S3043A [AMCC]

Transmitter, 1-Func, Bipolar, PQFP80, HEAT SINK, PLASTIC, QFP-80;
S3043A
型号: S3043A
厂家: APPLIED MICRO CIRCUITS CORPORATION    APPLIED MICRO CIRCUITS CORPORATION
描述:

Transmitter, 1-Func, Bipolar, PQFP80, HEAT SINK, PLASTIC, QFP-80

ATM 异步传输模式 电信 电信集成电路
文件: 总25页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
DEVICE  
SPECIFICATION  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
GENERAL DESCRIPTION  
FEATURES  
• Micro-power Bipolar supply  
• Complies with Bellcore, and ITU-T  
specifications  
• On-chip high-frequency PLL for clock  
generation  
• Supports 2.488 Gbps (OC-48)  
• Reference frequency of 155.52 MHz  
• Interface to both LVPECL and LVTTL logic  
• 16-bit LVPECL data path  
• Compact 80 PQFP/TEP package  
• Diagnostic loopback mode  
• Line loopback  
The S3043 SONET/SDH MUX chip is a fully integrated  
serialization SONET OC-48 (2.488 Gbps) interface de-  
vice. The chip performs all necessary parallel-to-serial  
functions in conformance with SONET/SDH transmis-  
sion standards. The device is suitable for SONET-  
based ATM applications. Figure 1 shows a typical  
network application.  
On-chip clock synthesis PLL components are con-  
tained in the S3043 MUX chip allowing the use of a  
slower external transmit clock reference. The chip  
can be used with a 155.52 MHz reference clock, in  
support of existing system clocking schemes.  
• Lock detect  
• Low jitter LVPECL interface  
• Single 3.3V supply  
The low jitter LVPECL interface guarantees compli-  
ance with the bit-error rate requirements of the  
Bellcore, and ITU-T standards. The S3043 is pack-  
aged in an 80 PQFP/TEP, offering designers a small  
package outline.  
APPLICATIONS  
• SONET/SDH-based transmission systems  
• SONET/SDH modules  
• SONET/SDH test equipment  
• ATM over SONET/SDH  
• Section repeaters  
• Add Drop Multiplexers (ADM)  
• Broad-band cross-connects  
• Fiber optic terminators  
• Fiber optic test equipment  
Figure 1. System Block Diagram  
16  
16  
S3043  
Tx  
S3044  
OTX  
ORX  
S3040  
OTX  
Rx  
16  
16  
S3044  
Rx  
S3043  
Tx  
S3040  
ORX  
August 10, 1999 / Revision E  
1
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
part of each STS-N signal is an optical carrier level-N  
signal (OC-N). The S3043 chip supports the OC-48  
rate (2.488 Gbps).  
SONET OVERVIEW  
Synchronous Optical Network (SONET) is a standard  
for connecting one fiber system to another at the opti-  
cal level. SONET, together with the Synchronous  
Digital Hierarchy (SDH) administered by the ITU-T,  
forms a single international standard for fiber inter-  
connect between telephone networks of different  
countries. SONET is capable of accommodating a  
variety of transmission rates and applications.  
Frame and Byte Boundary Detection  
The SONET/SDH fundamental frame format for STS-48  
consists of 144 transport overhead bytes followed by  
Synchronous Payload Envelope (SPE) bytes. This  
pattern of 144 overhead and 4176 SPE bytes is re-  
peated nine times in each frame. Frame and byte  
boundaries are detected using the A1 and A2 bytes  
found in the transport overhead. (See Figure 3.)  
The SONET standard is a layered protocol with four  
separate layers defined. These are:  
• Photonic  
• Section  
• Line  
For more details on SONET operations, refer to the  
Bellcore SONET standard document.  
• Path  
Figure 2. SONET Structure  
Figure 2 shows the layers and their functions. Each  
of the layers has overhead bandwidth dedicated to  
administration and maintenance. The photonic layer  
simply handles the conversion from electrical to optical  
and back with no overhead. It is responsible for  
transmitting the electrical signals in optical form over  
the physical media. The section layer handles the  
transport of the framed electrical signals across the  
optical cable from one end to the next. Key functions  
of this layer are framing, scrambling, and error moni-  
toring. The line layer is responsible for the reliable  
transmission of the path layer information stream  
carrying voice, data, and video signals. Its main  
functions are synchronization, multiplexing, and reli-  
able transport. The path layer is responsible for the  
actual transport of services at the appropriate signaling  
