A3940KLW-T [ALLEGRO]

FULL-BRIDGE POWER MOSFET CONTROLLER; 全桥式功率MOSFET控制器
A3940KLW-T
型号: A3940KLW-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

FULL-BRIDGE POWER MOSFET CONTROLLER
全桥式功率MOSFET控制器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管 控制器
文件: 总12页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3940  
FULL-BRIDGE POWER MOSFET CONTROLLER  
— For Automotive Applications  
The A3940KLP and A3940KLW are designed specifically for  
automotive applications that require high-power motors. Each provides  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
four high-current gate drive outputs capable of driving a wide range of  
n-channel power MOSFETs in a full-bridge configuration.  
3
4
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
5
3
4
Bootstrap capacitors are utilized to provide the above-battery  
supply voltage required for n-channel FETs. An internal charge pump  
for the high side allows for dc (100% duty cycle) operation of the  
bridge.  
6
5
6
7
7
8
8
9
10  
11  
12  
13  
14  
9
10  
11  
12  
13  
14  
Protection features include supply under/overvoltage, thermal  
shutdown, and motor lead short-to-battery and short-to-ground fault  
notification, and a programmable dead-time adjustment for cross-  
conduction prevention. The overvoltage trip point is user adjustable.  
A3940KLP  
(TSSOP with exposed  
thermal pad)  
A3940KLW  
(SOIC)  
The A3940 is supplied in a choice of two power packages, a 28-pin  
TSSOP with an exposed thermal pad (package type LP), and a 28-pin  
wide-body SOIC (package type LW). Both package types are available  
in lead (Pb) free versions, with 100 % matte-tin leadframe plating  
(suffix –T).  
Approx. 2X actual size.  
FEATURES  
ABSOLUTE MAXIMUM RATINGS  
„ Drives wide range of n-channel MOSFETs  
„ Charge pump to boost gate drive at low-battery-input conditions  
„ Bootstrapped gate drive with charge pump for 100% duty cycle  
„ Synchronous rectification  
Load Supply Voltage Range, VBB,  
VDRAIN, CP1 .......... -0.6 V to +40 V  
Output Voltage Ranges,  
LSS.............................. -2 V to +6.5 V  
GHA/GHB, VGHX ........ -2 V to +55 V  
SA/SB, VSX .................. -2 V to +45 V  
GLA/GLB, VGLX .......... -2 V to +16 V  
CA/CB, VCX .............. -0.6 V to +55 V  
CP2,VCP, VIN .......... -0.6 V to +52 V  
Logic Input/Output Voltage Range  
„ Fault diagnostic output  
„ Adjustable dead-time cross-conduction protection  
„ Motor lead short-to-battery and short-to-ground protection  
„ Undervoltage/overvoltage protection  
„ -40°C to +150°C, TJ operation  
„ Thermal shutdown  
VIN, VOUT ................... -0.3 V to +6.5 V  
Operating Temperature Range,  
TA ........................... -40°C to +135°C  
Junction Temperature, TJ ......... +150°C*  
Storage Temperature Range,  
Always order by complete part number  
Part Number  
A3940KLP-T  
A3940KLP  
Pb-free  
Package  
TS ........................... -55°C to +150°C  
Yes  
28-pin TSSOP  
28-pin TSSOP  
28-pin SOICW  
28-pin SOICW  
* Fault conditions that produce excessive  
junction temperature will activate device  
thermal shutdown circuitry. These conditions  
A3940KLW-T  
A3940KLW  
Yes  
can be tolerated, but should be avoided.  
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
Functional Block Diagram  
See pages 7 and 8 for terminal assignments and descriptions.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
Copyright © 2003 Allegro MicroSystems, Inc.  
2
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
A3940KLP (TSSOP)  
A3940KLW (SOIC)  
* Measured on “High-K” multi-layer PWB per JEDEC Standard JESD51-7.  
† Measured on typical two-sided PWB .  
