A3988SJP-T [ALLEGRO]

Quad DMOS Full Bridge PWM Motor Driver; 四路DMOS全桥PWM电机驱动器
A3988SJP-T
型号: A3988SJP-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Quad DMOS Full Bridge PWM Motor Driver
四路DMOS全桥PWM电机驱动器

驱动器 运动控制电子器件 信号电路 电动机控制 电机
文件: 总13页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Features and Benefits  
Description  
36 V output rating  
4 full bridges  
Dual stepper motor driver  
High current outputs  
The A3988 is a quad DMOS full-bridge driver capable of  
driving up to two stepper motors or four dc motors. Each  
full-bridge output is rated up to 1.2 A and 36 V. The A3988  
includesfixedoff-timepulsewidthmodulation(PWM)current  
3.3 and 5 V compatible logic supply  
Synchronous rectification  
Internal undervoltage lockout (UVLO)  
Thermal shutdown circuitry  
Crossover-current protection  
Low profile QFN package  
regulators,alongwith2-bitnonlinearDACs(digital-to-analog  
converters) that allow stepper motors to be controlled in full,  
half, and quarter steps, and dc motors in forward, reverse, and  
coast modes. The PWM current regulator uses the Allegro®  
patented mixed decay mode for reduced audible motor noise,  
increased step accuracy, and reduced power dissipation.  
Internalsynchronousrectificationcontrolcircuitryisprovided  
to improve power dissipation during PWM operation.  
Packages  
Protection features include thermal shutdown with hysteresis,  
undervoltagelockout(UVLO)andcrossovercurrentprotection.  
Special power up sequencing is not required.  
Package EV, 36 pin QFN  
0.90 mm nominal height  
with exposed thermal pad  
Package JP, 48 pin LQFP  
with exposed thermal pad  
The A3988 is supplied in two packages, EV and JP, with  
exposed power tabs for enhanced thermal performance. The  
EV is a 6 mm x 6 mm, 36 pin QFN package with a nominal  
overall package height of 0.90 mm. The JP is a 7 mm × 7 mm  
48 pin LQFP. Both packages are lead (Pb) free, with 100%  
matte tin leadframe plating.  
Approximate scale  
0.1 μF  
50 V  
0.1 μF  
50 V  
VMOTOR 32 V  
0.22 μF  
50 V  
100 μF  
50 V  
PHASE1  
I01  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
I11  
PHASE2  
I02  
A3988  
Microprocessor  
Bipolar Stepper Motors  
I12  
OUT3A  
OUT3B  
OUT4A  
OUT4B  
PHASE3  
I03  
I13  
PHASE4  
I04  
SENSE2  
SENSE1  
SENSE3  
SENSE4  
I14  
RS2  
RS1  
RS3  
RS4  
VREF1  
VREF2  
VREF3  
VREF4  
VDD  
VREF  
VDD 3.3 V  
Figure 1. Typical application circuit  
A3988DS, Rev. 5  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Selection Guide  
Part Number  
Package  
Packing  
A3988SEV-T  
36 pin QFN with exposed thermal pad  
36 pin QFN with exposed thermal pad  
48 pin LQFP with exposed thermal pad  
61 pieces per tube  
A3988SEVTR-T  
A3988SJP-T  
1500 pieces per reel  
250 pieces per tray  
Absolute Maximum Ratings  
Characteristic  
Symbol  
Notes  
Rating  
-0.5 to 36  
38  
Units  
Load Supply Voltage  
VBB  
V
V
V
A
Pulsed tw < 1 μs  
Logic Supply Voltage  
Output Current  
VDD  
IOUT  
–0.4 to 7  
1.2  
May be limited by duty cycle, ambient temperature, and heat sinking. Under  
any set of conditions, do not exceed the specified current rating or a Junction  
Temperature of 150°C.  
Pulsed tw < 1 μs  
2.8  
–0.3 to 7  
0.5  
A
V
Logic Input Voltage Range  
SENSEx Pin Voltage  
VIN  
VSENSEx  
V
Pulsed tw < 1 μs  
2.5  
V
VREFx Pin Voltage  
VREFx  
TA  
2.5  
V
Operating Temperature Range  
Junction Temperature  
Range S  
–20 to 85  
150  
ºC  
ºC  
ºC  
TJ(max)  
Tstg  
Storage Temperature Range  
–40 to 125  
Thermal Characteristics (may require derating at maximum conditions)  
Characteristic  
Symbol  
Test Conditions  
Min. Units  
EV package, 4 layer PCB based on JEDEC standard  
27 ºC/W  
RθJA  
Package Thermal Resistance  
JP package, 4 layer PCB based on JEDEC standard  
23 ºC/W  
Power Dissipation versus Ambient Temperature  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