rates.  
Functions  
Payload to  
SPE mapping  
Path layer  
Line layer  
Path layer  
Line layer  
Maintenance,  
protection,  
switching  
Scrambling,  
framing  
Section layer  
Section layer  
Optical  
transmission  
Photonic layer  
Photonic layer  
Fiber Cable  
End Equipment  
End Equipment  
Table 1. SONET Signal Hierarchy  
Data Rates and Signal Hierarchy  
Elec.  
STS-1  
CCITT  
Optical Data Rate (Mbps)  
OC-1  
51.84  
Table 1 contains the data rates and signal designations  
of the SONET hierarchy. The lowest level is the basic  
SONET signal referred to as the synchronous transport  
signal level-1 (STS-1). An STS-N signal is made up of  
N byte-interleaved STS-1 signals. The optical counter-  
STS-3  
STM-1  
STM-4  
STM-8  
STM-16  
OC-3  
155.52  
622.08  
1244.16  
2488.32  
STS-12  
STS-24  
STS-48  
OC-12  
OC-24  
OC-48  
Figure 3. STS-48/OC-48 Frame Format  
A1 A1  
A1 A1  
A2 A2  
A2 A2  
48 A1  
Bytes  
48 A2  
Bytes  
Synchronous Payload Envelope 4176 Columns  
4176 x 9 = 37,584 bytes  
Transport Overhead 144 Columns  
144 x 9 = 1296 bytes  
125 µsec  
2
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043 OVERVIEW  
S3043  
The sequence of operations is as follows:  
Transmitter Operations:  
The S3043 transmitter implements SONET/SDH se-  
rialization and transmission functions. The block dia-  
gram in Figure 4 shows the basic operation of the  
chip. This chip can be used to implement the front  
end of SONET equipment, which consists primarily  
of the serial transmit interface and the serial receive  
interface. The chip includes parallel-to-serial conver-  
sion and system timing. The system timing circuitry  
consists of a high-speed phase detector, clock divid-  
ers, and clock distribution throughout the front end.  
1. 16-bit parallel input  
2. Parallel-to-serial conversion  
3. Serial output  
Internal clocking and control functions are transpar-  
ent to the user. Details of data timing can be seen in  
Figures 7, 16 and 17.  
Suggested Interface Devices  
AMCC  
AMCC  
S3040  
S3044  
OC-48 Clock Recovery Device  
OC-48 Receiver  
Figure 4. S3043 Functional Block Diagram  
DLEB  
LLDP/N  
LLCLKP/N  
LLEB  
LSDP/N  
M
U
X
16  
D
TSDP/N  
PIN[15:0]  
16:1 PARALLEL  
PICLKP/N  
TO SERIAL  
LSCLKP/N  
TSCLKP/N  
M
U
X
PCLKP/N  
PULSE  
TIMING  
GEN  
READ  
TESTEN  
LOCKDET  
155MCK  
CLOCK  
DIVIDER and  
PHASE DETECTOR  
REFCLKP/N  
RSTB  
2
CAP1/2  
August 10, 1999 / Revision E  
3
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
The PCLK output is a byte rate version of TSCLK.  
For STS-48, the PCLK frequency is 155.52 MHz.  
PCLK is intended for use as a byte speed clock for  
upstream multiplexing and overhead processing cir-  
cuits. Using PCLK for upstream circuits will ensure a  
stable frequency and phase relationship between the  
data coming into and leaving the S3043 device.  
S3043 ARCHITECTURE/FUNCTIONAL  
DESIGN  
MUX OPERATION  
The S3043 performs the serializing stage in the pro-  
cessing of a transmit SONET STS-48 bit serial data  
stream. It converts the byte serial 155.52 Mbyte/sec  
data stream to bit serial format at 2.488 Gbps. Diag-  
nostic loopback is provided (transmitter to receiver),  
and Line Loopback is also provided (receiver to trans-  
mitter).  
In the parallel-to-serial conversion process, the in-  
coming data is passed from the PICLK byte clock  
timing domain to the internally generated byte clock  
timing domain, which is phase aligned to TSCLK.  
A high-frequency bit clock is generated from a  
155.52 MHz frequency reference by using a fre-  
quency synthesizer consisting of an on-chip phase-  
locked loop circuit with a divider, VCO and loop filter.  
The timing generator also produces a feedback ref-  
erence clock to the Phase Detector. A counter divides  
the synthesized clock down to the same frequency  
as the reference clock REFCLK.  
Clock Divider and Phase Detector  
Parallel-to-Serial Converter  
The clock divider and phase detector, shown in the  
block diagram in Figure 4, contains monolithic PLL  
components that generate signals required to drive  
the loop filter.  
The parallel-to-serial converter shown in Figure 4 is  
comprised of two byte-wide registers. The first register  
