AMMC-5620-W10 [AGILENT]

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier; 安捷伦AMMC - 5620 6 - 20 GHz的高增益放大器
AMMC-5620-W10
型号: AMMC-5620-W10
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier
安捷伦AMMC - 5620 6 - 20 GHz的高增益放大器

射频和微波 射频放大器 微波放大器
文件: 总8页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent AMMC-5620  
6 - 20 GHz High Gain Amplifier  
Data Sheet  
Features  
• Frequency Range: 6 - 20 GHz  
• High Gain: 19 dB Typical  
• Output Power: 15dBm Typical  
• Input and Output Return Loss: < -10  
dB  
• Positive Gain Slope: + 0.21dB/GHz  
Typical  
Chip Size:  
Chip Size Tolerance:± 10µm (± 0.4 mils)  
Chip Thickness: 100 ± 10µm (4 ± 0.4 mils)  
1410 x 1010 µm (55.5 x 39.7 mils)  
• Single Supply Bias: 5 V @ 95 mA  
Typical  
Pad Dimensions: 80 x 80 µm (3.1 x 3.1 mils or larger)  
Applications  
• General purpose, wide-band  
amplifier in communication  
systems or microwave  
instrumentation  
Description  
Agilent’s AMMC-5620 MMIC is a  
GaAs wide-band amplifier  
designed for medium output  
power and high gain over the 6  
20 GHz frequency range. The  
3 cascaded stages provide high  
gain while the single bias  
supply offers ease of use. It is  
fabricated using a PHEMT  
integrated circuit process. The  
RF input and output ports have  
matching circuitry for use in  
50-environments. The  
backside of the chip is both RF  
and DC ground. This helps  
simplify the assembly process  
and reduces assembly related  
performance variations and  
costs. The MMIC is a cost  
effective alternative to hybrid  
(discrete FET) amplifiers that  
require complex tuning and  
assembly processes.  
• High gain amplifier  
[1]  
AMMC-5620 Absolute Maximum Ratings  
Symbol  
Parameters/Conditions  
Drain Supply Voltage  
Total Drain Current  
DC Power Dissipation  
RF CW Input Power  
Channel Temp.  
Units  
V
Min.  
Max.  
7.5  
V
DD  
I
mA  
W
135  
1.0  
DD  
P
P
T
DC  
in  
dBm  
°C  
20  
+150  
ch  
T
Operating Backside Temp.  
Storage Temp.  
°C  
-55  
-65  
b
T
°C  
+165  
+300  
stg  
T
Maximum Assembly Temp. (60 sec max) °C  
max  
Note:  
1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
Note: These devices are ESD sensitive. The following precautions are strongly recommended:  
Ensure that an ESD approved carrier is used when dice are transported from one destination to another.  
Personal grounding is to be worn at all times when handling these devices.  
[1]  
AMMC-5620 DC Specifications / Physical Properties  
Symbol  
Parameters and Test Conditions  
Units  
V
Min.  
Typical  
5
Max.  
V
Recommended Drain Supply Voltage  
DD  
I
I
Total Drain Supply Current (V = 5V)  
mA  
mA  
°C/W  
70  
95  
130  
DD  
DD  
DD  
Total Drain Supply Current (V = 7 V)  
105  
33  
DD  
[3]  
θ
Thermal Resistance  
ch-b  
(Backside temperature (T ) = 25°C  
b
Notes:  
1. Backside temperature Tb = 25°C unless otherwise noted  
2. Channel-to-backside Thermal Resistance (θch-b) = 47°C/W at Tchannel (T ) = 150°C as measured using infrared microscopy. Thermal Resistance at backside temperature  
c
(Tb) = 25°C calculated from measured data.  
[3]  
AMMC-5620 RF Specifications (Tb = 25°C, V = 5 V, I = 95mA, Zo=50)  
DD  
DD  
Symbol  
Parameters and Test Conditions  
Units  
dB  
Min.  
Typical  
19  
Max.  
2
|S |  
Small-signal Gain  
16  
22  
21  
Gain Slope Positive Small-signal Gain Slope  
dB/GHz  
dB  
+0.21  
13  
RL  
RL  
Input Return Loss  
Output Return Loss  
Reverse Isolation  
10  
