AS3658E-BCTP [AMSCO]

Power and Audio Management Unit for Portable Devices; 电源及音频管理单元,用于便携式设备
AS3658E-BCTP
型号: AS3658E-BCTP
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Power and Audio Management Unit for Portable Devices
电源及音频管理单元,用于便携式设备

便携式 便携式设备
文件: 总158页 (文件大小:6923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
austriamicrosystems AG  
is now  
ams AG  
The technical content of this austriamicrosystems datasheet is still valid.  
Contact information:  
Headquarters:  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
e-Mail: ams_sales@ams.com  
Please visit our website at www.ams.com  
Data Sheet Confidential  
AS3658  
Power and Audio Management Unit for Portable Devices  
- High Current (1.0A) Linear Charger with external  
1 General Description  
pass transistor (no step down charger)  
- 0.1 Ω Battery switch for start-up and trickle charge  
- Integrated USB charger up to 880mA (can be used  
as wall adapter charger); current accuracy 440-  
500mA for USB specification, in-circuit trimmable  
(±1.2% trimsteps)  
- Autonomous Battery Temperature Supervision  
(0ºC-45ºC or 0ºC- 50ºC) for 10k and 100k NTC  
- Charging Timeout (1h-8h in 30min steps)  
- Charging in Stanby mode  
The AS3658 is highly integrated power and audio  
management unit. The AS3658 is designed to include  
sophisticated audio features like high performance  
audio DAC and ADC. It has several analog and digital  
audio interface which are explained in detail in the  
following sections. The AS3658 is an integrated solution  
for power supply generation and monitoring, battery  
management including charging.  
- Completely Autonomous (no SW)  
Power Management Features  
2 Key Features  
System Control  
- Wide Battery Supply Range 3.…5.5V  
- On-hip Bandgap Tuning fr High Accuracy (±1%)  
- Theral and Current Protection (int. sensor)  
- tandby Mode exit by interupt e.g. Onkey/RTC  
Audio  
- Serial Control Interface  
- On/Off Control Module with Boot-ROM / GPIO  
- Reset Generation for system controller  
- Programmable Interrupt Controller and Watchdog  
- Low power off mode (9µA; 2.5V LDO on)  
- 88 bit unique ID or Boot fuse array  
- 94dB Audio DAC16-48kHz sampling rate  
- Two Digitl Auio Inputs (2 x I2S interface)  
- 2.9V low Nise LDO for Audio DAC  
- Tweadphone Amplifier Output with GND  
eparation  
- TwI2S Inputs and one I2S Output  
- 2S master mode with programmable sample rate  
(controlled by internal PLL)  
- GND Buffer for Headphone Amplifier  
- Line/ Headphone outputs with GND separation  
- Audio ADC, 82dB SNR with 16ksps  
- Microphone Bias Supply and Amplifier (mono)  
- 5 Band Adjustable Audio Equalizer (± 12dB in 3dB  
gain steps)  
- Reset with long ON-Keypress (SW-Interuptable)  
- Touchscreen Interface (10 bit, interrupt)  
Supply Voltage Generation  
- 2 RF Programmable Low Noise LOs 250mA) (1  
LDO can be a current controlled ch for hotplug  
(200mA ± 40%))  
- 1 RF Programmable Low Noise LDO (400mA)  
- 4 Programmable Dig. Low Power LDOs(200A)  
- 2 General Purpose PWM DC/DC step up converter  
with three programmable current sinks e.g. for-  
white led); for current mode feedbacis atomati-  
cally slected (DCDC_CURR1,2,3)  
- SPDIF Output  
- 3 General Purpose high efficency DC/DC step  
down converter (DCDC 1 suport DVM)  
- 1 Low noise charge pump with 5V output voltage  
- 1 Ultra Low Power 25V LDO (always on)  
Current sinks  
- Audio Mixer and Gain Stages  
- PCM Interface  
Real Time Clock (RTC)  
- Alarm and Time function  
- Repeated Wakeup (every second or minute)  
- 32kHz output  
- 4 programmle(8it) from 0.15mA to 38.25mA  
(±5% ) optionauseable as GPIOs  
- 3 programmable high voltage (15V) (8-bit) from  
0.15mA t38.25mA (±5% )  
- intal PWM generator (extended time range)  
(can control DCDC_CURR1,2,3)  
- Backup Battery Charger and Switchover  
Programmable System clock  
- 1.6 MHz to 2.3 MHz with 100 kHz steps  
Package  
0-bit 40µs Successive Approximation ADC  
- BGA124 8x8mm, 0.5mm pitch (can be assembled  
without micro via boards)  
- Two external Inputs (ADC_IN1, ADC_IN2)  
Battery Management  
- Full featured chemistry independent step down  
charger with Gas Gauge and Current limitation  
www.austriamicrosystems.com  
Revision 1v13  
1 - 157  
AS3658  
Data Sheet Confidential - Applications  
3 Applications  
The AS3658 is ideal for PDA, PMP, GPS-Navigation Systems and 1 Cell Li+ or 3 Cell NiMH powered devices.  
Figure 1. Blockdiagram AS3658  
ꢐꢄꢹꢄꢒꢮꢺꢎꢏꢫꢮꢱꢎꢄꢑꢄꢌꢃꢄꢁꢆꢄꢐꢺꢒꢒꢤꢕ  
ꢪꢄꢹꢄꢒꢮꢺꢎꢏꢫꢮꢱꢎꢄꢑꢄꢍꢒꢒꢤꢕ  
ꢎꢅꢋꢗꢐ  
ꢪꢒꢒꢤꢕ  
ꢎꢅꢋꢗꢪ  
ꢪꢒꢒꢤꢕ  
ꢎꢅꢋꢗꢫ  
ꢪꢒꢒꢤꢕ  
ꢎꢨꢚꢩꢐ  
ꢎꢨꢚꢩꢪ  
ꢎꢨꢚꢩꢫ  
ꢅꢉꢅꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢅꢎꢧ  
ꢅꢉꢅꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢅꢉꢅꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢜꢅꢨ  
ꢒꢮꢯꢍꢎꢏꢪꢮꢍꢎ  
ꢜꢅꢨ  
ꢒꢮꢯꢍꢎꢏꢪꢮꢍꢎ  
ꢜꢅꢨ  
ꢒꢮꢯꢍꢎꢏꢪꢮꢍꢎ  
ꢎꢅꢋꢗꢱ  
ꢪꢒꢒꢤꢕ  
ꢜꢅꢨ  
ꢒꢮꢯꢍꢎꢏꢪꢮꢍꢎ  
ꢚꢀꢙ  
ꢉꢞꢟꢠꢡꢂꢠ  
ꢊꢢꢣꢒꢒꢤꢕꢓ  
ꢎꢙꢚꢀ  
ꢗꢂꢈꢂꢠꢟꢦ  
ꢛꢌꢠꢃꢆꢲꢂ  
ꢕꢅꢉ  
ꢨꢶꢂꢠꢁꢂꢤꢃ  
ꢛꢠꢆꢁꢂꢴꢁꢬꢆꢈ  
ꢎꢀꢚꢛꢛꢜꢝ  
ꢎꢉꢔꢕꢖꢗꢘꢖ  
ꢳꢟꢁꢴꢞꢵꢆꢡ  
ꢎꢖꢥ
ꢒꢒꢤꢕ  
ꢜꢅꢨ  
ꢐꢮꢣꢍꢎꢏꢫꢮꢱꢎ  
ꢎꢖꢪ  
ꢍꢒꢤꢕ  
ꢜꢅꢨ  
ꢐꢮꢣꢍꢎꢏꢫꢮꢱꢎ  
ꢎꢆꢦꢁꢟꢡꢂ  
ꢧꢆꢈꢬꢁꢆꢠꢲꢄ
ꢖꢂꢲꢂꢁ  
ꢋꢈꢁꢂꢠꢠꢌꢃꢁ  
ꢨꢧ  
ꢎꢖꢥꢫ  
ꢪꢍꢒꢤꢕ  
ꢜꢅꢨ  
ꢐꢮꢣꢍꢎꢫꢮꢱꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢉꢞꢟꢠꢡꢂꢠ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢅꢉꢅꢉ  
ꢊꢋꢈꢃꢌꢁꢄꢍꢎꢏꢐꢍꢎꢑꢍꢒꢎꢓ  
ꢎꢉꢛꢨꢚꢩ  
ꢍꢎꢑꢐꢒꢒꢤꢕ  
ꢉꢞꢟꢠꢡꢂ  
ꢛꢌꢤꢃ  
ꢜꢬꢋꢆꢈꢄꢙꢟꢁꢁꢂꢠꢭ  
ꢙꢆꢆꢁ  
ꢎꢆꢦꢁꢟꢡꢂꢲꢄꢾ  
ꢀꢂꢻꢌꢂꢈꢴꢂ  
ꢥꢌꢂꢦ  
ꢗꢟꢌꢡꢂ  
ꢣꢣꣀꢬꢁ  
ꢛꢖꢨꢧ  
ꢚꢈꢂ  
ꢋꢅ  
ꢛꢖꢨꢗꢖꢕꢧ  
ꢆꢁꢄꢖꢨꢧꢄꢋꢈꢵꢂꢹ  
ꢗꢛꢋꢨꢄꢆꢠ  
ꢉꢌꢠꢠꢂꢈꢁ  
ꢀꢆꢌꢠꢴꢂꢲ  
ꢥꢆꢌꢠꢄꢗꢛꢋꢨ  
ꢆꢠꢄꢉꢌꢠꢠꢂꢈꢁ  
ꢀꢆꢌꢠꢴꢂꢲ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢇꢈꢉꢊꢋꢌꢍꢎꢋꢀꢏꢐꢇ  
ꢑꢌꢍꢌꢒꢉꢓꢉꢍꢋꢕꢍꢐ
ꢎꢀꢩꢘꢛꢚꢛꢐ  
ꢅꢉꢅꢉ  
ꢀꢁꢂꢃꢄꢚꢃ  
ꢊꢎꢆꢦꢁꢟꢡꢂꢓ  
ꢀꢅꢕ  
ꢀꢉꢜ  
ꢩꢇꢆꢄꢄꢳ
ꢋꢈꢁꢂꢠꢷꢟ
ꢎꢀꢩꢘꢛꢚꢛꢪ  
ꢅꢉꢅꢉ  
ꢀꢁꢂꢃꢄꢚꢃ  
ꢊꢎꢆꢦꢁꢟꢡꢂꢄꢆꢠ  
ꢉꢌꢠꢠꢂꢈꢁꢓ  
ꢋꢑꢥ  
ꢂꢈ  
ꢁꢓ  
ꢌꢵꢬꢆꢄꢲꢌꢃꢃꢦꢭ  
ꢎꢅꢕꢉ  
ꢜꢅꢨ  
ꢪꢮꢸꢎ  
ꢋꢈꢁꢂꢠꢠꢌꢃꢁ  
ꢋꢪꢀ  
ꢋꢪꢀꢄꢑꢄꢛꢉꢧ  
ꢪꢀ  
ꢋꢪꢀꢄꢋꢑꢨꢄꢐ  
ꢸꢱꢵꢙꢄꢀꣁꢖꢄꢄꢄ  
ꢈꢵ  
ꢘꢻꢌꢟꢂꢠ  
ꢏꢱꢒꢮꢍꢵꢙ  
ꢁꢆꢄꢽꢺꢵꢙ  
ꢱꢣꢿꢲꢄꢅꢕꢉꢄꢄꢄꢄ  
ꢋꢪꢀꢄꢋꢑꢨꢄꢪ  
ꢆꢠꢄꢛꢉꢧ  
ꢋꢪꢀꢄꢨꢌꢁꢃꢌꢁꢄꢫ  
ꢟꢦꢁꢂꢠꢈꢟꢁꢬꢶꢂꢄꢷꢌꢈꢴꢁꢬꢆꢈ  
ꢀꢛꢅꢋꢥꢄꢨꢌꢁꢃꢌꢁꢄꢱ  
ꢣꢪꢵꢙꢄꢀꣁꢖꢄꢄ  
ꢄꢄ  
ꢐꢺꢿꢲꢄꢕꢅꢉꢄꢄꢄ  
ꢀꢛꢅꢋꢥ  
ꢏꢱꢒꢮꢍꢵꢙ  
ꢁꢆꢄꢽꢺꢵꢙ  
ꢔꢂꢟꢵꢃꢞꢆꢈꢂ  
ꢨꢌꢁ  
ꢩꢆꢌꢴꢞꢲꢴꢠꢂꢂꢈ  
ꢖꢩꢉꢄꢾ  
ꢕꢦꢟꢠꢤ  
ꢙꢟꢴꢿꢌꢃ  
ꢙꢟꢁꢮꢄꢉꢞꢠꢡ  
ꢏꢫꢱꢮꢍꢵꢙ  
ꢁꢆꢄꢽꢐꢪꢵꢙ  
ꢧꢬꢴꢄꢊꢤꢆꢈꢆꢓ  
ꢙꢬꢟꢲꢽꢕꢤꢃ  
ꢜꢬꢈꢂ  
ꢨꢌꢁ  
ꢈꢵꢄꢔꢂꢟꢵꢃꢞꢆꢈꢂꢄꢨꢌꢁ  
ꢊꢂꢮꢡꢮꢄꢥꢧꢄꢩꢠꢟꢈꢲꢤꢬꢁꢁꢂꢠꢓ  
ꢧꢬꢴꢠꢆꢃꢞꢆꢈꢂ  
ꢟꢈꢵꢄꢧꢬꢴꢀꢌꢃꢃꢦꢭ  
ꢜꢬꢈꢂꢨꢌꢁ ꢔꢂꢟꢵꢃꢞꢆꢈꢂ  
ꢜꢬꢈꢂꢋꢈ  
www.austriamicrosystems.com  
Revision 1v13  
2 - 157  
AS3658  
Data Sheet Confidential - Applications  
Figure 2. Application Diagram  
AS3658  
www.austriamicrosystems.com  
Revision 1v13  
3 - 157  
AS3658  
Data Sheet Confidential - Applications  
Table of Contents  
1 General Description ..............................................................................................................................1  
2 Key Features .........................................................................................................................................1  
3 Applications ...........................................................................................................................................2  
4 Pin Assignments ...................................................................................................................................6  
4.1 Pin Description ...............................................................................................................................................7  
5 Absolute Maximum ratings ..................................................................................................................12  
6 Electrical Characteristics .....................................................................................................................13  
7 Typical Operating Characteristics ......................................................................................................1
8 Detailed Description-Power Management Functions ........................................................................
8.1 Step Up DC/DC Converters .......................................................................................................................15  
8.2 Current Sinks .............................................................................................................................................25  
8.3 General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) ...................................................30  
8.4 Backup Battery Charger ..........................................................................................................................38  
8.5 Smooth switchover Power Management Overview ...............................................................................41  
8.6 Battery switch SINT (Vsupply, Battery) ..................................................................................................42  
8.7 External Step Down/Linear Charger ........................................................................................................44  
8.8 USB Charger ....................................................................................................................................48  
8.9 Battery Charge Controller .......................................................................................................................51  
8.10 Charger supervision functions .................................................................................................................63  
8.11 Step Down DC/DC Converters ..........................................................................................................67  
8.12 Low Dropout Regulators (LDO) .......................................................................................................78  
8.13 5V Charge Pump .................................................................................................................................85  
9 Detailed Description- Audio Funions .............................................................................................87  
9.1 Audio Paths ..................................................................................................................................87  
9.2 Common mode voltage generation of HP_CM, _CM ...........................................................................89  
9.3 Audio Setup Registers .............................................................................................................................90  
9.4 ADC, DAC and Digital Audio Inpu...............................................................................................................91  
9.5 I2S master mode and PCM Mode .............................................................................................................95  
9.6 Line Input ..............................................................................................................................................98  
9.7 Five Band Equalizer ................................................................................................................................99  
9.8 Microphone Input ..................................................................................................................................105  
9.9 Audio Output Mixer ..................................................................................................................................108  
9.10 Line Output .........................................................................................................................................109  
9.11 Headphone Outpt ...................................................................................................................................112  
9.12 SPDIF oput ...........................................................................................................................................115  
10 Detailed Description - System Functions ........................................................................................116  
10.1 2C Srial Interface ...................................................................................................................................116  
10.Reet generator and XON-Key ................................................................................................................118  
10.3 Interrupt Controller ...................................................................................................................................124  
104 Startup ......................................................................................................................................................129  
10.5 Protection Functions ................................................................................................................................134  
10.6 Watchdog ................................................................................................................................................135  
10.7 General Purpose 10 Bit ADC ...................................................................................................................136  
10.8 Internal References (V, I, fclk) ..................................................................................................................139  
www.austriamicrosystems.com  
Revision 1v13  
4 - 157  
AS3658  
Data Sheet Confidential - Applications  
10.9 Real-Time Clock (RTC) Module ...............................................................................................................140  
10.10 Touchpen Interface ................................................................................................................................143  
11 Register map ...................................................................................................................................148  
12 Package Drawings and Marking .....................................................................................................154  
12.1 Pinout Drawing (Top view) CTBGA 8x8mm .............................................................................................155  
13 Ordering Information .......................................................................................................................156  
Document Revision History  
Table 1. Revision History  
Chapter  
Rev  
Description of Changes  
Date  
Author  
-
1v00  
23.3.2009  
pk
- updated package drawings  
- updated audio path drawings  
9.1; 12  
1v10  
15.4.2009  
pkm  
- updated packagemarkings and ordering information  
- updated packagemarkings and rdering information  
- typo corrections  
12,13  
12,13  
1v11  
1v12  
1v13  
23.9.009  
23.0.2009  
2.9.2010  
pkm  
pkm  
pkm  
www.austriamicrosystems.com  
Revision 1v13  
5 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
4 Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
NC/  
VSS  
_CP  
VCP  
_OU  
T
VDI  
G34  
_IN  
VDI  
G1_I  
N
NC/  
BV  
SS  
LRC  
LK1  
SCL  
K3  
SDO VCP  
VCP  
_P  
LOU LINE  
HPL  
1
VI2S  
A
B
C
D
E
F
1
_N  
T_R  
_CM  
VSS_C  
P
VCP_I  
N
VDIG_  
2
VDIG2  
_IN  
VDIG_ LOUT_  
HP_C  
M
HPR  
2
SDI2  
SCLK1  
SDI1  
SDA  
1
L
Q32k  
SCLK2  
HPR1  
HPL2  
DCDC  
_SENS  
E_P1  
HP
CM_  
WR  
MCLK  
2
VDIG_  
4
VDIG_  
3
MCLK  
1
LRCLK  
2
ALVD  
D
SDO3  
SCL  
DCDC  
VSUP  
LRCLK  
3
_SENS  
BVSS  
MICS  
MICN  
MICP  
VREF  
AGND  
AVDD  
VDAC  
LINR  
LINL  
PLY_4  
E_N1  
DCDC  
VSUP  
XRES  
ET  
_GATE  
SPDIF  
XNT  
PLY_3  
1
DCDC  
DCDC  
_SENS  
E_N2  
DCDC  
_SENS  
E_P2  
VSU  
P_S  
VSUP  
G
H
J
LX3  
_GATE  
2
VSSA  
VSSA  
PLY_6  
W12  
VSU  
PGND  
3
PGND  
2
DCDC  
_FB1  
VBAT_  
SW12  
FB3  
P_S  
W12  
VBAT  
VSS_C  
H
DCDC  
_FB2  
BAT_S  
W
LX2  
FB2  
VSSA  
_SW  
12  
VSUP  
VSUP  
ISENS  
N
ISEN  
SP  
K
L
FB1  
PLY_1  
PLY_2  
RR  
4_GPI  
O4  
DCDC  
_CUR  
R1  
D
R3  
GND_  
SENS  
E
VOFF_  
B
GND_  
SW  
RPRO  
GRAM  
RBIA  
S
LX1  
CREF  
PGND  
1
VGAT  
E
VBA  
CK  
M
N
P
V_BAT  
XIN32  
CR  
_G
O
URR  
3_GPI  
DCDC  
_CUR  
R2  
PGAT  
E1  
VSUP  
ADC_I  
N1  
ADC_I  
N2  
VCHA  
RGER  
XOU  
T32  
XON  
VRF_2  
VRF_1  
V2_5  
PLY_5  
O3  
CURR  
CH_S  
CH_S  
VCR  
NC/  
VSS  
A
NC/  
SS_C  
URR  
VSUP_  
USB  
VRF1_  
IN  
VRF23  
_IN  
ENSE_ ENSE_ _GP
2_GPI  
O2  
V_USB  
VRF_3  
VSSA  
P
N
www.austriamicrosystems.com  
Revision 1v13  
6 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
4.1  
Pin Description  
Table 2. Pin list CTBGA124, 8x8MM (AS3658)  
Pin  
Number  
Pin  
Type  
Pin Name  
Charger  
Supply  
Description  
USB voltage supply input  
V_USB  
P8  
P7  
P
P
Supply output of USB charger (connect to Vsupply)  
VSUP_USB  
High voltage input coming from the charger; if the charger is  
used connect a ceramic capacitor of 1µF  
VCHARGER  
VGATE  
N11  
M2  
L2  
P
A
A
Switch ON control pin for the external PMOS Fet transistor o
the charger step down converter  
Switch OFF control pin for the external PMOS Fet transisr of  
the charger step down Buck converter  
VOFF_B  
Ground pad of Step down Charger  
Battery switch input1 (battery side)  
Battery sitch nut2 (battery side)  
VSS_CH  
VBAT_SW12  
VBAT_SW12  
VSUP_SW12  
VSUP_SW12  
BAT_SW  
J2  
P
P
P
P
P
A
H13  
J14  
G14  
H14  
J13  
VBAT  
VBAT  
VSUPPLY Battery swch input1 (supply sid)  
VSUPPLY Baitch input2 (supy side)  
Battey switch output foexteal PMOS  
Charger step down cnverter, external shunt resistor negative  
onnection  
VSUPL
CH_SENSE_N  
CH_SENSE_P  
ISENSP  
P3  
P2  
A
A
A
Charger stp don converter, external shunt resistor positive  
connection  
VSUPLY  
Positivseing input voltage for the external charging current  
shunt reistor  
K14  
K13  
V2_5  
ve sensing input voltage for the external charging  
cunt shunt resistor  
ISENSN  
V2_5  
Serial Interface  
SCL input in I2C mode  
VSUPPLY  
SCL  
D6  
B5  
DI  
SDA input / output in I2C mode  
VSUPPLY  
SDA  
DO  
Control Interfaces  
Bidirectional Reset Pin – add an external pull-up resistor to the  
digital supply  
VSUPPLY  
XRESET  
XINT  
F7  
F8  
N4  
OD  
OD  
IPU  
Interrupt Pin - add an external pull-up resistor to the digital  
VSUPPLY  
supply  
Input pin to startup the system (power on), internal pull-up,  
apply zenerzap-programming voltage here  
XON  
V2_5  
RTC  
VSUPPLY 32kHz oscillator digital output  
32K  
C1  
OD  
A
32kHz crystal oscillator input  
32kHz crystal oscillator output  
XIN32  
XOUT32  
P13  
N14  
V2_5  
V2_5  
A
www.austriamicrosystems.com  
Revision 1v13  
7 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
Table 2. Pin list CTBGA124, 8x8MM (AS3658)  
Pin  
Number  
Pin  
Type  
Pin Name  
Supply  
Description  
Internal Refs  
Supply for voltage Measurement, always connect to  
VSUPPLY  
VSUPPLY_5  
N3  
P
Battery supply for Reference blocks.  
V_BAT  
RPROGRAM  
V2_5  
M13  
L9  
P
A
P
A
A
VBAT  
Select register setup at startup.  
V2_5  
Internal regulator analogue output  
N12  
L10  
L14  
Reference voltage bypass capacitor connection  
Internal Bias Reference Resistor (connect 220kΩ resistr)  
CREF  
V2_5  
V2_5  
RBIAS  
GND reference for analog blocks (connect to GND plane  
separate)  
GND_SENSE  
L13  
P
VSSA  
Analog input1 for ADC10  
Analog input2 for ADC10  
Backup attercnnection  
ADC_IN1  
ADC_IN2  
N8  
N9  
A
A
A
V2_5  
V2_5  
VBACK  
M14  
Current Sinks  
VCURR_  
Cursink 1, or GPIO1  
N5  
P6  
N6  
L5  
L6  
N7  
A
A
A
A
A
CURR1_GPIO1  
CURR2_GPIO2  
CURR3_GPIO3  
CURR4_GPIO4  
DCDC_CURR1  
DCDC_CURR2  
GPIO  
VCURR_  
GPIO  
Current sink 2, or GPO2  
VURR_  
GO  
Current sink 3, GPO3  
VURR_  
GPIO  
Current sk 4, r GPIO4  
VCURR_  
GPIO  
Steup C/DC converter2 current source 1  
Step up DC/DC converter2 current source 2  
VCURR
GP
VCURR_  
Step up DC/DC converter2 current source 3  
Supply voltage of GPIOs and current sinks  
Ground pad of Current sink / GPIO pads  
L7  
P4  
P5  
A
A
A
DCDC_CURR3  
VCURR_GPIO  
GPIO  
VCURR_  
GPIO  
VSS_CURR_GPIO  
General Purpose DC/DC Steup Converter 1 and 2  
Supply for DCDC step up and control interface, always  
connect to VSUPPLY  
VSUPPLY_4  
E1  
P
VSUPPLY Step up DC/DC converter1 feedback input  
DCDC_FB
H4  
F2  
A
A
Step up DC/DC converter1 control for external mosfet  
VSUPPLY  
DCDC_GATE1  
Step up DC/DC converter1 external shunt resistor positive  
connection  
VSUPPLY  
DCDC_ENSE_P1  
CDC_SENSE_P2  
DCDC_SENSE_N1  
DCDC_SENSE_N2  
D1  
G6  
E2  
G4  
A
A
A
A
Step up DC/DC converter2 external shunt resistor positive  
connection  
VSUPPLY  
VSUPPLY  
VSUPPLY  
Step up DC/DC converter1 external shunt resistor negative  
connection  
Step up DC/DC converter2 external shunt resistor negative  
connection  
www.austriamicrosystems.com  
Revision 1v13  
8 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
Table 2. Pin list CTBGA124, 8x8MM (AS3658)  
Pin  
Number  
Pin  
Type  
Pin Name  
Supply  
Description  
VSUPPLY Step up DC/DC converter2 control for external mosfet  
VSUPPLY Step up DC/DC converter2 feedback input  
DCDC_GATE2  
DCDC_FB2  
G2  
J4  
A
A
Linear Regulators (LDOs)  
Supply Pad for RF1 LDO (VRF_1), always connect to  
Supply>3.0V  
VSUPPLY  
VRF1_IN  
VRF_1  
P9  
P
A
P
A
Output voltage of one of the RF LDO’s; can be used as High-  
VRF1_IN Side Switch, if used as LDO connect a ceramic capacitor o
1µF (±20%) or 2.2µF (+100%/-50%)  
P10  
P11  
N10  
Supply Pad for RF2 and RF3 LDO (VRF_2, VRF_3), always  
connect to Supply>3.0V  
VSUPPLY  
VRF23_IN  
VRF_2  
Output voltage of one of the RF LDO’s; cabe sed as High-  
VRF23_IN Side Switch, if used as LDO connect a ceramic caacitor of  
1µF (±20%) or 2.2µF (+100%/-50%)  
Output vtage one of the RF LDO’s; an be used as High-  
VRF23_IN Side Swih, if usd as LDO connect a ceramic capacitor of  
1µF (±20%or 2.2µF (+100%/-50%)  
VRF_3  
P12  
A
VSUPPLY Suafor DIG1 LDO VDIG_1)  
VDIG1_IN  
VDIG_1  
A10  
B10  
B9  
P
A
P
A
Outpt voltage of one ohe DG LDO’s. Connect a ceramic  
VDIG1_IN  
capacitor of 1µF (±2%) or 2.2µF (+100%/-50%)  
VSUPPLY upply Pad for LDO (VDIG_2)  
VDIG2_IN  
VDIG_2  
Output vole oone of the DIG LDO’s. Connect a ceramic  
DIG2_IN  
B8  
capacitor of 1F (±20%) or 2.2µF (+100%/-50%)  
VSUPPLY SupplPad or DIG3 and DIG4 LDO (VDIG_3, VDIG_4)  
VDIG34_IN  
VDIG_3  
A9  
Ot voltage of one of the DIG LDO’s. Connect a ceramic  
VDIG3_IN  
D8  
or of 1µF (±20%) or 2.2µF (+100%/-50%)  
Output voltage of one of the DIG LDO’s. Connect a ceramic  
VDIGIN  
VDIG_4  
Charge Pump  
VCP_IN  
D7  
A
apacitor of 1µF (±20%) or 2.2µF (+100%/-50%)  
Supply Pad for Charge Pump, always connect to  
VSUPPLY  
B7  
P
Supply>3.0V  
VSUPPLY HVS charge pump flying capacitor positive side  
HVS charge pump flying capacitor negative side  
VCP_N  
VCP_P  
A6  
A7  
A
A
Charge pump output, connect a ceramic capacitor of 2.2µF  
(+100%/-50%)  
VCP_OUT  
A8  
A
A
VSUPPLY Ground pad of charge pump  
VSS_CP  
B6  
DCDC Step own Converters  
VSUPPLY Gate output for external PMOS.(DCDC step down controller 1)  
PGATE
N1  
K1  
A
P
Supply Pad for DCDC_Step down converter1, always connect  
to VSUPPLY  
VSUPPLY_1  
VSUPPLY DC/DC step down converter1 output  
VSUPPLY DC/DC step down converter1 feedback  
LX1  
FB1  
L1  
K4  
M1  
A
A
A
Power Ground of DCDC step down converter1  
VSUPPLY  
PGND1  
www.austriamicrosystems.com  
Revision 1v13  
9 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
Table 2. Pin list CTBGA124, 8x8MM (AS3658)  
Pin  
Number  
Pin  
Type  
Pin Name  
Supply  
Description  
Supply Pad for DCDC_Step down converter2, always connect  
to VSUPPLY  
VSUPPLY_2  
K2  
P
VSUPPLY DC/DC step down converter2 output  
VSUPPLY DC/DC step down converter2 feedback  
LX2  
FB2  
J1  
J7  
A
A
A
Power Ground of DCDC step down converter2  
VSUPPLY  
PGND2  
H2  
Supply Pad for DCDC_Step down converter3, always connect  
to VSUPPLY  
VSUPPLY_3  
F1  
P
VSUPPLY DC/DC step down converter3 output  
VSUPPLY DC/DC step down converter3 feedback  
VSUPPLY Power Ground of DCDC step down conveter3  
LX3  
FB3  
G1  
H6  
H1  
A
A
A
PGND3  
Audio  
Supply for VI2S Regulator  
VSUPPLY_6  
VI2S  
G13  
A4  
B4  
A5  
B3  
A2  
P
P
Supply Pd for I2Interface, Connect to VDAC Supply  
I21 Data input to DAC  
SDI1  
I
VI2S  
VI2S  
VI2S  
VIS  
I2Sata output from A
I2S_1 Shift clock inpuor utput  
2S_1 Left/Right clock put or output  
SDO1  
O
SCLK1  
LRCLK1  
I/O  
I/O  
Master clock inor output for I2S1: DAC (128*Fsdac or 256  
*Fsdac)  
MCLK1  
D9  
I/O  
VIS  
I2S_2 Datinput to DAC  
SDI2  
B1  
C2  
I
I
I
VI2S  
VI2S  
VI2S  
VI2
I2S_2 Sift clock  
SCLK2  
LRCLK2  
MCLK2  
Left/Right clock  
D10  
D2  
Master clock input for I2S2: DAC (128*Fsdac or 256 *Fsdac)  
I2S_3 Data output (if touchpen interface disabled)  
SDO3(X-)  
SCLK3(X+)  
LRCLK3(Y-)  
SPDIF(Y+)  
D5  
A3  
E4  
F4  
I/O  
I/O  
I/O  
I/O  
VI2S Touchpen Interface X- Input/Output (if touchpen interface  
enabled)  
I2S_3 Shift clock output (if touchpen interface disabled)  
VI2S Touchpen Interface X+ Input/Output (if touchpen interface  
enabled)  
I2S_3 Left/Right clock output (if touchpen interface disabled)  
VI2S Touchpen Interface Y- Input/Output (if touchpen interface  
enabled)  
SPDIF digital output (if touchpen interface disabled)  
VI2S Touchpen Interface Y+ Input/Output (if touchpen interface  
enabled)  
CM voltage bypass capacitor connection (1.45V)  
VDAC voltage bypass capacitor connection (2.9V)  
Line input left channel.  
ND  
VREF  
K11  
J11  
F14  
E14  
L8  
A
A
A
A
O
VDAC  
VDAC  
VDAC  
VDAC  
LINL  
Line input right channel  
LINR  
VSUPPLY Digital output for controlling the external NMOS  
GND_SW  
www.austriamicrosystems.com  
Revision 1v13  
10 - 157  
AS3658  
Data Sheet Confidential - Pin Assignments  
Table 2. Pin list CTBGA124, 8x8MM (AS3658)  
Pin  
Number  
Pin  
Type  
Pin Name  
Supply  
Description  
2.9V Output voltage of one of DAC LDO; Connect a ceramic  
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)  
VDAC  
F13  
A
VDAC  
Bypass capacitor connection of common mode voltage of  
Audio headphone amplifier (AVDD/2)  
HP_CM  
HP_CM_PWR  
LINE_CM  
B12  
D14  
A12  
A
A
A
AVDD  
AVDD  
Buffered voltage of HP_CM  
Bypass capacitor connection of common mode voltage of  
Audio line out amplifier (ALVDD/2)  
ALVDD  
Line out output Left channel  
Line out output Right channel  
Supply pad of Line out amplifier  
Supply pad of headphone amplifier  
Headphone output1 left channel  
Headphoe outut1 right channel  
Headphoe outpt2 left channel  
Heone output2 right channel  
Micrhone Input N  
LOUT_L  
LOUT_R  
ALVDD  
AVDD  
HPL1  
B11  
A11  
D13  
E13  
A13  
C13  
C14  
B14  
G11  
H11  
F11  
A
A
P
P
A
A
A
A
A
A
A
ALVDD  
ALVDD  
AVDD  
AVDD  
AVDD  
AVDD  
VDAC  
VDAC  
HPR1  
HPL2  
HPR2  
MICN  
Microphone Input P  
MICP  
VSUPPLY Microphone Sup(2.95V) / Remote Input  
MICS  
VSS  
Power grund f headphone amplifier  
Analog Ground Pad  
BVSS  
VSSA  
E11  
G9  
H9  
P
AVDD  
V
VS  
VSS  
VSS  
VSS  
VSS  
VSS  
Ground Pad  
VSSA  
Analog Ground Pad  
VSSA  
J8  
nalog Ground Pad  
NC/VSS_CP  
NC/VSSA  
NC/VSSA  
NC/BVSS  
A1  
Analog Ground Pad  
P1  
Analog Ground Pad  
P14  
A14  
Power ground of headphone amplifier  
Note: The following are the PTypes  
I: Digital Input Pin  
IPD: Digital Input in wih internal pull-down resistor  
IPU: Digital Inpt Pin with internal pull-up resistor  
IODPU: Dgital Input / Open Drain Output Pin with internal pull-up resistor  
O: Digital Otput Pin  
OD: gitl Open Drain Output Pin; requires external pull-up resistor  
O: Digital Input / Output Pin  
A: Analog Pin  
P: Power Pin  
www.austriamicrosystems.com  
Revision 1v13  
11 - 157  
AS3658  
Data Sheet Confidential - Absolute Maximum ratings  
5 Absolute Maximum ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical  
Characteristics on page 13 is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Note  
Applicable for high voltage pins1  
Applicable for pins 5V-pins2  
High voltage pins (VIN_HV)  
-0.3  
17.0  
V
5V pins (VIN_MV)  
-0.3  
7.0  
V
Applicable for 3.3V-Pins3  
At 25 ºC, Norm: Jeec 78  
3.3V pins (VIN_LV)  
-0.3  
-25  
5.0  
V
Input pin current (IIN)  
+25  
mA  
Storage Temperature Range  
-55  
5
125  
85  
ºC  
%
(Tstrg)  
Humidity  
Noncodens  
Norm: MIL 883 E Method 3015; Setup4  
Applicable for pins: all  
Electrostatic discharge 1kV (VESD)  
-1000  
1000  
V
TA = 70ºC  
TA = 84ºC  
1
W
W
Total Power Dissipation  
0.72  
C/JDEC J-STD-020C, reflects moisture  
sensitivity level only  
Package Body Temperature  
260  
°C  
Te lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
TPEAK  
235  
0  
245  
45  
°C  
s
Solder Profile5  
DWell, above 217 °C  
Moisture Sensitive Level  
1. HV pins  
3
1
Represents a max. floor live time of 168h  
VCHARGER, VGATE, VOFF_B, DDC_CURR1, DCDC_CURR2, DCDC_CURR3  
2. 5V pins are  
V_USB, CH_SENSE_N, CH_SENE_P, VSUP_SW1, VSUP_SW2, VBAT_SW1, VBAT_SW2, V_BAT, SCL,  
SDA, XRESET, XINT, VSUPPLYCURR1_GPIO1…CURR4_GPIO4, DCDC_GATE1, DCDC_GATE2,  
DCDC_SENSE_P1, DCDSENSE_P2, DCDC_SENSE_N1, DCDC_SENSE_N2, DCDC_FB1, DCDC_FB2,  
VCL, VCP_OUT, VCP_N, VCP_P, VCP_IN, VCP_IN, VRF1, VREF1_IN, VRF2, VRF23_IN, VRF3, VDIG1,  
VDIG1_IN, VDIG2, VDIG_IN, VDIG34_IN, VDIG_3, VDIG_4, PGATE1 VSUPPLY_1, VSUPPLY_2, LX1, LX2,  
GND_SW, VSUPLY_, LINE_CM, HP_CM_PWR, HP_CM, HPLx, HPRx, ALVDD, AVDD, LSP_R, BVSS,  
LSP_L, AVDD, VSUPPLY_5, VSUPPLY_6  
3. 3.3V pins are  
ISENSEP, ISENSEN, ADC_INx, RPROGRAM, V2_5, CREF, ON, VI2S, SDIx, SCLKx, MCLKx, LRCLKx,  
SDOxSPDIF, AGND, VREF, LINL,LINR, VDAC, Q32K, XIN32, XOUT32, VBACK, MICS, MICN, MICP  
4. The followinpis are connected to ESD setup:  
UPPLY_1...VSUPPLY_6, VCP_IN, VRF1_IN, VRF2_IN, VCURR connected together  
VDIG1_IN, VDIG2_IN, VDIG34_IN connected together  
AVDD, ALVDD connected together  
VBAT_SW1 and VBAT_SW2 connected together  
VSUP_SW1 and VSUP_SW2 connected together  
All VSS connected together  
5. austriamicrosystems strongly recommends to use underfill.  
www.austriamicrosystems.com  
Revision 1v13  
12 - 157  
AS3658  
Data Sheet Confidential - Electrical Characteristics  
6 Electrical Characteristics  
Table 4. Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Operating Conditions  
VCHARGER, VGATE,  
DCDC_CURR1,DCDC_CURR2,  
DCDC_CURR3  
VHV  
High Voltage  
0.0  
15.0  
V
For pins V_BAT, VSUPPLY1-6  
(always connect all VSUPPLY1-6  
pins together), VSUP_SW1-2,  
VBAT_SW1-2, VRF1_IN, VRF2_IN,  
VCP_IN, AVDD, ALVDD  
VBAT,  
Battery, Supply Voltage  
Voltage on Pin V2_5  
3.0  
3.6  
5.5  
V
VSUPPLY,  
VCURR_GPIO  
V2_5  
Internally generated  
2.4  
4.9  
-40  
2.5  
5.2  
25  
2.6  
5.6  
85  
V
V
VCP_OUT Output Voltage charge pump Voltage generated by charge pump  
TAMB  
Ambient Temperature  
ºC  
Current consumption in low power  
mode with step dwn chager on1  
7
mA  
µA  
µA  
Low power mode current  
consumption  
ILOWPOWER  
With stedown charger off2  
280  
10  
Current conption in power off  
ode3  
Power Off mode current  
consumption  
IPOWEROFF  
1. With register bit low_power_on = 1, only Rf1=33VVut2=1.2V, Batter3.6VVcharger=6.0V, no additional  
external loads  
2. With register bit low_power_on = 0, All reulatos switched off, additional external loads  
3. After setting register bit xon_enable=1 nd pwer_off=1; only V2_5 s active in Power Off mode  
4. During startup from the AC/DC adapter, te battery voltage an e below 3.0V  
www.austriamicrosystems.com  
Revision 1v13  
13 - 157  
AS3658  
Data Sheet Confidential - Typical Operating Characteristics  
7 Typical Operating Characteristics  
see individual block description  
www.austriamicrosystems.com  
Revision 1v13  
14 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8 Detailed Description-Power Management Functions  
The power management function consist of the DCDC Step up converters, Current Sink, GPIOs, general purpose 10  
bit ADC, backup battery charger, main battery charger and power path management (consisting of the battery switch,  
external step down/linear charger, USB charger and battery charge controller), step down dc/dc converters, low  
dropout regulators (LDOs) and 5V charge pump.  
8.1  
Step Up DC/DC Converters  
Figure 3. DC/DC step-up Converter 1  
ꢀꢁꢀꢁꢂꢈꢆꢉꢈꢆꢂꢊꢇ  
ꢀꢁꢀꢁꢂꢈꢆꢉꢈꢆꢂꢉꢇ  
ꢁꢕꢗꢗꢓ"ꢒ,ꢑꢓ"ꢑꢓ  
ꢑꢒꢔꢕꢔꢇꢂꢜ"  
ꢑꢒꢓꢔꢇꢂ#ꢗꢓ$  
ꢇꢛ%&  
ꢏ''(%&  
!)(  
ꢀꢁꢀꢁꢂꢃꢄ
ꢊꢚꢛ  
ꢜꢝ !  
ꢃꢘꢒꢓ  
ꢀꢗ ꢖꢓꢗ  
ꢑꢒꢔꢕꢔꢇꢂ!)(ꢂ "ꢖ  
ꢜꢖꢂ!ꢕꢗꢗ  
ꢐꢜꢖꢂ!ꢕꢗꢗꢓ"ꢒ  
ꢑꢒꢓꢔꢂꢕꢔꢇꢂꢖ  
ꢁꢀꢁꢂꢋꢌꢇ  
ꢗꢘꢙꢔ  
ꢜꢖꢓꢗꢑ+ꢜꢜꢒ,!ꢜꢙ
ꢇꢍ  
ꢒꢘ  
www.austriamicrosystems.com  
Revision 1v13  
15 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 4. DC/DC step-up Converter 2  
ꢁꢂꢁꢂꢃꢄꢅꢆꢄꢅꢃꢇꢀ  
ꢁꢂꢁꢂꢃꢄꢅꢆꢄꢅꢃꢆꢀ  
ꢂꢐꢑꢑꢒꢓꢔꢏꢗꢒꢓꢗꢒ  
ꢗꢔ#ꢐ#ꢀꢃ%ꢓ  
ꢗꢔꢒ#ꢀꢃ&ꢑꢒ-  
ꢌ)ꢍ.  
ꢝꢛꢛꢖꢍ.  
ꢙ/ꢖ  
ꢀꢁꢀꢁꢂꢃꢄꢅꢆ  
ꢇ()  
*%+ꢕꢙ  
,ꢘꢔꢒ  
ꢁꢑꢕ$ꢒꢑ  
ꢗꢔ#ꢐ#ꢀꢃꢙ/ꢖꢃꢕꢓ$  
%$ꢃꢙꢐꢑꢑ  
ꢎ%$ꢃꢙꢐꢑꢑꢒꢓꢔ  
ꢗꢔꢒ#ꢃꢐ#ꢀꢃ$  
ꢁꢂꢁꢂꢃꢈꢉꢀ  
ꢌꢜꢀꢝꢎ  
ꢗꢔꢒ#ꢀꢃ#ꢑ%ꢔ  
ꢑꢘ#  
%$ꢒꢑꢗꢚ%%ꢔꢏꢙ%#  
ꢌꢜ4ꢎ  
ꢛꢜ  
ꢜꢀ
ꢛꢜꢝ
#ꢀꢃ&'  
ꢎꢏꢂꢐꢑꢑꢒꢓꢔꢏꢄꢕꢓꢖꢗ  
ꢒꢘꢙꢚꢏꢛꢜꢌꢝ !ꢜꢀꢝ"  
ꢗꢔꢒ#ꢀꢃ&'ꢃꢘꢐꢔ%  
ꢁꢂꢁꢂꢃꢂꢊꢋꢋꢌ  
ꢁꢂꢁꢂꢃꢂꢊꢋꢋꢀ  
ꢁꢂꢁꢂꢃꢂꢊꢋꢋ!  
"ꢐꢔ%ꢘꢔꢕꢙ  
&ꢒꢒ0'ꢘꢙꢖꢏꢗ/
1ꢁꢂꢁꢂꢃꢂꢊꢋꢌ2ꢀ2
0ꢙ0ꢙꢃꢙꢐꢑꢑ5ꢃꢙꢔꢑ
Table 5. DC/DC Converter parameters  
Symbol  
Parameter  
Min  
Typ  
140  
Max  
Unit  
Note  
IVDD  
Quiescent Current  
µA  
Pulse skipping mode  
Feedback voltage r exernal  
resistor vider:  
VFB1  
VFB2  
1.20  
1.25  
0.5  
1.30  
V
V
for constant voltage control  
Feedback voltge for current  
sinregulation  
DCDC_CURR1, DCDC_CURR2  
or DCDC_CURR3  
ditioal tuning current at  
DCDC_FB  
adjustable by software in 1µA  
steps  
0
31  
5
µA  
%
IDCDC_FB  
Accuracy of feedback current  
-5  
@ full scale  
E.g.: 0.65A for 0.15Ω sense  
Vsenseax  
Current limit voltage at Rsense  
100  
mV  
resistor  
ON-resistance of external  
switching transistor  
RSW  
Iload  
fIN  
switch resistance  
Load current  
1
Ω
0
50  
mA  
at 15V output voltage  
fclk_int  
/
internal CLK frequency/2  
Programmable: 0.8 to 1.15 MHz  
Switching frequency  
MHz  
2
www.austriamicrosystems.com  
Revision 1v13  
16 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 5. DC/DC Converter parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Cout  
Output capacitor  
2.2  
µF  
ceramic, ±20%  
Use inductors with small Cparasitic  
(<100pF) to get high efficiency  
L
Inductor  
10  
µH  
tMIN_ON  
MDC  
Minimum on time  
130  
91  
ns  
%
Maximum duty cycle  
The DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage  
dependent on the maximum VDS voltage of the external transistor, and maximum load current selectable by the  
external shunt resistor.  
For Example:  
5V,500mA @ 1.1Mhz  
25V,50mA @ 1.1MHz  
40V,20mA @ 550kHz  
A constant switching frequency results in a low noise on supply nd ouut voltage.  
8.1.1 Feedback selection  
For step up DCDC 1, the feedback is always DCDC_FB1.  
For step up DCDC 2 following feedback selections are possle:  
Stpup2_fb selects the type of feedback for the DCDC_step_up2 converter:  
DCDC_CURR1, DCDC_CURR2, DCDC_CURR3 or DCDC_FB2 feedb(see Figure 5)  
Setting stpup2_fb to 00b enables the feedbak on DCDC_FB2, stpp2_fb to 01b enables feedback at pin  
DCDC_CURR1, setting step_up_fb to 10enables feedback at pn DCDC_CURR2 and setting step_up_fb to 11b  
enables feedback at pin DCDC_CURR. ThStep-up converr is rgulated such that the required current at the  
feedback path can be supported.  
Always choose the path with the higher voltage drop as ack to guarantee adequate supply for the other,  
unregulated path.  
To protect the DCDC output voltage against overvoltage, if a LED string is broken, set stpup2_prot=1. In this mode the  
output voltage will be limited by limiting the DCDC_FB voltage to 1.25V (select the external resistor network to adjust  
this limitation voltage).  
www.austriamicrosystems.com  
Revision 1v13  
17 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 5. DC/DC step up 2 converter with regulation of LED string on pin DCDC_CURR1,2 or 3  
!ꢑꢜ##ꢊ3  
ꢋꢌꢋꢌꢚ12ꢍ  
ꢍꢁꢍꢎ  
ꢄꢍꢊꢆ8ꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢃꢉ  
ꢁꢂꢁꢂꢃꢄꢅꢆꢄꢅꢃꢇꢀ  
ꢁꢂꢁꢂꢃꢄꢅꢆꢄꢅꢃꢆꢀ  
ꢌ+ꢖꢖ)ꢗꢕꢅꢙ)ꢗꢙ)  
ꢋꢌꢋꢌꢍ  
ꢂꢀꢎꢏꢐꢅꢑꢋꢂꢍꢈꢂꢀꢀꢅꢌꢒꢓꢔꢕꢖꢒꢗꢓꢘꢙ  
ꢋꢌꢋꢌꢍ  
#$%ꢍꢀꢂꢀ  
ꢙꢕ0+0ꢍꢚꢒꢗ  
ꢙꢕ)0ꢍꢚ8ꢖ)*  
ꢼ  
ꢃꢀꢀ"ꢏꢼ  
ꢘꢔ"  
ꢋꢌꢋꢌꢍ  
ꢑꢓꢂ&ꢀ'  
ꢋꢌꢋꢌꢚꢛꢜꢝ
ꢍꢁꢍꢎ ꢇꢍꢃ
ꢁꢂꢁꢂꢃ,"8ꢅꢀ  
#9ꢧ  
ꢊꢒ:ꢓꢘ  
%(ꢕ)  
ꢋꢖꢓ7)ꢖ  
ꢂꢁꢃꢗ  
ꢂꢃꢗ  
ꢙꢕ0+0ꢍꢚꢘꢔ"ꢚꢓꢗ7  
ꢒ7ꢚꢘ+ꢖꢖ  
!ꢒ7ꢚꢘ+ꢖꢖ)ꢗꢕ  
ꢙꢕ)0ꢚ+0ꢍꢚ7  
ꢁꢂꢁꢂꢃꢈꢉꢀ  
ꢂꢁꢍꢃ!  
ꢙꢕ)0ꢍꢚ0ꢖꢒꢕ  
ꢖ(50  
ꢒ7)ꢖꢙ/ꢒꢒꢕꢅꢘꢒ50  
ꢂꢁ'!  
ꢀꢁ4!  
ꢊ$ꢋꢙ  
ꢂꢁꢍꢃ!  
ꢀꢁꢃ!  
ꢖ)*+ꢓꢖ),  
-)  
(00ꢔ  
)ꢖꢖꢒꢖꢅꢒꢕ(  
ꢙꢕ)0ꢍꢚ8-  
ꢏ!ꢅꢌ+ꢖꢖ)ꢗꢕꢅꢑꢓꢗ
)/ꢃꢈ&4ꢃ56  
ꢙꢕ)0ꢍꢚ8-ꢚ(+ꢕꢒ  
ꢂꢁꢂꢊꢋ  
ꢁꢂꢂꢊꢋꢋꢀ  
ꢌꢋꢌꢚꢌꢜ<<&  
!ꢑꢜ##ꢊ3  
6+ꢕꢒ5(ꢕꢓꢘ  
8)),-(ꢘ"ꢅꢙ)ꢔ)ꢘꢕ  
;ꢋꢌꢋꢌꢚꢌꢜ<<ꢂ=ꢍ=&>  
ꢛ0ꢕꢓꢒꢗ(ꢔꢐꢅꢒꢗꢔ.ꢅꢖ)*+ꢓꢖ),  
ꢓ8ꢅꢋꢌꢋꢌꢚꢌꢜ<<&ꢅꢘ(ꢗ  
)ꢘ)),ꢅꢂꢃ!  
,ꢘ,ꢘꢚꢘ+ꢖꢖ?ꢚꢘꢕꢖꢔꢅ@ꢅꢂꢀꣂ  
www.austriamicrosystems.com  
Revision 1v13  
18 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 6. DC/DC step up 1 converter with regulated output voltage of 5V. Feedback is at pin DCDC_FB1  
ꢁꢂꢃꢃꢄꢅ  
ꢒꢓꢒꢓ#*ꢈꢊ  
ꢘꢌꢘꢖꢥ  
ꢁꢇꢂꢈꢉꢊ  
ꢋꢌꢊꢍꢎꢏ  
ꢒꢓꢒꢓ#ꢁ(ꢈꢁ(#ꢃꢊ  
ꢒꢓꢒꢓ#ꢁ(ꢈꢁ(#ꢈꢊ  
ꢓ+ꢝꢝ0 ꢜꢎ"0 "0  
ꢒꢓꢒꢓꢊ  
ꢔꢌꢕꢖꢇꢗꢎꢁꢒꢊꢘꢐꢔꢆꢕꢎꢓꢙꢚꢛꢜꢝꢙ ꢚ!"  
ꢒꢓꢒꢓꢊ  
ꢃ%()ꢘꢋꢊꢋ  
"ꢜ,+,ꢊ#ꢙ  
ꢀꢎꢁ+,,ꢛ-  
ꢒꢓꢒꢓ#$ꢂꢉꢊ  
ꢊꢋꢖꢥ  
"ꢜ0,ꢊ#ꢝ06  
ꢊ%ꢇ7  
ꢋꢋ'ꢇ7  
!ꢛ'  
ꢒꢓꢒꢓꢊ  
ꢁꢚꢊ&ꢋꢔ  
ꢒꢓꢒꢓ#).ꢉ(ꢊ  
ꢃ4%  
ꢄꢙ5ꢚ!  
)2ꢜ0  
ꢒꢝꢚ10ꢝ  
 