latches the data from the PIN[15:0] bus on the rising  
edge of PICLK. The second register is a parallel  
loadable shift register which takes its parallel input  
from the first register.  
The REFCLK input must be generated from a differ-  
ential LVPECL crystal oscillator which has a fre-  
quency accuracy of better than 20 ppm in order for  
the VCOCLK frequency to have the same accuracy  
required for operation in a SONET system.  
An internally generated byte clock, which is phase  
aligned to the transmit serial clock as described in the  
Timing Generator description, activates the parallel  
data transfer between registers. The serial data is  
In order to meet the 0.01 UI SONET jitter specifica-  
tions, the maximum reference clock jitter must be  
guaranteed over the 12 kHz to 20 MHz bandwidth.  
For details of reference clock jitter requirements, see  
Table 2.  
shifted out of the second register at the TSCLK rate  
.
OTHER OPERATING MODES  
The on–chip phase detector, which compares the  
phase relationship between the VCO input and the  
REFCLK input, drives the loop filter.  
Diagnostic Loopback  
When the Diagnostic Loopback Enable (DLEB) input  
is low, a loopback from the transmitter to the re-  
ceiver at the serial data rate can be set up for diag-  
nostic purposes. The differential serial output data  
from the transmitter is routed to the receiver in place  
of the normal data stream (RSD).  
Timing Generator  
The timing generator function, seen in Figure 4, pro-  
vides two separate functions. It provides a byte rate  
version of the TSCLK, and a mechanism for aligning  
the phase between the incoming byte clock and the  
clock which loads the parallel-to-serial shift register.  
Line Loopback  
The line loopback circuitry consists of alternate clock  
and data output drivers. For the S3043, it selects the  
source of the data and clock which is output on TSD  
and TSCLK. When the Line Loopback Enable  
(LLEB) input is active, it selects data and clock from  
the Parallel to Serial Converter block. When LLEB is  
inactive, it forces the output data multiplexer to se-  
lect data and clock from the LLD and LLCLK inputs,  
and a receive-to-transmit loopback can be estab-  
lished at the serial data rate.  
Table 2. Reference Jitter Limits  
Maximum Reference Clock Jitter in  
12 kHz to 20 MHz Band  
Operating  
Mode  
1 ps rms  
STS-48  
4
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Table 3. Input Pin Assignment and Descriptions  
Pin Name  
Level  
I/O  
Pin #  
Description  
PIN0  
PIN1  
PIN2  
PIN3  
PIN4  
PIN5  
PIN6  
PIN7  
Single-  
Ended  
LVPECL  
I
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Parallel Data Input. A 155.52 Mbyte/sec word, aligned to the  
PICLK parallel input clock. PIN[15] is the most significant bit  
(corresponding to bit 1 of each PCM word, the first bit transmitted).  
PIN[0] is the least significant bit (corresponding to bit 16 of each  
PCM word, the last bit transmitted). PIN[15:0] is sampled on the  
rising edge of PICLK.  
PIN8  
PIN9  
PIN10  
PIN11  
PIN12  
PIN13  
PIN14  
PIN15  
PICLKP  
PICLKN  
Diff.  
LVPECL  
I
I
I
22  
21  
Parallel Input Clock. A 155.52 MHz nominally 50% duty cycle  
input clock, to which PIN[15:0] is aligned. PICLK is used to  
transfer the data on the PIN inputs into a holding register in the  
parallel-to-serial converter. The rising edge of PICLK samples  
PIN[15:0].  
LLDP  
LLDN  
Externally  
Biased  
Diff.  
14  
15  
Line Loopback Data. Inputs normally provided from a  
companion S3044 device. Used to implement a line loopback  
function in which the receive serial bit serial data and clock  
signals are regenerated and passed through the S3043  
transmitter. Internally terminated.  
LVPECL  
LLCLKP  
LLCLKN  
Externally  
Biased  
Diff.  
11  
12  
Line Loopback Clock. Inputs normally provided from a  
companion S3044 device. Used to implement a line loopback  
function in which the receive serial bit serial data and clock  
signals are regenerated and passed through the S3043  
transmitter. Internally terminated.  
LVPECL  
TESTEN  
LVTTL  
I
I
13  
Test Clock Enable. Set High to provide access to the PLL during  
production tests.  
REFCLKP  
REFCLKN  
Internally  