JP Package  
4-layer PCB  
(RQJA = 23 ºC/W)  
EV Package  
4-layer PCB  
(RQJA = 27 ºC/W)  
0
25  
50  
75  
100  
125  
150  
175  
Temperature (°C)  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
2
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Functional Block Diagram  
0.1 μF  
0.1 μF  
50 V  
50 V  
To  
VBB2  
100 μF  
0.22 μF  
50 V  
50 V  
VBB1  
VDD  
DMOS  
FULL-BRIDGE 1  
VCP  
OSC  
CHARGE PUMP  
OUT1A  
OUT1B  
PHASE1  
I01  
Control Logic  
Bridges 1 and 2  
I11  
PHASE2  
I02  
SENSE1  
VBB1  
GATE  
DRIVE  
DMOS  
FULL-BRIDGE 2  
I12  
Sense1  
PWM Latch  
BLANKING  
VREF1  
VREF2  
3
OUT2A  
OUT2B  
3
PWM Latch  
BLANKING  
Sense2  
PHASE3  
I03  
VCP  
Sense2  
SENSE2  
Control Logic  
I13  
Bridges 3 and 4  
VBB2  
OUT3A  
OUT3B  
PHASE4  
I04  
DMOS  
FULL-BRIDGE 3  
I14  
GATE  
DRIVE  
Sense3  
SENSE3  
Sense3  
3
VBB2  
PWM Latch  
BLANKING  
VREF3  
VREF4  
OUT4A  
OUT4B  
DMOS  
FULL-BRIDGE 4  
3
PWM Latch  
BLANKING  
Sense4  
Sense4  
SENSE4  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
3
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
ELECTRICAL CHARACTERISTICS1, valid at TA = 25°C, VBB = 36 V, unless otherwise noted  
Characteristics  
Load Supply Voltage Range  
Logic Supply Voltage Range  
VDD Supply Current  
Symbol  
VBB  
Test Conditions  
Min.  
8.0  
3.0  
Typ.2  
Max.  
36  
Units  
V
Operating  
Operating  
VDD  
5.5  
10  
V
IDD  
7
mA  
mΩ  
mΩ  
V
Source driver, IOUT = –1.2 A, T = 25°C  
700  
700  
800  
800  
1.2  
20  
J
Output On Resistance  
RDS(on)  
Sink driver, IOUT = 1.2 A, T = 25°C  
J
Vf , Outputs  
IOUT = 1.2 A  
Output Leakage  
IDSS  
IBB  
Outputs, VOUT = 0 to VBB  
–20  
μA  
IOUT = 0 mA, outputs on, PWM = 50 kHz,  
DC = 50%  
VBB Supply Current  
8
mA  
Control Logic  
VIN(1)  
VIN(0)  
IIN  
0.7×VDD  
0.3×VDD  
20  
V
V
Logic Input Voltage  
Logic Input Current  
Input Hysteresis  
VIN = 0 to 5 V  
–20  
150  
350  
35  
<1.0  
300  
550  
μA  
mV  
ns  
ns  
ns  
ns  
ns  
μs  
V
Vhys  
500  
1000  
300  
1000  
250  
1000  
1.3  
PWM change to source on  
PWM change to source off  
PWM change to sink on  
PWM change to sink off  
Propagation Delay Times  
tpd  
350  
35  
550  
Crossover Delay  
tCOD  
tBLANK  
VREFx  
IREF  
300  
0.7  
0.0  
425  
1
Blank Time  
VREFx Pin Input Voltage Range  
VREFx Pin Reference Input Current  
Operating  
1.5  
VREF = 1.5  
±1  
A  
%
VREF = 1.5, phase current = 100%  
–5  
5
Current Trip-Level Error3  
VERR  
V
V
REF = 1.5, phase current = 67%  
REF = 1.5, phase current = 33%  
–5  
5
%
–15  
15  
%
Protection Circuits  
VBB UVLO Threshold  
VBB Hysteresis  
VUV(VBB)  
VUV(VBB)hys  
VUV(VDD)  
VUV(VDD)hys  
TJTSD  
VBB rising  
VDD rising  
7.3  
400  
2.65  
75  
7.6  
500  
2.8  
105  
165  
15  
7.9  
600  
2.95  
125  
175  
V
mV  
V
VDD UVLO Threshold  
VDD Hysteresis  
mV  
°C  
°C  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
155  
TJTSDhys  
1For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.  
2Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for indi-  
vidual units, within the specified maximum and minimum limits.  
3VERR = [(VREF/3) – VSENSE] / (VREF/3).  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
4
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Functional Description  
Note: It is critical to ensure that the maximum rating of ±500 mV  
on each SENSEx pin is not exceeded.  
Device Operation The A3988 is designed to operate two  
stepper motors, four dc motors, or one stepper and two dc motors.  
The currents in each of the output full-bridges, all N-channel  
DMOS, are regulated with fixed off-time pulse width modulated  
(PWM) control circuitry. Each full-bridge peak current is set by  
the value of an external current sense resistor, RSx , and a refer-  
Fixed Off-Time The internal PWM current control circuitry  
uses a one shot circuit to control the time the drivers remain off.  