The products described here are manufactured under one or more  
U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to  
time, such departures from the detail specifications as may be required  
to permit improvements in the performance, reliability, or  
manufacturability of its products. Before placing an order, the user is  
cautioned to verify that the information being relied upon is current.  
Allegro products are not authorized for use as critical components  
in life-support devices or systems without express written approval.  
The information included herein is believed to be accurate and  
reliable. However, Allegro MicroSystems, Inc. assumes no responsi-  
bility for its use; nor for any infringement of patents or other rights of  
third parties which may result from its use.  
www.allegromicro.com  
3
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TA = -40°C to +135°C, TJ = -40°C to +150°C,  
VIN VBB = 7 V to 40 V, Cp = 0.47 µF, Cr = 1 µF, CREG5 = 0.1 µF, CREG13 = 10 µF, CBOOT = 0.1 µF, PWM = 22.5 kHz  
square wave.  
Limits  
Characteristics  
Power Supply  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
VBB Quiescent Current  
IBB  
RESET = 1, VBB = VIN = 40 V, VIN VCP  
coast, stopped, CP disabled, IDEAD = 170 µA  
,
4.8  
4.3  
7.0  
7.0  
mA  
mA  
mA  
mA  
mA  
mA  
RESET = 1, VBB = VIN = 15 V, VIN VCP  
coast, stopped, CP disabled, IDEAD = 170 µA  
,
RESET = 1, VBB = VIN = 40 V, VIN VCP, coast,  
stopped, IDEAD = 170 µA, ICP = 0 mA  
5.0  
7.0  
RESET = 1, VBB = VIN = 15 V, VIN VCP, coast,  
stopped, IDEAD = 170 µA, ICP = 0 mA  
4.8  
7.0  
RESET = 1, VBB = VIN = 40 V, VIN VCP, coast,  
stopped, IDEAD = 170 µA, ICP = 15 mA  
35.4  
35.1  
40.0  
40.0  
RESET = 1, VBB = VIN = 15 V, VIN VCP, coast,  
stopped, IDEAD = 170 µA, ICP = 15 mA  
RESET = 0  
4.5  
1.0  
5.5  
µA  
V
VREG5 Output Voltage  
VREG5 Line Regulation  
VREG5 Load Regulation  
VREG5 Short-Circuit Current  
VCP Output Voltage Level  
VREG5  
VREG5  
VREG5  
IREG5M  
VCP  
No load  
5.0  
5.0  
5.0  
28  
IREG5 = 4.0 mA  
mV  
mV  
mA  
V
IREG5 = 0 - 4.0 mA, VBB = 40 V  
VBB = 40 V, VREG5 = 0  
VBB = 14 - 40 V, ICP = 15 mA  
VBB = 7 V, ICP = 15 mA  
VBB+9.5 VBB+10.7 VBB+11.8  
11.7  
15  
13  
13.8  
V
VCP Gate Drive  
ICP  
VCP(PP)  
tup  
SR = 1, MODE = 0, ENABLE = PWM  
ICP = 15 mA, VBB = 14 V - 40 V  
VIN = VCP, VBB = 14 V - 40 V  
VIN = VCP, VBB = 7 V  
mA  
mV  
ms  
ms  
mA  
V
VCP Output Voltage Ripple  
VCP Pump-Up time  
500  
2.5  
3.5  
1.4  
13.3  
0.7  
2.0  
2.0  
60  
VREG13 Quiescent Input Current  
VREG13 Output Voltage  
IREG13  
VREG13  
VREGDV  
VREG13  
VREG13  
IREG13M  
tsleep  
RESET = 1, VBB = VIN = 40 V, coast, stopped  
VIN = 15 V, no load  
12.6  
14.0  
VREG13 Dropout Voltage  
VREG13 Line Regulation  
VREG13 Load Regulation  
VREG13 Short-Circuit Current  
Go-to-Sleep Response Time  
Wake-Up Response Time  
IREG13 = 15 mA, VIN = 11 V - 14 V  
VIN = 15 V - 40 V, IREG13 = 15 mA  
VIN = 40 V, IREG13 = 0 - 15 mA  
VIN = 40 V, VREG13 = 0 (pulse)  
RESET = 0 to VREG5 = 4 V  
RESET = 1 to VREG13, UV cleared  
V
mV  
mV  
mA  
µs  
10  
30  
twake  
1.4  
ms  
NOTES: Typical Data is for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
Continued next page …  
115 Northeast Cutoff, Box 15036  
4
Worcester, Massachusetts 01615-0036 (508) 853-5000  
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TA = -40°C to +135°C, TJ = -40°C to +150°C,  
VIN VBB = 7 V to 40 V, Cp = 0.47 µF, Cr = 1 µF, CREG5 = 0.1 µF, CREG13 = 10 µF, CBOOT = 0.1 µF, PWM = 22.5 kHz  
square wave.  
Limits  
Characteristics  
Control Logic  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Logic Input Voltage  