 ꢥ  
"ꢜ,+,ꢊ#!ꢛ'#ꢚ 1  
ꢙ1#!+ꢝꢝ  
 
&&ꢋ'ꢍ  
 
&& ꢥ  
ꢀꢙ1#!+ꢝꢝ0 ꢜ  
"ꢜ0,#+,ꢊ#1  
ꢒꢓꢒꢓ#/ꢊ  
ꢝ23,  
ꢙ10ꢝ"8ꢙꢙꢜꢎ!ꢙ3,  
ꢊꢌꢔꢀ  
ꢊꢌꢘ  
0ꢝꢝꢙꢝꢎꢙꢜ2  
Voltage Feedback: (see Figure 6)  
For Step UP DCDC 1 voltage feedback is always selectin DCDC_FB1. For Step-up UP DCDC 2 set step2_fb to  
00 to enable voltage feedback at pin DCDC_FB2.  
Bit stepX_res (X = 1 or 2) should be set to 1 in voltge edback mode using two resistors.  
The output voltage is regulated to a constanvalue, given by:  
R1 + R  
Vstepuout  
=
2 1.25 + II  
R1  
DCDC _ FB  
R2  
If R2 is not used, the output oltage is:  
Vstepup _ out = 1.25 + II  
R1  
DCDC _ FB  
Vstepup_out: Stp up regulator output voltage  
R1 Feedback resistor R1  
RFeedck esistor R2  
I
Vturng: Tuning current on DCDC_FB pin: stpupX_v (0µA to 15µA (1µA steps)) (X= 1 or 2)  
www.austriamicrosystems.com  
Revision 1v13  
19 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Example:  
Table 6. Step Up Output Voltage (Voltage mode or protection voltage)  
Ivtuning  
Vstepup_out  
Vstepup_out  
µA  
0
R1=1M Ω,R2 not used  
R1=500k Ω,R2=64k Ω  
-
11  
11.5  
12  
1
-
2
-
3
-
12.5  
13  
4
-
5
6.25  
7.25  
8.25  
9.25  
10.25  
11.25  
1
13.
14.25  
15.25  
16.25  
13.5  
14  
6
7
1.5  
15  
8
9
15.5  
16  
10  
11  
12  
13  
14  
15  
16.5  
17  
17.5  
18  
18.5  
Note: The voltage on pin DCDC_CURR1DCDC_CURR2 and DDC_CURR3 must never exceed 15V  
www.austriamicrosystems.com  
Revision 1v13  
20 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 7. DC/DC step up converter 1 with regulated output voltage (15V), and switch off function of output  
voltage, to reduce shutdown current  
$ꢁꢃ''ꢐ/  
ꢑꢒꢑꢒ!,ꢄꢆ  
ꢖꢈꢖꢕ#  
ꢁꢂꢃꢄꢅꢆ  
ꢇꢈꢆꢉꢊꢋꢌꢍꢎꢉꢏ  
ꢑꢒꢑꢒ!ꢁ)ꢄꢁ)!'ꢆ  
ꢑꢒꢑꢒ!ꢁ)ꢄꢁ)!ꢄꢆ  
ꢒ-ꢛꢛ2ꢜꢚꢋ 2ꢜ 2  
ꢑꢒꢑꢒꢆꢋꢋꢓꢈꢔꢕꢂ  
ꢁꢑꢆꢖꢎꢓꢀꢔ  
ꢒꢗꢘꢙꢚꢛꢗꢜꢘꢝ  
ꢑꢒꢑꢒꢆ  
$ꢁꢃ''ꢐ/  
'()*ꢖꢇꢆꢇ  
ꢆꢉ$ꢋꢁ-..ꢙꢭ  
 ꢚ.-.ꢆ!ꢗꢜ  
 ꢚ2.ꢆ!ꢛ28  
ꢑꢒꢑꢒ"##ꢆ  
0ꢁꢁ&ꢓ  
ꢆ(ꢂ9  
ꢉꢇꢇ%ꢂ9  
ꢝꢙ%  
ꢑꢒꢑꢒꢆ  
ꢁꢘꢆ+ꢇꢓ  
ꢑꢒꢑꢒ!"ꢃꢅꢆ  
ꢖꢈꢖꢕ#ꢍꢖꢉ
ꢑꢒꢑꢒ!*1ꢅ)ꢆ  
'6(  
ꢐꢗ7ꢘꢝ  
*4ꢚ2  
ꢑꢛꢘ32ꢛ  
 
ꢖꢇꢇ%ꢊ  
 
ꢆꢈꢉꢜ#  
 ꢚ.-.ꢆ!ꢝꢙ%!ꢘꢜ3  
ꢗ3!ꢝ-ꢛꢛ  
 
ꢆ&%ꢊ  
$ꢗ3!ꢝ-ꢛꢛ2ꢜꢚ  
 ꢚ2.!-.ꢆ!3  
 
ꢆꢉꢜ#  
ꢑꢒꢑꢒ!#0ꢆ  
ꢛ45.  
ꢗ32ꢛ :ꢗꢗꢚꢋꢝꢗ5.  
ꢆꢈꢓ$  
ꢆꢈꢖꢉ$  
2ꢛꢛꢗꢛꢋꢗꢚ4  
As the output voltage is always on, an additinal otput transistor n be added to reduce shutdown current through  
R1, R2 and the connected output circuit.  
Note: A similar circuit can be used foep up converter 2.  
8.1.2 StepUp1 Load Detection and Overcurrent tection Circuit  
This circuit protects the DCDC step up1 converter durinshort circuit and startup, by regulation of the output current.  
An additional feature is the detection of a minimum output load of the Step-up converter. It is also possible to use this  
circuit without the DCDC step up converter, y using the sense resistor only:  
Detection circuit: If the voltage on Rseexceeds VDETECT for more than 1msecond, or the DCDC Step up  
converter is not in Pulseskip for more n 1 millisecond, the stepup1_det bit will be set.  
Overcurrent protection: If the vercurrent voltage VOVCURRENT has been exceeded by more than 5 msec the Bit  
stpup1_oc will be set and cn only reset, by switching off and on the Protection circuit by writing Stpup1_shortprot  
0 – 1. If stepup1_oc is st the oad will be disconnected, if Stpup1_oc_timeout=1  
Table 7. StepUp1 protectn/detection circuit parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
For Rsense=0.150Ω =>  
VDETEC
Detection Threshold  
2
12.5  
25  
mV  
83mA typ.  
Overcurrent Threshold  
rising  
For Rsense=0.150Ω =>  
VOVCRENT  
VVhysteresis  
150  
180  
50  
215  
mV  
mV  
1.2A typ.  
Overcurrent Hysteresis  
Interrupt and/or external PMOS  
switching off after timeout  
tOV_timeout  
tdetect  
Overcurrent timeout  
5
1
ms  
ms  
f
clk_int = 2.2MHz  
Detection denounce  
time  
f
clk_int = 2.2MHz  
www.austriamicrosystems.com  
Revision 1v13  
21 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 8. StepUp 1 Load Detection and Overcurrent Protection Application Circuit  
ꢌꢂꢍꢍꢎꢏ  
ꢇꢈꢇꢈꢀꢉꢊꢄ  
ꢁꢂꢃꢄꢅꢆ  
ꢇꢈꢆꢉꢊꢋꢌꢍꢎꢉꢏ  
ꢇꢈꢇꢈꢀꢌꢒꢊꢌꢒꢀꢍꢄ  
ꢇꢈꢇꢈꢀꢌꢒꢊꢌꢒꢀꢊꢄ  
ꢑꢒꢑꢒꢆꢋꢋ  
ꢇꢈꢇꢈꢄ  
ꢘ$(%ꢗ%1.ꢘ2+ꢝ ꢗ  
ꢁꢋ&-%ꢖꢗ)ꢗ%.%  
ꢇꢈꢇꢈꢄ  
ꢇꢈꢇꢈꢕ  
ꢌꢖꢗꢘꢕꢂꢘꢕꢄ  
ꢇꢈꢇꢈꢀꢐꢑꢃꢒꢄ  
ꢇꢈꢇꢈꢀꢓꢔꢄ  
 
 
 