The one shot off-time, toff, is internally set to 30 μs.  
ence voltage, VREFx  
.
Blanking This function blanks the output of the current sense  
comparator when the outputs are switched by the internal current  
control circuitry. The comparator output is blanked to prevent  
false detections of overcurrent conditions, due to reverse recovery  
currents of the clamp diodes, or to switching transients related to  
the capacitance of the load. The stepper blank time, tBLANK , is  
approximately 1 μs.  
If the logic inputs are pulled up to VDD, it is good practice to use  
a high value pull-up resistor in order to limit current to the logic  
inputs, should an overvoltage event occur. Logic inputs include:  
PHASEx, I0x, and I1x.  
Internal PWM Current Control Each full-bridge is con-  
trolled by a fixed off-time PWM current control circuit that limits  
the load current to a desired value, ITRIP. Initially, a diagonal pair  
of source and sink DMOS outputs are enabled and current flows  
through the motor winding and RSx. When the voltage across the  
current sense resistor equals the voltage on the VREFx pin, the  
current sense comparator resets the PWM latch, which turns off  
the source driver.  
Control Logic Communication is implemented via the indus-  
try standard I1, I0, and PHASE interface. This communication  
logic allows for full, half, and quarter step modes. Each bridge  
also has an independent VREF input so higher resolution step  
modes can be programmed by dynamically changing the voltage  
on the VREFx pins.  
Charge Pump (CP1 and CP2) The charge pump is used to  
generate a gate supply greater than the VBB in order to drive the  
source-side DMOS gates. A 0.1 μF ceramic capacitor should be  
connected between CP1 and CP2 for pumping purposes. A 0.1 μF  
ceramic capacitor is required between VCP and VBBx to act as a  
reservoir to operate the high-side DMOS devices.  
The maximum value of current limiting is set by the selection of  
RS and the voltage at the VREF input with a transconductance  
function approximated by:  
ITripMax = VREF / (3×RS)  
Each current step is a percentage of the maximum current,  
Shutdown In the event of a fault (excessive junction tem-  
perature, or low voltage on VCP), the outputs of the device are  
disabled until the fault condition is removed. At power-up, the  
undervoltage lockout (UVLO) circuit disables the drivers.  
ITripMax. The actual current at each step ITrip is approximated by:  
ITrip = (% ITripMax / 100) ITripMax  
where % ITripMax is given in the Step Sequencing table.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
5
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Synchronous Rectification When a PWM-off cycle is  
triggered by an internal fixed off-time cycle, load current will  
recirculate. The A3988 synchronous rectification feature will turn  
on the appropriate MOSFETs during the current decay, and effec-  
tively short out the body diodes with the low RDS(on) driver. This  
significantly lowers power dissipation. When a zero current level  
is detected, synchronous rectification is turned off to prevent  
reversal of the load current.  
Mixed Decay Operation The bridges operate in mixed  
decay mode. Referring to figure 2, as the trip point is reached, the  
device goes into fast decay mode for 30.1% of the fixed off-time  
period. After this fast decay portion, tFD, the device switches  
to slow decay mode for the remainder of the off-time. During  
transitions from fast decay to slow decay, the drivers are forced  
off for approximately 600 ns. This feature is added to prevent  
shoot-through in the bridge. As shown in figure 2, during this  
“dead time” portion, synchronous rectification is not active, and  
the device operates in fast decay and slow decay only.  
VPHASE  
+
See Enlargement A  
IOUT  
0
Enlargement A  
Fixed Off-Time 30 μs  
21 μs  