Biased  
Diff.  
78  
77  
Reference Clock. Input used as the reference for the internal bit  
clock frequency synthesizer. Internally terminated and biased.  
LVPECL  
DLEB  
RSTB  
LVTTL  
I
I
8
9
Diagnostic Loopback Enable. Active Low. When active, selects  
diagnostic loopback. When DLEB is inactive, LSD and LSCLK  
are powered down and inactive. When active, the diagnostic  
loopback clock, (LSCLK), and data (LSD) outputs are active.  
TSD and TSCLK remain active in both states of DLEB.  
LVTTL  
Master Reset. Reset input for the device, active Low. During  
reset, PCLK does not toggle.  
August 10, 1999 / Revision E  
5
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Table 3. Input Pin Assignment and Descriptions (Continued)  
Pin Name  
LLEB  
Level  
I/O  
Pin #  
Description  
LVTTL  
I
5
Line Loopback Enable. Selects Line Loopback. Active Low.  
When LLEB is active, the S3043 will route the data from the  
LLD/LLCLK inputs to the TSD/TSCLK outputs.  
CAP1  
CAP2  
Analog  
I
I
67  
66  
Loop Filter Pins. Connections for external loop filter capacitor  
and resistors.  
READ  
Single-  
Ended  
LVPECL  
45  
Elastic Store Write Single-Ended Input. This input pin is clocked  
in using the rising edge of PICLK clock. This input is used to align  
the elastic store. The S3043 MUX will monitor the READ input for  
a fault condition.  
6
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Table 4. Output Pin Assignment and Descriptions  
Pin Name  
Level  
I/O  
Pin #  
Description  
TSCLKP  
TSCLKN  
Diff.  
CML  
O
57  
56  
Transmit Clock Output. Transmit serial clock output that can be  
used to retime the TSD signal.  
TSDP  
TSDN  
Diff.  
CML  
O
O
55  
54  
Transmit Serial Data. Serial data stream signals, normally  
connected to an optical transmitter module.  
PCLKP  
PCLKN  
Diff.  
LVPECL  
23  
24  
Parallel Clock. A reference clock generated by dividing the internal  
bit clock by sixteen. It is normally used to coordinate byte-wide  
transfers between upstream logic and the S3043 device.  
LSDP  
LSDN  
O
6
7
Loopback Serial Data. Serial data stream signals normally  
connected to a companion S3044 device for diagnostic loopback  
purposes. The LSD outputs are updated on the falling edge of the  
LSCLK.  
Low Swing  
Diff.  
CML  
LSCLKP  
LSCLKN  
O
O
1
2
Loopback Serial Clock. Serial clock signals normally connected  
to a companion S3044 device for diagnostic loopback purposes.  
The LSD outputs are updated on the falling edge of the LSCLK.  
Low Swing  
Diff.  
CML  
155MCK  
Single-  
Ended  
LVPECL  
20  
155 MHz Clock Output. 155 MHz clock output from the clock  
synthesizer. This output should be connected to the reference  
clock input of the external clock recovery function (such as the  
S3040).  
PULSE  
Single-  
Ended  
LVPECL  
O
O
43  
Elastic Store Read Single-Ended Outputs. This output pulse is  
sychronized with the falling edge of PCLKP/N. This signal is used  
to align the elastic store. The PULSE output should be active for  
only one pulse every third 155 MHz clock cycle during the normal  
(no fault) operation.  
LOCKDET  
LVTTL  
47  
Lock Detect. Goes Low after the PLL has locked to the clock  
provided on the REFCLK pins. LOCKDET is an asynchronous  
output.  
August 10, 1999 / Revision E  
7
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Table 5. Common Pin Assignment and Description  
Pin Name  
Level  
I/O  
Pin #  
Description  
COREGND  
GND  
51, 61,  
Core Ground  
63, 65, 75  
COREVCC  
LVPECLVCC  
LVPECLGND  
TTLVCC  
+3.3V  
+3.3V  
GND  
50, 60,  
62, 64, 70  
Core VCC  
3, 16, 17, LVPECL VCC  
52, 59  
4, 10, 18, LVPECL Ground  
53, 58  
+3.3V  
GND  
48  
TTL VCC  
LVTTLGND  
NC  
19  
TTL Ground  
44, 46,  
49, 76  
Not Connected  
LVPECL VCC  
LVPECL Ground  
Analog VCC  
Analog Ground  
LVPECLVCC  
LVPECLGND  
AVCC  
+3.3V  
GND  
+3.3V  
GND  
41  
42  
69, 72,  
74, 80  
AGND  
68, 71  
73, 79  
8
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 5. S3043 Pinout  
LSCLKP  
LSCLKN  
LVPECLVCC  
LVPECLGND  
60  
59  
58  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
COREVCC  
LVPECLVCC  
LVPECLGND  
TSCLKP  
TSCLKN  
TSDP  
57  
56  
55  
54  
53  
52  
51  
50  
LLEB  
LSDP  
LSDN  
DLEB  
RSTB  
TSDN  
S3043  