 
ꢎꢝ/.0  
ꢎꢝ/.0  
ꢋꢈꢍꢀꢁꢂꢃ  
ꢙꢚꢋꢛ  
%ꢖꢗꢘ$ꢘꢄꢀ%&ꢝ)ꢖꢘ)ꢝꢖ  
ꢋꢈꢂꢅꢅꢀꢐꢍꢉꢁ  
ꢈꢂꢐꢍꢉꢁꢄ  
ꢇꢗ#ꢝ$30ꢗ  
ꢙꢖꢁꢋꢀꢖ.+ꢗꢝ$ꢖ  
%ꢖꢘ$ꢘꢄꢀ ꢗꢖ  
%ꢖꢘ$ꢘꢄꢀꢝ0  
ꢇꢗ#ꢝ$30ꢗ  
ꢙꢖꢁꢋꢀꢖ.+ꢗꢝ$ꢖ  
ꢐꢍꢉꢁꢄꢜꢝ ꢗ!""ꢄ#ꢕꢙꢘ$%&'ꢘ$((ꢛ  
ꢐꢍꢉꢁꢄꢉꢁꢌꢓ!ꢄ"#ꢕꢙꢇꢈꢇꢈꢕꢍ)ꢝꢖꢛ  
www.austriamicrosystems.com  
Revision 1v13  
22 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.1.3 Step Up DCDC Converter Registers  
Table 8. Step Up DC/DC Bit definitions  
Step Up DC/DC control  
This register controls the different modes of the step up DCDC converter  
Addr: 30  
Bit Name  
Bit  
5
Default  
ROM  
Access  
R/W  
Description  
stpup1_on  
stpup2_on  
On/Off control of the step up dc/dc converter1  
On/Off control of the step up dc/dc converter2  
6
ROM  
R/W  
Table 9. Step Up DC/DC Bit definitions  
Step Up DC/DC control  
Addr: 32  
This register controls the different modes of the step up DCDC convrter  
Bit  
Bit Name  
Default Access  
Description  
Invert input clock of step up2 cnveer  
Use positive edge of inernal clk  
Use negative edge ointernal clk  
0
stpup2_clkinv  
00h  
R/W  
0
1
Dines the clock frequecothe step up1 dc/dc  
converter;  
1
2
stpup1_freq  
-
00h  
00h  
R/W  
n/a  
0fclk_i(0.8 to 1.15 MHz)  
1fclk_nt/4 .4 to 0.575 MHz)  
Always set to 0  
selection for DCDC step_up1:  
elect 0 if DCDC is used with current feedback  
(DDC_CURR1,DCDC_CURR2,DCDC_CURR3)  
r if DCDC_FB is used with current feedback only  
(Only R1,C1 connected; (see Figure 6))  
0
3
4
stpup1_res  
0h  
00h  
R/W  
Select 1 if DCDC_FB1 or DCDC_FB2 is used with  
external resistor divider (2 resistors)  
0
step_up_fb select the feedback of the DCDC  
converter  
The feedback is automatically chosen within the  
current sinks DCDC_CURR1,DCDC_ CURR2 and  
DCDC_CURR3 (never DCDC_FB). Only those are  
used for this selection, which are enabled and  
connected to the step up converter  
stpup2_fb_auto  
RW  
1
(currX_ctrl must be 10)  
Defines the clock frequency of the step up2 dc/dc  
converter  
5
6
stpup2_req  
-
00h  
00h  
R/W  
n/a  
f
clk_int/2 (0.8 to 1.15 MHz)  
0
1
fclk_int/4 (0.4 to 0.575 MHz)  
Always set to 0  
Gain selection for DCDC step_up2:  
Select 0 if DCDC is used with current feedback  
(DCDC_CURR1,DCDC_CURR2,DCDC_CURR3)  
or if DCDC_FB is used with current feedback only  
(Only R1,C1 connected; (see Figure 6))  
0
1
stpup2_res  
00h  
R/W  
Select 1 if DCDC_FB1 or DCDC_FB2 is used with  
external resistor divider (2 resistors)  
www.austriamicrosystems.com  
Revision 1v13  
23 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 10. Step Up DC/DC Bit definitions  
Step Up1 DC/DC control  
Addr: 33  
This register controls the different modes of the step up1 DCDC  
converter  
Bit  
Bit Name  
Default Access  
Description  
Defines the tuning current at DCDC_fb1 pin;  
00000  
0 µA  
1 µA  
4:0  
stpup1_v  
00h  
R/W  
00001  
.....  
11111  
31 µA  
Invert input clock of step up1 converter;  
Use positive edge of inernal clk  
Use negative edge of nteral clk  
5
6
stpup1_clkinv  
00h  
00h  
R/W  
RW  
0
1
Enables Protection and Detection cirit foDCDC step  
up1  
stpup1_shortprot  
0
1
No protection and load detection  
Short protection and load detection enabled  
trols GPIO1 switch ff, after overcurrent timeout (5ms)  
fr DCC step up1  
7
stpup1_oc_timeout  
00h  
RW  
0
1
disabled  
enabled  
Table 11. Step Up DC/DC Bit definitions  
Stp Up2 DC/DC control  
Addr: 34  
This registetrols the different modes of the step up2 DCDC  
converter  
Bit  
Bit Name  
Default Acess  
Description  
Defines the tuning current at DCDC_fb2 pin;  
00000  
0 µA  
1 µA  
4:0  
stpup2_v  
0
R/W  
00001  
.....  
11111  
31 µA  
Controls the feedback source  
00  
01  
DCDC_FB enabled (external resistor divider)  
DCDC_CURR1 feedback enabled (feedback  
through white LEDs)  
6:5  
stpup2_fb  
00h  
R/W  
DCDC_CURR2 feedback enabled (feedback  
through white LEDs)  
10  
11  
DCDC_CURR3 feedback enabled (feedback  
through white LEDs)  
www.austriamicrosystems.com  
Revision 1v13  
24 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 11. Step Up DC/DC Bit definitions  
Step Up2 DC/DC control  
Addr: 34  
This register controls the different modes of the step up2 DCDC  
converter  
Bit  
Bit Name  
Default Access  
Description  
DCDC converter 2 overvoltage protection to prevent  
damage of external NFET, if DCDC_CURR1 or  
DCDC_CURR2 or DCDC_CURR3 feedback selected, and  
no LED string connected:  
7
stpup2_prot  
00h  
RW  
0
1
Overvoltage protection disabled  
Switch off DCDC step up 2 if the voltage n  
DCDC_FB2 exceeds 1.25V  
Table 12. stpup1_det and stpup1_oc Bit definitions  
Low voltage status bit definitions  
Addr: 53  
This register shows the status of the overcurrent poteion of the  
stepup1dcdc  
Bit  
Bit Name  
Default Access  
Description  
Step up overcurrent tatus bit  
VRnse < VOVCURRENT  
1
6
stpup1_oc  
NA  
NA  
R
R
VRsense > VOCURENT for more than 5 msec (latched  
state)  
p up detection status register  
sense < VDETECT for more than 1msecond, and  
DCDC Step up converter is in Pulseskip for more than  
1 millisecond  
0
7
stpup1_det  
VRsense > VDETECT for more than 1msecond, or the  
DCDC Step up converter is not in Pulseskip for more  
than 1 millisecond  
8.2  
Current Sinks  
These are general-purpose current sinks inteded to control the backlight(s), buzzer and vibrator. The low voltage  
current sink has an integrated protection aainsover voltage and can therefore also drive inductive loads (VPROTECT).  
DCDC_CURR1 and DCDC_CURR2, DCCURR3 are high voltage (15V) current sinks, e.g. for series of white  
LEDs  
CURR1_GPIO, CURR2_GPIOCURR3_GPIO, CURR4_GPIO are four 5V, 38.25mA current sinks, e.g. for buzzer,  
vibrator, LEDs  
CURR1_GPIO, CURR2_PIO, CURR3_GPIO, CURR4_GPIO can be used as general propose Input/Output (GPIO)  
functions optiona(descibed in section General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4)).  
www.austriamicrosystems.com  
Revision 1v13  
25 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.2.1 High voltage Current Sinks (DCDC_CURR1, DCDC_CURR2 and DCDC_CURR3)  
Current sinks DCDC_CURR3, DCDC_CURR1 and DCDC_CURR2 can be controlled individually. The step-up DCDC  
converter may supply them with voltages up to 15V. If any of these current sinks is used, connected VCURR_GPIO to  
a supply with at least 3.0V.  
Table 13. Current Sinks Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
DCDC_CURR1,2 and  
DCDC_CURR3  
For V(DCDC_CURRx) > 0.45V  
resolution = 0.15mA  
IDCDC_Curr1,2,3  
0
38.25  
mA  
current, 00h-3Fh  
Current sink protection  
Current  
Protection Current if stpup2_on=1  
and dcdc_currx_current=00
IDCDC_protect  
2
µA  
%
Δ
absolute Accuracy  
-5  
+5  
15  
All Current sinks  
VDCDC_CURR1  
VDCDC_CURR2,  
VDCDC_CURR3  
,
Voltage compliance  
0.45  
V
during normal operation  
Table 14. DCDC_CURR1 Current sink current bit definition  
DCD_CURR1 Value  
This register controls the current value of the dcdc_curr1 current sink  
Addr: 39  
Bit  
Bit Name  
Default Access  
escription  
Defines the currnt nto DCDC_CURR1 if enabled by  
dcc_curr1_ctrl  
power down (default state)  
00h  
7:0  
dcdc_curr1_current  
00h  
R/W  
01h  
....  
0.15mA (LSB)  
38.25mA  
h  
Table 15. DCDC_CURR2 Current sink current bit definition  
DCDC_CURR2 Value  
This egister controls the current value of the dcdc_curr2 current sink  
Addr: 40  
Bit  
Bit Name  
Delt Access  
Description  
Defines the current into DCDC_CURR2 if enabled by  
dcdc_curr2_ctrl  
power down (default state)  
00h  
7:0  
dcdc_curr_currnt  
00h  
R/W  
01h  
....  
0.15mA (LSB)  
38.25mA  
FFh  
www.austriamicrosystems.com  
Revision 1v13  
26 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 16. DCDC_CURR3 Current sink current bit definition  
DCDC_CURR3 Value  
This register controls the current value of the dcdc_curr3 current sink  
Addr: 45  
Bit Name  
Bit  
Default Access  
Description  
Defines the current into DCDC_CURR3 if enabled by  
dcdc_curr3_ctrl  
power down (default state)  
00h  
7:0  
dcdc_curr3_current  
00h  
R/W  
01h  
....  
0.15mA (LSB)  
38.25mA  
FFh  
Table 17. Current sink control bit definition  
CURR control  
This register controls the mode of the DCDC curent sinks  
Addr: 58  
Bit  
Bit Name  
Default Access  
Description  
On/ff control of the ad DCDC_CURR1  
Curent sink is turned off  
0
Currnsink is active  
1:0  
dcdc_curr1_ctrl  
00b  
00b  
00b  
R/W  
R/W  
R/W  
Current sinis active and LED string connected to  
stpup2. Requed for automatic feedback selection  
10  
11  
Controd y PWM generator (do not set pwm_div)  
OOff control of the pad DCDC_CURR2  
Current sink is turned off  
00  
Current sink is active  
3:2  
5:4  
dcdc_curr2_ctrl  
dcdc_curr3_ctrl  
Current sink is active and LED string connected to  
stpup2. Required for automatic feedback selection  
10  
11  
Controlled by PWM generator (do not set pwm_div)  
On/Off control of the pad DCDC_CURR3  
Current sink is turned off  
00  
01  
Current sink is active  
Current sink is active and LED string connected to  
stpup2. Required for automatic feedback selection  
10  
11  
Controlled by PWM generator (do not set pwm_div)  
www.austriamicrosystems.com  
Revision 1v13  
27 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.2.2 Low voltage Current Sink (CURR1_GPIO1 … CURR4_GPIO4)  
CURR1_GPIO1 … CURR4_GPIO4 can be controlled individually. Each one can sink up to 38.25mA. The voltage on  
the current sinks must not exceed the supply VCURR_GPIO (can be connected e.g. to VSUPPLY).  
The low voltage current sinks and the gpio pins share the same pins (see General Purpose Input / Output  
(CURR1_GPIO1 … CURR4_GPIO4) on page 30) for enabling/disabling of the current sinks / gpio functions.  
Table 18. Current Sinks Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
38.25  
+5  
Unit  
Note  
For V(CURRx_GPIOx) > 0.2V  
resolution = 0.15mA,  
each current sink  
CURR1_GPIO1....  
CURR4_GPIO4  
current, 00h-1Fh  
ICURR1,2,3,4  
0
mA  
Δ
absolute Accuracy  
Voltage compliance  
-5  
%
V
All Current sinks  
V(VCU  
RR)  
VCurr1,2,3,4  
0.2  
during normal operation  
Table 19. CURR1 Current sink current Bit definition  
CURR1 control  
This register cotrolte mode of the curr1 crrent sinks  
Addr: 41  
Bit  
Bit Name  
Default Access  
Description  
ethe current intCURR1_GPIO1 if GPIO1_Mode =  
011b and outpuenabled (e.g. GPIO1=1)  
00h  
01h  
....  
powr down (default state)  
0.15mA (LSB)  
7:0  
curr1_current  
(00)h  
R/W  
FFh  
38.25mA  
Table 20. CURR2 Current sink currendefinition  
CURR2 control  
Ths register controls the mode of the curr2 current sinks  
Addr: 42  
Bit  
Bit Name  
Deault Access  
Description  
Defines the current into CURR2_GPIO2 if GPIO2_Mode =  
011b and output enabled (e.g. GPIO2=1)  
00h  
01h  
....  
power down (default state)  
0.15mA (LSB)  
7:0  
curr2_current  
(00)h  
R/W  
FFh  
38.25mA  
www.austriamicrosystems.com  
Revision 1v13  
28 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 21. CURR3 Current sink current Bit definition  
CURR3 control  
This register controls the mode of the curr3 current sinks  
Addr: 43  
Bit Name  
Bit  
Default Access  
Description  
Defines the current into CURR3_GPIO3 if GPIO3_Mode =  
011b and output enabled (e.g. GPIO3=1)  
00h  
01h  
....  
power down (default state)  
0.15mA (LSB)  
7:0  
curr3_current  
(00)h  
R/W  
FFh  
38.25mA  
Table 22. CURR4 Current sink current Bit definition  
CURR4 control  
This register controls the mode of the curr4 curret sinks  
Addr: 44  
Bit  
Bit Name  
Default Access  
Descriptio
Defins the crent into CURR4_GPIO3 if GPIO4_Mode =  
011and output enald (.g. GPIO4=1)  
0h  
....  
poer down (default state)  
015mA (LSB)  
7:0  
curr4_current  
(00)h  
R/W  
FFh  
38.25mA  
www.austriamicrosystems.com  
Revision 1v13  
29 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.3  
General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4)  
Figure 9. CURR1_GPIO1 … CURR4_GPIO4 block diagram  
ꢆ1ꢔꢓꢅꢖꢑꢖꢘꢐꢛꢕꢘ  
)ꢚꢋ"ꢄꢜꢑꢛ  
!# ꢄ$ꢄꢛꢜ ꢖꢗꢓ!# ꢄꢋꢄꢛꢜ ꢖꢗꢓ!# ꢄꢒꢜꢝ  
ꢅꢆꢇꢈꢃꢇꢈ'(  
ꢎꢙꢃꢉ  
ꢅꢆꢇꢈꢃ  
ꢎꢎ  
ꢉꢀꢁꢂꢂꢄꢅꢆꢇꢈ  
ꢎꢃ  
ꢃꢎ  
'!ꢖꢚꢜꢐꢋꢓ)ꢊꢑꢚꢛꢜꢕꢑꢌ  
ꢃꢃ  
**ꢓꢌꢖꢖꢓꢛꢖ+ꢛ  
ꢅꢆꢇꢈꢃꢆꢊꢋꢋꢌꢍꢃꢎꢏꢓꢐꢑꢒ  
ꢅꢆꢇꢈꢃꢔꢕꢒꢖꢍꢎꢎꢎꢏꢗꢎꢃꢎꢏꢗ  
ꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢎꢃꢃꢏꢓꢕꢘꢓꢃꢎꢎꢏ  
ꢅꢆꢇꢈꢃꢄꢔꢕꢒꢖꢍꢎꢎꢃꢏ  
ꢅꢆꢇꢈꢃꢇꢑꢝꢖꢘꢛ  
ꢅꢆꢇꢈꢃꢄꢜꢑ  
ꢅꢆꢇꢈꢃꢄꢔꢕꢒꢖꢍꢎꢃꢎꢏ  
ꢂꢃꢄꢅꢆꢇꢈꢃ  
0ꢕꢓ1ꢛꢚ$ꢒꢕ2  
ꢜ)ꢓꢅꢆꢇꢈꢃꢇꢈ'(ꢍꢎꢃꢏ  
ꢐꢑꢒꢓꢅꢆꢇꢈꢃꢔꢕꢒꢖꢍꢎꢃꢎꢏ  
ꢅꢆꢇꢈꢃꢆꢊꢋꢋꢌꢍꢎꢃꢏ  
ꢐꢑꢒꢓꢅꢆꢇꢈꢃꢔꢕꢒꢖ  
ꢅꢆꢇꢈꢃꢄꢔꢕꢒꢖꢍꢎꢎꢎꢏꢓꢕꢘꢓꢎꢎꢃꢏ  
ꢚꢋꢐ !  
ꢅꢆꢇꢈꢃꢆꢊꢋꢋꢌꢍꢃꢃꢏ  
ꢐꢑꢒꢓꢅꢆꢇꢈꢃꢔꢕꢒꢍꢎꢎꢎꢏꢗꢎꢃꢎꢏ  
ꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢓꢗꢃꢎꢎꢏ  
0ꢕꢓ3%ꢈ&%ꢀ%ꢀ  
ꢅꢆꢇꢈꢓꢕꢑ&ꢕ))ꢓꢚꢕꢑꢛꢘꢕꢋ  
4ꢕꢑꢋ5)ꢕꢘꢓꢅꢆꢇꢈ.&ꢅꢆꢇꢈ/6  
ꢅꢆꢇꢈꢃꢄꢔꢕꢒꢖꢍꢎꢃꢃꢏ  
ꢅꢆꢇꢈꢃꢄꢔꢕꢒꢖꢍꢃꢎꢎꢏ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ ꢉꢈꢊꢎꢏꢐꢅꢆꢇꢈ  
ꢓꢓꢓꢓꢓꢎꢎꢎꢏ  
ꢓꢓꢓꢓꢓꢎ
ꢓꢓꢓꢓꢓ
ꢓꢓꢓꢎ
ꢓꢓꢓꢓꢃꢎꢎ
ꢖꢑꢓ%ꢘꢐꢜꢑꢓꢈꢊꢛ!ꢊꢛ  
ꢆꢊ&ꢆꢊꢋꢋꢓꢈꢊꢛ!ꢊꢛ  
ꢑ!ꢊꢛ  
'#ꢜꢛꢚ$ꢓꢛꢕꢓꢉ''  
ꢀꢊꢘꢘꢖꢑꢛꢓ'ꢜꢑ"  
ꢚꢊꢘꢘꢃꢄꢚꢊꢘꢘꢖꢑꢛ  
ꢌ#ꢜꢛꢚ$  
ꢚꢊꢘꢘꢖꢑꢛ  
ꢌꢜꢑ"  
ꢅꢆꢇꢈꢃꢓ,ꢓꢀꢊꢘꢘꢖꢑꢛꢓ'ꢜꢑ"ꢓꢃ  
ꢅꢆꢇꢈ-ꢓ,ꢓꢀꢊꢘꢘꢖꢑꢛꢓ'ꢜꢑ"ꢓ-  
ꢅꢆꢇꢈ.ꢓ,ꢓꢀꢊꢘꢘꢖꢑꢛꢓ'ꢜꢑ"ꢓ.  
ꢅꢆꢇꢈ/ꢓ,ꢓꢀꢊꢘꢘꢖꢑꢛꢓ'ꢜꢑ"ꢓ/  
ꢀꢁꢂꢂ-ꢄꢅꢆꢇꢈ-  
ꢀꢁꢂꢂ.ꢄꢅꢆꢇꢈ.  
ꢀꢁꢂꢂ/ꢄꢅꢆꢇꢈ/  
The device contains 4 high current GPO pins, which share the same pins as the low voltage current sinks and are  
capable of sinking 100mA from VCURR_GPIO voltage. Each of the pins can be configured as open drain NMOS or  
push-pull output with VCRR_GPIO high levels, as high impedance output or as digital input. When configured as  
output the output source can be a register bit, or the PWM generator, furthermore the output signal can be inverted.  
Integrated active mp rcuits can be enabled for the open drain NMOS output mode by setting GPIOxPulls=11b,  
thus allowing to use te high current GPIO pins for driving inductive loads. A pull-up resistor to VCURR_GPIO can be  
enabled for the open drain NMOS output mode by setting GPIOxPulls=10b. When configured as digital input the logic  
level (GPxInvert=’0’) or the inverted logic level (GPIOxInvert=’1’) of the pin is reflected by bit GPIOxBit in the GPIO  
Bit regis.  
www.austriamicrosystems.com  
Revision 1v13  
30 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Moreover, a special function can be selected for each digital input pin and a pull-up resistor to VCURR_GPIO or a pull-  
down resistor can be enabled.  
Table 23. High Current GPIO Pin Characteristics (VCURR1_GPIO1 … VCURR4_GPIO4)  
V
=3.0 to 5.5V; T = –20 to +70°C; unless otherwise specified  
amb  
VSUPPLY  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Maximum voltage  
on  
CURR1...4_GPIO  
1…4 pins  
VCURR_GPIO  
0.3  
+
Pin VCURR_GPIO is used as supply for  
the GPIO pins  
VGPIOMAX  
V
IOL=+100mA; digital output  
(GPIOxMode=100b and  
currX_current=3Fh)  
Low level output  
voltage switch  
mode  
VOLH  
–0.3  
–0.3  
+0.35  
+0.4  
V
IOL=+1mA; digital output  
(GPIOxMode=000b ... 010b)  
Low level output  
voltage  
VOL  
VOH  
VIL  
V
V
V
High level output  
voltage  
0.8·VCURR_G  
VCURR_GPIO  
0.4  
VCURR_GP
IOH=–1mA; digital psh-ull output  
dal inut  
PIO.  
Low level input  
voltage  
–0.3  
1.3  
High level input  
voltage  
VIH  
V
digtal input  
ILEAKAGE  
Rpull-up  
Leakage current  
Pull-up resistance  
µA  
kΩ  
high impedance  
GIOxMode=x0b; GPIOxPulls=10b;  
78  
VCURR_GPIO=3.6V  
digital input; GPIOxPulls=01b;  
Pull-down  
resistance  
Rpull-down  
161  
VCURR_GPIO=3.6V  
Table 24. CURR1_GPIO1 Bit definition  
GPIO1  
This regontrols the mode of the CURR1_GPIO1 Pin  
Addr: 18  
Bit  
Bit Name  
Default Acess  
Description  
digital open drain NMOS output  
(only NMOS enabled)  
000b  
001b  
digital push-pull output  
(NMOS & PMOS enabled, no PWM out possible)  
digital input  
(NMOS & PMOS disabled, digital input logic  
enabled)  
010b  
2…0  
GPIO1Mod
ROM  
R/W  
digital open drain current sink operation Current  
defined by curr1_current  
011b  
100b  
digital open drain switch operation On resistance  
defined by curr1_current  
high impedance (or SD1 in DCDC step  
down external controller mode  
(sd1_1A_mode = 1100b)).NMOS & PMOS disabled,  
digital input logic disabled)  
101b  
to  
111b  
www.austriamicrosystems.com  
Revision 1v13  
31 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 24. CURR1_GPIO1 Bit definition  
GPIO1  
This register controls the mode of the CURR1_GPIO1 Pin  
Addr: 18  
Bit Name  
Bit  
Default Access  
Description  
input / output signal is written to or set by GPIO1Bit  
in the GPIO Bit register  
00b  
PWM (O) / WDOG (I)  
if used for PWM, pwm_h_time and pwm_l_time  
define the high and low time of this output and only  
allowed for GPIO1Mode=011b,100b  
01b  
10b  
11b  
4…3  
GPIO1IOSF  
ROM  
R/W  
Protection of DCDC stepUp1 GPIO 1 (O)  
Battery charging EOC indication output GPIO (O)  
If EOC=1 then GPIO1=1. DCDC_CURR3 is usas  
output, if CURR_GPIO1 is used foexternal DCDC  
controller  
0
1
normal polarity of input / outpt signal  
5
GPIO1Invert  
GPIO1Pulls  
ROM  
ROM  
R/W  
R/W  
inverted polarity of int / oput signal  
(not possible for PWM out)  
no pull-up or pull-down esstor is enabled in all  
modes  
00b  
0b  
pull-down resistois enabled in digital input mode  
(clmp disabled)  
pll-up resistor is enabled for  
GP1Moe=000b,010b,011b,100b (clamp  
disabled)  
7…6  
10b  
11b  
enable active clamp circuit for  
GPIO1Mode=000b,010b,011b,100b (pull-up/down  
disabled)  
Table 25. CURR2_GPIO2 Bit definitio
GPIO2  
Addr: 19  
Thiregister controls the mode of the CURR1_GPIO2 Pin  
Bit  
Bit Name  
Defaut Access  
Description  
000b  
001b  
010b  
digital open drain NMOS output  
digital push-pull output (no PWM out possible)  
digital input  
digital open drain current sink operation Current  
defined by curr2_current  
011b  
100b  
2…0  
GPIO2Mode  
ROM  
R/W  
digital open drain switch operation On resistance  
defined by curr2_current  
101b  
to  
111b  
high impedance  
www.austriamicrosystems.com  
Revision 1v13  
32 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 25. CURR2_GPIO2 Bit definition  
GPIO2  
This register controls the mode of the CURR1_GPIO2 Pin  
Addr: 19  
Bit Name  
Bit  
Default Access  
Description  
input / output signal is written to or set by GPIO2Bit in  
the GPIO Bit register  
00b  
01b  
10b  
PWM (O) / WDOG (I)  
if used for PWM, pwm_h_time and pwm_l_time  
define the high and low time of this output and only  
allowed for GPIO2Mode=011b,100b  
4…3  
GPIO2IOSF  
GPIO2Invert  
GPIO2Pulls  
ROM  
ROM  
ROM  
R/W  
R/W  
R/W  
Battery charging active indication output GPIO2 (O
If Battery charging = 1 then GPIO2=1  
11b  
0
NA  
normal polarity of input / outpt signal  
5
inverted polarity of input / ouput sgnal  
(not possible for PWM o)  
1
no ull-up or pull-down resitor is enabled in all  
modes  
00b  
1b  
pull-down resistor is enabled in digital input mode  
(clamp disabled)  
7…6  
pull-up sistor is enabled for  
GPIO2Mode=00b,010b,011b,100b (clamp disabled)  
enble active clamp circuit for  
GPIOode=000b,010b,011b,100b (pull-up/down  
disabled)  
11b  
Table 26. CURR3_GPIO3 Bit definition  
GPIO3  
Addr: 20  
This regontrols the mode of the CURR3_GPIO3 Pin  
Bit  
Bit Name  
Default Acess  
Description  
000b  
001b  
010b  
digital open drain NMOS output  
digital push-pull output (no PWM out possible)  
digital input  
digital open drain current sink operation Current  
defined by curr3_current  
011b  
100b  
2…0  
GPIO3Mode  
ROM  
R/W  
digital open drain switch operation On resistance  
defined by curr3_current  
101b  
to  
111b  
high impedance  
input / output signal is written to or set by GPIO3Bit  
in the GPIO Bit register  
00b  
01b  
PWM (O) / WDOG (I)  
if used for PWM, pwm_h_time and pwm_l_time  
define the high and low time of this output and only  
allowed for GPIO2Mode=011b,100b  
43  
GPIO3IOSF  
ROM  
R/W  
GPIO3 control of regulators if regX_gpio = 1 and  
regX_on = 1  
10b  
11b  
Touchpen ADC wait input  
www.austriamicrosystems.com  
Revision 1v13  
33 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 26. CURR3_GPIO3 Bit definition  
GPIO3  
This register controls the mode of the CURR3_GPIO3 Pin  
Addr: 20  
Bit Name  
Bit  
Default Access  
Description  
0
1
normal polarity of input / output signal  
5
GPIO3Invert  
GPIO3Pulls  
ROM  
R/W  
inverted polarity of input / output signal  
(not possible for PWM out)  
no pull-up or pull-down resistor is enabled in all  
modes  
00b  
01b  
pull-down resistor is enabled in digital input moe  
(clamp disabled)  
pull-up resistor is enabled for  
GPIO3Mode=000b,010b,011b,100b (clamp  
disabled)  
7…6  
ROM  
R/W  
10b  
11b  
enable active clamp circit fo
GPIO3Mode=000b,010b,011b,00b pull-up/down  
disabl)  
Table 27. CURR4_GPIO4 Bit definition  
GPIO4  
Addr: 21  
This registecontrols the mode of he CURR4_GPIO4 Pin  
Bit  
Bit Name  
Default Access  
Description  
000b  
001b  
010b  
digital open drain NMOS output  
igitpush-pull output (no PWM out possible)  
digital input  
digital open drain current sink operation Current  
defined by curr4_current  
011b  
0b  
2…0  
GPIO4Mode  
OM  
R/W  
digital open drain switch operation On resistance  
defined by curr4_current  
101b  
to  
111b  
high impedance  
input / output signal is written to or set by GPIO4Bit  
in the GPIO Bit register  
00b  
01b  
10b  
PWM (O) / WDOG (I)  
if used for PWM, pwm_h_time and pwm_l_time  
define the high and low time of this output and only  
allowed for GPIO4Mode=011b,100b  
4…3  
GPIO4IOSF  
GPIO4Invert  
ROM  
ROM  
R/W  
R/W  
GPIO4 control of regulators if regX_gpio = 1 and  
regX_on = 0  
11b  
0
Touchpen dedicated interrupt output  
normal polarity of input / output signal  
5
inverted polarity of input / output signal  
(not possible for PWM out)  
1
www.austriamicrosystems.com  
Revision 1v13  
34 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 27. CURR4_GPIO4 Bit definition  
GPIO4  
This register controls the mode of the CURR4_GPIO4 Pin  
Addr: 21  
Bit Name  
Bit  
Default Access  
Description  
no pull-up or pull-down resistor is enabled in all  
modes  
00b  
01b  
pull-down resistor is enabled in digital input mode  
(clamp disabled)  
pull-up resistor is enabled for  
GPIO4Mode=000b,010b,011b,100b (clamp  
disabled)  
7…6  
GPIO4Pulls  
ROM  
R/W  
10b  
11b  
enable active clamp circuit for  
GPIO4Mode=000b,010b,011b,100b (pull-up/dwn  
disabled)  
Table 28. GPIO Signal Bit definition  
GPIO Signal  
Addr: 55  
This regiter conols the GPIO state / stus  
Bit  
Bit Name  
Default Access  
Description  
Tit determines the tput signal of the GPIO1 pin when  
selected s output source  
0
GPIO1  
0
0
R/W  
R/W  
R/W  
R/W  
R
This bit determinehe otput signal of the GPIO2 pin when  
selcted as output source  
1
2
3
4
5
6
7
GPIO2  
GPIO3  
This bit deternes the output signal of the GPIO3 pin when  
selected as output source  
0
This bit etermines the output signal of the GPIO4 pin when  
selected as output source  
GPIO4  
This bit reflects the logic level of the GPIO1 pin when  
configured as digital input pin  
GPIO1_in  
GPIO2_in  
GPIO3_in  
GPIO4_in  
NA  
NA  
NA  
This bit reflects the logic level of the GPIO2 pin when  
configured as digital input pin  
R
This bit reflects the logic level of the GPIO3 pin when  
configured as digital input pin  
R
This bit reflects the logic level of the GPIO4 pin when  
configured as digital input pin  
R
www.austriamicrosystems.com  
Revision 1v13  
35 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
The gpio block includes an internal programmable PWM generator (can be connected to any of the GPIO1_CURR1 …  
GPIO4_CURR4 outputs). Its timing is defined by the following tables:  
Table 29. PWM Frequency Control High Time Registers  
PWM Frequency Control High Time Registers  
Addr: 56  
This register controls the PWM high time  
Bit  
Bit Name  
Default Access  
Description  
This bit defines the high time of the pwm generator in  
2/fclk_int units  
0
1
pwm_div * 2/ fclk_int  
pwm_div * 4/ fclk_int  
pwm_div * 6/ fclk_int  
7:0  
pwm_h_time  
00h  
R/W  
2
....  
FFh  
pwm_div * 512/ fcl_int  
Table 30. PWM Frequency Control Low Time Registers  
PWM Freuency ontrol Low Time Regers  
This registr controls the PWM Low time  
Addr: 57  
Bit  
Bit Name  
Default Access  
escription  
his bit defines the igh time of the pwm generator in  
2/clk_int units  
0
pwm_div * 2/ fclk_int  
pwm_div * 4/ fclk_int  
pwm_div * 6/ fclk_int  
1
2
7:0  
pwm_l_time  
00h  
R/W  
....  
pwm_div * 512/ fclk_int  
Table 31. PWM Divider Registers bits  
CURR control  
Addr: 58  
This register controls the PWM divider  
Dlt Access Description  
Bit  
Bit Name  
This bit defines the divider ratio of the prescaler for the  
PWM generator  
00  
01  
10  
11  
Divide by 1  
Divide by 2  
Divide by 4  
Divide by 16  
7:6  
pwmdiv  
00h  
R/W  
All Step n DCDC converters and several LDOs can be directly on/off controlled by CURR3_GPIO3 or  
CRR4_PIO4. The CURR3_GPIO3 and/or CURR4_GPIO4 pin should be set to digital input mode (GPIO3Mode =  
010, GPIO4Mode = 010b) and the following register should be set accordingly:  
www.austriamicrosystems.com  
Revision 1v13  
36 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Note: The original digital interface on/off signal is used to switch between CURR3_GPIO3 and CURR4_GPIO4; e.g.  
if ldo_rf1_gpio is set, ldo_rf1_on is (re-)used to selected either CURR3_GPIO3 (ldo_rf1_on=1) or  
CURR4_GPIO4 (ldo_rf1_on=0) as input.  
Table 32. Regulator GPIO Control Registers  
Reg GPIO Ctrl  
Addr: 31  
This register enables/disables GPIO control of the regulators  
Bit  
Bit Name  
Default Access  
Description  
ldo_rf1 on/off control  
0
1
Controlled by software (ldo_rf1_on)  
Controlled by CURR3_GPIO3, if ldo_rf1_on=1 and  
GPIO3IOSF=10b  
Controlled by CURR4_GPIO4, if ldo_rf1_on=0 and  
GPIO4IOSF=10b  
0
ldo_rf1_gpio  
0
0
R/W  
R/W  
ldo_rf2 on/off control  
0
1
Controlled by softwre (lo_rf2_on)  
1
2
ldo_rf2_gpio  
Conroed by CURR3_GPIO3, f ldo_rf2_on=1 and  
GPIOIOSF=10b  
Controlled by CURR4_GPIO4, if ldo_rf2_on=0 and  
GPIO4IOSF=10b  
ldo_digon/off control  
0
1
Corolled by software (ldo_dig1_on)  
Controby CURR3_GPIO3, if ldo_dig1_on=1 and  
GPIO3IOSF=10b  
Ctrolled by CURR4_GPIO4, if ldo_dig1_on=0 and  
GPIO4IOSF=10b;  
ldo_dig1_gpio  
0
R/W  
dnot set ldo_dig1_gpio if DCDC SD1 is in external  
controller mode (sd1_1A_mode = 1100b)  
ldo_dig2 on/off control  
0
1
Controlled by software (ldo_dig2_on)  
Controlled by CURR3_GPIO3, if ldo_dig2_on=1 and  
GPIO3IOSF=10b  
3
ldo_dig2_gpio  
R/W  
Controlled by CURR4_GPIO4, if ldo_dig2_on=0 and  
GPIO4IOSF=10b  
do not set ldo_dig2_gpio if DCDC SD1 is in external  
controller mode (sd1_1A_mode = 1100b)  
sd1 on/off control  
0
1
Controlled by software (sd1_on)  
4
5
sd1_pio  
sd2_gpio  
0
0
R/W  
R/W  
Controlled by CURR3_GPIO3, if sd1_on=1 and  
GPIO3IOSF=10b  
Controlled by CURR4_GPIO4, if sd1_on=0 and  
GPIO4IOSF=10b  
sd2 on/off control (or sd2 on/off control in 1A mode)  
Controlled by software (sd2_on)  
0
1
Controlled by CURR3_GPIO3, if sd2_on=1 and  
GPIO3IOSF=10b  
Controlled by CURR4_GPIO4, if sd2_on=0 and  
GPIO4IOSF=10b  
www.austriamicrosystems.com  
Revision 1v13  
37 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 32. Regulator GPIO Control Registers  
Reg GPIO Ctrl  
This register enables/disables GPIO control of the regulators  
Addr: 31  
Bit Name  
Bit  
Default Access  
Description  
Sd3 on/off control  
0
1
Controlled by software (sd3_on)  
6
sd3_gpio  
0
0
R/W  
R/W  
Controlled by CURR3_GPIO3, if sd3_on=1 and  
GPIO3IOSF=10b  
Controlled by CURR4_GPIO4, if sd3_on=0 and  
GPIO4IOSF=10b  
ldo_dig3 on/off control  
0
1
Controlled by software (ldo_dig3_on)  
7
ldo_dig3_gpio  
Controlled by CURR3_GPIO3, if ldodig3_on=1 and  
GPIO3IOSF=10
Controlled by CURR4_GPIO4if ldodig_on=0 and  
GPIO4IOSF=1b  
8.4  
Backup Battery Charger  
The backup battery charger operates as a programmable voltage liited current source with selectable output  
resistor. It is enabled by setting BBCMode in the Backup Bharger register o a value other than ‘00’b and offers  
the following features:  
Backup battery presence detection  
Selectable output resistor (RBBCOUT) to reducte urrent at higher oltags  
Programmable charge current IBBC  
programmable maximum charging volage VBBC  
Reverse current protection turns ofbacup battery chargautomatically if VSUPPLY<VVBACK; as soon as VSUPPLY  
exceeds VVBACK charging is starteain automatically  
Charging is stopped automatically as soon as the bbattery is fully charged; if the voltage on pin VBACK  
drops charging is started again automatically  
In case the main supply voltage VSUPPLY is larer tan VVBACK charging of the backup battery is possible in state  
“Off” as well; the device will check VVBAK every minute to determine if charging is required.  
www.austriamicrosystems.com  
Revision 1v13  
38 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 10. Backup Battery Charger Block Diagram  
Voltage limited  
Current source  
VBACK  
Rb  
VSUPPLY  
Digital  
Control  
Table 33. Backup Battery Charger Characteristics  
symbol  
Parameter  
Min  
3.0  
3.3  
2.4  
2.9  
Typ  
Max  
5.5  
5.5  
.6  
3.1  
Unit  
Nte  
BBVolt=0’  
BCVolt=’1’  
BCVolt=’0’  
BBCVolt=’1’  
VSUPPLY  
Supply voltage range  
V
2.5  
3
Maximum charging  
voltage  
VBBC  
V
Value is set by BBCCur in the  
Backup Battery Charger register  
IBBC  
Charge current  
-30% BBCCr +30%  
A
Delta voltage for  
resistive mode  
VDELTA  
16
220  
300  
V  
BBCResOff=’0’  
0  
BBCResOff=’0’  
BBCResOff=’1’  
IVSUPPLY  
Supply current  
µA  
BBCPwrSave=’1’; backup battery  
full.  
0.5  
Table 34. Backup Battery Charger Register  
Backup Battery Charger  
This register controls the Backup battery charger mode  
Addr: 38  
Bit  
Bit Name  
Delt Access  
Description  
00b  
01b  
Backup battery charger is disabled  
Backup battery charger is enabled in states “Power  
Off mode”, “standby mode” and “Active mode”.  
(32kHz OSC has to be enabled in that mode  
rtcmode=01b or 10b)  
1:0  
BBCMode  
00b  
R/W  
Backup battery charger is enabled in state “Active  
1Xb mode” and “standby mode”. (32kHz OSC has to be  
enabled in that mode rtcmode=01b or 10b)  
0
1
Enable output resistor  
Bypass output resistor  
2
BBCResOff  
BBCCur  
0
R/W  
R/W  
This value determines the charge current IBBC  
.
IBBC=50µA  
BBC=200µA  
00b  
10b  
01b  
11b  
I
4:3  
00b  
IBBC=100µA  
BBC=400µA  
I
www.austriamicrosystems.com  
Revision 1v13  
39 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 34. Backup Battery Charger Register  
Backup Battery Charger  
This register controls the Backup battery charger mode  
Addr: 38  
Bit Name  
Bit  
5
Default Access  
Description  
This value determines the maximum charging voltage  
VBBC  
.
BBCVolt  
0
1
R/W  
R/W  
VBBC=2.5V  
VBBC=3.0V  
0
1
0
Normal operation of the backup battery charger  
6
BBCPwrSave  
The backup battery charger checks if it is actually  
charging the battery (bit BUChAct=’1’) and is  
disabled if it is not. Every 10s (every 64s in ste  
“Off”) the voltage of the backup batery is checked  
again to determine if charging is reuired. This  
practically reduces the current cosumption to 0 if  
the backup battery is fl.  
1
reserv
7
-
-
Figure 11. Backup Battery Charger Characteristics  
IBACK  
400µA  
Rb=0FF  
Rb=0N  
200µA  
100µA  
50µA  
VBACK  
Vback_lim-VDelta  
Vback_lim  
www.austriamicrosystems.com  
Revision 1v13  
40 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.5  
Smooth switchover Power Management Overview  
Figure 12. Power Source Management Architecture  
ꢕꢌꢁꢂꢆ  
ꢅꢉꢅꢉꢃꢄ  
ꢜꢅꢅꢃ  
ꢀꢃꢁꢂꢤ  
ꢎꢀꢚꢛꢛꢜꢝ  
ꢚꢀꢙ  
ꢉꢞꢟꢠꢡꢂꢠ  
ꢊꢢꢣꢒꢒꢤꢕꢓ  
ꢎꢙꢚꢀ  
ꢎꢉꢔꢕꢖꢗꢘꢖ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢉꢞꢟꢠꢡꢂꢠ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢅꢉꢅꢉ  
ꢊꢋꢈꢃꢌꢁꢄꢍꢎꢏꢐꢍꢎꢑꢍꢒꢎꢓ  
ꢆꢠꢄꢜꢈꢂꢟꢠꢄꢉꢞꢟꢠꢡꢂꢠ  
ꢂꢟꢦ  
ꢂ  
ꢎꢙꢕ  
Aꢋꢆꢈꢄꢙꢟꢁꢁꢂꢠ  
ꢥꢌꢂ
ꢗꢟꢌꢡꢂ  
The power source management architecture handles the smooth transitions etwen the two chargers (USB Charger  
on VBUS, DCDC Step Down charger or Linear Charer on VCHARGER) and te battery. It takes care about the  
system power supply VSUPPLY and its power rquirements.  
There are following operating conditions possble  
1. No Charger connected  
The internal switch SINT and the (opnal) external switch MATSW are closed and VSUPPLY is directly supplied by  
VBAT. Because of the very low impnce of the swithe energy losses are minimized.  
2. The active charger can deliver more current than the m requires  
The system is directly supplied by the charger nd the remaining energy can be used to charge the battery (CC/CV  
charger). In case of deeply discharged batteriesthe system is always immediately started and the internal current  
source between VSUPPLY and VBAT deliers the trickle current to the battery.  
3. The current limited (e.g. for USB with 500m) charger cannot deliver the current, the system requires  
In this case, the ideal diode starts cnding and delivers the remaining current to the system  
The transitions between the different power states are done autonomously by the AS3658 allowing an uninterrupted  
operation of the system.  
The blocks are described in mordetail in the following sections.  
www.austriamicrosystems.com  
Revision 1v13  
41 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.6  
Battery switch SINT (Vsupply, Battery)  
Figure 13. Battery Switch Diagram  
ꢋꢌꢍꢍꢕ#  
ꢊꢋꢌꢍꢎꢋꢏꢐ  
ꢊꢋꢌꢍꢎꢋꢏꢑ  
ꢝ$ꢜꢎ%ꢛꢜ&'ꢎꢝꢙ  
ꢋꢌꢍꢍꢕ#  
ꢒꢓꢔꢎꢋꢏ  
ꢆ"ꢁ"ꢂ&#=ꢜ"&#$/#=ꢁ""ꢄꢛ?#&:ꢜ"ꢝ)  
"ꢒꢓꢔꢋꢏ  
=ꢁ"<&:<$!###=ꢁ"<&:<ꢋ$%ꢄ#####;,ꢄꢛꢁ"ꢜ$!  
#######ꢊ#####################@#############&:ꢜ"ꢝ)#$,ꢄ!  
#######ꢑ#####################ꢊ##############ꢝꢂꢛꢛꢄ!"#&ꢜ!ꢖ  
#######ꢑ#####################ꢑ#############&:ꢜ"ꢝ)#ꢝ $&ꢄ%  
ꢐ(((ꢚ)ꢚꢚꢐ  
ꢎꢈꢐ  
ꢊꢒꢓꢔꢎꢋꢏꢐ  
ꢊꢒꢓꢔꢎꢋꢏꢑ  
ꢆ"ꢄ,#9$:!#ꢍ)ꢁꢛꢃꢄꢛ  
ꢜ!#ꢍꢍ#$ꢛ#ꢍꢞꢚꢋ$%ꢄ  
ꢕꢖꢗꢘꢙꢚꢒꢛꢜꢜꢝ !  
ꢙ  #ꢝ)ꢁꢛꢃꢄꢛ&#$//#0ꢁ!%#!$"#ꢇ;ꢍ5  
ꢇ;ꢍ#ꢁ!%#ꢜ&$ ꢁ"ꢄ<=ꢁ">ꢊ  
*(+ꢊ  
,ꢗ-ꢝꢛ.ꢚ-ꢖꢘ-ꢝ,  
ꢐꢛꢜꢝꢖ ꢄ#ꢋ$%ꢄ#$ꢛ  
'ꢇ("ꢄꢛ!ꢁ #ꢏꢜ!ꢄꢁꢛ#ꢍ)ꢁꢛꢃꢄꢛ'  
ꢋ$%ꢄ  
ꢗꢋ/0ꢋ/ꢍ  
ꢆ677ꢏ8  
ꢞꢝ)ꢁꢛꢃꢄ$//  
01ꢔ2ꢞ31ꢔ4ꢞ3ꢓꢔꢗꢞ3ꢓꢔꢉꢞ5  
ꢘꢙꢐ  
ꢎꢏꢐꢇꢅꢑ  
ꢓꢔꢕꢖꢌ  
ꢎꢏꢐꢇꢅ  
ꢑꢒꢥ  
1ꢝ.  
ꢀꢁꢂꢃꢄ  
ꢆꢇꢈꢆꢇ  
ꢉꢊꢋꢌ  
+
"ꢄꢋ,  
ꢑꢑꢊ-ꢍ  
ꢗꢋ/0ꢋ/0  
+
ꢎꢏꢐꢇꢅꢗ  
ꢓꢔꢕꢖꢌ  
&<=ꢁ"<&:<"ꢋ,<,ꢛ$"  
ꢐꢛꢜꢝꢖ ꢄꢍꢂꢛꢛ!"#ꢜ!#"ꢛꢜꢝꢖ ꢄ#ꢋ
ꢍ$!&"ꢁ!"!  
'ꢇ("ꢄꢛ!ꢁ #ꢏꢛ'#*$%ꢄ  
ꢘꢁ""ꢄꢛ?#ꢆ:ꢜ"ꢝ)  
The internal Battery switch enables normal operation of the System dutrickle charging of a deeply discharged  
battery.  
The Switch provides the following functios:  
Trickle charging, if VBAT is smaller an ResVolt. The currnt is defined in TrickleCurrent[1:0]  
PMOS is switched on if VBAT is grr then ResVolt.  
Constant current charging, if the external charger is ar operation, or the USB charger is used. the current is  
defined by constant_current[2:0].  
Current limitation during tricklecharge, to avoid nruh current: Itrickle_Ilimit  
Current limitation during Constant currencharging to avoid inrush current: ICC_Ilimit  
Undervoltage protection of Vsupply dug trickle charge or constant current charge with linear charger. The  
charging current is regulated down, if upply drops below Vsupply_min  
Ideal diode operation in IsolatBatery mode and disable charging mode, during charger is unplugged. This  
operation is for the internal attery switch only. External battery switch is open in that mode. Regulation will start, if  
the VSUPPLY voltage dops bmore then VDiode below the VBAT voltage. After three milliseconds debounce time,  
if no charger is recogized, he internal and external battery switch (if enabled) is closed to have a low Ω ic  
connection between VBT and VSUPPLY.  
Table 35. Battery sitch parameters  
Symbo
Vy  
Parameter  
Input voltage  
Min  
Typ  
Max  
Unit  
V
Note  
3.0  
5.5  
PIN VSUP_SW1,VSUP_SW2  
Itricklelimit  
Trickle current limit  
400  
mA  
Current Limit in constant current  
mode (Linear charger mode or USB  
charger only)  
Note: applies only for the battery  
switch alone  
Constant current  
current limit  
ICC_limit  
800  
mA  
www.austriamicrosystems.com  
Revision 1v13  
42 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 35. Battery switch parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Ideal Diode start  
voltage  
VDiode  
50  
mV  
3.9  
3.6  
4.2  
4.5  
Vsupply level for  
charging current  
regulation (reduction),  
to avoid voltage drop  
on vsupply  
Trickle current (or constant current in  
linear mode) will be regulated down,  
if vsupply drops below this level  
Vsupply_min  
-6%  
3%  
V
SINT P-Switch ON  
resistance  
RSW  
0.10  
Ω
VSUP_SW=3.6V  
Table 36. USB-Charger Bit definitions  
USB Charger Control  
Addr: 10  
This register controls the mode of the USB charger, and te chrger state  
machine  
Bit  
Bit Name  
Default Access  
Description  
Ovetemperature potection of battery switch  
enbled. (If battery switch is icurrent source mode,  
charging is stopped if chip temperature exceeds  
110º)  
0
5
dis_batsw_tmp_prot  
ROM  
ROM  
R/W  
R/W  
Over tempeture protection of battery switch  
disabled  
1
0
Extebattery switch disabled (Pin BAT_SW =  
max(VSUPPLY,VBAT))  
7
ext_batsw_en  
Extenal battery switch enabled (Pin BAT_SW=0V, if  
atus bits batsw_on=1 and batsw_mode=1. These  
bs are controlled by the charger state machine)  
1
Table 37. Battery switch status Bit definitions  
Charger status_usb  
Addr: 100  
These bits show the status of the battery switch  
Bit  
Bit Name  
DefauAccess  
Description  
Trickle charging (or constant current charging in  
linear mode), if batsw_on=1. External PMOS switch  
disabled  
0
1
2
batsw_mode  
NA  
NA  
R
R
Switch on Battery switch, if batsw_on=1. External  
PMOS switch enabled  
0
1
Battery switch off  
3
basw_o
Battery switch on (Mode defined by batsw_mode)  
www.austriamicrosystems.com  
Revision 1v13  
43 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.7  
External Step Down/Linear Charger  
The inductive dcdc step down charger (or the external linear charger) converts the input voltage from VCHARGER to  
VSUPPLY. The system (DCDC converters, LDOs…) are connected directly to VSUPPLY; the ideal diode and the internal  
battery switch SINT (together with the external battery switch MBATSW) connect VSUPPLY to VBAT to allow charging of  
the battery.  
Figure 14. Step Down Charger Application Diagram with optional reverse polarity and short protection  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢄꢁꢂꢃꢄꢅꢆꢇ  
ꢈꢄꢉꢊꢉꢋꢌꢋꢉꢍꢋ  
ꢁꢄꢇꢆꢉꢃꢂꢎꢏꢍꢐꢄꢉꢂ  
ꢁꢉꢄꢂꢋꢑꢂꢃꢄꢅ  
'ꢖꢘꢜꢪ  
ꢔꢕꢖꢗꢘꢖ  
/ꢖꢘꢜ  
!'ꢓ0ꢝꢪꢛ  
ꢒꢛꢔ$  
ꢚꢛꢛꢜꢝ  
ꢔ$  
ꢓꢐꢆꢉ&ꢋꢉ  
'ꢔꢖꢗꢛꢖꢀꢚ  
ꢜ-0ꢒ  
ꢔꢖꢗꢛꢚ#  
.ꢘ  
ꢔꢕꢖꢗꢘꢖ  
ꢪꢪ !  
ꢒꢔꢚꢛꢔ$  
ꢒꢓꢔꢕꢖꢗꢘꢖ  
/ꢔꢕꢖꢗꢘꢖ  
!'ꢓ0ꢝꢪꢛ  
/ꢔꢖꢗꢛꢚ  
!'2#ꢪꢛ  
ꢔꢕꢖꢗꢘꢖ  
ꢔꢚꢙꢚ  
ꢒꢔꢛꢜꢝꢛꢜ  
ꢃꢅꢋꢆꢉ  
ꢒꢍ(ꢁꢁꢇꢎ  
ꢓꢄꢅꢂꢉꢄꢇꢇꢋꢉ  
'ꢖꢘ#  
$ꢔꢕꢖ  
#ꢖꢏꢪꢪ1ꢔ  
ꢕꢖꢗꢘ  
ꢒꢔꢚꢛꢛꢜꢝ  
)*ꢃꢍꢆ+ꢇꢋ*ꢊꢃꢅ  
ꢂꢐꢃꢍꢊꢗꢄ*ꢋ,  
'ꢔꢕꢖꢗꢘꢖ  
/ꢘꢗꢪꢖ#ꢖ  
ꢛꢔꢙꢔꢛꢙ  
'ꢓ'ꢓ  
ꢒꢍ(ꢁꢁꢇꢎ  
ꢅꢂꢉꢄꢇꢇꢋꢉ  
ꢛꢔꢙꢔꢛꢛ  
ꢗꢕꢘ  
ꢒꢀ!!ꢛ$  
ꢒꢔꢔ"
ꢒꢔꢪ  
$ꢆꢂꢂꢋꢉꢎ  
ꢓꢐꢆꢉ&ꢋꢉ  
ꢓꢄꢅꢂꢉꢄꢇꢇꢋꢉ  
ꢚꢛꢔ"  
/$ꢚꢔ"  
!'ꢓ0ꢝꢪꢛ  
'ꢃ&ꢃꢂꢆꢇ  
%ꢅꢂꢋꢉꢈꢆꢑꢋ  
ꢒ$ꢚꢛꢔ"#  
ꢒ$ꢚꢛꢔ"ꢪ  
ꢃ%ꢄꢅꢊ$ꢆꢂꢂꢋꢉ
%ꢔꢙꢔꢘꢛ  
!%ꢘꢖ#  
ꢝ-ꢕ.ꢘ  
!%ꢘꢖ  
# !  
!(ꢋꢇ  
ꢆ(&ꢋ  
 