VIN(1)  
VIN(1)  
VIN(0)  
IIN(1)  
HIGH level input (Logic 1), except RESET.  
HIGH level input (Logic 1) for RESET  
LOW level input (Logic 0)  
VIN = 2.0 V  
2.0  
2.2  
V
V
0.8  
100  
40  
1.0  
V
Logic Input Current  
40  
16  
µA  
µA  
µA  
IIN(0)  
VIN = 0.8 V, except RESET(0)  
VIN = 0.8 V, RESET(0)  
IIN(0)  
Gate Drives, GHx, GLx ( internal SOURCE or upper switch stages)  
Output High Voltage  
VDSL(H)  
IxU  
rSDU(on)  
tr  
GHx: IxU = -10 mA, Vsx = 0  
GLx: IxU = -10 mA, Vlss = 0  
VSDU = 10 V, TJ = 25°C  
VREG13 - 2.2  
VREG13  
VREG13  
V
V
VREG13 - 0.2  
Source Current (pulsed)  
Source ON Resistance  
Source Load Rise Time  
700  
mA  
mA  
VSDU = 10 V, TJ = 135°C  
400  
4.0  
7.0  
IxU = -150 mA, TJ = 25°C  
13  
IxU = -150 mA, TJ = 135°C  
Measure VDSL, 20% to 80%, CL = 3300 pF  
23  
90  
ns  
Gate Drives, GHx, GLx ( internal SINK or lower switch stages)  
Output Low Voltage  
Sink Current (pulsed)  
Sink ON Resistance  
Sink Load Fall Time  
VDSL(L)  
IxL  
rDSL(on)  
tf  
GHx: IxL = 10 mA, Vsx = 0  
GLx: IxL = 10 mA, Vlss = 0  
VDSL = 10 V, TJ = 25°C  
150  
150  
mV  
mV  
mA  
mA  
800  
VDSL = 10 V, TJ = 135°C  
550  
1.8  
3.0  
IxL = +150 mA, TJ = 25°C  
IxL = +150 mA, TJ = 135°C  
Measure VDSL, 80% to 20%, CL = 3300 pF  
6.0  
7.5  
70  
ns  
Gate Drives, GHx, GLx (General)  
Propagation Delay  
tpd  
Logic input to unloaded GHx, GLx  
225  
50  
ns  
ns  
µs  
µs  
µs  
µs  
Output Skew Time  
tsk(o)  
tdead  
Grouped by rising or falling edge  
Dead Time  
LONG = 0, RDEAD = 12.1 k(IDEAD = 167 µA)  
LONG = 0, RDEAD = 499 k(IDEAD = 4 µA)  
LONG = 1, RDEAD = 12.1 k(IDEAD = 167 µA)  
LONG = 1, RDEAD = 499 k(IDEAD = 4 µA)  
0.3  
(Shoot-Through Prevention)  
Between GHx, GLx transitions  
of same phase  
11.0  
8.3  
345  
NOTES: Typical Data is for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
For GHX: VSDU = VCX – VGHX, VDSL = VGHX – VSX, VDSL(H) = VCX – VSDU – VSX  
.
For GLX: VSDU = VREG – VGLX, VDSL = VGLX – VLSS, VDSL(H) = VREG – VSDU – VLSS.  
Continued next page …  
www.allegromicro.com  
5
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TA = -40°C to +135°C, TJ = -40°C to +150°C,  
VIN VBB = 7 V to 40 V, Cp = 0.47 µF, Cr = 1 µF, CREG5 = 0.1 µF, CREG13 = 10 µF, CBOOT = 0.1 µF, PWM = 22.5 kHz  
square wave.  
Limits  
Characteristics  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Bootstrap Circuit  
Diode Forward Current Limit  
Diode Forward Drop  
Diode Resistance  
ICX  
VF  
RF  
Icx  
3 V < [(VREG13 = 13.5 V) - VCX] < 12 V  
IF = 10 mA  
RF(100) = [VF(150) - VF(50)]/100  
VCX - VSX = 8 V, VBB = 40 V, GHx = 1(no load)  
140  
0.8  
1.5  
40  
1000  
2.0  
6.5  
mA  
V
Top-off CP Source Current at Cx  
µA  
Fault Logic  
VBB Undervoltage  
VBB(uv)  
VBB(uv)  
VREG13(uv)  
VREG13(uv)  
VBB(ov)  
Decreasing VBB  
VBB(recovery) - VBB(uv)  
Decreasing VIN  
4.5  
200  
7.5  
200  
16  
24  
32.5  
2.1  
5.25  
450  
8.25  
450  
19.6  
28  
36.4  
3.1  
6.0  
700  
9.0  
700  
22  
30.5  
39  
4.1  
1.4  
1.0  
V
mV  
V
mV  
V
V
V
V
µA  
µA  
V
V
V
V
V
V
V
µA  
µA  
µs  
µs  
µs  
V
µA  
°C  
°C  
VBB Undervoltage Hysteresis  
VREG13 Undervoltage  
VREG13 Undervoltage Hyst.  
VBB Overvoltage  
VREG13(recovery) - VREG13(uv)  
Increasing VBB, FAULT = 0 to 1, VOVSET = 0 V  
Increasing VBB, FAULT = 0 to 1, VOVSET = 0.45 V  
Increasing VBB, FAULT = 0 to 1, VOVSET = 0.9 V  
VBB(ov) - VBB(recovery)  
0 V < VSET(ov) < 0.9 V  
0.3 V < VDSTH < 3 V  
VDSTH = 0.3 V  
VDSTH = 1.0 V  
VDSTH = 3.0 V  
VDSTH = 0.3 V  
VDSTH = 1.0 V  
VDSTH = 3.0 V  
If VDRAIN < VDO(th), FAULT = 0 to 1  
RESET = 0  