LVPECLGND  
LVPECLVCC  
COREGND  
COREVCC  
NC  
TTLVCC  
LOCKDET  
NC  
READ  
NC  
PULSE  
LVPECLGND  
LVPECLGND  
LLCLKP  
80 PQFP/TEP  
TOP VIEW  
49  
48  
47  
LLCLKN  
TESTEN  
LLDP  
LLDN  
LVPECLVCC  
LVPECLVCC  
LVPECLGND  
LVTTLGND  
46  
45  
44  
43  
42  
41  
LVPECLVCC  
155MCK  
20  
August 10, 1999 / Revision E  
9
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Figure 6. 80 PQFP/TEP Package  
BOTTOM VIEW  
TOP VIEW  
Note: The S3043 package is equipped with an embedded conductive heatsink on the bottom (board side). Active circuitry and  
vias should not appear in the area immediately under the package. This heatsink is electrically biased to the Vee potential of the  
S3043. For optimum thermal management, a foil surface at ground (or Vee if other than ground) is recommended immediately  
under the package, and connected with multiple vias to the internal plane(s) of similar potential. Thermally conductive epoxy or  
other conductive interposer can be used to establish a good thermal dissipation path.  
Table 6. Thermal Management  
Θjc  
Device  
Max  
S3043  
1.56 W  
2.1˚C/W  
1. Add 0.24W for loopback active.  
10  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Table 7. Performance Specifications  
Parameter  
Min  
Typ  
Max  
Units  
Conditions  
Nominal VCO Center  
Frequency  
2.488  
±12%  
GHz  
TSCLK Clock Output  
Jitter  
OC-48/STS-48  
0.01  
UI (rms)  
Data Output Jitter  
STS-48  
155.52 MHz Ref. Clk.  
0.01  
UI (rms)  
ppm  
rms jitter, in lock.  
± 20 ppm. Required to meet  
SONET output frequency  
specification.  
Reference Clock  
Frequency Tolerance  
-100  
30  
+100  
Reference Clock Input  
Duty Cycle  
70  
%
Reference Clock Rise &  
Fall Times  
1.5  
ns  
20% to 80% of amplitude.  
Table 8. Absolute Maximum Ratings  
Parameter  
Min  
-65  
-0.5  
-0.5  
0
Typ  
Max Units  
Storage Temperature  
150  
+5.0  
+5.5  
VCC  
8
˚ C  
V
Voltage on VCC with Respect to GND  
Voltage on any LVTTL Input Pin  
Voltage on any LVPECL Input Pin  
LVTTL Output Sink Current  
V
V
mA  
mA  
mA  
V
LVTTL Output Source Current  
High Speed LVPECL Output Source Current  
8
50  
Static Discharge Voltage1  
500  
1. Except CAP1, CAP2.  
Table 9. Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max Units  
Ambient Temperature Under Bias  
Junction Temperature Under Bias  
-40  
85  
˚ C  
˚ C  
V
130  
Voltage on VCC with Respect to GND  
Voltage on any LVPECL Input Pin  
3.135  
3.3  
3.465  
VCC  
-2  
VCC  
V
August 10, 1999 / Revision E  
11  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Table 10. Power Consumption  
Parameter  
Min  
Typ  
Max Units  
450 mA  
ICC1  
383  
1. Add 70 mA for loopback active.  
Table 11. LVTTL Input/Output DC Characteristics  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
TTL VCC  
+ 1.0  
VIH  
Input High Voltage  
TTL VCC = Max  
2.0  
0.0  
V
VIL  
IIH  
IIL  
Input Low Voltage  
Input High Current  
Input Low Current  
TTL VCC = Max  
VIN = 2.4 V  
0.8  
50  
V
µA  
µA  
VIN = 0.5 V  
-500  
2.1  
VIH = Min.  
VIL = Max.  
VOH  
Output High Voltage  
Output Low Voltage  
V
V
I
OH = -100 µA  
VIH = Min.  
VIL = Max.  
IoL = 4 mA  
VOL  
0.5  
Table 12. Differential CML Output DC Characteristics  
Parameter  
Description  
Min  
Typ  
Max Units  
Condition  
Vcc  
-0.95  
Vcc  
V
VOL  
VOH  
CML Output LOW Voltage  
100line-to-line.  
-0.55  
Vcc  
-0.35  
Vcc  
V
CML Output HIGH Voltage  
100line-to-line.  
-0.10  
CML Serial Output Differential  
Voltage Swing  
100line-to-line. See  
Figure 18.  
VOUTDIFF  
560  
280  
1300  
650  
mV  
mV  
CML Serial Output Single-  
ended Voltage Swing  
100line-to-line. See  
Figure 18.  
VOUTSINGLE  
Table 13. Low Swing Differential CML Output DC Characteristics  
Parameters  
Description  
Min  
Typ  
Max  
Units  
Conditions  
Vcc  
-0.50  
Vcc  
-0.25  
VOL  
Loopback CML Output LOW Voltage  
V
V
100line-to-line.  
Vcc  
-0.20  
Vcc  
-0.05  
VOH  
Loopback CML Output HIGH Voltage  
100line-to-line.  
100line-to-line.  
100line-to-line.  
Loopback CML Serial Output  
Differential Voltage Swing  
VOUTDIFF  
360  
180  
800  
400  
mV  
mV  
Loopback CML Serial Output  
Single-ended Voltage Swing  
VOUTSINGLE  
