and values.  
16. Page 66, Table 36, Recommended Operating Conditions, updated to list 3.3 V power dissipation for DS1  
and E1.  
17. Page 67, Table 38, Input Clock Specifications, added to the document.  
18. Page 69, Table 40, Output Clock Specifications, added to the document.  
19. Page 70, Transmit Sync Timing section, expanded and corrected.  
20. Page 71, Figure 15, Bus Parallel Mode Receive Sync Timing, corrected pin name.  
21. Page 75, updated device code.  
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device  
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device  
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device  
22.  
,
,
,
TMPR28051 STS-1/AU-3 (STM-0)  
Data Addendum, included all printed advisories and an addendum through  
version 4, each published in April 1999, (AY99-026SONT, AY99-027SONT, AY99-028SONT,  
DA99-009SONT). An advisory was not issued for version 1 of the device.  
Lucent Technologies Inc.  
75  
 
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,  
Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
August 1999  
DS99-068SONT (Replaces DS98-100TIC)  

相关型号:

TMPR28051-3-SL5

TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 5 of the Device
AGERE

TMPR28051-SL

ATM/SONET MAPPER|QFP|208PIN|PLASTIC
ETC

TMPR3904AF

IC 32-BIT, RISC MICROCONTROLLER, PQFP208, 28 X 28 MM, PLASTIC, QFP-208, Microcontroller
TOSHIBA

TMPR3904F

MICROPROCESSOR|32-BIT|CMOS|QFP|208PIN|PLASTIC
ETC

TMPR3907F

MICROPROCESSOR|32-BIT|CMOS|QFP|208PIN|PLASTIC
ETC

TMPR3911

32-Bit TX System RISC TX39 Family
TOSHIBA

TMPR3912

32-Bit TX System RISC TX39 Family
TOSHIBA

TMPR3912AU

32-Bit Microprocessor
ETC

TMPR3912AU-92

Microprocessor
ETC

TMPR3912U

32-Bit Microprocessor
ETC

TMPR3912XB-75

Microprocessor
ETC

TMPR3912XB-92

Microprocessor
ETC