RESET = 1, VDSTH < 3 V  
RESET = 0, pulse  
From RESET = 1 to FAULT = 0  
VBB Overvoltage Hysteresis  
OVSET Input Current  
VDSTH Input Current  
VBB(ov)  
ISET(ov)  
IDSTH  
Short-to-Ground Threshold  
VSTG(th)  
VDSTH-0.14  
VDSTH-0.18  
VDSTH-0.39  
VDSTH-0.20  
VDSTH-0.24  
VDSTH-0.37  
VDSTH+0.10  
VDSTH+0.13  
VDSTH+0.26  
VDSTH+0.30  
VDSTH+0.30  
VDSTH+0.30  
3.0  
y
Short-to-Battery Threshold  
VSTB(th)  
VDRAIN /Open Bridge Threshold  
VDRAIN /Open Bridge Current  
VDO(th)  
IVDRAIN  
1.0  
0.15  
1.0  
500  
2.0  
0.4  
1.0  
Fault Latch Clear Pulsewidth  
Fault Clear Propagation Delay  
Fault Detection Noise Filter  
Fault Output  
tlatch  
tpd  
tnoise  
Vout(0)  
Iout(1)  
TJ  
2.0  
1.7  
172  
12  
Iout = 5 mA, faults negated  
Vout = 5 V, open-drain, fault asserted  
TJ increasing  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
TJ  
TJ decreasing  
NOTES: Typical Data is for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
6
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
Terminal Functions  
Terminal  
Number  
Terminal Name  
Function  
VDRAIN  
LSS  
GLB  
SB  
Kelvin connection to MOSFET high-side drains  
Gate-drive source return, low-side  
Gate-drive B output, low-side  
Motor phase B input  
1
2
3
4
GHB  
CB  
Gate-drive B output, high-side  
Bootstrap capacitor B  
5
6
VIN  
Regulated 13 V gate drive supply input  
Regulated 13 V gate drive supply output  
Bootstrap A capacitor  
7
VREG13  
CA  
8
9
GHA  
SA  
Gate-drive A output, high-side  
Motor phase A input  
10  
11  
12  
13  
14  
15  
16  
GLA  
VBB  
CP2  
VCP  
CP1  
GND  
Gate-drive A output, low-side  
Battery supply  
Charge pump connection for pumping capacitor  
Charge pump output  
Charge pump connection for pumping capacitor  
Common ground and dc supply returns  
Electrically connected to exposed thermal pad of LP package  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
FAULT  
OVSET  
VREG5  
MODE  
SR  
Open-drain fault output  
DC input, overvoltage threshold setting for VBB  
Regulated 5 V supply output  
Control input  
Control input  
ENABLE  
PHASE  
RESET  
LONG  
Control input  
Control input  
Control input  
Control input, long or short deadtime  
Adjust current for basic deadtime  
DC input, drain-to-source monitor threshold voltage  
IDEAD  
VDSTH  
www.allegromicro.com  
7
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
Terminal Descriptions  
CA/CB. High-side connection for bootstrap capacitor, positive  
supply for high-side gate drive. The bootstrap capacitor is  
charged to VREG13 – 1.5 V when the output Sx terminal is low.  
When the output swings high, the voltage on this terminal rises  
with the output to provide the boosted gate voltage needed for n-  
channel power MOSFETs.  
GLA/GLB. Low-side gate drive outputs for external, n-channel  
MOSFET drivers. External series gate resistors can control slew  
rate seen at the power driver gate.  
GND. Common ground and dc supply returns. Exposed  
thermal pad of LP package is NOT internally connected to  
GND.  
RESET. Control input to put device into minimum power  
consumption mode and to clear latched faults. Logic “1”  
enables the device; logic “0” triggers the sleep mode. Internally  
pulled down via 50 kresistor.  
LSS. Low-side gate drivers’ return. Connects to the common  
sources in the low-side of the power MOSFET bridge. It is the  
reference connection for the short-to-battery monitor.  
OVSET. A positive, dc level that controls the VBB overvoltage  
trip point. Usually, provided from precision resistor divider  
network between VREG5 and GND. If connected directly to  