%ꢔꢙꢔ  
!%ꢘꢖꢪ  
ꢝ-ꢕ.ꢘ  
If the input voltage can be up t50V additional three transistors and a simple voltage regulator with a zener diode are  
required. These circuit ‘isolaes’ the AS3658 from the high input voltage and keep the pins VCHARGER, VOFF_B and  
VGATE within its operatig limits (<15V). The actual circuit is shown in the following figure:  
www.austriamicrosystems.com  
Revision 1v13  
44 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 15. Charger Block Diagram for voltages >15V (Protection up to 50V; minimum Vcharger voltage 8V)  
Instead of using an inductive DCDC stdown charger, the AS3658 supports external linear charging mode with an  
PMOS transistor. The operating mode selected by cong the pin VOFF_B to GND (for 5.5V limited chargers,  
the USB charger can be used alternatively):  
www.austriamicrosystems.com  
Revision 1v13  
45 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 16. External Linear Charger Application Diagram (VOFF_B connected to GND)  
ꢒꢛꢔ$  
ꢚꢛꢛꢜꢝ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢈꢄꢉꢊꢉꢋꢌꢋꢉꢍꢋ  
ꢁꢄꢇꢆꢉꢃꢂꢎꢏꢍꢐꢄꢉꢂ  
ꢁꢉꢄꢂꢋꢑꢂꢃꢄꢅ  
ꢔ$  
ꢓꢐꢆꢉ&ꢋꢉ  
ꢒꢔꢚꢛꢔ$  
ꢒꢓꢔꢕꢖꢗꢘꢖ  
ꢖꢘꢜ  
9ꢖꢘꢜ  
9ꢔꢕꢖꢗꢘꢖ  
!2ꢪꢛ  
ꢕꢖꢗꢘ  
ꢒꢔꢚꢛꢛꢜꢝꢛꢜ  
ꢔꢂꢋꢁꢊ23  
ꢒꢍ-ꢁꢁꢇꢎ  
ꢓꢄꢅꢂꢉꢄꢇꢇꢋꢉ  
ꢔꢕꢖꢗꢘꢖ  
ꢔꢚꢙꢚ  
ꢒꢔꢚꢛꢛꢜꢝ  
ꢝꢕ !  
ꢔꢕꢖꢗꢘꢖ  
ꢪꢪ !  
45ꢃꢍꢆ6ꢇꢋ5ꢊꢃꢅ  
ꢂꢐꢃꢍꢊꢗꢄ5A  
ꢛꢔꢙꢔꢛꢙ  
ꢛꢔꢙꢔꢛꢛ  
ꢃꢅꢋꢆꢉ  
ꢒꢍ-ꢁꢁꢇꢎ  
ꢓꢄꢅꢂꢉꢄꢇꢇꢋꢉ  
ꢗꢕꢘ  
ꢒꢀ!!ꢛ$  
ꢒꢔꢚꢛꢛꢔ"#  
ꢒꢔꢚꢛꢛꢔ"ꢪ  
$ꢆꢂꢂꢋꢉꢎ  
ꢓꢐꢆꢉ&ꢋꢉ  
ꢓꢄꢅꢂꢉꢄꢇꢇꢋꢉ  
$"  
9$ꢚꢔ"  
!2ꢪꢛ  
&ꢃꢂꢆꢇ  
%ꢅꢂꢋꢉꢈꢆꢑꢋ  
ꢒ$ꢛꢔ"#  
ꢒ$ꢚꢛ
ꢃ%ꢄꢅꢊ$ꢆꢂꢂꢋꢉꢎ  
%ꢔꢙꢔꢘꢛ  
!%ꢘꢖ#  
78  
ꢘꢖ  
!  
!-
-&ꢋ  
ꢙꢔꢘ  
ꢜꢖꢗꢘ  
%ꢔꢙꢔ  
%ꢖꢪ  
7  
Table 38. Charger External Components  
Symbol  
Componen
alue  
Note  
MCHARGER,  
MBATSW,  
MREVPOL  
P-channel MOSFET  
Si103, FDC642P or FDC5614P similar  
MCHRGPU  
RCHRGPU1  
P-channel MOSFET  
Pull-up resistor1  
BSS84 or FDG312P or similar  
2kΩ ± 5%  
100Ω ± 5%  
for MCHRGPU =BSS84  
for MCHRGPU=FDG312P  
5V or 6V Vcharger input  
12V Vcharger input  
RCHRGPU2  
LCHARGER  
Pull-up resistor2  
50Ω ± 5%  
10µH  
Inductr for charging  
22µH  
DCHARGER  
Diode  
MBRS130 or PMEG2010  
5.6V Zener Diode  
DCHRGPROT  
Zener Diode  
Current sense resistor  
charger  
e.g. Vishay Dale WSL0805  
series  
RCHSHUN
RSNSE  
70mΩ ± 5%, 125mW  
e.g. Vishay Dale WSL0805  
series  
50mΩ ± 1%, 125mW for IVBAT,DC<1.5A  
Current sense resistor  
RILTER1,2  
CFILTER  
Filter resistor  
4.7kΩ ± 1%  
Can be omitted if fuel gauge  
and charger functionality is  
not used  
Filter capacitor  
1µF ± 20%, X5R or X7R dielectric  
Bypass capacitor on  
charger pin  
1µF ± 20%, X5R or X7R dielectric +  
22µF ± 20%, Tantal dielectric  
CCHARGER  
www.austriamicrosystems.com  
Revision 1v13  
46 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 38. Charger External Components  
Symbol  
Component  
Value  
Note  
Minimum total  
capacitance parallel to  
Vsupply  
22µF± 20%, X5R or X7R dielectric  
47µF± 20%, X5R or X7R dielectric  
10 µH inductor  
22 µH inductor  
CVSUPPLY  
Figure 17. Step down charger Efficiency (Measured) VSupply=4.4V  
Step down charger  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Vcharger=5V, =550Hz  
Vcharger=6f=50kHz  
Vcharger12V, f=550kHz  
Vcharger=5V, f=275kHz  
Vcharger=6V, f=275kHz  
Vcharger=12V, f=275kHz  
0
0,0000 0,2000 0,4000 0,600 0,8000 1,0000 1,2000  
Otput current (A)  
8.7.1 External Step Down/Linear Charger Characteristics  
The battery charge controller controls the external tep Down/ Linear charger.  
During Trickle charge of the deeply dischargd battery the step down/Linear converter regulates the Vsupply to Vchlimit  
.
In step down charger mode, If the VBAT voge exceeds ResVoltRise, the internal battery switch is switched on, the  
Vsupply voltage drops down to VBAT immately, and the step down converter operates as controlled current source  
to Vsupply. The battery current is egulated to the value defined in ConstantCurrent register.  
In linear charger mode, the Vsuply is still regulated to Vchlimit, if the VBAT voltage exceeds ResVoltRise. The current is  
regulated by the battery switch to the value defined in the constant current register.  
In EOC operation (see Batery Charge Controller on page 51), the operation of the charger depends on the bit  
isolate_battery:  
If isolate_battery = 1 nd EOC the output is regulated to Vchlimit.  
If isolate_battey = 0 and EOC the output is not allowed to drop below VEOC (3.6V).  
Tale 3Step down Charger parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Current limit voltage at  
Rsense  
e.g.: 1.4A for 0.07O sense  
resistor typ.  
Vrsense_max  
70  
100  
130  
mV  
Output capacitor with 10µH  
inductor  
Cout_10  
20  
60  
µF  
X7R ceramic  
www.austriamicrosystems.com  
Revision 1v13  
47 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 39. Step down Charger parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Output capacitor with 22µH  
inductor  
Cout_22  
40  
60  
µF  
X7R ceramic  
Output capacitor in linear  
mode  
Cout_Linear  
20  
60  
µF  
X7R ceramic  
L
Inductor  
10/22  
400  
µH  
(see Table 38)  
Itrickle_limit  
Trickle current limit  
mA  
Table 40. Step down Charger Bit definitions  
Step Down charger control  
These bits configures the step down charger  
Addr: 37  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
fclk_int/4 (use as defaultif Vhargr>6V)  
fclk_int/8 (use as defalt, if charger<6V)  
Disable 00% PMOS on mode r step down charger  
0
sdc_frequ  
0
1
R/W  
R/W  
1
2
sdc_pon  
Eable 100% PMOS on ode to reduce voltage drop  
in low dropout regulation  
1
Normal mode of step down charger mode  
step down harer in pass through mode. Use this  
mode with max. 5.5V charger only.  
VsupVcharger in that mode, if no_charging=1.  
sdc_pass_mode  
0
R/W  
1
8.8  
USB Charger  
Figure 18. USB Charger Block Diagra
#$%ꢀ"ꢍꢎ4ꢀꢓ"4ꢋꢏ  
#$%ꢀꢓ"ꢑ/ꢕ  
ꢄ"3ꢋꢏ0ꢆ  
ꢀꢁꢂꢃ  
ꢉꢊꢋꢌꢊꢍꢎꢏꢐꢑꢋ  
ꢒꢌꢍꢏꢋꢓꢏꢔꢍꢕ  
ꢖꢃꢁꢂ  
ꢁꢂꢃꢀꢄ"3ꢋꢏ  
ꢁꢂꢃꢀꢄ"ꢛꢓꢏ  
ꢁꢂꢃ  
ꢅꢆꢇꢈ  
ꢁꢂꢃ  
ꢄ#ꢌꢌꢋꢕꢏ  
ꢄꢍꢕꢏꢌꢍꢎ  
ꢂꢁꢒꢒꢗꢘ  
ꢋꢕ41ꢍ51ꢓ"ꢐꢌꢑꢋ  
5ꢌꢍ(15#ꢋꢎ1ꢑꢐ#ꢑꢋ  
#$%ꢀꢓ#ꢌꢌꢋꢕꢏ  
&'ꢆ(ꢛ)*ꢆꢆ(ꢛ+  
ꢖꢂꢁꢒꢀꢁꢂꢃ  
ꢖꢂꢁꢒꢒꢗꢘ  
ꢝ ꢇꢈ  
ꢓ"ꢀꢊꢍꢎꢏꢐꢑꢋ  
&ꢝ-,ꢖ)'-ꢆꢖ+  
,-.ꢖ  
,($  
3ꢋ%ꢍ#ꢕꢓꢋ  
/ꢉꢄ0ꢆ1ꢍꢌ12$ꢍꢎꢐꢏꢋꢀ%ꢐꢏ0ꢅ  
ꢕꢍꢀꢓ"ꢐꢌꢑꢔꢕꢑ  
ꢖꢂꢁꢒꢀꢂꢙꢅ  
ꢖꢂꢁꢒꢀꢂꢙꢚ  
ꢃꢐꢏꢏꢋꢌ!  
ꢄ"ꢐꢌꢑꢋꢌ  
ꢄꢍꢕꢏꢌꢍꢎꢎꢋꢌ  
ꢃꢛꢜꢀꢂꢙ  
ꢖꢃꢛꢜꢀꢂꢙꢅ  
ꢖꢃꢛꢜꢀꢂꢙꢚ  
ꢗꢔ2ꢍꢕ1ꢃꢐꢏꢏꢋꢌ!  
www.austriamicrosystems.com  
Revision 1v13  
48 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
The AS3658 serves an integrated USB charger for Li+ batteries. The USB Charger is a current and voltage limited  
charger, which can be used to charge Li+ batteries directly from the USB supply. The VBAT voltage limit is set by the  
register ChVoltEOC (3.9V – 4.25V in 50mV steps; identical for USB charger and step down charger) and the current  
limit is set by the register usb_current (94mA to 881mA). The Vsupply voltage limit is set to Vchlimit during trickle and  
constant current charging.  
For USB charging, it is recommended to start with a current limit of 94mA and after negotiates via the USB bus (this  
has to be done by e.g. the uProcessor directly) a different current setting can be set to speed up charging (e.g.  
470mA).  
If Bit usb_chgEn=1 in the Boot ROM is set, VSUPPLY can start up with USB supply allowing startup from the USB  
supply.  
If ChEn=1 and chdet=1 (external charger enabled and connected) the usb_charger will be deactivated automaticlly
(The Battery charger overrides the USB charger). It's not possible to use the internal and the external charger
parallel.  
End of charge of the USB charger is reached, if the current through the battery falls below the value et in the  
Tricklecurrent [1:0] register.  
Table 41. USB-Charger Bit definitions  
USB Charger control  
Addr: 10  
This register controls the modof the USB chrger, and the charger state  
machine  
Bit  
Bit Name  
Default Access  
Dscription  
Sets the SB input current limit.  
94mA (USB low current)  
141mA  
(0000)b  
(0001)b  
(0010)b  
(011)b  
0100)b  
0101)b  
(0110)b  
(0111)b  
(1000)b  
(1001)b  
(1010)b  
(1011)b  
(1100)b  
(1101)b  
(1110)b  
(1111)b  
189mA  
237mA  
285mA  
332mA  
380mA  
3:0  
usb_Current  
RO
R/W  
428mA  
470mA (USB high current)  
517mA  
598mA  
668mA  
759mA  
881mA  
881mA (do not use)  
881mA (do not use)  
ON/OFF control of USB charger  
USB charger disabled.  
USB charger enabled.  
4
usb_chgEn  
ROM  
R/W  
0
1
www.austriamicrosystems.com  
Revision 1v13  
49 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 41. USB-Charger Bit definitions  
USB Charger control  
Addr: 10  
This register controls the mode of the USB charger, and the charger state  
machine  
Bit  
Bit Name  
Default Access  
Description  
Overtemperature protection of battery switch  
enabled. (If battery switch is in current  
source mode, charging is stopped if chip  
temperature exceeds 110ºC)  
0
5
dis_batsw_tmp_prot  
no_charging  
ROM  
ROM  
ROM  
R/W  
R/W  
R/W  
Overtemperature protection of battery switch  
disabled  
1
0
Normal battery charger operation (sb  
charger and/or step down charger
USB and Step down charger is supplying  
VSUPPLY, but battery swich is open.  
USB charger or external cargeregulate to  
Vchlimit  
6
7
1
0
1
External battery witch isabled (Pin  
BAT_SW= VSPPLY,VBAT)  
External baey witch enabled (Pin  
BAT_SW=0V, if status bits batsw_on=1 and  
batsw_me=1. These bits are controlled by  
thcharger state machine)  
ext_batsw_en  
Table 42. Charger status Bit definitions  
Cher status_usb  
Addr:100  
These bits shw the status of the USB charger  
Bit  
0
Bit Name  
USB_ChDet  
USB_Chact  
Defult Access  
Description  
set to 1 if charger is detected  
NA  
NA  
NA  
R
R
R
1
Set to 1 if charger is active  
4
Ch_overvoltage  
Set to 1 if overvoltage on pin VCHARGER is applied  
Charger Detection:  
The Charger will be detected by compaisof the V_USB voltage with the Vsupply voltage.  
If V_USB is 50mV higher than VSupply vge or V_USB > 4.3V or the USB_ChDet is set to 1.  
Table 43. USB Charger CharactesticVUSB=4.3…5.5V; Tamb=–20…+85°C; unless otherwise specified.  
Symbol  
Pramter  
Min  
Typ  
Min  
Unit  
Note  
USBurrent for 500mA  
election  
Resistor on pin RBias to ground of  
Iusbcurrent500mA  
440  
470  
500  
mA  
220kΩ  
USBcurrent for 100mA  
selection  
Resistor on pin RBias to ground of  
Iusbcurrent10
84  
95  
104  
mA  
220kΩ  
www.austriamicrosystems.com  
Revision 1v13  
50 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 44. USB-Charger additional trimming  
USB Current control  
This register adds or subtracts current limit  
Addr:130  
Bit Name  
Bit  
Default Access  
Description  
Increase or decrease The USB current limit for additional in  
system trimming:  
100  
101  
110  
111  
000  
001  
010  
011  
usbcurrent-5.1%  
usbcurrent-3.8%  
usbcurrent-2.5%  
usbcurrent-1.2%  
usbcurrent+0%  
usbcurrent+1.2%  
usbcurrent+2.5
usbcurrent+3.%  
2:0  
usb_add_trim_current  
00h  
R/W  
8.9  
Battery Charge Controller  
The AS3658 device serves as a standalone battery chargcontroller supporting rechargeable lithium ion (Li+) and  
nickel metal hybrid (NiMH) batteries. Requiring only a few nacomponents, ull-featured battery charger with a  
high degree of flexibility can easily be realized. The main feures of the controller a:  
Charge adapter detection  
Charging of deeply discharged batteries  
Low current (trickle) charging  
Real constant current charging by regulatin of the battery curreninstead of the charge current  
2 different top-off charging modes: ulse charging and costant voltage charging  
Fuel gauge enables highly accuraemaining capastimation of the battery  
Overvoltage protection for charge adapter input and battery  
Battery presence indication  
Operation without battery  
Reverse polarity and short protection  
Charging timout timer  
Battery NTC supervision  
8.9.1 Charge Controller Oerating Modes and Building Blocks  
Linear Step down Chrger detection  
The charging ciruit auomaically detects, if a step down charger or a linear charger is connected externally, by  
measuring the volte on the pin VOFF_B. If this pin is tied to GND, the circuit detects a linear charger. Otherwise the  
step down charger is etected  
Charge apter detection  
Te chae cntroller uses an integrated detection circuit to determine if an external charge adapter has been applied  
to te VCHARGER or V_USB pin. If the adapter voltage exceeds the supply voltage at pin V_SUPPLY5 by VCHDET the  
ChDet or USB_CHDet bit in the Charger Status register will be set. The detection circuit will reset the charge controller  
(ChDet or USB_CHDet is cleared) as soon as the voltage at the VCHARGER or USB_CHDet pin drops to only VCHMIN  
www.austriamicrosystems.com  
Revision 1v13  
51 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
above the battery voltage. In case the AS3658 device is reset the charge controller will also be reset, even if a charge  
adapter is applied to the VCHARGER or V_USB pin.  
Charging deeply discharged batteries  
To be able to charge even completely discharged batteries the AS3658 device contains an internal voltage regulator  
that uses the voltage of the external charge adapter at pin VCHARGER or V_USB to generate a bootstrap voltage  
V2_5V to supply the internal circuitry necessary for charging. As soon as the battery voltage exceeds 2.5V, the  
bootstrap regulator is disabled and the battery voltage will be used to generate the internal supply voltage to supply the  
charger circuitry.  
Low current (trickle) charging  
Trickle charge mode is started when an external charge adapter has been detected and ChEn or usb_chgEn is st,  
and the battery voltage at pin V_BAT is below the ResVoltRise threshold VRESRISE. The Battery switch is open n th
case (batsw_on=1 batsw_mode=0). Bits ChAct and/or USBChAct and Trickle will be set in the Charger Status  
registers. In this mode the charge current into the battery will be limited to TrickleCurrent (set in the Charger Current  
register) by the battery switch to prevent undue stress on either the battery or any of the charger ompnents in case  
of deeply discharged batteries. if Vsupply drops below Vsupply_min threshold the trickle current is regated down, to  
keep the Vsupply voltage up, even with an current limited charger (e.g.:USB charger). Once VRESSE has been  
exceeded, the battery switch will be closed and the charge contrller wproceed to constant crrent charge mode.  
The Vsupply voltage of the step down charger will be set to Vcu_preseto prevent undrvoltage on vsupply during  
the transition between Trickle and constant current chargi.  
Constant current charging  
Constant current charging is initiated by setting bit ChEn andor USBChEn in the harger Control register, and  
resetting the No_charging bit. Note that ChEn andor USBChEn should be seby default to enable operation of the  
device without a battery connected to the system. The ChAct and/or UShAct bit is set when the charger has started,  
and the charge current into the battery will blimied to ConstantCrent set in the Charger Current register) by the  
battery charge controller. When the batteraproaches full charge, itinstantaneous voltage will exceed the charge  
termination threshold VCHOFF. VCHOFdepnds on the ChVoltEOCThe top-off charge mode will be started (bit CVM  
will be set).  
Constant voltage charging  
Constant voltage charge mode is initiated and the CVM bit will be set when the VCHOFF threshold has been exceeded  
for the first time and bit Pulse is not set. In the following the charge controller will act to regulate the battery voltage to  
a value set by ChVoltEOC in the Charger Cofig register.  
The charge current is monitored during cotant voltage charging. It will be decreasing from its initial value during  
constant current charging and eventually p below the value set by TrickleCurrent in the Charger Current register. If  
the measured charge current is les than or equal to TrickleCurrent and the battery voltage is larger than VCHRES, the  
charging cycle is terminated anEOC is set. Then the charge controller starts the EOC operation.  
EOC operation  
There are two possibilies:  
1. If isolate_bat=1 he battery switch will be switch off and the battery charger regulates to its highest voltage Vchlimit.  
.
The advanage of this mode is a longer lifetime of the Li+ battery, because there is no discharging after the EOC  
condition. Iautresume=1 and the battery voltage drops below VCHRES the battery charger continues charging, by  
checin trickle charge mode, if there is a battery connected, and then starting with constant voltage.  
2If isolae_bat=0 the battery switch remains closed for step down charger or will be closed for linear and usb charger,  
ad the power to the system is supplied by the battery. The battery charger and the USB charger regulates to VEOC  
in cse the battery is removed. If autoresume=1 and the battery voltage drops below VCHRES the battery charger  
continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with  
battery charging.  
,
www.austriamicrosystems.com  
Revision 1v13  
52 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Battery Detection and Restart of Charging:  
In EOC state, If the battery voltage drops below VCHRES and the bit AutoResume is set, the battery detection is  
started. The battery switch will be switched into current source mode and VSUPPLY will be regulated to Vchlimit (all  
charger). The AS3658 measured the battery current with the fuel gauge in this mode. If there is no current, the AS3658  
is kept in this state and the bit NoBat is set. Otherwise the bit NoBat is cleared and the charger and the AS3658  
continues in battery charging mode. In addition, if the ntc_on<1:0>=01b (NTC temperature supervision is active) the  
NoBat bit is cleared and charging is restarted, if a NTC resistor with normal or high temperature is detected.  
Overvoltage protection for external linear charger:  
During charging with the external linear charger the battery charge controller constantly monitors the voltage of the  
charge adapter at pin VCHARGER. In case the charge adapter voltage exceeds VVCHIN,MAX rise for longer than  
3mesec and bit ChOVDetEn in the Charger Control register is set to 1, charging is disabled immediately. If the voltag
on the pin VCHARGER drops below VVCHIN,MAX fall, the charger is re-enabled.  
Figure 19. Typical charging cycle (step down charger)  
VCHARGER = 6V  
VSUPPLY = 4.V (isote_bat=1)  
VSPLY = .2V (isolate_bat=0)  
VBA= 4.2V  
VSUPPLY = 4.4V  
VBAres_rise (e.g: 3.4V)  
VBAT = 2V  
I
BAT = ConsntCuent (e.g 700mA)  
Constantvoltage  
EOC  
IBAT = TricleCurrent (e.g 200
IBAT = 0mA  
CH_ET = 1  
CH_DET = 0  
I2C Write  
NO_CHARGING = 1  
NO_CHARGING = 0  
www.austriamicrosystems.com  
Revision 1v13  
53 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 20. Typical charging cycle (External linear charger or USB charger)  
VCHARGER = 6V  
VSUPPLY = 4.4V...5.0V (isolate_bat=1)  
VSUPPLY = 4.4V..5.0V  
V
= 4.2V (isolate_bat=0)  
SUPPLY  
VBAT = 4.2V  
VBAT = Vres_rise (e.g: 3.4V)  
VBAT = 2V  
I
BAT = ConstantCurrent (e.g 700mA)  
Constantvoltage  
EOC  
IBAT = TrickleCurrent (e.g 200mA)  
I
BAT = 0mA  
CH_DET = 1  
CH_DET = 0  
I2C Write  
NO_CHARGING = 1  
NO_HARGING = 0  
Table 45. Charger Characteristics VB=3.0…5.5V; Tamb=–0…+85°C; unless otherwise specified  
Symbol  
Parameter  
Min  
Typ  
Unit  
Note  
Voltage limit of charger  
(if not in current  
ch_volt  
ae  
Vchlimit  
-3%  
3%  
V
Max. Vsupply voltage  
limitation mode)  
For input voltage higher than 15V see  
above protection circuit; for chargers with  
input voltages down to 4.5V see:  
‘Application Note for DC/DC Step down  
Charger for  
VCHARGER operating  
range  
VCHARGER  
15.0  
V
Chargers Supplying 4.5V to 5.5V’  
VCHDET  
VCHMIN  
50  
0
75  
20  
105  
35  
mV  
mV  
Charge adater  
detection hreshold  
Hysteresis is > 40mV; for USB and step  
down charger  
Vchdet falling threshold, if  
VSUPPLY>4.35V for V_USB and  
VCHARGER, and for V_USB, if  
usb_hold_chdet=1. Warning:  
Backcharging is possible if  
usb_hold_chdet=1  
Charge adapter  
VCHMIN_hold  
-5  
-20  
-40  
7.0  
mV  
detction hold voltage  
Charger adapter  
overvoltage threshold  
rising  
ChOVDetEn=’1’ for external linear  
charger only  
Vc,max  
6.0  
6.5  
6.0  
V
V
rise  
Charger adapter  
overvoltage threshold  
falling  
ChOVDetEn=’1’ for external linear  
charger only  
Vchin,max fall  
www.austriamicrosystems.com  
Revision 1v13  
54 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 45. Charger Characteristics VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified  
Symbol  
Parameter  
Min  
Typ  
Min  
Unit  
Note  
Maximum load current  
during startup on  
Vsupply  
ISTARTmax  
5
mA  
Undervoltage lockout  
threshold  
2.7…  
3.4  
Value is set by ResVoltRise in the Battery  
Voltage Monitor register  
VUVLO  
–3%  
+3%  
V
V
Charge termination  
threshold  
3.90…  
4.25  
Li+ battery; value is set by ChVoltEOC in  
the Charger Config register  
VCHOFF  
–0.06  
+0.06  
Value is set by ChVoltResume in the  
Charger Config register. Do not et  
Charger resume  
voltage  
3.85…  
4.20  
VCHRES  
V
VCHRES higher than VCHOF!  
VRESRI  
SE  
Charger constant  
Vcurr_preset  
V
V
+
current pre-set voltage  
100mV  
If isolate_bat=0; to pevent a system reset  
if the battery is removed in EOC operation  
VEOC  
Charger EOC voltage  
3.60  
Table 46. Charger status Bit definitions  
Charger statu
These bits show thstatus of the charger  
Addr:99  
Bit  
Bit Name  
Default Acces  
Description  
Biset when external charge adapter has been  
detected on pin VCHARGER  
0
ChDet  
NA  
NA  
R
R
Biis set when step down charger is operating  
(independent of Reg. bit no_charging)  
1
ChAct  
is set when battery voltage has dropped below resume  
level  
2
3
4
Resume  
Trickle  
CVM  
NA  
NA  
NA  
R
R
R
Bit is set when charger is in trickle charge mode  
Bit is set when charger is in top-off charge mode  
(constant voltage mode)  
Bit is set when charging has been terminated. Bit is  
cleared automatically when ChEn is cleared, no_charging  
is set or charging is resumed.  
5
6
7
EOC  
Noat  
A  
NA  
NA  
R
R
R
Bit is set when battery detection circuit indicates that no  
battery is connected to the system. Detection is started  
after EOC and if bit autoresume=1 only. Bit is cleared  
automatically when a battery is connected, when DisBDet  
is set and/or when ChEn is cleared.  
Bit is set, if Linear charger is detected, and chDet=1. This  
state is latched on the rising edge of chDet. Detected if  
VOFF_B is connected to ground  
ChLinear  
www.austriamicrosystems.com  
Revision 1v13  
55 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 47. Charger control Bit definitions  
Charger Control1  
Addr:11  
Bit Name  
These bits controls the charger  
Description  
Bit  
Default Access  
Disable step down charger (Independent of bit  
0
no_charging)  
0
ChEn  
ROM  
R/W  
Enable step down charger (default) (Independent  
of bit no_charging)  
1
0
Startup of AS3658 if charger is connected in  
power_off mode  
Don't exit power off mode, if charger is already  
connected before entering power off modno  
autonomous charging upon static charger dect.  
Startup with rising edge of VCHARGER or V_USB,  
RTC wakeup and XON ponly  
1
Ch_pwroff_en  
ROM  
R/W  
1
Overvoltage detection with linear xternal charger  
enabled  
0
1
2
3
4
CHOVDetEn  
AutoResume  
ROM  
ROM  
ROM  
R/W  
R/W  
R/W  
Ovvoltage detection with near external charger  
enbled. Battery charging disabled, if voltage  
xeeed  
Charging dos not restart automatically in EOC  
whn bit Resume is set.  
Charging will rstart automatically in EOC when bit  
1
0
Resume is set  
Normal charge_detect operation  
harger detect of USB charger will not be reset, if  
USB=VBAT. (Allow Battery charging, with  
_USB<4.4V down to 3.3V); for this case, software  
should detect the removal of the charger  
usb_hold_chdet  
1
Read: no timeout  
reached  
1
Write: reset charger timeout counter  
5
6
charging_tmax  
Ch_det_500ms  
ROM  
ROM  
/W  
R/W  
tCHARGING,MAX timeout reached and charging  
stopped  
Controls the charge detect debounce timer on pin  
VCHARGER, if external charger is connected. (If the  