10  
in  
dB  
14  
out  
2
|S |  
dB  
- 55  
15  
12  
P
Output Power at 1dB Gain Compression @ 20 GHz  
dBm  
12.5  
14.5  
-1dB  
sat  
P
Saturated Output Power (3dB Gain Compression) @ 20 GHz dBm  
17  
rd  
OIP3  
NF  
Output 3 Order Intercept Point @ 20 GHz  
dBm  
dB  
23.5  
4.2  
Noise Figure @ 20 GHz  
5.0  
Note:  
3.. 100% on-wafer RF test is done at frequency = 6, 13 and 20 GHz, except as noted.  
2
AMMC-5620 Typical Performance (T  
=25°C, V =5V, I = 95 mA, Zo=50)  
DD DD  
chuck  
25  
20  
15  
10  
5
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. Gain  
0
Figure 2. Isolation  
Figure 3. Input Return Loss  
10  
8
18  
15  
12  
9
-10  
-20  
-30  
-40  
6
4
6
2
3
0
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4. Output Return Loss  
Figure 5. Noise Figure  
Figure 6.Output Power at 1 dB Gain  
Compression  
AMMC-5620 Typical Performance vs. Supply Voltage (Tb=25°C, Zo=50)  
25  
20  
15  
10  
5
0
-20  
-40  
-60  
-80  
0
-10  
-20  
Vdd=4V  
Vdd=5V  
Vdd=6V  
-30  
-40  
-50  
Vdd=4V  
Vdd=5V  
Vdd=6V  
Vdd=4V  
Vdd=5V  
Vdd=6V  
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Gain and Voltage  
Figure 8. Isolation and Voltage  
Figure 9. Input Return Loss and Voltage  
3
AMMC-5620 Typical Performance vs. Supply Voltage (cont.) (Tb=25°C, Zo=50)  
0
-10  
-20  
-30  
-40  
20  
16  
12  
8
Vdd=4V  
Vdd=5V  
Vdd=6V  
Vdd=4V  
Vdd=5V  
Vdd=6V  
4
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Output Return Loss and Voltage  
Figure 11. Output Power and Voltage  
AMMC-5620 Typical Performance vs. Temperature (V =5V, Zo=50)  
DD  
24  
20  
16  
12  
8
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
4
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Gain and Temperature  
Figure 13. Isolation and Temperature  
Figure 14. Input Return Loss and Temperature  
0
-5  
7
6
5
4
3
2
18  
15  
12  
-10  
-15  
-20  
-25  
-30  
-35  
9
-40 C  
25 C  
85 C  
6
3
0
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
1
0
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
4
7
10  
13  
16  
19  
22  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15.Output Return Loss and  
Temperature  
Figure 16. Noise Figure and Temperature  
Figure 17. Output Power and Temperature  
4
[1]  
AMMC-5620 Typical Scattering Parameters (Tb=25°C, V = 5 V, I = 107 mA)  
DD  
DD  
S11  
Mag  
0.72  
0.69  
0.67  
0.65  
0.64  
0.63  
0.56  
0.41  
0.25  
0.14  
0.08  
0.04  
0.02  
0.02  
0.03  
0.04  
0.06  
0.07  
0.09  
0.11  
0.12  
0.14  
0.15  
0.16  
0.17  
0.17  
0.18  
0.18  
0.18  
0.18  
0.18  
0.18  
0.18  
0.18  
0.19  
0.2  
S21  
Mag  
0.07  
0.16  
0.31  
0.59  
1.1  
S12  
S22  
Mag  
0.85  
0.75  
0.66  
0.6  
Freq GHz  
dB  
Phase  
-147  
-168  
173  
154  
134  
111  
81  
dB  
-23.3  
-16.1  
-10.0  
-4.6  
Phase  
-176  
146  
114  
87  
dB  
Mag  
Phase  
46  
dB  
Phase  
-72  
2.00  
-2.9  
-50.0  
-46.1  
-44.0  
-42.9  
-42.1  
-41.5  
-42.1  
-44.7  
-49.0  
-53.7  
-58.0  
-60.6  
-61.9  
-64.4  
-64.4  
-63.1  
-63.5  
-64.4  
-64.4  
-64.2  
-62.1  
-63.3  
-64.4  
-62.1  
-61.9  
-62.1  
-62.9  
-64.1  
-61.2  
-60.0  
-61.8  
-62.1  
-61.9  
-62.7  
-61.9  
-61.9  
-60.0  
-60.9  
-64.1  
-67.5  
-67.5  
0
0
-1.5  
2.50  
-3.3  
-1  
-2.5  
-89  
3.00  
-3.5  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
0
-46  
-89  
-132  
-179  
128  
72  
-3.6  
-104  
-118  
-136  
-158  
175  
3.50  
-3.7  
-4.5  
4.00  
-3.8  
0.8  
62  
-5.3  
0.54  