VREG5, sets unspecified but high overvoltage trip point, effec-  
tively eliminating the overvoltage protection.  
ENABLE. Logic “1” enables direct control of the output  
drivers via the PHASE input, as in PWM controls, and ignores  
the MODE and SR inputs. Internally pulled down via 50 kΩ  
resistor.  
MODE. Logic input to set the current decay mode. Logic “1”  
(slow-decay mode) switches off the high-side MOSFET in  
response to a PWM “off” command. Logic “0” (fast-decay  
mode) switches off both the high-side and low-side MOSFETs.  
Internally pulled down via 50 kresistor.  
SA/SB. Directly connected to the motor terminals, these  
terminals sense the voltages switched across the load and are  
connected to the negative side of the bootstrap capacitors. Also,  
are the negative supply connection for the floating, high-side  
drivers.  
PHASE. Motor direction control. When logic “1”, enables  
gate drive outputs GHA and GLB allowing current flow from  
SA to SB. When logic “0”, enables GHB and GLA allowing  
current flow from SB to SA. Internally pulled down via 50 kΩ  
resistor.  
VBB. Positive supply voltage. Usually connected to the motor  
voltage supply. If VBB is above a specified level or below a  
specified level, a fault will be asserted.  
VDRAIN. Kelvin connection for drain-to-source voltage (short-  
to-ground) monitor and is connected to high-side drains of the  
MOSFET bridge. Also used to detect “open drain”.  
SR. When logic “1”, enables synchronous rectification; logic  
“0” disables the synchronous rectification. Internally pulled  
down via 50 kresistor.  
VDSTH. A positive, dc level that sets the short-to-ground and  
short-to-battery monitor threshold voltage. If the drain-source  
voltage exceeds this level (after the dead time) during an “on”  
state, a fault will be asserted.  
FAULT. Open drain, diagnostic logic output signal. When  
logic “1”, indicates that one or more fault conditions have  
occurred. Use an external pullup resistor to VREG5 or to digital  
controller. Internally causes a coast when asserted. See also  
Functional Description, next page.  
CP1 [CP2]. Charge pump capacitor negative [positive] side. If  
not using the charge pump, leave both terminals open.  
IDEAD. Analog current set by resistor (12 k<RDEAD<500 k)  
to ground. In conjunction with LONG, determines dead time  
between GHx and GLx transitions of same phase. VIDEAD = 2 V.  
VCP. Charge pump output for VREG13 input. If not using the  
charge pump, connect this terminal to VBB.  
VIN. Positive supply voltage for the VREG13 linear regulator.  
Usually connected to VCP, the charge-pump output gate drive.  
If not using the charge pump, connect VIN to VBB or other dc  
supply greater than 11 V.  
LONG. When logic “1”, selects long dead time between GHx  
and GLx transitions of same phase. When logic “0”, selects  
short dead times. Internally pulled down via 50 kresistor.  
GHA/GHB. High-side gate-drive outputs for n-channel  
MOSFET drivers. External series gate resistors can control slew  
rate seen at the power driver gate.  
VREG13. High-side, gate-driver supply. If VREG13 falls below  
a specified level, a fault will be asserted.  
VREG5. Regulated 5 V output for internal logic.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
Functional Description  
Motor Lead Protection. A fault detection circuit monitors  
the voltage across the drain to source of the external MOSFETs.  
A fault is asserted “high” on the output terminal, FAULT, if the  
drain-to-source voltage of any MOSFET that is instructed to turn  
on is greater than the voltage applied to the VDSTH input terminal.  