charger is removed the debounce time is always 3msec)  
VCHARGER debounce timer is 3msec  
CHARGER debounce timer is 500msec  
0
1
V
www.austriamicrosystems.com  
Revision 1v13  
56 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 48. Battery, supply voltage Bit definitions  
Battery voltage monitor  
These bits controls the battery/Supply voltage monitor (Reset levels)  
Addr:12  
Bit Name  
Bit  
Default Access  
Description  
This value determines the reset level VRESRISE for rising  
VBAT. It is recommended to set this value at least 200mV  
higher than VRESFALL  
.
VRESRISE=2.7V  
VRESRISE=2.8V  
VRESRISE=2.9V  
VRESRISE=3.0V  
VRESRISE=3.1V  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
ROM  
(101b)  
2:0  
ResVoltRise  
R/W  
V
RESRISE=3.2
VRESRIS=3.3V  
RESRISE=4V  
V
This vaue determines the reslevel VRESFALL for falling  
T. It is recommended to set this value at least 200mV  
lowehan VRESRISE  
.
VRESFALL=2.7V  
00b  
001b  
010b  
011b  
10b  
1b  
110b  
111b  
V
V
V
=2.8V  
=2.9V  
=3.0V  
RESFALL  
RESFALL  
RESFALL  
ROM  
(01b
5:3  
ResVoltFall  
/W  
VRESFALL=3.1V  
V
V
V
=3.2V  
=3.3V  
=3.4V  
RESFALL  
RESFALL  
RESFALL  
A reset is generated if Vsupply falls below 2.7V.  
(If VVBAT falls below VRESFALL only an interrupt is  
generated (if enabled) and the Processor can shut  
down the system)  
0
1
RM  
(0b)  
6
7
SupResEn  
FaResn  
R/W  
R/W  
A reset is generated if Vsupply falls below  
VRESFALL  
0
1
Vresetfall debounce time = 3msec  
Vresetfall debounce time = 4µsec  
ROM  
www.austriamicrosystems.com  
Revision 1v13  
57 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 49. Charger Config Register  
Charger Config  
Addr:13  
Bit Name  
These bits configure the charger  
Description  
Bit  
Default Access  
Sets the end-of-charge voltage level VCHOFF  
.
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
3.90V  
3.95V  
4.00V  
4.05V  
4.10V  
4.15V  
4.20V  
4.25V  
2:0  
ChVoltEOC  
Vsupply_min  
ChVoltResume  
ROM  
Reguate down battery charging rrent on that level of  
Vsuply durig trickle charging and/linear charging, to  
pevent voltage dop on vsupply:  
b  
b  
10b  
11b  
3.90V  
4:3  
ROM  
3.60V  
4.20V  
4.50V  
Sethe resume voltage level VCHRES  
000b  
00b  
0b  
11b  
100b  
101b  
110b  
111b  
3.85V  
3.90V  
3.95V  
4.00V  
4.05V  
4.10V  
4.15V  
4.20V  
7:5  
ROM  
8.9.2 Fuel Gauge  
The fuel gauge circuit enableremaining capacity estimation of the battery by tracking the net current flow into and out  
of the battery using a voltge-to-frequency converter.  
Voltage-to-Freqency Converter  
The voltage-to-frequency (VFC) converter constantly monitors the voltage drop across an external current sense  
resistor Rsense conected in series between the negative battery terminal and ground. The use of an additional  
externalowpass filter is highly recommended. Using two 4.7kΩ resistors (Rfilt1,2) and a 1µF ceramic capacitor  
(ilt), the ilter cut-off is approximately 16.9 Hz. This filter will capture the effect of most spikes, and will thus allow the  
currnt accumulators to accurately reflect the total charge that has gone into or out of the battery.  
www.austriamicrosystems.com  
Revision 1v13  
58 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
The key building block of the VFC is an integrator. It will integrate the voltage VSNS across input pins ISENSP and  
ISENSN. If VSNS is positive (battery is charged), the output voltage of the integrator increases; a negative input voltage  
(battery is discharged) will cause the integrator output voltage to decrease.  
Table 50. Fuel Gauge parameters  
Symbol  
fCLK  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
Hz  
Note  
fclk_int  
2
/
Internal reference  
clock  
internal CLK frequency/2  
Programmable: 0.8 to 1.15 MHz  
fVFC  
f
CLK/59  
Sample frequency  
Input voltage  
VISENSP  
VISENSN  
-0.1  
0.1  
V
ZISENSP  
ZISENSN  
Input impedance  
4.67  
MΩ  
Discharge and Charge  
gain  
AVFC  
FRVFC  
VOFF  
91.0  
3.05  
Hz / V  
µVh  
fCLK = 1.1MHz  
Fundamental rate  
Uncompensated offset  
voltage  
-500  
-50  
500  
50  
µV  
Compensated offset  
voltage  
VOFF,COMP  
±
Charge Current Accumulator  
The output signals of the charge count dividers arused as inputs for the chage current accumulator that is realized  
as a 15-bit up-down counter with separate inputs for incementing and ementing the counter. An additional sign bit  
indicates the polarity of the counter value thais aintained in twocomlement format. The current accumulator is  
updated at a rate equivalent to one count per 05µVh, which is equivlent to one count per 61.03µAh when using a  
50mΩ current sense resistor. It will roll over beyond (7FFF)h when ncremented and (0000)h when decremented, and  
the value given by the counter will be aiguous in that case. Iis the responsibility of the host to read the counter  
before rollover occurs.  
The content of the charge current accumulator will be transferred into the DeltaCharge register when the UpdReq bit in  
the FuelGauge register has been set. The update f the register has to be synchronized to the sample clock fVFC and  
can take up to 1.5 clock cycles (max. 2.5µ. After the registers have been updated successfully, the UpdReq bit is  
cleared automatically and the charge current ccumulator together with the sign bit will be reset.  
Elapsed Time Counter  
The sample clock fVFC of the fuel auge circuit is fed to a 14-bit clock count divider. Its output signal is used as a  
clocking signal for the 16-bit elpsed time counter, resulting in an equivalent rate of 1.1379 counts per second  
(4096.60 counts = 1 hour). The elpsed time counter will rollover beyond (FFFF)h, and the value given by the counter  
will be ambiguous in that ase. t is the responsibility of the host to read the counter before rollover occurs.  
The content of theaped time counter will be transferred into the ElapsedTime register when the UpdReq bit in the  
FuelGauge register as been set. The update of the register has to be synchronized to the sample clock fVFC and can  
take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the UpdReq bit is cleared  
automatically nd he elapsed time counter will be reset.  
Ofset libration Mode  
Althugh the VFC compensates for the offset of the integrator the fuel gauge features an additional offset calibration  
mode to enhance the measurement accuracy even further. By setting the CalReq bit in the FuelGauge register the  
integrator is reset and the offset calibration mode is activated. The charge count dividers are bypassed during offset  
calibration to allow a faster calibration procedure with adequate resolution. The offset is accumulated during 16 clocks  
of the elapsed time counter, the resulting offset calibration value FGOffCal has a resolution of 3.05µV and is  
www.austriamicrosystems.com  
Revision 1v13  
59 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
transferred to the DeltaCharge register. The CalReq bit is cleared automatically after the calibration has completed  
successfully and FGOffCal has been written to the register.  
Please note that offset calibration is not possible while the charger is active. If the CalReq bit is set while the charger is  
active the calibration will start automatically after the charger has been disabled by clearing the ChEn bit or if the  
external charge adapter has been removed. If during an offset calibration procedure the charger is enabled the offset  
calibration mode is terminated, the CalReq bit is cleared, the current value of the elapsed time counter is transferred to  
the ElapsedTime register and the DeltaCharge register is loaded with (FFFF)h.  
Calculation of Battery Status  
The host system can calculate all the parameters necessary for estimating the remaining battery capacity by  
evaluating ElapsedTime, DeltaCharge and FGOffCal.  
Calculating Elapsed Time  
The host system can evaluate the change in time Δt by setting the UpdReq bit in the FuelGauge register and reding  
ElapsedTime after UpdReq has been automatically cleared. The change in time in seconds is given by:  
Δt = ElapsedTime x 3600 / 4096.60 [s]  
(EQ 1)  
Note that the absolute accuracy of Δt is directly related to the absolue accuracy of the internrefeence oscillator. To  
cancel the error associated with the accuracy of the oscillator, a orretin factor CV can be intrduced. CV can be  
evaluated by comparing the change in time calculated by (1) with some eference value tRF obtained from a RTC or  
measured during system calibration. CV is given by:  
CV = ΔtREF Δt  
(EQ 2)  
By multiplying Δt and CV the correct value for the change in time can be calclated:  
ΔtCRR = CV x Δt [s
(EQ 3)  
Calculating Average Current  
The host system can calculate the avege current during the ast time period by setting the UpdReq bit in the  
FuelGauge register and reading Deltaarge and Elapseme fter UpdReq has been automatically cleared.  
Together with FGOffCal determined during offset calibraode the average current is given by:  
I
AVG = DeltaCharge / (Δt x AVFC Rsse) – FGOffCal x 3.05µV / Rsense [A]  
(EQ 4)  
Δt is the change in time in seconds calculateby (1), AVFC is the gain of the VFC in Hz/V, Rsense is the value of the  
sense resistor in Ω and FGOffCal is the ofset clibration value. As DeltaCharge and Δt both are proportional to the  
oscillator frequency, no correction factor ns to be introduced in the formula.  
Calculating Accumulated Current  
Accumulated current is used to alculate the absolute remaining capacity of the battery. It is given by:  
IACC = IAVG x ΔtCORR [A]  
(EQ 5)  
Calculating the Rainig Capacity  
Remaining capacity ithe entire goal of fuel gauging. It is given by:  
RC = RC + IACC [As]  
(EQ 6)  
www.austriamicrosystems.com  
Revision 1v13  
60 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Calculating the Time to Empty  
The time to empty is calculated from the average current IAVG given by (4). The longer the time period for which IAVG is  
calculated, the more accurate the value for IAVG and therefore the estimated time to empty will be. It is given by:  
TTE = RC / IAVG [s]  
(EQ 7)  
Table 51. Fuel Gauge Bit definitions  
Fuel Gauge  
Addr:15  
These bits configures the fuel gauge  
Default Access Description  
Bit  
Bit Name  
0
1
Disable Fuel Gauge  
Enable Fuel Gauge  
0
FGEn  
ROM  
R/W  
This bit controls the update of the DeltaCharge and  
ElapsedTime registers. When set, the bis cleared  
automatically after the registers have een updated  
successfully. Bit should not be set to “0by the host  
1
2
UpdReq  
CalReq  
ROM  
R/W  
0
Update of regisrs complete  
Request update of registers  
1
his bit controls the offset calibration. When set, the bit is  
d automatically fer the calibration has completed  
scessfully.  
ROM  
OM  
R/W  
R/W  
Calibatiocomplete OR terminate offset  
0
calibration  
1
Request offset calibration  
Sets the mode for offset calibration  
Connect inputs to ground internally  
Use ISENSP and ISENSN (do not use)  
do not use  
00  
01  
11  
4:3  
CalMod  
do not use  
Table 52. Delta Charger MSB bit definition
DeltaChargeMSB  
Addr:101  
hese bits represent the MSB value of the fuel gauge Delta charge  
register  
Bit  
6:0  
7
Bit Name  
DeltaChrgeMSB  
sign  
Default Access  
Description  
The register is maintained in two’s complement format  
with a resolution of 3.05µVh and a full-scale value of  
±99.98mVh. When using a 50mΩ current sense resistor  
this is equivalent to a resolution of 61.03µAh and a full-  
scale value of 1.999Ah. Sign is set for negative values.  
Register will be updated after setting bit UpdReq to “1”.  
(00)h  
0
R
R
Sign bit of the delta charge register  
www.austriamicrosystems.com  
Revision 1v13  
61 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 53. DeltaChargerLSB bit definitions  
DeltaChargeLSB  
Addr:102  
These bits represent the LSB value of the fuel gauge Delta charge  
register  
Bit  
Bit Name  
Default Access  
Description  
The register is maintained in two’s complement format  
with a resolution of 3.05µVh and a full-scale value of  
±99.98mVh. When using a 50mΩ current sense resistor  
this is equivalent to a resolution of 61.03µAh and a full-  
scale value of 1.999Ah. Sign is set for negative values.  
Register will be updated after setting bit UpdReq to “1”.  
7:0  
DeltaChargeLSB  
(00)h  
R
Table 54. ElapsedTimeMSB bit definitions  
ElapsedTimeMSB  
Addr:103  
These bits represent the MSB value of the fuel gauge Epsed Time  
register  
Bit  
6:0  
7
Bit Name  
ElapsedTimeMSB  
sign  
Default Access  
Description  
The elapsd time count is stored the register with a  
resoluon of 0788s and a full-scale value of 15.997 hours.  
Regier wibe updated aftr setng bit UpdReq to “1”.  
(00)h  
0
R
R
Sign bit of he elapsed time register  
Table 55. ElapsedTimeLSB bit definitions  
ElapsedmeLSB  
Addr:104  
Thesbits represent the Lvaue of the fuel gauge Elapsed Time  
register  
Bit  
Bit Name  
Deault Access  
Description  
Thelapsed time count is stored in the register with a  
lution of 0.8788s and a full-scale value of 15.997 hours.  
egister will be updated after setting bit UpdReq to “1”.  
7:0  
ElapsedTimeLSB  
00)h  
R
8.9.3 Charger Operation  
The charger controls the battery current thrugh the internal transistor between VSUP_SW1,2 and VBAT_SW1,2, the  
step down charger and the battery switch betwen VSUPPLY and VBAT.  
Charge Current Regulator  
The regulator is programmed by stting TrickleCurrent and ConstantCurrent in the ChargerCurrent register and yields  
a resolution of 0.625mV or 12.mA when using a sense resistor of 50mΩ.  
Table 56. Charge CurrenReulator parameters  
Symbol  
tMEAS  
Prameter  
Min  
Typ  
Max  
Unit  
ms  
Note  
Measurement period  
68.65  
0.625  
fclk_int = 2.2MHz  
IMEAS,LS
mV  
www.austriamicrosystems.com  
Revision 1v13  
62 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 57. Charger Current Bit definitions  
Charger current  
These bits define the battery charging current and voltage  
Addr:16  
Bit Name  
Bit  
Default Access  
Description  
-1  
Sets the trickle current. Default is (01)b = 2.5mV x Rsense  
.
-1  
00b  
01b  
10b  
11b  
1.25mV x Rsense  
2.50mV x Rsense  
5.00mV x Rsense  
10.0mV x Rsense  
-1  
-1  
-1  
TrickleCurrent  
ROM  
R/W  
1:0  
Sets the charging current in constat current mode  
from (0mV…35mV) x Rsene-1 istes of 5mV x  
-1  
Rsene  
.
-1  
-1  
000  
0mV x Rsens
5mV x Rsense  
ConstantCurrent  
ROM  
R/W  
4:2  
001  
.  
-1  
111  
35mV x Rsense  
Charger age after EOC and isolate_battery=1  
000b  
4.3V  
4.4V  
4.5V  
4.6V  
4.7V  
4.8V  
4.9V  
5.0V  
001b  
010
b  
100b  
101b  
110b  
111b  
ch_voltage  
ROM  
R/W  
7:5  
8.10 Charger supervison unctions  
The charger supervision functios allow charging without processor control by continuously checking the NTC  
temperature resistor withithbattery pack using ADC_IN1 pin. The charging cycle is automatically paused, if the  
NTC indicates a temperatre range out of 0º to 45º (or 0º to 50º). If the temperature gets into this range again the  
charging cycle is eumd.  
In addition there is a charge timer that stops charging after a defined time, as additional security feature.  
The timer will be reet at charger insertion (charger detect) or at EOC state. The timer is counting during active  
charging ly (Trickle charging, Constant current charging, Constant voltage charging).  
In case tbttery voltage does not reach EOC voltage within tCHARGINGMAX after charging has been started,  
chaging_tmax interrupt will be generated and charging will be stopped. Charging can be started again by writing  
charging_tmax=0 in the charger_control1 register.  
www.austriamicrosystems.com  
Revision 1v13  
63 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 21. Charger Supervision functions – internal circuit  
ꢆꢔꢚꢛ  
ꢒꢓꢃꢔ  
ꢊꢎꢖꢃꢉꢊꢗꢆꢘꢕꢙ  
ꢊꢎꢖꢃꢉꢊꢗꢆꢘꢕꢙ  
ꢎꢉꢋꢜꢝꢏꢊꢏꢐꢍ ꢋ!"ꢐ#ꢉ$ꢏ  
ꢆꢕꢋꢌꢈꢎꢋꢀꢁꢂꢜꢋꢖ%ꢍꢊꢊꢏ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢇꢈꢄꢉꢊꢋ  
ꢌꢍꢎꢎꢏꢐꢑ  
)ꢍꢎꢃ ꢉ*ꢎꢏ+#  
ꢊꢎꢖꢃꢉꢊ-ꢕꢆ  
(
(
ꢆ&'ꢒ  
ꢊꢎꢖꢃ%ꢑ$ꢎ  
ꢈꢊꢎꢏꢐꢐ"#ꢎ  
ꢜ)ꢍꢎꢃꢎꢏ+#ꢜ  
ꢖ%ꢍꢐ,ꢏꢐ  
ꢎꢐꢈꢖ4 ꢏ5ꢋꢖꢖꢋꢉꢐ  
ꢖ67+ꢉ.ꢏ  
)ꢍꢎꢃ%ꢈ,%ꢎꢏ+#  
ꢍꢊꢑꢋꢖ%ꢍꢐ,ꢏꢐ  
.ꢏꢎꢏꢖꢎꢏ.  
ꢐ"ꢊ  
$ꢏꢎ ꢐꢋꢎꢈ+ꢏꢉ"ꢎ  
ꢊꢎꢏꢐ  
ꢄ12ꢋ*ꢐꢈꢎꢏꢋꢜꢕꢜꢋꢎꢉ  
ꢖ%ꢍꢐ,ꢈꢊ,ꢃꢎ+ꢍ3  
ꢎꢈ+ꢏꢉ"
ꢖ%ꢍꢐ,ꢏꢐꢋ/0ꢂ  
$ꢎꢍꢎꢏ  
ꢖ%ꢍꢐ,ꢈꢊ,ꢃꢎ+ꢍ3  
ꢈꢊꢎꢏꢐꢊꢍ ꢋ$ꢈ,ꢊꢍ  
ꢎꢉꢋꢍ  ꢉ*ꢋꢖ%ꢍꢐ,ꢈꢊ,  
8ꢉꢐꢋꢍꢊꢑꢋꢖ%ꢍꢐ,ꢏꢐ  
Table 58. NTC Chargersupervision Chracteristics, VVBAT=0…5.5V; Tamb=–20…+85°C; unless otherwise  
specified.  
Symbol  
Parameter  
Min  
Max  
Unit  
Note  
Alternating measurement of the NTC  
sensor for high temperature and low  
temperature with two different  
currents  
Sample time for NTC  
measurement high o
low temperature  
tsample  
33  
ms  
Comparator thresol
for high and low  
temperaure  
Vcomp  
1.8  
V
On pin ADC_IN1, if ntc_on<1:0>=1  
measureent  
High temprature  
curret fo45 deg limit,  
10k NTC  
-7%  
-7%  
388  
4.64  
457  
+7%  
+7%  
µA  
kΩ  
µA  
kΩ  
µA  
kΩ  
µA  
kΩ  
µA  
kΩ  
ntc_type=0, ntc_high_temp=0,  
@ 1.8V threshold  
IHightemp45deg_1  
0k  
Hgh temperature  
urrent for 50 deg limit,  
10k NTC  
ntc_type=0, ntc_high_temp=1,  
@ 1.8V threshold  
IHightemp50deg_1  
0k  
3.94  
60.5  
29.7  
39.2  
4.59  
46.8  
38.5  
High temperature  
IHighteeg_10k current for 0 deg limit,  
10k NTC  
ntc_type=0  
@ 1.8V threshold  
High temperature  
ntc_type=1, ntc_high_temp=0,  
@ 1.8V threshold  
IHighemp45deg_1  
current for 45 deg limit,  
00k  
100k NTC  
Low temperature  
ntc_type=1, ntc_high_temp=1,  
@ 1.8V threshold  
ILowtemp50deg_10  
current for 50 deg limit,  
0k  
100k NTC  
www.austriamicrosystems.com  
Revision 1v13  
64 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 58. NTC Chargersupervision Characteristics, VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise  
specified.  
Symbol  
Parameter  
Min  
Typ  
6.32  
284  
Max  
Unit  
µA  
Note  
Low temperature  
current for 0 deg limit,  
100k NTC  
ntc_type=1  
@ 1.8V threshold  
ILowtemp0deg_100  
k
kΩ  
±4%  
±8%  
(approx. 1º .), ntc_hyst=0  
(approx. 2º.), ntc_hyst=1  
NTC Current  
hystereses  
Hystereses  
Current for ADC  
measurement High  
temp range, 10k NTC  
ntc_on<1:0>=2, ntc_type=0,  
ntc_high_temp=0  
IHightempADC_10k  
-7%  
234  
23.6  
36  
+7%  
µA  
µA  
µA  
µA  
Current for ADC  
measurement High  
temp range, 100k NTC  
ntc_on<1:0>=2, ntc_type1,  
ntc_high_temp=0  
IHightempADC_100  
k
Current for ADC  
measurement Low  
temp range, 10k NTC  
ntc_on<1:0>3, n_type=0,  
ntc_high_emp=0  
ILowtempADC_10k  
Current for ADC  
measurement Low  
temp range, 100k NTC  
ntc_on<10>=3, ntc_type=1,  
ntc_high_temp=0  
ILowtempADC_100  
k
3.7  
Table 59. Charger supervision bit definitions  
Charger suervison  
These bits define charging timer anbattery temp. supervision settings  
Addr:14  
Bit  
3:0  
4
Bit Name  
Default Access  
Description  
Charging timeout timer  
0000b  
0001
0b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
Charging timeout disabled  
1 hour  
1.5 hour  
2 hour  
2.5 hour  
3 hour  
3.5 hour  
ch_timeout  
ROM  
R/W  
4 hour  
4.5 hour  
5 hour  
5.5 hour  
6 hour  
6.5 hour  
7 hour  
7.5 hour  
8 hour  
auto_shutdown  
ROM  
0
(see Reset generator and XON-Key on page 118)  
www.austriamicrosystems.com  
Revision 1v13  
65 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 59. Charger supervision bit definitions  
Charger supervision  
These bits define charging timer and battery temp. supervision settings  
Addr:14  
Bit Name  
Bit  
Default Access  
Description  
Selects the high temp level:  
45 º maximum temp  
0
1
5
ntc_high_temp  
ROM  
R/W  
50º maximum temp  
Low temp is always 0º  
Selects the NTC temperature hysteresis  
2º hysteresis  
6
7
ntc_hyst  
ntc_type  
ROM  
ROM  
R/W  
R/W  
0
1
1º hysteresis  
Select the NTC resistor type  
10kΩ NTC resisto
0
1
100kΩ NTesisor  
Table 60. FuelGauge  
FuelGauge  
Addr:15  
This bit ntrols first startup ot of power on reset  
Bit  
Bit Name  
Default Access  
Description  
00  
01  
10  
11  
Disable NTC supervision  
Enable NTC supervision  
7:6  
ntc_on  
ROM  
R/W  
Enable NTC for ADC measurement high temp  
Enable NTC for ADC measurement low temp  
www.austriamicrosystems.com  
Revision 1v13  
66 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.11 Step Down DC/DC Converters  
8.11.1 Step Down DC/DC Converters Operating Modes  
The step down dcdc converters have four operating modes to deliver different output currents for the applications. The  
operating mode is selected by setting the register sdx_1A_mode (the default is set by the Boot ROM).  
Figure 22. DC/DC step-down SD1, SD2, SD3 Normal Operating Mode; sdx_1A_mode = 0000b  
ꢋ ꢆꢆꢂ!  
77Bꢀꢁ  
ꢋꢉꢁ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢏꢉꢚꢛꢜꢏꢁ  
ꢊꢋꢉꢁ  
ꢌꢍꢎꢊꢏꢐꢏꢑꢍꢒꢊ  
ꢓꢌꢌꢔꢕ  
ꢂꢃꢀꢁ  
ꢄꢅꢀꢁ  
ꢉꢊꢝ  
ꢊꢋ ꢆꢆꢂ!ꢁ  
"ꢍ"#ꢄ  
ꢊꢋꢉꢁ  
ꢁꢌ#ꢄ  
ꢆꢇꢈꢉꢀꢁ  
ꢋ ꢆꢆꢂ!  
ꢊꢋ ꢆꢆꢂ!ꢀ"  
ꢂꢃꢀ"  
ꢋꢉ"  
ꢊꢋꢉ"  
ꢌꢍꢎꢊꢏꢐꢏꢑꢍꢒ
ꢓꢌꢌꢔꢕ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢏꢉꢚꢛꢜꢏ"  
ꢄꢅꢀ"  
ꢊꢋꢆꢂ!"  
"  
ꢊꢋꢉ"  
ꢁꢌ#ꢄ  
ꢆꢇꢈꢉꢀ"  
ꢋ ꢆꢆꢂ!  
ꢋꢉꢑ  
ꢊꢋꢆꢆꢂ!ꢀꢑ  
ꢂꢃꢀꢑ  
ꢊꢋꢉꢑ  
ꢌꢍꢎꢊꢏꢐꢏꢑꢍꢒꢊ  
ꢓꢌꢌꢔꢕ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢏꢉꢚꢛꢜꢏꢑ  
ꢄꢅꢀꢑ  
ꢆꢂ!
"ꢍ"#ꢄ  
ꢊꢋꢉꢑ  
ꢁꢌ#ꢄ  
ꢆꢇꢈꢉꢀꢑ  
Figure 23. DC/DC step-down SD1, SD2, SD3 1A Operode; sdx_1A_mode = 1010b  
ꢋ ꢆꢆꢂ!  
ꢊꢋ ꢆꢆꢂ!ꢀꢁ  
ꢋꢉꢁ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢚꢛ
ꢊꢋꢉꢁ  
ꢌꢍꢎꢊꢏꢐꢏꢑꢍꢒꢊ  
ꢓꢌꢌꢔꢕ  
ꢂꢃꢀꢁ  
ꢄꢅꢀꢁ  
ꢉꢊ
ꢊꢋ ꢆꢆꢂ!ꢁ  
"ꢍ"#ꢄ  
ꢊꢋꢉꢁ  
ꢁꢌ#ꢄ  
ꢆꢇꢈꢉꢀꢁ  
ꢋ ꢆꢆꢂ!  
ꢊꢋ ꢆꢆꢂ!ꢀ"  
ꢂꢃꢀ"  
ꢋꢉ"  
ꢊꢋꢉ"  
ꢌꢍꢎꢊꢏꢐꢏꢑꢍꢒꢊ  
ꢁꢌꢌꢌꢔꢕ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢏꢉꢚꢛꢜꢏ"  
ꢄꢅꢀ"  
ꢊꢋꢉꢑ  
ꢁꢌ#ꢄ  
ꢊꢋ ꢆꢆꢂ!"  
ꢒꢍ$#ꢄ  
ꢊꢋꢉ"  
ꢁꢌ#ꢄ  
ꢆꢇꢈꢉꢀ"  
ꢊꢋ ꢆꢆꢂ!ꢀꢑ  
ꢂꢃꢀꢑ  
ꢉꢖꢉꢖ  
ꢋꢗꢘꢙꢏꢉꢚꢛꢜꢏꢑ  
ꢄꢅꢀꢑ  
ꢆꢇꢈꢉꢀꢑ  
www.austriamicrosystems.com  
Revision 1v13  
67 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
If one of the DCDC step down converters is not used for an application, connect it as follows:  
Figure 24. DC/DC step-down SD3 (as example) not used  
ꢋꢙꢆꢆꢁꢚ  
ꢊꢋ ꢆꢆꢂ!ꢀ  
ꢁꢂꢃꢀ  
ꢉꢊꢉꢊ  
ꢋꢌꢍꢎꢏꢉꢐꢑꢒꢏꢀ  
ꢄꢅꢃꢀ  
ꢓꢔꢏꢒꢐꢌ  
ꢕꢖꢍꢗ  
ꢆꢇꢈꢉꢃꢀ  
Figure 25. DC/DC step-down SD1, SD2, SD3 External Controller Operating Mode; sdx_1A_mode = 100b  
ꢏ12ꢊꢀ3  
ꢎꢃ-ꢂꢌꢃ'ꢝꢚ  
ꢗ.ꢆ/ꢉ4ꢄꢆ5  
ꢍ.6ꢉꢂ7ꢀ  
34627ꢋꢀ3ꢂ4ꢆ  
ꢈ.ꢊꢊꢔꢏꢊ/ꢇꢂ0ꢂꢝꢑ'-ꢇ  
ꢉ146ꢂꢄꢁꢀꢊ2ꢉ4ꢆ8  
%ꢄ3ꢀ  
ꢏꢐꢑꢑ
ꢘꢋꢙꢆꢆꢁꢚꢃ  
ꢌꢃ'ꢝꢚꢙ'  
(ꢏꢃꢇꢏ+ꢐ *  
$ꢘ%,  
ꢌꢃ'ꢝꢚ  
55  
6ꢀꢁꢂꢃꢄꢅꢆꢂꢇ  
ꢈꢄꢆꢉꢊꢄꢋꢋꢀꢊ  
ꢝ&*)ꢇ  
ꢏꢃꢇꢙ)ꢛ*  
ꢗꢃꢈ
ꢘꢋꢉ  
ꢌꢍꢎꢏꢐꢏꢑꢍꢒ  
ꢁꢎꢌꢌ34  
ꢏꢃꢇ  
(ꢎꢛꢇꢙ)ꢛ*  
ꢇꢘ,  
ꢁꢂꢃ  
ꢃꢌꢍ  
ꢈꢐ((ꢇꢙꢝꢑ'-ꢇ  
ꢌꢏꢐꢑꢑꢎꢒꢇ  
ꢓꢔꢕꢖꢗ  
ꢌꢏꢃꢇ  
ꢇꢘꢖꢗ  
ꢌꢏꢃꢇ&  
ꢇꢘꢖꢗ  
ꢆꢇꢈꢉꢃ  
ꢄꢅꢃ  
ꢏꢐꢑꢑꢎꢒ  
ꢏꢃꢚ  
ꢌꢏꢐꢑꢑ
ꢛꢙꢚ  
ꢌꢏꢃꢚ  
ꢘꢔ!ꢌꢂ"ꢂ#ꢔꢓꢌ  
$ꢘꢘ%&  
ꢃꢈꢃꢈ  
ꢏꢉꢀꢁꢂꢃꢄꢅꢆꢂꢚ  
ꢗꢜꢙꢚ  
ꢌꢏꢐꢑꢑꢎꢒꢚ  
ꢚꢔꢚꢖꢗ  
ꢌꢏꢃꢚ  
ꢇꢘꢖꢗ  
ꢑꢝ ꢃꢙꢚ  
ꢏꢐꢑꢑꢎꢒ  
ꢏꢃ#  
ꢌꢏꢐꢑꢑꢎꢒꢙ#  
ꢎꢛꢙ#  
ꢌꢏꢃ#  
ꢘꢔ!ꢌꢂ"ꢂ#ꢔꢓꢌ  
$ꢘꢘ%&  
ꢃꢈꢃꢈ  
ꢏꢉꢀꢁꢂꢃꢄꢅꢆꢂ#  
ꢗꢜꢙ#  
ꢌꢏꢐꢑꢑꢎꢒ#  
ꢚꢔꢚꢖꢗ  
ꢌꢏꢃ#  
ꢇꢘꢖꢗ  
ꢑꢝ ꢃꢙ#  
Note: URR_GPIO has to be connected to VSUPPLY if the external controler mode is used.  
www.austriamicrosystems.com  
Revision 1v13  
68 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 26. DC/DC step-down SD1, SD2, SD3 External Controller Operating Mode and SD2 in 1A mode;  
sd1_1A_mode = 1101b  
ꢏ12ꢊꢀ3  
ꢎꢃ-ꢂꢌꢃꢝꢚ  
ꢗ.ꢆ/ꢉ4ꢄꢆ5  
ꢍ.6ꢉꢂ7ꢀ  
34627ꢋꢀ3ꢂ4ꢆ  
ꢈ.ꢊꢊꢔꢏꢊ/ꢇꢂ0ꢂꢝꢑ-ꢇ  
ꢉ146ꢂꢄꢁꢀꢊ2ꢉ4ꢆ8  
%ꢄ3ꢀ  
ꢏꢐꢑꢑꢎꢒ  
ꢌꢏꢐꢑꢑꢎꢒꢙꢇ  
ꢌꢃꢝꢚꢙ  
ꢏꢃꢇꢙ ꢙꢏ!  
"ꢘ%,  
ꢌꢃꢝꢚ  
ꢃꢈꢃꢈ  
ꢏꢉꢀꢁꢂꢃꢄꢅꢆꢂꢇ  
ꢈꢄꢆꢉꢊꢄꢋꢋꢀꢊ  
ꢑꢝ& ꢝ  
ꢏꢃꢇꢙ  
ꢗꢃꢈ!#ꢚꢕꢈ  
ꢌꢏꢃꢇ  
ꢘꢔ!ꢌꢂ"ꢂ#ꢔꢓꢌ  
ꢇ!ꢘꢘ%&  
ꢏꢃꢇ  
ꢎꢛꢇꢙ  
ꢇꢘ,  
ꢎꢛꢙꢇ  
ꢃꢌꢍ  
ꢈꢐꢜꢜꢇꢙꢝꢑ-ꢇ  
ꢌꢏꢐꢑꢑꢎꢒꢇ  
ꢓꢔꢕꢖꢗ  
ꢌꢏꢃꢇ  
ꢇꢘꢖꢗ  
ꢌꢏꢃꢇ&  
ꢇꢘꢖꢗ  
ꢑꢝ ꢃꢙꢇ  
ꢗꢜꢙꢇ  
ꢏꢐꢑꢑꢎꢒ  
ꢌꢏꢐꢑꢑꢎꢒꢙꢚ  
ꢎꢛꢙꢚ  
ꢏꢃ
ꢌꢏꢃꢚ  
ꢘꢔ!ꢌꢂ"ꢔꢓꢌ  
ꢇꢘꢘꢘ%
ꢃꢈꢃꢈ  
ꢏꢉꢀꢁꢂꢃꢄꢅꢆꢂꢚ  
ꢗꢜꢙꢚ  
ꢌꢏꢃ#  
ꢇꢘꢖꢗ  
ꢌꢏꢐꢑꢑꢎꢒꢚ  
ꢓꢔꢕꢖꢗ  
ꢇꢘꢖꢗ  
ꢑꢝ ꢃꢙꢚ  
ꢐꢑ
ꢙ#  
ꢃꢈꢃꢈ  
ꢏꢉꢀꢁꢂꢃꢄꢅꢆꢂ#  
ꢗꢜꢙ#  
ꢑꢝ ꢃꢙ#  
Note: The LDO VDIG2 and the Low voltage currnt surce / GPIO pin CURR1_GPIO1 cannot be used in the  
‘External Controller’ operating mode configuration.  
VCURR_GPIO has to be connected tVSUPPLY if the external controler mode is used.  
www.austriamicrosystems.com  
Revision 1v13  
69 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.11.2 Step Down DC/DC Converter Characteristics  
Figure 27. Step Down DC/DC Converter Block diagram  
ꢒꢓꢍꢊꢎ  
ꢊꢐꢔ  
ꢕꢖꢗꢘꢖꢐꢕꢘꢙꢚꢇꢊꢐꢔ  
ꢙꢏꢛ  
ꢌꢍꢍꢊꢎ  
ꢏꢐꢊꢐꢑ  
-ꢕꢚꢋꢋꢏ'  
ꢕꢆꢔꢕꢆ(  
ꢁ$ꢆꢇ$ꢈꢏꢑ%&ꢆ  
ꢄꢈꢊꢋ  
ꢜꢆꢝꢉ ꢌ!  
ꢜꢆꢝꢉ"#!  
ꢕꢛꢐꢋ  
ꢕꢖꢗꢘꢖꢐꢕꢘꢋꢈꢔ  
ꢀꢗ  
-01ꢒ5657  
ꢒꢍꢍ!ꢉꢖꢚꢑ'  
ꢙ'ꢙꢏꢆ  
ꢜꢆꢝꢉ"ꢒꢍ!  
ꢅꢆꢇꢈꢉꢄꢈꢊꢋ  
ꢕꢆ)  
(./  
ꢄꢈꢊꢋ  
(ꢂ)1  
2
ꢕꢖꢗꢘꢏ$  
ꢜꢆꢝ*ꢍ+,-  
ꢕꢛꢐꢋ  
 