9 μs  
ITrip  
IOUT  
SDSR  
FDSR  
FDDT  
SDDT  
SDDT  
Figure 2. Mixed Decay Mode Operation  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
6
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Step Sequencing Diagrams  
100.0  
100.0  
66.7  
66.7  
Phase 1  
(%)  
Phase 1  
(%)  
0
0
–66.7  
–66.7  
–100.0  
–100.0  
100.0  
66.7  
100.0  
66.7  
Phase 2  
(%)  
Phase 2  
(%)  
0
0
–66.7  
–66.7  
–100.0  
–100.0  
Half step 2 phase  
Full step 2 phase  
Modified half step 2 phase  
Modified full step 2 phase  
Figure 3. Step Sequencing for Full-Step Increments.  
Figure 4. Step Sequencing for Half-Step Increments.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
7
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
100.0  
66.7  
33.3  
Phase 1  
(%)  
0
–33.3  
–66.7  
–100.0  
100.0  
66.7  
33.3  
Phase 2  
(%)  
0
–33.3  
–66.7  
–100.0  
Figure 5. Step Sequence for Quarter-Step Increments  
Step Sequencing Settings  
Phase 1  
Phase 2  
(%ITripMax)  
Full  
1/2  
1/4  
I0x  
I1x  
PHASE  
I0x  
I1x  
PHASE  
(%ITripMax  
)
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
H
L
L/H*  
L
L
L
L/H*  
L
H
L
L/H*  
L
H
H
L
L
L
L
L
H
H
H
L
x
1
1
1
1
1
1
1
x
0
0
0
0
0
0
0
100  
100  
100/66*  
33  
0
33  
100/66*  
100  
100  
100  
100/66*  
33  
L
L
L/H*  
L
H
L
L/H*  
L
L
L
L/H*  
L
L
L
L
H
H
H
L
L
L
L
L
1
1
1
1
X
0
0
0
0
0
0
0
X
1
1
1
1
2
3
4
5
6
7
8
2
3
4
L
L
L
L
H
H
H
L
L
L
L/H*  
L
0
33  
100/66*  
100  
H
L
L/H*  
L
H
L
* Denotes modified step mode  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
8
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Applications Information  
are used to transfer heat to other layers of the PCB.  
Motor Configurations For applications that require either a  
stepper/dc motor driver or dual dc motor driver, Allegro offers the  
A3989 and A3995. These devices are offered in the same 36 pin  
QFN package as the A3988. The dc motor drivers are capable of  
supplying 2.4 A at 36 V. Commutation is done with a standard  
phase/enable logic interface. Please refer to the Allegro website  
for further information and datasheets about those devices.  
Grounding In order to minimize the effects of ground bounce  
and offset issues, it is important to have a low impedance single-  
point ground, known as a star ground, located very close to the  
device. By making the connection between the exposed thermal  
pad and the groundplane directly under the A3988, that area  
becomes an ideal location for a star ground point.  
DC Motor Control Each of the 4 full bridges has independent  
PWM current control circuitry that makes the A3988 capable of  
driving up to four dc motors at currents up to 1.2 A. Control of  
the dc motors is accomplished by tying the I0, I1 pins together  
creating an equivalent ENABLE function with maximum current  
defined by the voltage on the corresponding VREF pin. The dc  
motors can be driven via a PWM signal on this enable signal, or  
on the corresponding PHASE pin. Motor control includes for-  
ward, reverse, and coast.  
A low impedance ground will prevent ground bounce during  
high current operation and ensure that the supply voltage remains  
stable at the input terminal. The recommended PCB layout shown  
in the diagram below, illustrates how to create a star ground  
under the device, to serve both as low impedance ground point  
and thermal path.  
Solder  
A3988  
Layout The printed circuit board should use a heavy ground-  
plane. For optimum electrical and thermal performance, the  
A3988 must be soldered directly onto the board. On the under-  
side of the A3988 package is an exposed pad, which provides a  
path for enhanced thermal dissipation. The thermal pad should be  
soldered directly to an exposed surface on the PCB. Thermal vias  
Trace (2 oz.)  
Signal (1 oz.)  
Ground (1 oz.)  
PCB  
Thermal (2 oz.)  
Thermal Vias  
VBB  
VBB  
CVCP  
GND  