When a high-side switch is turned on, the voltage from VDRAIN to  
the appropriate motor phase output, VSX, is examined. If the  
motor lead is shorted to ground the measured voltage will  
exceed the threshold and the FAULT terminal will go “high”.  
Similarly, when a low-side MOSFET is turned on, the differen-  
tial voltage between the motor phase (drain) and the LSS  
terminal (source) is monitored. VDSTH is set by a resistor divider  
Dead Time. The A3940 is intended to drive a wide range of  
power MOSFETs in applications requiring a wide range of  
switching times. In order to prevent cross conduction (a.k.a.  
shoot-through) during direction and PWM changes, a power  
MOSFET must be turned off before its “phase-pin mate” is  
turned on.  
tDEAD(ns) = K([18.8RDEAD(kΩ)] + 50) + 90  
where K = 1 for LONG = 0; K = 32 for LONG = 1.  
Note: IDEAD(mA) 2/RDEAD(kΩ), 12 kΩ<RDEAD<500 kΩ.  
Sleep Mode. RESET = 0 clears any latched motor faults  
while driving all gate drive outputs low (coast). Eventually,  
RESET = 0 turns off all circuits to allow minimum current draw.  
to VREG5  
.
GHx and GLx outputs go high impedance (Z) when VREG13  
4 V. RESET = 1 enables the device after it powers up all  
circuits. The user should wait the pump-up time, tup, to allow the  
device to be powered up properly before a gate output is  
enabled. Please refer to power-up diagram in application note  
AN295040 for more detail.  
<
To prevent erroneous motor faults during switching, the  
fault circuitry will wait two dead times after every PWM/phase  
change before monitoring the drain-to-source voltage; except, it  
will use one dead time for (1) a long coast to any phase on, or  
(2) a long hi-Z before on for that phase. This allows time for the  
motor output voltage to settle before checking for motor fault  
when using slow rise/fall gate-control waveforms.  
Charge Pump. The A3940 is designed to accommodate a  
wide range of power supply voltages. The charge pump output  
voltage, VCP, is regulated to VBB + 11 V (or about 2VBB if  
VBB < 11 V).  
The VDRAIN is intended to be a Kelvin connection for the  
high-side, drain-source monitor circuit. Voltage drops across  
the power bus are eliminated by connecting an isolated PCB  
trace from the VDRAIN terminal to the drain of the MOSFET  
bridge. This allows improved accuracy in setting the VDSTH  
threshold voltage. The low-side, drain-source monitor uses the  
VREG13. A 13.3 V, low-dropout, linear regulator is used to  
power the low-side gate drive circuit directly and to provide the  
current to charge the bootstrap capacitors for the high-side gate  
drive. The input supply connection to this regulator, VIN, can  
be externally connected to the charge pump output, VCP, or it  
can be directly connected to the VBB or VBAT terminal.  
LSS terminal, rather than VDRAIN, in comparing against VDSTH  
.
Fault States. The FAULT terminal provides real time  
indication of fault conditions after some digital noise filtering.  
The VDRAIN fault acts as if a short-to-ground fault existed on  
every motor phase. Bridge (or motor) faults are latched but  
cleared by a RESET = 0 pulse or by power cycling. GHx = GLx  
= 0 during RESET = 0. The undervoltage, overvoltage, and  
thermal shutdown faults are not latched and will not reset until  
the cause is eliminated. All faults cause, via the FAULT line, a  
coast and some cause shutdown of the regulators, as in the Fault  
Responses table (next page).  
Internal current limiting protects VREG13  
.
VREG5. A 5 V, low-dropout, linear regulator is used to power  
the internal logic, regulators, and thermal detection. This  