"
ꢕꢈꢝꢑꢕꢑ%ꢇꢑ  
0ꢏꢈꢋꢆ  
ꢄꢈꢊꢔꢕ%ꢑꢐ
Functional Description  
The step-down converter is a high efficieny fixd frequency current mode regulator. By using low resistance internal  
PMOS and NMOS switches efficiency up 5% can be achieved. The fast switching frequency allows using small  
inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load  
and line regulation over the whole utpt voltage range, up to an output current of 500mA, with an output capacitor of  
only 10µF. The implemented curent limitation protects the DCDC and the coil during overload condition.  
To allow optimized perfoancin different applications, there are bit settings possible, to get the best compromise  
between high efficiencand low input, output ripple:  
Low ripple, low nise operation:  
Bit settings:  
sdX_dis_min=1  
Ihis me here is no minimum coil current necessary before switching off the PMOS. As result, the ON time of the  
PMS will be reduced down to tmin_on at no or light load conditions, even if the coil current is very small or the coil  
current is inverted. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low  
input to output voltage differences. Because of the inverted coil current in that case the regulator will not operate in  
pulse skip mode.  
www.austriamicrosystems.com  
Revision 1v13  
70 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 28. sdX_dis_curmin=1 operation  
1: LX voltage, 2:coil current (1mV=1mA) 3: Vout  
High efficiency operation (default setting):  
Bit settings:  
sdX_dis_curmin=0  
In this mode there is a minimum coil current necessary before switching off te PMOS. As result there are less pulses  
at low output load necessary, and therefore the effcieny at low output is icreased. This results in higher ripple,  
and noisy pulse skip operation up to a higher ouput current.  
Figure 29. sdX_dis_curmin=0 operation  
1: LX voltage, 2:coil current (1mV=1m: Vout  
Italso pssble to switch between these two modes during operation:  
For Example:  
sdX_dis_curmin=0: System is in idle state. No audio, RF signal. Decreased supply current preferred. Increased ripple  
doesn’t affect system performance.  
sdX_dis_curmin=1: System is operating. Audio signal on and/or RF signal used. Decreased ripple and noise preferred.  
Increased power supply current can be tolerated.  
www.austriamicrosystems.com  
Revision 1v13  
71 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
100% PMOS ON mode for low dropout regulation: For low input to output voltage difference the sdX_dis_pon bit  
can be set, to allow 100% duty cycle of the PMOS transistor.  
Low power mode: The sdX_lpo mode bit can be set all the time. This mode allows internal power down, of not used  
blocks during pulseskip mode, which results in a better efficiency at light output loads.  
Inductor setting: The step down regulator is optimized for 2.2µH at 2.2MHz and 4.7µH at 1.1MHz  
Table 61. Step Down DC/DC Converter parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
PIN VSUPPLY_1,VSUPPLY_2,  
VSUPPLY_3  
V
Input voltage  
3.0  
5.5  
V
IN  
Regulated output  
voltage  
V
0.6  
3.3  
V
OUT  
-50  
+50  
mV  
mV  
mA  
output voltae <2.0V  
output volge 2.0V  
Output voltage  
tolerance  
VOUT_tol  
-100  
+100  
ILIMIT  
RPSW  
RNSW  
Iload  
Current limit  
800  
P-Switch ON  
resistance  
0.5  
Ω
Ω
V_SUPLYx=3.0V  
V_SUPPLYx=3.0V  
N-Switch ON  
resistance  
0.5  
Load current  
Switching frequency  
Efficiency  
0
500  
mA  
MH
MHz  
%
sdX_frequ=0, fclk_int =2.2MHz  
sdX_frequ=1, fclk_int =2.2MHz  
Iout=100mA, Vout=2.3V, Vsup.=3V  
2.2  
1.1  
90  
fSW  
ηeff  
250  
Operating current without load  
IVDD  
Current consumn  
µA  
0.1  
80  
Low power mode current  
Shutdown current  
tMIN_ON  
Minimum on time  
Minimum off time  
ns  
ns  
tMIN_OFF  
40  
External Components  
CVSD1-3, CVSD1A  
Output caacito
Iput apacitor  
8.0  
10  
µF  
µF  
Ceramic X5R or X7R  
Ceramic X5R or X7R  
2.2  
Ceramic X5R or X7R; CVSUPPLY1  
in external controller mode or 1A  
operating mode  
CVSUPPLY1-3  
LSD1-SD
4.7  
µF  
2.2  
4.7  
sdX_frequ=0, ± 10% tolerance  
sdX_frequ=1, ± 10% tolerance  
Inductor  
µH  
SD1 external controller mode; use  
sd1_freq=1 (1.1Mhz)  
2.2  
www.austriamicrosystems.com  
Revision 1v13  
72 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 62. Step Down DC/DC Bit definitions  
Step Down Control1  
These bits configures the step down converters  
Addr:35  
Bit Name  
Bit  
0
Default Access  
Description  
sd1_psw_on  
0
0
0
0
0
0
0
0
R/W  
n/a  
Only if sd1_on = 0, switch on PSW (0.5Ω PMOS)  
1
-
2
-
n/a  
3
sd1_nsw_on  
R/W  
R/W  
n/a  
Only if sd1_on = 0, switch on NSW (0.5Ω NMOS)  
Only if sd2_on = 0, switch on PSW (0.5Ω PMOS)  
4
sd2_psw_on  
5
-
6
-
n/a  
7
sd2_nsw_on  
R/W  
Only if sd2_on = 0, switch on NSW (0.5Ω NMOS)  
Table 63. Step Down DC/DC Bit definitions  
SteDown Control2  
Addr:36  
These bits cnfigures the step down cnverters  
Bit  
0
Bit Name  
Default Access  
Description  
sd3_psw_on  
0
0
0
0
R/W  
n/a  
Only if sd3_on = 0, sitch on PSW (0.5Ω PMOS)  
1
-
2
-
n/a  
3
sd3_nsw_on  
R/W  
Onf sd_on = 0, switch on NSW (0.5Ω NMOS)  
Step down low power mode:  
0
Increased current consumption in pulseskip mode  
4
5
sdX_lpo  
0
R/W  
R/W  
Decreased current consumption in pulseskip  
mode  
Step down pon feature control  
PON feature enabled: 100% duty cycle (pmos  
always on) if output voltage drops more than 4%.  
Increased output ripple in that operation.  
0
1
sd1_dis_pon  
0
PON feature disabled: Maximum dutycycle=1-  
(tmin_off*fsw)  
Step down pon feature control  
PON feature enabled: 100% duty cycle (pmos  
always on) if output voltage drops more than 4%.  
Increased output ripple in that operation.  
0
1
6
7
sd2_dispon  
sd3_dis_pon  
0
0
R/W  
R/W  
PON feature disabled: Maximum dutycycle=1-  
(tmin_off*fsw)  
Step down pon feature control  
PON feature enabled: 100% duty cycle (pmos  
always on) if output voltage drops more than 4%.  
Increased output ripple in that operation.  
0
1
PON feature disabled: Maximum dutycycle=1-  
(tmin_off*fsw)  
www.austriamicrosystems.com  
Revision 1v13  
73 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 64. Step Down DC/DC Bit definitions  
Step Down charger control  
These bits configures the step down converters  
Addr:37  
Bit Name  
Bit  
Default Access  
Description  
3
-
0
n/a  
Step down curmin feature control  
curmin feature enabled: Inductor current regulated  
to min 170mA. Higher efficiency in low dropout  
and low output current operation. Higher output  
ripple and noise.  
0
1
4
5
6
sd1_dis_curmin  
0
R/W  
curmin feature disabled: Decreased efficiency i
low dropout mode and at low output current. mall  
output ripple and noise.  
Step down curmin feature contol  
curmin feature enabled: Inductor urret regulated  
to min 170mA. Higher efficiecy ilow dropout  
and low output current oratio. Higher output  
ripple and nise.  
0
1
sd2_dis_curmin  
0
R/W  
curin feature disabed: ecreased efficiency in  
low dropout mode and at low output current. Small  
uput ripple and noise.  
Step down cumin feature control  
curmin feure enabled: Inductor current regulated  
to min 170mA. Higher efficiency in low dropout  
anw output current operation. Higher output  
ripple and noise.  
0
1
sd3_dis_curmin  
0
R/W  
cumin feature disabled: Decreased efficiency in  
ow dropout mode and at low output current. Small  
output ripple and noise.  
Table 65. Step Down DC/DC Reg Power1 ctrl Bit defini
Reg Power1 Ctrl  
Addr:23  
These bits control the on/off function of the step down regulator  
Bit  
Bit Name  
Default Access  
Description  
Switch on/off the step down1 dc/dc converter; it is possible  
to on/off control DCDC SD1 by CURR3_GPIO3 or  
CURR4_GPIO4 (see General Purpose Input / Output  
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)  
4
sd1_on  
ROM  
ROM  
R/W  
R/W  
0
1
Step Down DC/DC 1 off  
Step Down DC/DC 1 on  
Switch on/off the step down2 dc/dc converter; it is possible  
to on/off control DCDC SD2 by CURR3_GPIO3 or  
CURR4_GPIO4 (see General Purpose Input / Output  
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)  
5
sd2_on  
0
1
Step Down DC/DC 2 off  
Step Down DC/DC 2 on  
www.austriamicrosystems.com  
Revision 1v13  
74 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 65. Step Down DC/DC Reg Power1 ctrl Bit definitions  
Reg Power1 Ctrl  
These bits control the on/off function of the step down regulator  
Addr:23  
Bit Name  
Bit  
Default Access  
Description  
Switch on/off the step down3 dc/dc converter; it is possible  
to on/off control DCDC SD3 by CURR3_GPIO3 or  
CURR4_GPIO4 (see General Purpose Input / Output  
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)  
6
sd3_on  
ROM  
R/W  
0
1
Step Down DC/DC 3 off  
Step Down DC/DC 3 on  
Table 66. Step Down Voltage1 Bit definitions  
Step Down Voltage1  
These bits control the step down regulator voltage, freueny, clk phase  
Addr:00  
Bit  
Bit Name  
Default Access  
Description  
Contrl the voltage selection for tstep down1 DC/DC  
converter  
000000 0.6 V  
5:0  
step_down1_v  
ROM  
R/W  
(LSB=50mV)  
111111 3.4 V  
Select tstedown1 frequency  
lk_int (1.6MHz to 2.3 MHz)  
fclk_int/2 (0.8MHz to 1.15 MHz)  
0
1
6
7
sd1_frequ  
ROM  
ROM  
R/W  
R/W  
sd1_clkinvert  
Invertthe input clock of the step down1 converter  
Table 67. Step Down Voltage2 Bit defitions  
Step Down Voltage2  
Addr:01  
These bits control the step down regulator voltage, frequency, clk phase  
Bit  
Bit Name  
Default Aces
Description  
Control the voltage selection for the step down2 DC/DC  
converter  
000000 0.6 V  
5:0  
step_down2_v  
R
R/W  
(LSB=50mV)  
111000 – 11111 3.4 V  
Select the step down2 frequency  
fclk_int (1.6MHz to 2.3 MHz)  
fclk_int/2 (0.8MHz to 1.15 MHz)  
0
1
6
7
sd2_frequ  
ROM  
ROM  
R/W  
R/W  
sd_clkinvert  
Inverts the input clock of the step down1 converter  
www.austriamicrosystems.com  
Revision 1v13  
75 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 68. Step Down Voltage3 Bit definitions  
Step Down Voltage3  
These bits control the step down regulator voltage, frequency, clk phase  
Addr:02  
Bit Name  
Bit  
Default Access  
Description  
Control the voltage selection for the step down3 DC/DC  
converter  
000000 0.6 V  
5:0  
step_down3_v  
ROM  
R/W  
(LSB=50mV)  
111000 – 11111 3.4 V  
Select the step down3 frequency  
fclk_int (1.6MHz to 2.3 MHz)  
fclk_int/2 (0.8MHz to 1.15 MHz)  
0
1
6
7
sd3_frequ  
ROM  
ROM  
R/W  
R/W  
sd3_clkinvert  
Inverts the input clock of the step dow1 converter  
Table 69. Step down1 high current and DVM definitions  
Charge Pump Control  
Addr:17  
These bits control the tep don high currenmode and DVM step size  
Bit  
Bit Name  
Default Access  
Description  
Time step of DVM vltage change of step down1  
If vltage of step dow1 (st_down1_v) is changed during  
operation, voltagis dcreased or increased by 25 mV  
steps with the follwing time separation between steps:  
00  
01  
10  
11  
0 µsec, immediate change (no DVM)  
3:2  
sd1_dvm_time  
ROM  
R/W  
4 µsec  
8 µsec  
16 µsec  
ct 1A mode of step down2 (combined operation of SD2  
and SD3 with a single coil and up to 1A output current) and/  
or controller mode of SD1  
1A mode selected Controlled by SD2 The  
following pins have to be connected:  
1010 VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<-  
>PGND3  
Stepdown3 is not usable in that mode  
External controller mode. LDO DIG1 and current  
sink / GPIO CURR1_GPIO1 cannot be used. Set  
7:4  
sdx_1A_mode  
ROM  
R/W  
1100  
ldo_dig1_on=0, GPIO1Mode=111b (tristate),  
GPIO1Pulls=00b (no pull-up or pull-down)  
External controller mode SD1, and 1A mode  
controlled by SD2  
The following pins have to be connected:  
1101  
VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<-  
>PGND3  
Stepdown3 is not usable in that mode  
all other codes (0000...1001,1011,1110...1111) normal  
mode  
www.austriamicrosystems.com  
Revision 1v13  
76 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 70. Step Down DC/DC Bit definitions  
Step Down Control3  
Addr:133  
Configurate the SD converters to reduce voltage drops on fast transient  
high current load steps. Double the output capacitor size has to be used!  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
1
0
1
Normal operation  
0
sd1_uvlimit  
sd2_uvlimit  
sd3_uvlimit  
0
0
0
R/W  
R/W  
R/W  
Enable SD1 undervoltage limit.  
Normal operation  
1
2
Enable SD3 undervoltage limit.  
Normal operation  
Enable SD3 undervoltage limit.  
8.11.3 Typical Performance Characteristics  
Figure 30. DC/DC step-down Efficiency (sdX_dis_curmin=0, sdX_lpo=0)  
Figure 31. PCB Layout recommedation  
www.austriamicrosystems.com  
Revision 1v13  
77 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
8.12 Low Dropout Regulators (LDO)  
The low dropout regulators are linear high performance regulators with programmable output voltage.  
They are controlled by the following registers:  
Table 71. LDO_RF1 voltage bit definitions  
LDO_RF1 voltage  
Addr:03  
These bits control the LDO_RF1 voltage and mode  
Bit  
Bit Name  
Default Access  
Description  
Control the voltage selection for LDO VRF_1  
00000 1.85V  
… (LSB=50mV)  
11111 3.40V  
4:0  
ldo_rf1_v  
ROM  
R/W  
0
1
current limitation = Ilimit  
5
6
rf1_lcurr_en  
ROM  
ROM  
R/W  
R/W  
current limitation Ilimt=Iliit/2  
If ‘1’ current limitation is enabled, if RF1-LDO is operating  
as High side sitch  
rf1_swprot_en  
Table 72. LDO_RF2 voltage bit definitions  
LDO_RF2 voltage  
Addr:04  
These bcontrol the LDO_R2 voltage and mode  
Bit  
Bit Name  
Default Access  
escription  
Control the voage selection for LDO VRF_2  
00000 1.85V  
… (LS50m)  
11111 3.40V  
4:0  
ldo_rf2_v  
ROM  
OM  
R/W  
R/W  
current limitation = Ilimit  
5
rf2_lcurr_en  
current limitation Ilimit=Ilimit/2  
Table 73. LDO_RF3 voltage bit definitions  
LDO_RF3 voltage  
These bits control the LDO_RF3voltage and mode  
Addr:05  
Bit  
Bit Name  
Delt Access  
Description  
Control the voltage selection for LDO VRF_3  
00000 1.85V  
… (LSB=50mV)  
11111 3.40V  
4:0  
ldo_rf3_v  
ROM  
R/W  
0
1
0
current limitation = Ilimit  
current limitation Ilimit=Ilimit/2  
normal mode  
5
6
rf3_lurr_en  
ROM  
ROM  
R/W  
R/W  
rf_hotplug_en  
200mA current limited switch, if bit rf3_sw=1  
(rf3_lcurr_en=0)  
1
www.austriamicrosystems.com  
Revision 1v13  
78 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 74. LDO_DIG1 voltage bit definitions  
LDO_DIG1 voltage  
Addr:06  
Bit Name  
ldo_dig1_v  
These bits control the LDO_DIG1 voltage  
Description  
Bit  
Default Access  
ROM R/W  
Control the voltage selection for LDO DIG_1  
(see Table 82)  
5:0  
Table 75. LDO_DIG2 voltage bit definitions  
LDO_DIG2 voltage  
Addr:07  
These bits control the LDO_DIG2 voltage  
Description  
Bit  
Bit Name  
Default Access  
ROM R/W  
5:0  
ldo_dig2_v  
Control the voltage selection for LDO DIG_2(see Tabl82)  
Table 76. LDO_DIG3 voltage bit definitions  
LDO_DIG3 voltage  
Addr:08  
These bts conol the LDO_DIG3 volage  
Descriton  
Bit  
Bit Name  
Default Access  
ROM R/W  
5:0  
ldo_dig3_v  
the voltage selction for LDO DIG_3(see Table 82)  
Table 77. LDO_DIG4 voltage bit definitions  
LDO_DIGvoltage  
Addr:09  
These bits cool he LDO_DIG4 voltage  
Description  
Bit  
Bit Name  
DeaulAccess  
ROR/W  
5:0  
ldo_dig4_v  
Corol thvoltage selection for LDO DIG_4(see Table 82)  
Table 78. LDOs Reg Power1 ctrl Bit definitions  
Reg Power1 Ctrl  
Addr:23  
These bits control the on/off function of the ldo regulator  
Bit  
Bit Name  
DefauAccess  
Description  
Switch on control of RF1 LDO; Important: Set rf1_sw=0  
before setting ldo_rf1_on=1; it is possible to on/off control  
LDO RF_1 by CURR3_GPIO3 or CURR4_GPIO4 (see  
General Purpose Input / Output (CURR1_GPIO1 …  
CURR4_GPIO4) on page 30)  
0
ldo_rf1_on  
ROM  
ROM  
ROM  
R/W  
R/W  
R/W  
Switch on control of RF2 LDO; Important: Set rf2_sw=0  
before setting ldo_rf2_on=1; it is possible to on/off control  
LDO RF_2 by CURR3_GPIO3 or CURR4_GPIO4 (see  
General Purpose Input / Output (CURR1_GPIO1 …  
CURR4_GPIO4) on page 30)  
1
2
ldorf2_n  
Switch on control of DIG1 LDO;  
it is possible to on/off control LDO DIG_1 by  
CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose  
Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on  
page 30)  
ldo_dig1_on  
Switch on control of DIG2 LDO. do not set if DCDC SD1 is  
in external controller mode (if sd1_1A_mode = 1100b).  
it is possible to on/off control LDO DIG_2 by  
CURR3_GPIO3 or CURR4_GPIO4(see General Purpose  
Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on  
page 30)  
3
ldo_dig2_on  
ROM  
R/W  
www.austriamicrosystems.com  
Revision 1v13  
79 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 79. LDOs Reg Power2ctrl Bit definitions  
Reg Power2 Ctrl  
These bits control the on/off function of the ldo regulator  
Addr:30  
Bit Name  
Bit  
Default Access  
Description  
Switch on control of RF3 LDO; Important: Set rf3_sw=0  
before setting ldo_rf3_on=1  
0
ldo_rf3_on  
ROM  
R/W  
Switch on control of DIG3 LDO; it is possible to on/off  
control LDO DIG_3 by CURR3_GPIO3 or CURR4_GPIO4  
(see General Purpose Input / Output (CURR1_GPIO1 …  
CURR4_GPIO4) on page 30)’  
1
ldo_dig3_on  
ROM  
R/W  
2
3
ldo_dig4_on  
rf1_sw  
ROM  
ROM  
R/W  
R/W  
Switch on control of DIG4 LDO  
If ‘1’ RF1-LDO is operating as High side switch (Ron1Ω),  
valid if ldo_rf1_on=0  
If ‘1’ RF2-LDO is operating as High side swtch (Ron=1Ω),  
4
7
rf2_sw  
rf3_sw  
ROM  
ROM  
R/W  
R/W  
valid if ldo_rf2_on=0  
If ‘1’ RF3-LDO is operating as High sidswich (Ron=1Ω),  
valid if ldo_rf3_=0  
8.12.1 RF LDO’s (VRF_1, VRF_2, VRF_3)  
These LDO’s are designed to supply sensitive analogue cts like LNA’s, Transceivers, VCO’s and other critical RF  
components of cellular radios. Another application is the suy of audio devices oas a reference for AD and DA  
converters. The design is optimized to deliver the best compomise between quscent current and regulator  
performance for battery powered devices.  
Stability is guaranteed with ceramic output capacitors of 1µF ±20% (X52.2µF +100/-50% (Z5U) for RF2, RF3 and  
2.2µF ±20% (X5R) or 4.7µF +100/-50% (Z5U) foRF1. The low ER of ese caps ensures low output impedance at  
high frequencies. Regulation performance is ecellent even under lodropout conditions, when the power transistor  
has to operate in linear mode. Power supplrejection is high enouh to suppress the PA-ripple on the battery in TDMA  
systems at the output. The low noisprmance allows direct onnection of noise sensitive circuits without additional  
filtering networks. The low impedance the power deviables the device to deliver up to IOUT current even at  
nearly discharged batteries without any decrease of perfnce.  
With vrf2_lcurr_en=0 and vrf3_lcurr_en=0 the regator VRF_2, VRF_3 can deliver up to 250mA  
With vrf1_lcurr_en=0 the regulator VRF_1 can deliver up to 400mA  
www.austriamicrosystems.com  
Revision 1v13  
80 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Figure 32. Analog LDO Block diagram  
ꢆꢇꢈꢉꢔꢕꢋꢏ  
ꢝꢜꢘꢀꢕꢉꢑꢋꢒꢓꢉꢖꢕꢏꢗꢈꢋꢗꢘꢓ  
ꢑꢋꢒꢓꢉꢔꢕꢋꢏ  
ꢆꢇꢈꢉꢖꢕꢏꢗꢈꢋꢗꢘꢓ  
ꢅꢖꢙ&  
'ꢅ()ꢃ)ꢅ  
ꢙꢚꢛꢜꢋꢁꢋ  
ꢙꢚꢛꢜꢋꢁꢋ  
 