CVCP  
CIN3  
CCP  
GND  
CCP  
CIN3  
RS1  
1
RS3  
I04  
I13  
OUT3A  
SENSE3  
OUT3B  
VBB2  
OUT3A  
OUT3B  
OUT1A  
OUT1B  
OUT1A  
SENSE1  
OUT1B  
VBB1  
U1  
A3988  
PAD  
RS1  
RS3  
CIN1  
CIN2  
OUT2B  
SENSE2  
OUT2A  
PHASE4  
OUT4B  
SENSE4  
OUT4A  
I14  
CIN1  
RS2  
CIN2  
RS4  
RS2  
RS4  
OUT2B  
OUT2A  
OUT4B  
OUT4A  
CVDD1  
CVDD2  
CVDD1  
CVDD2  
GND  
EV package layout shown  
VDD  
Figure 6. Printed circuit board layout with typical application circuit, shown at right. The copper area directly under the  
A3988 (U1) is soldered to the exposed thermal pad on the underside of the device. The thermal vias serve also as electrical  
vias, connecting it to the ground plane on the other side of the PCB , so the two copper areas together form the star ground.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
9
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
The two input capacitors should be placed in parallel, and as  
close to the device supply pins as possible. The ceramic capaci-  
tor should be closer to the pins than the bulk capacitor. This is  
necessary because the ceramic capacitor will be responsible for  
delivering the high frequency current components.  
additional voltage drops, adversely affecting the ability of the  
comparators to accurately measure the current in the windings.  
As shown in the layout below, the SENSEx pins have very short  
traces to the RSx resistors and very thick, low impedance traces  
directly to the star ground underneath the device. If possible,  
there should be no other components on the sense circuits.  
Sense Pins The sense resistors, RSx, should have a very low  
impedance path to ground, because they must carry a large cur-  
rent while supporting very accurate voltage measurements by  
the current sense comparators. Long ground traces will cause  
Note: When selecting a value for the sense resistors, be sure not to  
exceed the maximum voltage on the SENSEx pins of ±500 mV.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
10  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
Pin-out Diagrams  
Package JP  
Package EV  
I13  
I12  
I14  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
PHASE1  
PHASE2  
GND  
I12  
I11  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
I11  
PHASE1  
PHASE2  
GND  
GND  
NC  
GND  
VCP  
CP1  
CP2  
I01  
VREF4  
VREF3  
VREF2  
VREF1  
VDD  
PAD  
Packages are not to scale  
VCP  
CP1  
CP2  
I01  
VREF4  
VREF3  
VREF2  
VREF1  
VDD  
PAD  
I02  
PHASE3  
I03  
I02  
I03  
PHASE3  
PHASE4  
I04  
Terminal List Table  
Number  
Pin Name  
Pin Description  
DMOS Full-Bridge 1 Output A  
EV  
2
3
4
5
6
7
8
9
JP  
3
4
5
6
8
9
10  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
24  
27  
28  
29  
31  
32  
33  
34  
37  
38  
39  
40  
42  
43  
44  
OUT1A  
SENSE1  
OUT1B  
VBB1  
OUT2B  
SENSE2  
OUT2A  
PHASE4  
PHASE3  
VDD  
VREF1  
VREF2  
VREF3  
VREF4  
GND  
Sense Resistor Terminal for Bridge 1  
DMOS Full-Bridge 1 Output B  
Load Supply Voltage  
DMOS Full-Bridge 2 Output B  
Sense Resistor Terminal for Bridge 2  
DMOS Full-Bridge 2 Output A  
Control Input  
Control Input  
Logic Supply Voltage  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
1
PHASE2  
PHASE1  
I14  
Control Input  
Control Input  
Control Input  
OUT4A  
SENSE4  
OUT4B  
VBB2  
OUT3B  
SENSE3  
OUT3A  
I13  
I12  
I11  
GND  
VCP  
CP1  
CP2  
I01  
I02  
I03  
I04  
DMOS Full-Bridge 4 Output A  
Sense Resistor Terminal for Bridge 4  
DMOS Full-Bridge 4 Output B  
Load Supply Voltage  
DMOS Full-Bridge 3 Output B  
Sense Resistor Terminal for Bridge 3  
DMOS Full-Bridge 3 Output A  
Control Input  
Control Input  
Control Input  
Ground  
Reservoir Capacitor Terminal  
Charge Pump Capacitor Terminal  
Charge Pump Capacitor Terminal  
Control Input  
Control Input  
Control Input  
45  
46  
47  
48  
Control Input  
1, 2, 7, 11,  