0.46  
0.33  
0.17  
0.08  
0.06  
0.05  
0.03  
0.02  
0.04  
0.06  
0.09  
0.11  
0.12  
0.14  
0.15  
0.16  
0.18  
0.18  
0.19  
0.2  
4.50  
-4.0  
6.6  
2.15  
3.96  
5.73  
6.84  
7.06  
7.28  
7.41  
7.81  
8.12  
8.29  
8.34  
8.35  
8.37  
8.36  
8.37  
8.38  
8.4  
34  
-6.7  
5.00  
-5.0  
12.0  
15.2  
16.7  
17.0  
17.2  
17.4  
17.9  
18.2  
18.4  
18.4  
18.4  
18.5  
18.5  
18.5  
18.5  
18.5  
18.5  
18.6  
18.6  
18.7  
18.8  
18.9  
19.1  
19.2  
19.3  
19.5  
19.7  
19.9  
20.0  
20.1  
20.2  
20.3  
20.3  
20.2  
19.9  
-5  
-9.6  
5.50  
-7.7  
49  
-50  
-91  
-123  
-150  
-173  
164  
142  
121  
101  
83  
-15.2  
-21.8  
-24.8  
-26.4  
-30.0  
-34.5  
-28.3  
-23.8  
-21.2  
-19.3  
-18.1  
-17.1  
-16.3  
-15.7  
-15.1  
-14.7  
-14.4  
-14.2  
-14.0  
-13.7  
-13.6  
-13.4  
-13.3  
-13.3  
-13.2  
-13.2  
-13.3  
-13.4  
-13.6  
-14.0  
-14.1  
-14.6  
-15.1  
-15.5  
157  
6.00  
-12.0  
-16.9  
-21.9  
-27.2  
-32.8  
-33.4  
-30.9  
-27.7  
-24.9  
-22.6  
-20.7  
-19.3  
-18.2  
-17.3  
-16.6  
-16.0  
-15.6  
-15.3  
-15.1  
-15.0  
-14.9  
-14.9  
-15.0  
-15.0  
-14.9  
-14.7  
-14.3  
-13.8  
-13.1  
-11.9  
-10.5  
-9.0  
23  
19  
165  
6.50  
5
0
-30  
-78  
-123  
-160  
-178  
-179  
169  
157  
144  
145  
130  
127  
126  
125  
118  
107  
107  
98  
-173  
-164  
-155  
-102  
-61  
7.00  
-8  
0
7.50  
-18  
-17  
-5  
0
8.00  
0
8.50  
0
9.00  
-15  
-32  
-50  
-66  
-80  
-92  
-103  
-113  
-123  
-131  
-140  
-148  
-156  
-164  
-172  
179  
170  
160  
149  
137  
122  
106  
89  
0
-60  
9.50  
0
-65  
10.00  
10.50  
11.00  
11.50  
12.00  
12.50  
13.00  
13.50  
14.00  
14.50  
15.00  
15.50  
16.00  
16.50  
17.00  
17.50  
18.00  
18.50  
19.00  
19.50  
20.00  
20.50  
21.00  
21.50  
22.00  
Note:  
0
-72  
65  
0
-78  
48  
0
-84  
32  
0
-90  
16  
0
-95  
1
0
-101  
-105  
-110  
-115  
-120  
-126  
-131  
-136  
-140  
-145  
-150  
-154  
-159  
-166  
-171  
-177  
179  
8.43  
8.48  
8.53  
8.6  
-14  
-29  
-44  
-58  
-73  
-87  
-101  
-116  
-131  
-145  
-161  
-176  
168  
151  
134  
117  
99  
0
0
0
0
0.2  
8.71  
8.81  
8.97  
9.11  
9.25  
9.43  
9.62  
9.84  
10  
0
0.21  
0.21  
0.21  
0.22  
0.22  
0.22  
0.22  
0.22  
0.21  
0.21  
0.2  
0
82  
0
94  
0
95  
0
60  
0
80  
0
70  
0
67  
0
70  
10.2  
10.3  
10.4  
10.3  
10.2  
9.88  
0
61  
0.22  
0.25  
0.3  
0
45  
72  
0
41  
0.2  
53  
0
38  
0.19  
0.18  
0.17  
173  
0.35  
0.42  
36  
80  
0
13  
168  
-7.5  
19  
60  
0
5
162  
1. Data obtained from on-wafer measurements  
5
Biasing and Operation  
Assembly Techniques  
Thermosonic wedge bonding is  
the preferred method for wire  
attachment to the bond pads.  
Gold mesh can be attached  
using a 2 mil round tracking  
tool and a tool force of  
approximately 22 grams with an  
ultrasonic power of roughly 55  
dB for a duration of 76 8 mS.  
A guided wedge at an ultrasonic  
power level of 64 dB can be  
used for the 0.7 mil wire. The  
recommended wire bond stage  
temperature is 150 2 °C.  
The AMMC-5620 is normally  
biased with a single positive  
drain supply connected to the  
The backside of the AMMC-5620  
chip is RF ground. For  
microstripline applications, the  
chip should be attached directly  
to the ground plane (e.g., circuit  
V
bond pads shown in Figure  
DD  
19. The recommended supply  
voltage is 5 V, which results in  
carrier or heatsink) using  
electrically conductive epoxy  
[1]  
I