ꢂꢃꢄꢅ  
ꢆꢇꢈꢉꢊꢇꢋꢌꢂ  
 !"#  
 ꢇꢈꢀꢉꢍ$ꢋꢐꢂ  
ꢉꢚꢕ%ꢁꢀ  
ꢍꢎꢉꢀꢏꢐꢂ  
ꢎ2ꢐꢇꢚꢛ  
3ꢋꢏꢘꢀꢏꢕꢜ4  
Ω
ꢅꢇ*ꢘ  
ꢂꢃꢄ)  
ꢂ),-',,ꢚꢙꢉꢆꢇꢕꢗ  
('ꢃ+ꢅ  
μ
0ꢃ0 .ꢉꢁꢇꢀꢉ/.ꢂ  
.ꢉꢁꢇꢀꢉ/.0ꢀ  
μ
1)/  
%ꢘꢀꢏꢕꢜ  
ꢔꢊꢍ  
Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) CharacteristicsVx_IN=4V; ILOAD=150mA; amb=25ºC;  
CLOAD =2.2µF (Ceramic); unless otherwise specified  
Symbol  
Parameter  
Min  
T
Max  
Unit  
Note  
Vx_IN  
Supply voltage rage  
3
5.5  
V
VRF_2, rf2_lcurr_en=1  
VRF_3, rf3_lcurr_en=1  
0
0
0
0
150  
200  
250  
VRF_1, rf1_lcurr_en=1  
Output current1  
IOUT  
m
VRF_2, rf2_lcurr_en=0  
VRF_3, rf3_lcurr_en=0  
40
0.5  
1
VRF_1, rf1_lcurr_en=0  
VRF_1  
Ω
Ω
RON  
On resistance  
VRF_2, VRF_3  
f=1kHz  
70  
40  
Power supply rejection  
ratio  
PSRR  
dB  
f=100kHz  
IOFF  
IVDD  
Shut down current  
Supply current  
Output nise  
100  
50  
nA  
µA  
without load  
µVrms  
Noise  
50  
10Hz < f < 100kHz  
VRF_1,2,3 are set to low current  
during startup time  
tstart  
Statup tme  
200  
µs  
V
VRFX_IN>3.0V, VRF_1 @  
Iout=300mA, VRF_2 and VRF_3 @  
Iout=150mA (X=1,2)  
1.85  
2.85  
Vout  
Output voltage  
VRFX_IN>3.55V, VRF_1 @  
Iout=300mA, VRF_2 and VRF_3@  
Iout=150mA (X=1,2)  
1.85  
-50  
3.4  
50  
V
Output voltage  
tolerance  
Vout_tol  
mV  
mV  
-1  
1
Static  
VLineReg  
Line regulation  
Transient; Slope: tr=10µs  
-10  
10  
www.austriamicrosystems.com  
Revision 1v13  
81 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) Characteristics, Vx_IN=4V; ILOAD=150mA; Tamb=25ºC;  
CLOAD =2.2µF (Ceramic); unless otherwise specified  
Symbol  
Parameter  
Min  
-1  
Typ  
Max  
1
Unit  
Note  
Static  
VLoadReg  
Load regulation  
mV  
Transient; Slope: tr=10µs  
-10  
10  
ILIMIT_VRF1_HCUR  
Current limitation  
Current limitation  
800  
400  
mA  
mA  
VRF_1, rf1_lcurr_en=0  
R
VRF_1, rf1_lcurr_en=1 and during  
startup  
ILIMIT_VRF1_LCURR  
Current limitation  
VRF_2,3 low current  
limit  
ILIMIT_VRF2,3_L  
300  
500  
mA  
mA  
rf2_lcurr_en=1, rf3_lcurr_en=1  
Current limitation  
VRF_2,3 high current  
limit  
ILIMIT_VRF2,3_H  
rf2_lcurr_en=0, f3_lcurr_en=0  
ceramic only (VRF_1)  
CLOAD_RF1  
Load capacitor  
Load capacitor  
2
1
5
5
µF  
µF  
ceramonly VRF_2,3) for  
rf1_lcurr_en=and rf2_lcurr_en=1  
CLOAD_RF2,3_L  
ceamic only (VRF_2,3) for  
rf1_lcurr_en=0 and rf2_lcurr_en=0  
CLOAD_RF2,3_H  
Load capacitor  
2
5
µF  
1. Guaranteed by design and verified by laboratory evaluatiand characterization; ot production tested.  
8.12.2 Digital LDO’s (VDIG_1, VDIG_2, VDG_3, VDIG_4)  
The Digital LDO’s can be used in any medium power system or subsyswhere quiescent power consumption of the  
regulator itself has to be minimized without scrificng its performae. For its stability a cheap 1µF ceramic capacitor  
is required. The 5V charge pump will be witchd on automaticaly, if oe of the digital LDO’s are switched on.  
Figure 33. Digital LDO Block diagram  
ꢀꢁꢂ  
μ
ꢆꢇꢂꢁ  
ꢗꢘꢑꢈ
ꢍꢉꢎ  
ꢉꢊꢉꢈꢋꢌꢍꢎꢎꢏꢋ  
ꢙꢍꢚꢂ  
ꢐꢑꢀꢀꢊꢈꢋ  
ꢛꢊꢈꢑꢉꢜꢛ  
ꢓꢔꢂ  
Table 81. Digital LDO (DIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC;  
CLOAD =1µF (Cermic); unless otherwise specified  
Symbo
Parameter  
Min  
Typ  
Max  
Unit  
Note  
VDIIN  
Supply voltage range  
1
5.5  
V
Vout<2.2V;  
0
0
200  
mA  
VDIGX_IN>Vout+RON*IOUT  
Output current1  
On resistance  
IOUT  
RON  
Vout<2.5V;  
VDIGX_IN>Vout+RON*IOUT  
100  
4
mA  
Ω
Vout<2.2V  
www.austriamicrosystems.com  
Revision 1v13  
82 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 81. Digital LDO (VDIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC;  
CLOAD =1µF (Ceramic); unless otherwise specified  
Symbol  
Parameter  
Min  
60  
Typ  
Max  
Unit  
Note  
f=1kHz  
Power supply rejection  
ratio  
PSRR  
dB  
30  
f=100kHz  
IOFF  
IVDD  
tstart  
Shut down current  
Supply current  
Startup time  
100  
20  
nA  
µA  
µs  
without load  
200  
Vsupply>3.0V, VCP=5.2V,  
Iout<200mA  
2.20  
2.5  
50  
V
V
Vout  
Output voltage  
0.75  
Vsupply>3.0V, VCP=5.2
Iout<100mA  
Output voltage  
tolerance  
Vout_tol_lv  
Vout_tol_hv  
-50  
-60  
mV  
Vou1.8V  
Vout1.85V  
Output voltage  
tolerance  
60  
mV  
mV  
-10  
-50  
-20  
-50  
10  
50  
20  
50  
Static  
VLineReg  
Line regulation  
Transient; Slope: tr=10µs  
Static  
mV  
VLoadReg  
ILIMIT  
Load regulation  
Current limitation  
Transient; Slope: tr=10µs  
400  
mA  
1. Guaranteed by design and verified by labratoevaluation and haraterization; not production tested  
www.austriamicrosystems.com  
Revision 1v13  
83 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 82. Digital LDO (VDIG_1.4) Programming voltage table  
Code (d)  
Code (b)  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
VOUT(V)  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.0  
155  
1.60  
1.65  
1.70  
1.75  
1.8
Code (d)  
22  
Code (b)  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
VOUT(V)  
0
1
1.80  
23  
1.80  
2
24  
1.80  
3
25  
1.80  
4
26  
1.80  
5
27  
1.80  
6
28  
1.80  
7
29  
1.80  
8
30  
1.80  
9
31  
1.80  
.50 (do not use)  
1.60 (do not use)  
1.70 (do n0t use)  
1.80 (do not use)  
1.90  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
32  
33  
34  
35  
36  
37  
2.00  
38  
2.10  
3
2.20  
0  
2.30  
41  
2.40  
42  
2.50  
Note: Full performance for Vout 2.20V; ma. 100mA output current for Vout 2.50V; do not use values Vout>2.50V  
8.12.3 Low power LDO (V2_5)  
The Low power LDO V2_5 is neeed to supply the chip core (analog and digital) of the device. It is designed to get the  
lowest possible power consumtionand still offering reasonable regulation characteristics. The regulator has three  
supply inputs selecting autoaticlly the higher one. This gives the possibility to supply the chip core either with the  
battery or with the chargdepnding on the conditions. Bulk switch comparators are used to avoid any parasitic  
current flow. To ensurhigh PSRR and stability, a low-ESR ceramic capacitor of min. 1µF must be connected to the  
output.  
Table 83. Lopower LDO (V2_5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic);  
unless otherwe secified  
Sbo
VBAT  
Parameter  
Supply voltage rage  
On resistance  
Min  
2.8  
4
Typ  
Max  
5.5  
15  
Unit  
V
Note  
VCHARGER  
RON  
50  
Ω
Guaranteed per design  
f=1kHz  
60  
40  
Power supply rejection  
ratio  
PSRR  
dB  
f=100kHz  
www.austriamicrosystems.com  
Revision 1v13  
84 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Table 83. Low power LDO (V2_5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic);  
unless otherwise specified  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
IOFF  
Shut down current  
100  
nA  
Guaranteed per design, consider  
chip internal load for measurements.  
IVDD  
Supply current  
3
µA  
tstart  
Vout  
Startup time  
200  
2.6  
µs  
V
Output voltage  
2.4  
-50  
2.5  
Output voltage  
tolerance  
Vout_tol  
50  
mV  
mV  
-10  
-50  
-10  
-50  
10  
50  
10  
50  
Static  
VLineReg  
Line regulation  
Load regulation  
Transient; Slope: tr=10s  
Static  
VLoadReg  
mV  
Transient; Slpe: tr=10s  
8.13 5V Charge Pump  
Figure 34. 5V Charge Pump Block diagram  
ꢗꢙꢗꢉꢑꢕꢁꢊꢚꢛ  
5ꢃꢄꢅ  
55  
   