regulator can also power low-current external resistor networks  
for VDSTH and OVSET, and the FAULT output pull-up. The  
input supply connection is VBB. Internal current limiting  
protects VREG5  
.
Power-Up State. If the input logic is open, internal pull-  
downs put the system in coast mode on powering up. First, issue  
a brake command for >10 µs to charge the bootstrap capacitors  
Note: As a test mode, if the thermal shutdown or SLEEP has not  
occurred and the FAULT output is externally held low, the coast  
mode and regulator shutdowns will not occur if motor or voltage  
faults occur. Do not wire-OR this terminal to other FAULT  
lines.  
and avoid a possible short-to-ground fault indication.  
www.allegromicro.com  
9
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
Functional Description (cont’d)  
Control Logic  
PHASE ENABLE MODE SR  
GLA GLB GHA GHB SA SB Mode of Operation  
0
0
0
0
0
1
0
0
0
0
X
0
1
0
1
X
1
1
0
0
1
0
1
0
1
0
1
1
0
0
0
1
0
0
0
1
0
0
0
0
Lo  
Hi  
Lo  
Z
Hi  
Lo  
Lo  
Z
Reverse  
Fast decay, SR enabled  
Slow decay, braking mode  
Fast decay, coast  
Lo  
Z
Slow decay, SR disabled  
1
1
1
1
1
1
0
0
0
0
X
0
1
0
1
X
1
1
0
0
0
1
1
0
0
1
0
1
0
1
1
0
0
0
0
0
1
0
0
0
Hi  
Lo  
Lo  
Z
Lo  
Hi  
Lo  
Z
Forward  
Fast decay, SR enabled  
Slow decay, braking mode  
Fast decay, coast  
Z
Lo  
Slow decay, SR disabled  
NOTES: All faults will coast the motor, i.e., GHA = GHB = GLA = GLB = 0 to switch off all bridge MOSFETs.  
X = Indicates a “don’t care”.  
Z = Indicates a high-impedance state.  
Fault Responses  
Fault Mode  
RESET FAULT CP Reg.  
VREG13  
VREG5  
GHx  
GLx  
No Fault  
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON&  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON&  
ON&  
0
0
0
0'  
0
0
0
0
0'  
0
Short-to-Battery"#  
Short-to-Ground"$  
Open Bridge (VDRAIN)"%  
VREG13 Undervoltage  
VBB Overvoltage  
VBB Undervoltage  
Thermal Shutdown  
OFF  
OFF  
0'  
0'  
0'  
0'  
Sleep  
0
1
OFF  
OFF  
OFF  
Z
Z
NOTES: " = These faults are latched but will clear during RESET = 0 pulse. GHx = GLx = 0 during RESET = 0, except see '.  
Other faults will not clear except when their cause is removed.  
# = Short-to-battery can only be detected when the corresponding GLx = 1.  
$ = Short-to-ground can only be detected when the corresponding GHx = 1.  
% = Bridge fault appears as a short-to-ground fault on all motor phases.  
& = Not instructed off but may be low voltage because of the fault indicated.  
' = During undervoltage conditions, the low sides of GHx and GLx are instructed to be “on” so that the outputs are  
low = 0; however, with VREG13 < 4 V, the outputs will start to open (become high impedance). See “Sleep Mode”.  
115 Northeast Cutoff, Box 15036  
10  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
A3940KLP (TSSOP)  
Dimensions in Inches  
(for reference only)  
Dimensions in Millimeters  
(controlling dimensions)  
NOTES: 1. Exact body and lead configuration at vendor’s option within limits shown.  
2. Lead spacing tolerance is non-cumulative.  
3. Supplied in standard sticks/tubes of 50 devices or add “TR” to part number for tape and reel.  
www.allegromicro.com  
11  
3940  
FULL-BRIDGE POWER  
MOSFET CONTROLLER  
A3940KLW (SOIC)  
Dimensions in Inches  
(for reference only)  
Dimensions in Millimeters  
(controlling dimensions)  
NOTES: 1. Lead spacing tolerance is non-cumulative.  
2. Exact body and lead configuration at vendor’s option within limits shown.  
3. Supplied in standard sticks/tubes of 27 devices or add “TR” to part number for tape and reel.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
12  