12  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Table 14. Internally Biased Differential LVPECL Input DC Characteristics  
Parameters  
VINDIFF  
Description  
Min  
300  
150  
80  
Typ  
Max  
1200  
600  
Units  
mV  
mV  
Conditions  
See Figure 18.  
See Figure 18.  
Differential Input Voltage Swing  
Single-ended Input Voltage Swing  
Differential Input Resistance  
VINSINGLE  
RDIFF  
100  
120  
Table 15. Externally Biased Differential LVPECL Input DC Characteristics  
Parameters  
Description  
Min  
Typ  
Max  
Units  
Conditions  
VBIAS  
LVPECL DC Bias Voltage  
V
Inputs open.  
Vcc -1.2  
Vcc -0.8  
Vcc  
-2.000  
Vcc  
-0.25  
VIL  
VIH  
LVPECL Input LOW Voltage  
LVPECL Input HIGH Voltage  
V
V
Vcc  
-1.20  
Vcc  
-0.05  
VINDIFF  
VINSINGLE  
RDIFF  
Differential Input Voltage Swing  
Single-ended Input Voltage Swing  
Differential Input Resistance  
300  
150  
80  
1200  
600  
mV  
mV  
See Figure 18.  
See Figure 18.  
100  
120  
Table 16. Single Ended LVPECL Input DC Characteristics1  
Parameters  
Description  
Min  
Typ  
Max  
Units  
Conditions  
Vcc  
-2.30  
Vcc  
-1.441  
VIL  
PECL Input Low Voltage  
V
Guaranteed at 85˚ C.  
Guaranteed at 85˚ C.  
Vcc  
-1.250  
Vcc  
-0.570  
VIH  
PECL Input High Voltage  
V
1. The AMCC LVPECL inputs (VIL and VIH) are non-temperature compensated I/O which vary at 1.3mV/C.  
Table 17. Single Ended LVPECL Output DC Characteristics1  
Parameters  
Description  
Min  
Typ  
Max  
Units  
Conditions  
Vcc  
-2.2  
Vcc  
-1.50  
VOL  
PECL Output Low Voltage  
V
Vcc  
-1.2  
Vcc  
-0.65  
VOH  
PECL Output High Voltage  
V
1. For 155MCK and Pulse signals. Maximum voltage swing = 500 mV for these two signals.  
August 10, 1999 / Revision E  
13  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Table 18. Differential LVPECL Input DC Characteristics  
Parameters  
Description  
Min  
Typ  
Max Units  
Comments  
Vcc  
-2.0  
Vcc  
V
VIL  
LVPECL Input Low  
-0.5  
Vcc  
-1.2  
Vcc  
V
VIH  
LVPECL Input High  
-0.3  
VINDIFF  
Diff. Input Voltage Swing  
400  
200  
2000  
1000  
mV  
mV  
See Figure 18.  
See Figure 18.  
VINSINGLE  
Single Ended Input Voltage Swing  
Table 19. Differential LVPECL Output DC Characteristics  
Parameters  
Description  
Min  
Typ  
Max Units  
Comments  
220to GND, 100line to  
line. See Figure 12.  
VOUTSINGLE  
Single Ended Output Voltage Swing  
550  
950  
mV  
mV  
V
220to GND, 100line to  
line. See Figure 12.  
VOUTDIFF  
Diff. Output Voltage Swing  
Output High Voltage  
Output Low Voltage  
1100  
1900  
Vcc  
-1.15  
Vcc  
-0.60  
220to GND, 100line to  
line. See Figure 12.  
VOH  
Vcc  
-1.95  
Vcc  
-1.50  
220to GND, 100line to  
line. See Figure 12.  
VOL  
V
14  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 7. Line Loopback Input Timing Diagram  
LLCLKP  
tS  
tH  
LLD  
LLD  
LLDP/N  
Notes on High-Speed LVPECL Input Timing:  
1. Timing is measured from the cross-over point of the reference signal to the cross-over point of the input.  
Table 20. AC Transmitter Timing Characteristics  
Symbol  
Description  
TSCLK/LSCLK Frequency (nom. 2.48 GHz)  
TSCLK/LSCLK Duty Cycle  
Min  
Max  
2.6  
60  
Units  
GHz  
%
40  
40  
PICLK Duty Cycle  
60  
%
tSPIN  
READ, PIN [15.0] Set-up Time w.r.t. PICLKP  
READ, PIN [15.0] Hold Time w.r.t. PICLKP  
TSCLK/LSCLK Low to TSD/LSD Valid Propagation Delay*  
TSD/LSD Set-up Time w.r.t. TSCLK/LSCLK  
TSD/LSD Hold Time w.r.t. TSCLK/LSCLK  
LLDP/N Set-up Time w.r.t. LLCLKP/N  
LLDP/N Hold Time w.r.t. LLCLKP/N  
PCLKP/N Duty Cycle  
1.5  
0.5  
-100  
105  
105  
100  
100  
43  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
%
tHPIN  
tPTSD  
tSTSD  
tHTSD  
tSLLD  
tHLLD  
100  
57  
170  
13  
CML Output Rise and Fall Time (20% - 80%)  
PICLK Delay from PCLK  
ps  
ns  
ns  
ns  
ns  
ns  
tPPICLK  
0
tPPRCLK  
tSPULSE  
tHPULSE  
tPREFCLK  
READ Delay from PULSE  
0
13  
PULSE Set-up Time w.r.t. PCLK  
PULSE Hold Time w.r.t. PCLK  
1.8  
2.0  
PCLK Delay from REFCLK  
6.5  
* Measured at 50/50 nominal duty cycle.  
August 10, 1999 / Revision E  
15  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Figure 8. External Loop Filter  
2.2 µF  
75Ω  
CAP2  
75Ω  
CAP1  
Figure 9. CML Output to +5V PECL Input AC Coupled Termination  
+3.3V  
+5V  
0.01 µF  
0.01 µF  
Zo=50Ω  
Zo=50Ω  