= 95 mA (typical).  
.
DD  
No ground wires are required  
because all ground connections  
are made with plated through-  
holes to the backside of the  
device.  
For best performance, the  
topside of the MMIC should be  
brought up to the same height  
as the circuit surrounding it.  
This can be accomplished by  
mounting a gold plated metal  
shim (same length and width as  
the MMIC) under the chip,  
which is of the correct  
Refer the Absolute Maximum  
Ratings table for allowed DC  
and thermal conditions.  
Caution should be taken to not  
exceed the Absolute Maximum  
Rating for assembly temperature  
and time.  
thickness to make the chip and  
adjacent circuit coplanar.  
The chip is 100 µm thick and  
should be handled with care.  
This MMIC has exposed air  
bridges on the top surface and  
should be handled by the edges  
or with a custom collet (do not  
pick up die with vacuum on die  
center.)  
The amount of epoxy used for  
chip and or shim attachment  
should be just enough to  
provide a thin fillet around the  
bottom perimeter of the chip or  
shim. The ground plane should  
be free of any residue that may  
jeopardize electrical or  
mechanical attachment.  
This MMIC is also static  
sensitive and ESD handling  
precautions should be taken.  
The location of the RF bond  
pads is shown in Figure 20.  
Note that all the RF input and  
output ports are in a Ground-  
Signal-Ground configuration.  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is  
recommended.  
2. Buckbee-Mears Corporation, St. Paul, MN,  
800-262-3824  
RF connections should be kept  
as short as reasonable to  
minimize performance  
degradation due to undesirable  
series inductance. A single bond  
wire is sufficient for signal  
connections, however double-  
bonding with 0.7 mil gold wire  
[2]  
or the use of gold mesh is  
recommended for best  
performance, especially near the  
high end of the frequency range.  
6
VD1  
Feedback  
network  
Feedback  
network  
RF Output  
Feedback  
network  
Matching  
Matching  
RF Input  
Matching  
Matching  
Figure 18. AMMC-5620 Schematic  
To power supply  
100 pF chip capacitor  
Gold plated shim  
AMMC-5620  
RF Input  
RF Output  
Figure 19. AMMC-5620 Assembly Diagram  
7
875 (VDD)  
1010  
910  
350 (RFOut)  
350 (RFIn)  
0
0
90  
1315  
1410  
Figure 20. AMMC-5620 Bond Pad Locations.  
(dimensions in microns)  
Ordering Information:  
AMMC-5620-W10 = waffle pack, 10 devices per tray  
AMMC-5620-W50 = waffle pack, 50 devices per tray  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
Data subject to change.  
Copyright 2003 Agilent Technologies, Inc.  
May 21, 2004  
5989-0530EN  

相关型号:

AMMC-5620-W50

Agilent AMMC-5620 6 - 20 GHz High Gain Amplifier
AGILENT

AMMC-5620-W50

6 - 20 GHz High Gain Amplifier
AVAGO

AMMC-6120

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W10

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6120-W50

8000MHz - 20000MHz RF/MICROWAVE FREQUENCY DOUBLER, 0.064 X 0.040 INCH, DIE
AVAGO

AMMC-6120-W50

8 – 24 GHz Output × 2 Active Frequency Multiplier
BOARDCOM

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
AVAGO

AMMC-6140

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140-W10

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140-W50

20–40 GHz Output x2 Active Frequency Multiplier
BOARDCOM

AMMC-6140_15

20–40 GHz Output x2 Active Frequency Multiplier
AVAGO

AMMC-6220

6 - 20 GHz Low Noise Amplifier
AVAGO