相关型号:

A3940KLWTR

Full Bridge Based MOSFET Driver, 0.8A, PDSO28, SOIC-28
ALLEGRO

A3940KLWTR-T

Full Bridge Based MOSFET Driver, 0.8A, PDSO28, LEAD FREE, SOIC-28
ALLEGRO

A3940LP

Half Bridge Based MOSFET Driver, 0.8A, PDSO28, TSSOP-28
ALLEGRO

A3940LW

Half Bridge Based MOSFET Driver, 0.8A, PDSO28, SOIC-28
ALLEGRO

A3941

Automotive Full Bridge MOSFET Driver
ALLEGRO

A3941KLP-T

Automotive Full Bridge MOSFET Driver
ALLEGRO

A3941KLPTR-T

Automotive Full Bridge MOSFET Driver
ALLEGRO

A3942

Quad High-Side Gate Driver
ALLEGRO

A3942KLG-T

Buffer/Inverter Based Peripheral Driver, PDSO38, 1.20 MM HEIGHT, LEAD FREE, MO-153BD-1, TSSOP-38
ALLEGRO

A3942KLGTR-T

Buffer/Inverter Based Peripheral Driver, PDSO38, TSSOP-38
ALLEGRO

A3944

Automotive, Low-Side FET Pre-Driver
ALLEGRO

A3944KLPTR-T

Buffer/Inverter Based MOSFET Driver, PDSO28, LEAD FREE, TSSOP-28
ALLEGRO