12, 23, 25,  
26, 30, 35,  
36, 41  
NC  
No Connect  
Exposed pad for enhanced thermal perfor-  
mance. Should be soldered to the PCB.  
PAD  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
11  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
EV Package, 36 Pin QFN with Exposed Thermal Pad  
0.30  
0.50  
1.15  
6.00  
36  
36  
1
2
1
A
2
C
6.00  
4.15 5.80  
C
D
36X  
4.15  
5.80  
SEATING  
PLANE  
0.08  
C
0.90  
0.25  
0.50  
0.55  
All dimensions nominal, not for tooling use  
(reference JEDEC MO-220VJJD-1, case fig. 1)  
Dimensions in millimeters  
Exact case and lead configuration at supplier discretion within limits shown  
A
B
Terminal #1 mark area  
4.15  
Exposed thermal pad (reference only, terminal #1  
identifier appearance at supplier discretion)  
2
1
Reference land pattern layout (reference IPC7351  
C
QFN50P600X600X100-37V1M); All pads a minimum of 0.20 mm from  
all adjacent pads; adjust as necessary to meet application process  
requirements and PCB layout tolerances; when mounting on a  
multilayer PCB, thermal vias at the exposed thermal pad land can  
improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5)  
36  
4.15  
D
Coplanarity includes exposed thermal pad and terminals  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
12  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A3988  
Quad DMOS Full Bridge PWM Motor Driver  
JP Package, 48 Pin LQFP with Exposed Thermal Pad  
0.30  
9.00  
7.00  
0.50  
1.70  
4º  
0.15  
9.00  
7.00  
C
B
5.00  
8.60  
5.00  
0.60  
1.00  
48  
A
1
48  
2
0.25  
1
2
5.00  
SEATING PLANE  
GAGE PLANE  
5.00  
8.60  
48X  
C
SEATING  
PLANE  
0.08  
C
0.22  
0.50  
Terminal #1 mark area  
A
B
1.60 MAX  
1.40  
Exposed thermal pad (bottom surface)  
Reference land pattern layout (reference IPC7351  
QFP50P900X900X160-48M); adjust as necessary to meet  
application process requirements and PCB layout  
tolerances; when mounting on a multilayer PCB, thermal  
vias at the exposed thermal pad land can improve thermal  
dissipation (reference EIA/JEDEC Standard JESD51-5)  
0.10  
All dimensions nominal, not for tooling use  
(reference JEDEC MS-026 BBCHD)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
The products described here are manufactured under one or more U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to per-  
mit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Use of any Allegro product in any Aerospace or Aviation application is strictly prohibited. Allegro’s products may only be used in life support de-  
vices or systems with the express written approval of an Allegro Vice President, if a failure of an Allegro product can reasonably be expected to cause  
the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use;  
nor for any infringement of patents or other rights of third parties which may result from its use.  
Copyright ©2006, 2007, Allegro MicroSystems, Inc.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
13  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  

相关型号:

A3988SJPTR-1-T

Stepper Motor Controller,
ALLEGRO

A3988SJPTR-T

Stepper Motor Controller, 2.8A, NMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026BBCHD, LQFP-48
ALLEGRO

A3988_11

The A3988 is a quad DMOS full-bridge driver capable of driving up to two stepper motors or four DC motors.
ALLEGRO

A3989

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989SEV-T

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989SEVTR-T

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A3989_V

Bipolar Stepper and High Current DC Motor Driver
ALLEGRO

A398C

Rectifier Diode, 1 Element, 400A, 300V V(RRM)
POWEREX

A398E

Rectifier Diode, 1 Element, 400A, 500V V(RRM)
POWEREX

A398M

Rectifier Diode, 1 Element, 400A, 600V V(RRM)
POWEREX

A398PA

Rectifier Diode, 1 Element, 400A, 1100V V(RRM)
POWEREX

A398PB

Rectifier Diode, 1 Element, 400A, 1200V V(RRM)
POWEREX