100Ω  
S3043  
TSDP/N  
TSCLKP/N  
Figure 10. -5V Single Ended ECL Driver to S3043 Input AC Coupled Termination  
+3.3V  
-5.2V  
+3.3V  
0.01 µF  
82Ω  
330Ω  
-5.2V  
Zo=50130Ω  
ECL  
S3043  
16  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 11. +5V Differential PECL Driver to S3043 Input AC Coupled Termination  
3.3V  
82  
130Ω  
+5V  
+3.3V  
0.01µF  
0.01µF  
Zo=50Ω  
Zo=50Ω  
330Ω  
3.3V  
82Ω  
130Ω  
330Ω  
S3043  
PICLKP/N  
Figure 12. S3043 to S3043 Terminations  
+3.3V  
+3.3V  
Zo=50  
220Ω  
100Ω  
Zo=50Ω  
220Ω  
S3043  
PCLKP/N  
S3043  
PICLKP/N  
August 10, 1999 / Revision E  
17  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Figure 13. Single-Ended PECL Output Termination  
+3.3V  
+3.3V  
Zo=50  
330 Ω  
S3043  
READ  
S3043  
PULSE  
Figure 14. S3043 to S3044 for Diagnostic Loopback  
+3.3V  
+3.3V  
Zo=50  
100Ω  
Zo=50Ω  
S3043  
LSDP/N  
S3044  
LSDP/N  
LSCLKP/N  
LSCLKP/N  
Figure 15. Single-Ended LVPECL Driver to S3043 Input AC Coupled Termination  
Vcc  
Vcc -0.70V  
(DC AVG)  
+3.3V  
0.01µF  
Zo=50Ω  
300Ω  
0.01µF  
60Ω  
Vcc -0.70V  
(DC AVG)  
Single-Ended  
Driver  
S3043  
REFCLKP/N  
18  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 16. AC Input Timing  
PICLKP  
tS  
tH  
PIN  
PIN  
PIN[15:0]  
1. When a set-up time is specified on LVPECL signals between an input and a clock, the set-up time is the time in  
picoseconds from the 50% point of the input to the 50% point of the clock.  
2. When a hold time is specified on LVPECL signals between an input and a clock, the hold time is the time in  
picoseconds from the 50% point of the clock to the 50% point of the input.  
Figure 17. Output Timing  
TSCLKP/  
LSCLKP  
tS  
tP  
TSD  
tH  
TSD  
TSD  
TSD/  
LSD  
Notes on High-Speed PECL Output Timing  
1. Output propagation delay time is the time in nanoseconds from thecross-over point of the reference signal to  
the cross-over point of the output.  
2. When a set-up time is specified on differential LVPECL signals between an input and a clock, the set-up time is  
the time in picoseconds from the cross-over point of the input to the cross-over point of the clock.  
3. When a hold time is specified on differential LVPECL signals between an input and a clock, the hold time is the  
time in picoseconds from the cross-over point of the clock to the cross-over point of the input.  
Figure 18. Differential Voltage Measurement  
Single-ended  
V
SINGLE  
swing  
V  
2X Single-ended  
swing  
=
DIFF  
August 10, 1999 / Revision E  
19  
APPLICATION NOTE  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
The S3043 utilizes a unique elastic store buffer which can be set in two different configurations allowing the  
system designer to be flexible in the way a system is to be layed out. The configuration of the elastic store buffer  
is dependent upon the I/O pins which comprise the Synch Timing loop. This loop is formed from PULSE(I/P) to  
READ(O/P) and PCLK(I/P) to PICLK(O/P). The elastic store buffer can be thought of as a memory stack with a  
read pointer. The PULSE signal is the read pointer which announces that it has read a register and when fed  
back to READ input, it synchronizes the write operation of the buffer so as not to simultaneously write over the  
same register that it has read previously.  
Figure 19. Block Diagram  
OSCILLATOR  
REFCLK P/N  
PCLK P/N  
DIV  
PLL  
PICLK P/N  
PIN[15:0]  
16  
FIFO  
Pulse  
Read  
CUSTOMER LOGIC  
S3043  
Block Diagram  
In the configuration shown above, both the loops (PCLK to PICLK) and (Pulse to Read) have 0 delay (they are  
shorted). S3043 is clocking data out of the customer logic. The oscillator frequency REFCLK is given to the PLL.  
The output of the PLL is given to the multiplier and divider circuits. The output of the chip PCLK, is used to clock  
data out of the customer logic. The PICLK is in phase and has the same frequency as PCLK. It is used to clock  
data into the register in the S3043. The data will have the same frequency as PICLK, but it may not be in phase  
with PICLK. It is important to meet the set-up and hold time constraints in this case.  
20  
August 10, 1999 / Revision E  
APPLICATION NOTE  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 20.  
PCLK  
PICLK  
tH  
PIN  
tS  
PIN  
VALID DATA 4  
VALID DATA 3  
VALID DATA 2  
PIN[15:0] VALID DATA 1  
tS  
PIN  
tH  
PIN  
PULSE  
READ  
DON’T CARE  
August 10, 1999 / Revision E  
21  
APPLICATION NOTE  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
In the figure shown below, we are using the 2nd configuration of the elastic store buffer. This configuration fully  
utilizes the elastic store buffer and allows the user a delay accommodation of 0 to 14 ns. The PULSE delay must  
follow the PCLK delay. It is very important that the relationship between these two signals be kept all the way  
through the loop. Otherwise it is possible to under or over spill the buffer. It is important to insure that the PULSE  
signal is retimed along with the outgoing data to the S3043.  
Figure 21.  
OSCILLATOR  
REFCLK P/N  
PCLK P/N  
DIV  
PLL  
PICLK P/N  
PIN[15:0]  
16  
FIFO  
D
Q
Pulse  
Read  
S3043  
CUSTOMER LOGIC  
22  
August 10, 1999 / Revision E  
APPLICATION NOTE  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Figure 22.  
PCLK  
tP  
PICLK  
PICLK  
tS  
tH  
PULSE  
PULSE  
PULSE  
READ  
tP  
PRCLK  
tH  
PIN  
tS  
PIN  
tH  
PIN  
tS  
PIN  
PIN[15:0]  
VALID DATA 1  
VALID DATA 2  
VALID DATA 3  
August 10, 1999 / Revision E  
23  
APPLICATION NOTE  
S3043  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
Figure 23.  
OSCILLATOR  
REFCLK P/N  
DIV  
PLL  
PICLK P/N  
PIN[15:0]  
16  
FIFO  
Pulse  
Read  
CUSTOMER LOGIC  
S3043  
In some applications it is necessary to "forward clock" the data in a SONET/SDH system. In this application the  
reference clock from which the high speed serial clock is synthesized and the parallel data clock both originate  
from the same clock source. The timing control logic in the S3043 automatically generates an internal load signal  
which has the fixed relationship to the reference clock. The logic takes into account the variation of the reference  
clock to the internal load signal over temperature and voltage. The connections required to implement the design  
are shown in the above figure. The setup and hold times for the PICLK to the data must be met by the customer  
logic. For the timing diagram refer to Figure 16.  
Possible Problems: In order to meet the jitter generation specifications required by SONET, the jitter of the  
reference clock must be minimized. It may be difficult to meet the SONET jitter generation specifications using a  
reference clock generated from the customer logic.  
24  
August 10, 1999 / Revision E  
SONET/SDH/ATM OC-48 16:1 TRANSMITTER  
S3043  
Ordering Information  
GRADE  
TRANSMITTER  
PACKAGE  
S – Industrial/Commercial  
3043  
A – 80 PQFP/TEP  
X XXXX  
X
Grade Part number  
Package  
Applied Micro Circuits Corporation  
6290 Sequence Drive, San Diego, CA 92121  
Phone: (858) 450-9333 • (800) 755-2622 • Fax: (858) 450-9885  
http://www.amcc.com  
AMCC reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and  
advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
AMCC does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey  
any license under its patent rights nor the rights of others.  
AMCC reserves the right to ship devices of higher grade in place of those of lower grade.  
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE  
FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
AMCC is a registered trademark of Applied Micro Circuits Corporation.  
Copyright ® 1998 Applied Micro Circuits Corporation  
August 10, 1999 / Revision E  
25  

相关型号:

S30440

Silicon Power Rectifier
MICROSEMI

S30440E3

Rectifier Diode, 1 Phase, 1 Element, 40A, 400V V(RRM), Silicon, DO-203AB, METAL, DO-5, 1 PIN
MICROSEMI

S3045

4CH BTL Motor Drive IC
KODENSHI

S3045B

Mux/Demux, 1-Func, Bipolar, PQFP208, 28 X 28 MM, 3.40 MM HEIGHT, PLASTIC, QFP-208
AMCC

S30460

Silicon Power Rectifier
MICROSEMI

S30460E3

Rectifier Diode, 1 Phase, 1 Element, 40A, 600V V(RRM), Silicon, DO-203AB, METAL, DO-5, 1 PIN
MICROSEMI

S30480

SILICON POWER RECTIFIER
MICROSEMI

S3049A

Interface Circuit, PQFP32, HEAT SINK, TQFP-32
ROCHESTER

S3049A

Interface Circuit, PQFP32, HEAT SINK, TQFP-32
AMCC

S3049B

Interface Circuit, DIE-42
ROCHESTER

S304GWA

Optoelectronic Device
EVERLIGHT

S304HWB

Optoelectronic Device
EVERLIGHT