ꢃꢊ  
ꢃꢄꢅꢆꢇꢈ  
ꢎꢏꢐꢑꢎꢏꢎꢑ  
ꢓꢐꢌꢔ  
5ꢃꢅ  
5ꢀꢁ
ꢎꢑ  
ꢓꢐꢐꢌꢔ  
ꢕꢂꢀ#$  
ꢘꢏꢘ%ꢜ  
The charge pump uses the pad VCP_IN as inut, regulates and doubles its voltage with the help of the flying capacitor  
between CAPP and CAPN to its output VC_OUT (the output is automatically limited not to exceed VCPOUT). If the bit  
cp_pulseskip is set, the charge pump opes in pulse skip mode, and only starts cycles if its output voltage is below  
this level. In this mode the supply urrent is reduced, but the output ripple is increased.  
The charge pump requires the llowing external components:  
Table 84. Charge Pump xteral Components  
Symbol  
Parameter  
Min  
Typ  
Min  
Unit  
Note  
External flying  
capacitor  
Ceramic X5R or X7R low-ESR  
capacitor between CAPP and CAPN  
CFLY  
370  
470  
850  
nF  
Ceramic X5R or X7R low-ESR  
capacitor between VCP_OUT and  
VSS  
External storage  
capacitor  
CRE  
1.76  
1
2.2  
2.64  
µF  
A
Schottky Diode for  
startup between  
VCP_IN and  
Dout  
Peak current of schottky Diode  
VCP_OUT  
www.austriamicrosystems.com  
Revision 1v13  
85 - 157  
AS3658  
Data Sheet Confidential - Detailed Description-Power Management Functions  
Make the connections of the external capacitors as short as possible.  
Table 85. Charge Pump Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Charge Pump input  
voltage  
VCPIN  
3.0  
5.5  
V
cp_freq=0, fclk_int=2.2MHz  
cp_freq=1, fclk_int=2.2MHz  
1.1  
MHz  
MHz  
fIN  
Switching frequency  
0.55  
VCP_IN = 3.2V, Clock = fclk_int/2;  
cp_pulseskip=0; fin=1.1MHz  
ICPOUT  
VCPOUT  
VCPSKIP  
Output Current  
Output Voltage  
0.0  
4.9  
100  
5.6  
mA  
V
5.2  
Output Voltage during  
pulseskip  
4.92  
V
Use with cp_frequ=1 onl
Supply current without  
load  
ICP_noload  
2
mA  
µA  
1.1MHz swithing requency  
Charge pump supply  
current without load in  
pulseskip mode  
ICP_pulseskip  
20  
cp_pulsep=1 nd cp_frequ=1  
Table 86. CP Power1 ctrl Bit definitions  
Reg Power1 Ctrl  
These bits cntrol the on/offuction of the ldo regulator  
Addr:23  
Bit  
Bit Name  
Default Aces  
Description  
Swtch oof te charge pump block, charge pump is  
automtically activated if any of the following blocks are  
acve: VDIG_1, VDIG_2, VDIG_3, VDIG_4  
7
cp_on  
ROR/W  
Table 87. Charge Pump Bit definitions  
Charge Pump Control  
These bits control the Charge Pump  
Description  
Addr:17  
Bit  
Bit Name  
Deault Access  
Switches on the pulseskip mode of the charge pump  
0
1
Normal fixed frequency mode  
0
cp_pulseskip  
R
ROM  
R/W  
R/W  
Pulse skip, low power mode (Set cp_frequ=1 in  
this mode)  
Defines the clock frequency of the step up dc/dc converter  
f
clk_int/2 (0.8 to 1.15 MHz)  
0
1
1
cp_fq  
fclk_int/4 (0.4 to 0.575 MHz)  
www.austriamicrosystems.com  
Revision 1v13  
86 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9 Detailed Description- Audio Functions  
The audio functions consist of all the audio features of AS3658 as shown in the following block diagram:  
Figure 35. AS3658 Audio Functions  
9.1  
Audio Paths  
Following Audio paths are possible (only one configuration is possible at the amtime):  
Figure 36. AS3658 I2S I/O 1 or I2S I/O2 Playback  
Note: As the toucscreen interface is merged with I2S Output 3 and SPDIF Output 4 either the touch screen  
interfae or I2Output 3 and SPDIF Output 4 can be used at the same time.  
www.austriamicrosystems.com  
Revision 1v13  
87 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Figure 37. AS3658 Line In Recording  
Figure 38. AS3658 Microphone Recording  
It is also possible to use the Audio ADC ahe Audio DAC at the same time. In this case, the sampling frequency of  
the Audio DAC is either two or four times e sampling rate of the Audio ADC (ADC: max. 16ks / seconds). The  
equalizer should not be used in ths cae:  
www.austriamicrosystems.com  
Revision 1v13  
88 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Figure 39. AS3658 Microphone Recording and I2S I/O Playback (either I2S 1 or I2S 2/PCM)  
Figure 40. AS3658 Recording of the Mixed output signal and parallel playback (either I2S 1 I2S /PCM)  
9.2  
Common mode voltage generation of HP_CM, LINE_CM  
The common mode voltage of the Headpe and Lineout is stored in the C_hpcm and C_linecm capacitor  
(connected between HP_CM to VS and LINE_CM to VSS). These capacitor are also responsible for the popless  
startup, PSRR of the amplifiers and sense path of the GND cancellation circuit.  
Startup and PSRR is defined by the value of the external capacitors. The RC limits the maximum achievable PSRR:  
R=6MΩ typ, C=0.1...1µF
Table 88. commn modvoltage, Audio start-up and PSRR  
Maximum achievable PSRR  
Capacitor value for C_hpcm and  
Startup time (typ)  
Clinecm  
@ 1kHz (typ)  
@ 100Hz (typ)  
µF  
0.1  
1
msec  
150  
dB  
76  
90  
dB  
56  
76  
1500  
www.austriamicrosystems.com  
Revision 1v13  
89 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9.3  
Audio Setup Registers  
Audio LDO has to be switched on first (aud_ldo_on=1), and enables all other functions.  
Table 89. AudioSet1 Register  
Audio Set1  
Addr:74  
These bits control the Audio functions  
Bit  
Bit Name  
Default Access  
Description  
Line input disabled  
0
1
0
lin_on  
0
R/W  
Line input enabled  
Switch on control of AUDIO DAC  
DAC disabled  
1
dac_on  
0
R/W  
0
1
0
1
0
1
DAC enabled (Switch on, if I2S signal valid only)  
Mixer switched off  
2
3
mix_on  
0
0
R/W  
R/W  
Mixer switched on  
GND switch off 0V t pin ND_SW  
ND switch on Vsupply at pin GND_SW  
Audio LDO ON control  
gnd_sw_on  
4
5
aud_ldo_on  
mclk_invert  
0
0
R/W  
R/W  
1
Audio LDO off  
Audio LDO on  
MLK invert selection  
0
1
0
1
ane of LRCLK at falling edge of MCLK  
Change of LRCLK at rising edge of MCLK  
MCLK = LRCLK* 128  
6
7
mclk256  
equ_on  
0
0
R/W  
/W  
MCLK = LRCLK* 256  
Equalizer switched off (bypassed)  
Equalizer switched on  
Table 90. AudioSet2Register  
Audio Set2  
Addr:75  
These bits control the Audio functions  
Default Access Description  
Bit  
Bit Name  
Bias current reduction settings for DAC:  
00  
01  
10  
11  
1
default  
Don't use  
1,0  
i_dac<1:0>  
00b  
R/W  
Don't use  
Don't use  
add dither to the audio stream  
no dither added  
2
3
dith_on  
0
0
R/W  
R/W  
0
0
Switch off I2S_3 output  
Switch on I2S_3 output  
I2S_3_on  
1
www.austriamicrosystems.com  
Revision 1v13  
90 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 90. AudioSet2Register  
Audio Set2  
Addr:75  
These bits control the Audio functions  
Default Access Description  
Bit  
Bit Name  
Bias current reduction settings for headphone output  
00  
01  
10  
11  
0
0%  
5,4  
ibr_hph<1:0>  
0
R/W  
17%  
34%  
50%  
Select I2S_1 input  
6
7
I2S_select  
0
0
R/W  
R/W  
1
Select I2S_2 input  
0
Generation of the master clock by te internal PLL  
Use Pin MCLK_1, MCLK_2 as msterclock input  
I2S_mclk_en  
1
9.4  
ADC, DAC and Digital Audio Input  
9.4.1 General  
Digital audio data can be fed into the AS3658 via the I2S ince This input datused by the 18-bit DAC to  
generate the analog audio signal.  
The stage is set to mute by default; If the DAC input is not enabled.  
9.4.2 Signal Description  
The digital audio interface uses the standrd S format:  
Left justified  
MSB first  
One additional leading bit  
MCLK has to have a fixed ratio of 128 or 256 to LRCLK. With a LRCLK equal to 16, 32, 44.1 or 48kHz, the MCLK can  
be generated by the on-chip PLL (do not use the inrnal PLL if there is jitter on the LRCLK1 or 2). For lower sample  
rates the bit pll_mode has to be set (for samle rates between 8kHz and 12kHz).  
The high going edge of MCLK has to have iming separation from LRCLK edges. If the clock generation is so that  
LRCLK edges are at the same time as Mhigh going edges, the MCLK can be inverted to guarantee a proper DAC  
function.  
This audio input interfaces usean I2S synchronizer to be able to handle audio sample length of 24bits or less.  
www.austriamicrosystems.com  
Revision 1v13  
91 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Figure 41. I2S Control Diagram  
i2s_select  
mclk_invert  
i2s_mclk_en  
0
1
i2s_master_on  
i2s_lrck_sclk_out_en  
i2s_select  
SDI  
18 Bit DAC  
SDO1  
SCLK  
LRCLK  
MCLK  
0
1
sclk_invert  
Audio left  
mono to stereo  
conversion for  
pcm_mode=1  
Equalizer  
SDO  
Audio right  
SDI1  
SCLK1  
LRCLK1  
MCLK1  
SDI2  
0
1
i2s_select  
pll_mode  
i2s_master_on  
I2S_mclk_en  
0
1
LRCLK_out  
* 256  
0
1
PLL  
SDO  
SCLK  
LRCLK  
MCLK  
0
1
rising edge only  
for PCM  
Audio left  
com patibility  
* 64  
14 Bit ADC  
i2s_select  
Audio right  
mclk256  
0
1
0
1
mclk_invert  
*2  
Fadc2 pcm_mode samlete  
Sample rate  
0
0
0
1
LRC2  
RCL4  
1
0
sclk_invert  
i2s_master_on  
SCLK2  
LRCLK2  
MCLK2  
i2s_lrck_sclk_out_en  
sdo3_select  
i2s_master_on  
MCLK divider  
i2s_lrck_sclk_out_en  
i2sn  
0
1
mclk_out_en  
sdo_on_mclk1_en  
SDO3  
mclk_vert  
i2s_clk_divider<11:0>  
0
1
SCLK3  
i2s_3_on  
LRCLK3  
SPDIF  
S
spdif_ctrl<1:0>  
Figure 42. I2S Timing Diagram  
64 cycles  
64 cycles  
MCLK  
LRCK  
Left Channel  
Right Channel  
SCLK  
SDATA  
16 bit  
15  
17  
2
1
0
2
15  
17  
2
1
0
SDATA  
18 bit  
1
0
2
1
0
Table 91. PLL,MLK Sttings  
I2S_mclk_en I2Sselect  
mclk_invert  
Description  
I2S_1 selected (PLL used)  
0
0
0
0
0
0
1
1
0
Internal MCLK synchronized to external LRCLK  
I2S_1 selected (PLL used)  
Internal LRCLK used, synchronized to external SDI  
1
0
1
I2S_2 selected (PLL used)  
Internal MCLK synchronized to external LRCLK  
I2S_2 selected (PLL used)  
Internal LRCLK used, synchronized to external SDI  
www.austriamicrosystems.com  
Revision 1v13  
92 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 91. PLL,MCLK Settings  
I2S_mclk_en I2S_select  
mclk_invert  
Description  
1
1
1
1
0
0
1
1
0
1
0
1
I2S_1 selected, external MCLK on MCLK_1  
I2S_1 selected, external MCLK on MCLK_1 (inverted)  
I2S_2 selected, external MCLK on MCLK_2  
I2S_2 selected, external MCLK on MCLK_2 (inverted)  
9.4.3 Parameter  
Table 92. Audio DAC/ADC Parameter  
Parameter  
Min  
Typ  
Max  
Unit  
Analog Performance  
Programmable gain DAC input  
-43.43  
-34.5  
1.7  
2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Programmable gain ADC input  
Gain step size  
1.5  
-85  
9
DAC THD+Noise at FS  
-75  
DAC SN/R (20Hz-20kHz, -60dBFS) A-weighted  
DAC Inter channel Mismatch  
ADC SN/R  
90  
0.25  
82  
Table 93. I2S Parameter  
I2S Inputs and Outputs I2S=2.9V  
SCLK, LCLKx, SDIx  
Min  
-
Typ  
-
Max  
0.42V  
3.3V  
VIL  
VIH  
SCKx, RCLKx, SDIx  
1.02V  
-
VOL  
VOH  
SDOX,SCLK3,LR3,SPDIF,SCLKCLK1,MCLK1  
SDOX,SCLK3,LRCLK3,SPDIF,SCLKCLK1,MCLK1  
0V  
VI2S  
Table 94. DAC_L Register  
DAC_L  
These bits control the Audio DAC volume and functions  
Deault Access Description  
Addr:77  
Bit  
Bit Name  
volume settings for left DAC input, adjustable in 32 steps @  
1.5dB  
00000  
00001  
.....  
-40.5 dB gain  
-39 dB gain  
4:0  
dalvol  
00000b  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gain  
5
6
-
-
-
0
1
DAC input is set to mute  
normal operation  
dac_mute_off  
0
R/W  
www.austriamicrosystems.com  
Revision 1v13  
93 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 95. DAC_R Register  
DAC_R  
These bits control the Audio DAC volume and functions  
Addr:78  
Bit  
Bit Name  
Default Access  
Description  
volume settings for right DAC input, adjustable in 32 steps  
@ 1.5dB  
00000  
00001  
.....  
-40.5 dB gain  
-39 dB gain  
4:0  
dar_vol  
00000b  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gain  
Table 96. ADC_L Register  
ADC_L  
These bits control the Audio ADC volume nd fnctions  
Addr:79  
Bit  
Bit Name  
Default Access  
Description  
olume settings for left ADC input, adjustable in 32 steps @  
1.5dB  
0000  
00001  
.....  
-34.5 dB gain  
-33 dB gain  
4:0  
adl_vol  
00000b  
R/W  
11110  
11111  
0
10.5 dB gain  
12 dB gain  
ADC disabled  
5
6
adc_on  
0
0
R/W  
R/W  
ADC enabled  
0
ADC input is set to mute  
normal operation  
adc_mute_off  
1
Divider selection for ADC clock  
ADC sample clock is I2S LRCLK / 2; every ADC  
sample is sent twice to the I2S output (up-  
sampling by 2)  
0
1
7
ad_fs2  
0
R/W  
ADC sample clock is I2S LRCLK / 4; every ADC  
sample is sent four times to the I2S output (up-  
sampling by 4)  
www.austriamicrosystems.com  
Revision 1v13  
94 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 97. ADC_R Register  
ADC_R  
These bits control the Audio ADC volume and functions  
Addr:80  
Bit  
Bit Name  
Default Access  
Description  
volume settings for right ADC input, adjustable in 32 steps  
@ 1.5dB  
00000  
00001  
.....  
-34.5 dB gain  
-33 dB gain  
4:0  
adr_vol  
00000b  
R/W  
11110  
11111  
0
10.5 dB gain  
12 dB gain  
normal mode  
5
adc2dac  
adcmux  
0b  
R/W  
R/W  
use ADC output as DAC inpt (fotesting  
purposes, equalizer is bypssed)  
1
00  
01  
10  
Micropne  
Line In  
7:6  
00b  
reserved –do not use  
AudiSum (Output of Mixer)  
9.5  
I2S master mode and PCM Mode  
The digital audio interface can also operate in master mode by using I2interface.  
The pin MCLK2 is used as clock input in that ase. Any input clock tween sampling rate and 24MHz may be used as  
input clock.  
In Master Mode operation SCLK1 aoput has 32 clock cyclfor each sample word.  
SCLK = [MCLK / 4] = [LRC56 / 4] = LRCK * 64  
(EQ 8)  
Sample Rates  
In Master Mode the i2smaster control allos programming various sample rates. The master clock is generated from  
the MCLK2 input. Sampling frequencies from kHz to 48kHz can be selected. For certain division ratios between  
master clock and sample ratio a certain deation is system inherent.  
1
1
LRCLK = fMCLK 2 * *  
2
RD + 2  
Table 98. PLL,i2s_clk_dider ettings  
Actual sample  
rate  
Sample rate  
MCLK2 input  
Error  
i2s_clk_divider  
<10:0>  
Divider  
kHz  
kHz  
kHz  
%
48,000  
400  
32,000  
29,400  
24,000  
22,050  
12,000  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
126,00  
137,32  
190,00  
206,98  
254,00  
276,64  
510,00  
126  
137  
190  
207  
254  
277  
510  
48,00  
44,20  
32,00  
29,40  
24,00  
22,02  
12,00  
0,00  
0,23  
0,00  
-0,01  
0,00  
-0,13  
0,00  
www.austriamicrosystems.com  
Revision 1v13  
95 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 98. PLL,i2s_clk_divider settings  
Actual sample  
rate  
Sample rate  
MCLK2 input  
Error  
i2s_clk_divider  
<10:0>  
Divider  
kHz  
kHz  
kHz  
%
11,025  
8,000  
12288  
12288  
12000  
12000  
12000  
12000  
12000  
12000  
12000  
12000  
12000  
555,28  
766,00  
123,00  
134,05  
185,50  
202,08  
248,00  
270,11  
498,00  
542,22  
748,00  
555  
766  
123  
134  
186  
202  
248  
270  
498  
542  
748  
11,03  
8,00  
0,05  
0,00  
0,00  
0,04  
-0,27  
0,04  
0,00  
0,04  
0,00  
0,04  
0,00  
48,000  
44,100  
32,000  
29,400  
24,000  
22,050  
12,000  
11,025  
8,000  
48,00  
44,12  
31,91  
29,41  
24,00  
22,06  
12,00  
11,03  
8,00  
Table 99. i2s master control1 Register  
I2s master cntrol1  
Addr:131  
This register conrols the external ock divider for i2s master mode  
Description  
Bit  
Bit Name  
Default Acess  
7:0  
i2s_clk_divider<7:0>  
0h  
R/W  
Bit 7:0 of divider for MCLK2 input pin  
Table 100. i2s master control2 Registe
I2s master control2  
Addr:132  
This register conts the external clock divider and modes for i2s master  
mode  
Description  
Bit  
Bit Name  
Defult Access  
2:0  
i2s_clk_divider<10:8>  
0b  
0b  
R/W  
R/W  
Bit 10:8 of divider for MCLK2 input pin  
i2s master mode disabled  
0
1
3
4
i2s_master_on  
i2s master mode enabled  
LRCLK1 and SCLK1 are used as input (slave  
mode)  
0
i2s_lrclk_sclkout_en  
0b  
R/W  
LRCLK1 and SCLK1 are used as output (master  
mode).  
1
0
Clock input for PLL is MCLK2  
MCLK1 used as input (slave mode)  
MCLK1 used as output for master clock of an  
external I2S. Clock input for PLL is MCLK2  
(MCLK1=256*LRCLK, if bit mclk256=1;  
MCLK=128*LRCLK, if bit mclk256=0)  
5
6
i2s_mclk_out_en  
sdo_on_ mclk1  
0b  
0b  
R/W  
R/W  
1
Normal operation of MCLK1 (input or output  
according to bit is2_mclk_out_en bit)  
0
1
MCLK1 used as SDO output (e.g. for audio ADC).  
May be used as data output (SDO) for I2S_2 port  
www.austriamicrosystems.com  
Revision 1v13  
96 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 100. i2s master control2 Register  
I2s master control2  
Addr:132  
This register controls the external clock divider and modes for i2s master  
mode  
Description  
Bit  
Bit Name  
Default Access  
0
1
Normal I2S mode  
PCM mode selected. The following additional  
settings are necessary to enable PCM mono  
mode:  
sclk_invert=1  
i2s_mclk_en=0 and mclk_invert=1 (internal PLL  
used for generation of internal LRCLK
7
pcm_mode  
0b  
R/W  
9.5.1 PCM mode settings  
Compatible with BlueCore3-ROM:  
Figure 43. Short Frame Sync (shown with 16-bit Sample)  
In short Frame Sync the falling edge of PCM_SYNC indicate the start ohe Pword. PCM_Sync is alwas one clock cycle long.  
LRCLK  
SCLK  
PCM_SYNC  
PCM_CLK  
PCM_OUT  
PCM_IN  
SDI  
1
2
4
5
6
7
8
9
10 11 12  
10 11 12  
13 14 15 16  
13 14 15 16  
SDO  
3
4
5
6
7
8
9
Undefined  
Undefined  
The following setup on PCM-Master side is needed
AS3658 is slave only  
PCM_SYNC is in short frame mode  
PCM_SYNC rate is 8ksamples/s  
PCM_CLK= 512kHz only (64 PC_SYNC)  
16 Bit Linear coding of PCM_OUT and PCM_IN (MSB first, LSB last)  
Mono (single channelopration only. Only the right channel of the AS3658 is used. The left channel is same as  
right channel (in the inut direction of AS3658) and has to be ignored by PCM master (in output direction of  
AS3658)  
Note: Internaly the right channel is copied to the right and left channel.  
The following etup of AS3658 is needed:  
Sclkert=1  
i2s_mlk_en=0 and mclk_invert=1 (internal PLL used for generation of internal LRCLK)  
pm_mode=1 and ad_fs2=0 (Necessary to allow unsymmetrical LRCLK and sample rate of 8kHz of ADC)  
www.austriamicrosystems.com  
Revision 1v13  
97 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9.6  
Line Input  
9.6.1 General  
AS3658 includes one stereo single ended inputs.  
Figure 44. LineIn Block Diagram  
 ꢉꢎꢁ&ꢎꢁꢉ  
'ꢄꢄꢋ(  
ꢉꢎꢁꢉ  
ꢇꢄꢅꢆ  
"ꢊ"$%ꢗ"  
ꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢉꢊꢋꢌꢍꢎꢋꢏꢐꢑꢍꢒꢉꢓꢔꢕ  
ꢖꢗꢍꢘꢊꢙꢌꢚꢍꢛꢋꢜꢝꢗꢚ  
ꢈꢂ  
ꢉꢊꢋꢌꢍꢎꢋ  
 ꢉꢎꢁ&ꢎꢁꢔ  
'ꢄꢄꢋ(  
ꢉꢎꢁꢔ  
ꢇꢄꢅꢆ  
"ꢊꢚ$%ꢗ"  
ꢃꢄꢅꢆ  
ꢈꢀꢁꢂ  
ꢉꢊꢋꢌꢎꢋꢍꢈ!ꢏ"ꢊ#ꢊꢌꢚ  
Table 101. Line Inputs Parameter  
Parameter  
Analog Performance  
Rin  
in  
Typ  
Max  
Unit  
50  
kΩ  
Table 102. LINE_IN_R Register  
IN_IN_R  
Addr:85  
These bits controthe LINE_IN volume and functions  
Default Access Description  
Bit  
Bit Name  
olume settings for right line input, adjustable in 32 steps  
1.5dB; gain from line input pin (LIN1R) to mixer input  
00000  
00001  
.....  
-34.5 dB gain  
-33 dB gain  
4:0  
lir_vol  
0000b  
R/W  
11110  
11111  
10.5 dB gain  
12 dB gain  
Control of MUTE switch  
right line input is set to mute  
normal operation  
0
1
5
mute_of_ir  
0
-
R/W  
-
do not change  
7:6  
www.austriamicrosystems.com  
Revision 1v13  
98 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 103. LINE_IN_L Register  
Addr:86  
LINE_IN_L  
These bits control the LINE_IN volume and functions  
Bit  
Bit Name  
Default  
Access  
Description  
volume settings for right line input, adjustable in 32 steps @  
1.5dB; gain from line input pin (LIN1L) to mixer input  
00000  
00001  
.....  
-34.5 dB gain  
-33 dB gain  
4:0  
lil_vol  
00000  
R/W  
11110  
11111  
10.5 dB gain  
12 dB gain  
Control of MUTE switch  
left line input is set tmu
normal operaon  
5
mute_off_inl  
0
R/W  
n/a  
0
1
7:6  
00  
do not change  
9.7  
Five Band Equalizer  
The 5 Band equalizer is build of one low pass, one high pand 3 band pass filtand is optimized for 44.1kHz  
sample frequency:  
Low pass filter: 200Hz ( when programming negaitve gain values, this filtr changes to a HP filter)  
Band pass filter1: 340Hz / Q=1.0 (when programmig negative gailues, this filter changes to a notch filter)  
Band pass filter2: 1100Hz / Q=0.7 (when progamming negatigain values, this filter changes to a notch filter)  
Band pass filter3: 3375Hz / Q=1.0 (wen programming negatve gain values, this filter changes to a notch filter)  
High pass filter: 5940Hz (when prramming negative gan values, this filter changes to a LP filter)  
The Q factors and the cut off frequencf the High and ss filter are measured at 50% gain and are valid for  
+6dB amplification of each band.  
The attenuation or amplification of each band can e dyamically adjusted by the serial interface. Additional a pre-gain  
stage can adjust the input level. This gain tage is after the 16 to 24 bit extension and therefore additional gain, which  
is compensated with the equalizer filter itself (q_lp_gain, eq_band1,2,3_gain, eq_hp_gain) will not cause clipping:  
Figure 45. Equalizer Block Diagram  
ꢜꢍꢗꢝꢘ ꢃ
ꢗꢘꢙꢚꢛ  
ꢁꢂ  
ꢃꢄ  
ꢌꢆꢇꢎꢗꢑ  
ꢁ  
ꢃꢄ  
ꢁꢂ  
ꢅꢆꢇꢈꢉꢊꢋꢌꢍ  
ꢌꢆꢎꢏꢍꢌꢎꢐꢈꢊꢑ  
ꢌꢆꢎꢉꢏꢎꢐꢈꢊꢑꢒ  
ꢌꢆꢎꢓꢈꢑꢔꢁꢒꢃꢒꢕꢎꢐꢈꢊꢑ  
ꢌꢆꢎꢖꢏꢎꢐꢈꢊꢑ  
www.austriamicrosystems.com  
Revision 1v13  
99 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Figure 46. EQ Filter frequency response sum curve  
Figure 47. EQ Filter frequency response +12dB/+6dB/3dB  
www.austriamicrosystems.com  
Revision 1v13  
100 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Figure 48. EQ Filter frequency response -3dB  
Each band has a range from -12 to +B with each innt equal to ±3dB.  
For sample frequencies of the I2S stream different from 4kHz, the filter frequencies are shifted (ratiometric).  
Table 104. EQ_LP Register  
EQ_LP  
Addr: 90  
These bits control the gain of the low pass filter in dB  
Bit  
Bit Name  
efault Access  
Description  
EQ_LP filter gain (-12dB... +12dB)  
0h  
1h  
2h  
3h  
4h  
bh  
ch  
dh  
eh  
0dB  
3dB  
6dB  
9dB  
3:0  
eq_lp_gain  
0000b  
R/W  
12dB  
-3dB  
-6dB  
-9dB  
-12dB  
www.austriamicrosystems.com  
Revision 1v13  
101 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 105. EQ_Band1 Register  
EQ_Band1  
These bits control the gain of the Band pass filter1 in dB  
Addr: 91  
Bit  
Bit Name  
Default Access  
Description  
EQ_Band1 filter gain (-12dB... +12dB)  
0h  
1h  
2h  
3h  
4h  
bh  
ch  
dh  
eh  
0dB  
3dB  
6dB  
9dB  
3:0  
eq_band1_gain  
0000b  
R/W  
12dB  
-3dB  
-6dB  
-9dB  
-1B  
Table 106. EQ_Band2 Register  
EQ_Bnd2  
Addr: 92  
These bits control the gain of thBand pass filter2 in dB  
Bit  
Bit Name  
Default Access  
Description  
Band2 filter gain (-12dB... +12dB)  
0h  
1
2h  
3h  
4h  
bh  
ch  
dh  
eh  
0dB  
3dB  
6dB  
9dB  
3:0  
eq_band2_gain  
0000b  
R
12dB  
-3dB  
-6dB  
-9dB  
-12dB  
www.austriamicrosystems.com  
Revision 1v13  
102 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 107. EQ_Band3 Register  
EQ_Band3  
These bits control the gain of the Band pass filter3 in dB  
Addr:93  
Bit  
Bit Name  
Default Access  
Description  
EQ_Band3 filter gain (-12dB... +12dB)  
0h  
1h  
2h  
3h  
4h  
bh  
ch  
dh  
eh  
0dB  
3dB  
6dB  
9dB  
3:0  
eq_band3_gain  
0000b  
R/W  
12dB  
-3dB  
-6dB  
-9dB  
-1B  
Table 108. EQ_HP Register  
EQ_HP  
Addr:94  
These bicontrol the gain of thHigh pass filter in dB  
Bit  
Bit Name  
Default Access  
Description  
_HP filter gain (-12dB... +12dB)  
0h  
1
2h  
3h  
4h  
bh  
ch  
dh  
eh  
0dB  
3dB  
6dB  
9dB  
3:0  
eq_hp_gain  
0000b  
R
12dB  
-3dB  
-6dB  
-9dB  
-12dB  
www.austriamicrosystems.com  
Revision 1v13  
103 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 109. EQ_preamp Register  
EQ_preamp  
These bits control the preamplifier of the EQ in dB  
Addr:95  
Bit  
Bit Name  
Default Access  
Description  
EQ_vol gain (-12dB ... +12dB with 1.5dB steps)  
0dB  
0h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08
0h  
bh  
-1.5dB  
-3.0dB  
-4.5dB  
-6.0dB  
-7.5dB  
-9.0dB  
-10.5dB  
-1B  
1.5dB  
3.0B  
6.0dB  
7.5dB  
9.0dB  
10.5dB  
12dB  
4:0  
eq_pre_gain  
00000b  
R/W  
ch  
dh  
eh  
fh  
10h  
www.austriamicrosystems.com  
Revision 1v13  
104 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9.8  
Microphone Input  
General  
The audio front-end offers one microphone inputs and a low noise microphone voltage supply (microphone bias), voice  
activation, microphone connect detection and push button remote control.  
Figure 49. Microphone Input Block diagram and External Circuit  
31ꢝ  
)ꢇꢅꢂ  
ꢗꢙꢖꢎ!ꢔ..  
)*+ꢃꢃꢐ,  
"ꢈꢉ!ꢔꢋ  
ꢀꢁꢂ*  
ꢀꢁꢂꢃ  
ꢐꢇ%  
&'()  
ꢔꢋ  
"-ꢍꢌ!..  
/ꢁꢐꢓ0ꢒꢛ  
ꢛ11  
ꢎꢔꢊꢛ17ꢈꢎꢊꢅꢇꢂ  
ꢛꢜꢝ  
ꢔꢋ  
/ꢁꢐꢓ0ꢒꢛ  
ꢛ12/  
ꢔ#  
/ꢁꢐꢓ0ꢒ3  
ꢛ11ꢋ/  
/ꢁꢐꢓ0ꢒ&  
ꢛꢝ  
/ꢁꢐꢓ0ꢒꢜ  
&&1ꢌ/  
ꢅꢆꢄꢇ  
ꢀꢈꢉꢊꢁꢍꢎꢊꢏꢐꢑꢒ
ꢓꢔꢀꢈꢕꢖꢗꢊꢙꢚꢔꢗ  
ꢅꢇ
ꢅꢆꢄꢇ  
/ꢁꢐꢓ0ꢒ&  
&&ꢋ/  
ꢌꢗꢖ!
ꢅꢆꢂ  
/ꢁꢐꢓ0ꢒ3  
ꢛꢝ  
/ꢁꢐꢓ0ꢒ4  
ꢛ11ꢋ/  
"ꢗ!$ꢔ#  
ꢅꢆꢄꢇ  
ꢛꢜꢝ  
ꢀꢁꢂꢄ  
ꢀꢈꢉꢗꢔꢌ6ꢔꢋ"ꢌ#ꢈ.ꢈꢖ
/ꢁꢐꢓ0ꢒ5  
&&1ꢌ/  
Gain Stage & Limiter  
The integrated pre-amplifier allows 3 peset gain settings. The is lso a limiter which attenuates high input signals  
from e.g. electret microphones signal tp. The AGC has 15 seps with a dynamic range of about 29dB. The AGC is  
ON by default but can be disabled by a microphone regt.  
Apart from the microphone pre-amplifier the microhone input signal can further be amplified with 32 @1.5dB  
programmable logarithmic gain steps and MUTE. Al gans and MUTE are independently programmable. The gain can  
be set from –40.5dB to +6dB.  
The stage is set to mute by default. If the icrohone input is not enabled, the volume settings are set to their default  
values. Changing the volume and mute col can only be done after enabling the input.  
Supply & Detection  
The microphone input generatea supply voltage of 1.5V above AGND. The supply is designed for 2mA and has a  
10mA current limit. In OFF mde the MICS terminal is pulled to AVDD with 30kΩ. A current of typically 50µA generates  
an interrupt to inform the PU, that a circuit is connected. When using the MICS terminal as ADC-10 input to monitor  
external voltage e 30Ω pull-up can be disabled.  
Remote Control  
Fast changes f thsupply current of typically 500µA are detected as a remote button press, and an interrupt is  
generat
Voce Activation  
Furthea built-in voice activation comparator can actuate an interrupt if microphone input voltage of about 5mVRMS is  
detected.  
www.austriamicrosystems.com  
Revision 1v13  
105 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Microphone Input Parameter  
Table 110. Microphone Inputs Parameter, TA= 25oC unless otherwise mentioned  
Symbol  
Parameter  
Min  
Typ  
40  
Max  
Unit  
mVPEAK  
mVPEAK  
mVPEAK  
kΩ  
Note  
VMICIN  
VMICIN  
VMICIN  
0
1
2
AMICPRE = 28dB; AMIC = 0dB  
AMICPRE = 34dB; AMIC = 0dB  
AMICPRE = 40dB; AMIC = 0dB  
MICP, MICN to AGND  
Input Signal Level  
20  
10  
RMICIN  
MICIN  
CMICIN  
Input Impedance  
15  
Input Impedance  
Tolerance  
±15  
%
Input Capacitance  
5
pF  
28  
34  
40  
Microphone  
Preamplifier Gain  
dB  
Preamplifier has 3 electable (fixed)  
gain settigs  
AMICPRE  
Programmable Gain  
Gain Steps  
-40.5  
+6  
dB  
dB  
AMIC  
1.5  
±0.25  
1
discrete logthmic gain steps  
Gain Step Precision  
Limiter Activation Level  
Limiter Gain Overdrive  
Limiter Attack Time  
Limiter Decay Time  
Mute Attenuation  
dB  
VMICLIMIT  
AMICLIMIT  
tATTACK  
VPEAK  
dB  
15*2  
50  
µs/6d
s/6dB  
dB  
tDECAY  
120  
100  
AMICMUTE  
Microphone Suply  
Voltage  
VMICSUP  
IMICMAX  
VNOISE  
2.9  
5
V
Max. Microphone  
Supply Current  
microphones nominally need a bias  
current of 0.5mA-1mA  
mA  
µV  
µA  
µA  
Microphone Supply  
Voltage Noise  
Microphone Detection  
Current  
IMICDET  
IREMDET  
50  
500  
Max. Remote  
Detection urrent  
www.austriamicrosystems.com  
Revision 1v13  
106 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Register Description  
Table 111. MIC_R Register  
MIC_R  
Addr:87  
Right Microphone Input Register  
Configures the gain from microphone amplifier output  
Bit  
Bit Name  
Default Access  
Description  
volume settings for right microphone input, adjustable  
in 32 steps @ 1.5dB; gain from microphone amplifier  
00000  
00001  
.....  
-40.5 dB gain  
-39 dB gain  
4:0  
mr_vol  
00000b  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gai
Sets the gain of the microphne pamplifier  
gain set o 28 dB  
00  
1  
10  
11  
6:5  
pre_gain  
00  
R/W  
R/W  
gan seto 34 dB  
gain set to 40 dB  
eserved, do not use  
Control of limer AC (automatic gain control). Limits  
high dynamirange of electret/MEMS microphone  
(e.ser shouts or blows into microphone)  
7
mic_agc_off  
0
1
automatic gain control enabled  
automatic gain control disabled  
Table 112. MIC_L Register  
MIC_L  
Left Microphone Input Register  
Configures the gain from microphone amplifier output  
Addr:88  
Bit  
Bit Name  
Deault Access  
Description  
volume settings for left microphone input, adjustable in 32  
steps @ 1.5dB; gain from microphone amplifier  
00000  
00001  
.....  
-40.5 dB gain  
-39 dB gain  
4:0  
ml_vl  
00000  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gain  
Disables the microphone detect function (30kΩ pull-up  
from MICS to VDAC) to use the terminal as ADC-10  
input  
5
6
rdet_off  
0
0
R/W  
R/W  
0
1
microphone detection enabled  
microphone detection disabled  
Control of MUTE  
mute_off  
0
1
microphone input set to mute  
gain set to 34 dB  
www.austriamicrosystems.com  
Revision 1v13  
107 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 112. MIC_L Register  
MIC_L  
Addr:88  
Left Microphone Input Register  
Configures the gain from microphone amplifier output  
Bit  
Bit Name  
Default Access  
Description  
0
1
microphone supply on if mic_on=1  
microphone supply off  
7
msup_off  
0
R/W  
9.9  
Audio Output Mixer  
9.9.1 General  
The mixer stage sums up the audio signals of the following stages  
Microphone Input  
Line Input  
Digital Audio Input (DAC)  
The mixing ratios have to be with the volume registers of the corrsponing input stages. Pleabe sure that the input  
signals of the mixer stage are not higher than 1Vp. If summing useverasignals, each individual signal has of course  
to be accordingly lower. This shall insure that the output signal is alo not higher than 1Vp to gt a proper signal for the  
output amplifier.  
This stage features an automatic gain control (AGC), which utomatically avoids cliping.  
9.9.2 Register Description  
Table 113. AudioSet_3 Register  
udio_set3 register  
Addr:76  
onfigres the mixer inputs and AGC  
Bit  
Bit Name  
Default Ac
Description  
Preset of PLL bias for the following sampling  
frequencies  
0
pll_mode  
0
0
R/W  
R/W  
0
1
16-48kS  
8-12kS  
Controls the pulldown of the HP1 if HP2is enabled and  
HP2, if HP1 is enabled  
1
hp_pulld_en  
0
1
Pulldown disabled if hp_on=1  
Pulldown of the not used HP1/2 output  
enabled, if hp_on=1  
Switches on the voice recognition  
2
3
voxm_on  
mic_on  
0
0
R/W  
R/W  
0
1
OFF  
ON  
Switches on the microphone amplifier  
0
1
OFF  
ON  
www.austriamicrosystems.com  
Revision 1v13  
108 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 113. AudioSet_3 Register  
Audio_set3 register  
Addr:76  
Configures the mixer inputs and AGC  
Default Access Description  
Bit  
Bit Name  
Switches the signal limiter OFF  
automatic gain control for summing stage  
0
4
agc_off  
0
R/W  
enabled  
automatic gain control for summing stage  
1
disabled  
Input from DAC to R and L  
5
6
7
dacmix_off  
micmix_off  
linmix_off  
0
0
0
R/W  
R/W  
R/
0
1
ON  
OFF  
Input from microphone tR ad L  
0
1
ON  
F  
Input from line input to R and L  
0
1
ON  
OFF  
9.10 Line Output  
9.10.1 General  
The line output is designed to provide the audsignal on 600 Ω min
This output stage has an independent ain egulation for left nd riht channel with 32 steps @ 1.5dB each. The gain  
can be set from –40.5dB to +6dB.  
9.10.2 No-Pop Function  
To avoiding click and pop noise during power-up ad shdown, the output is automatically set to mute when the output  
stage is disabled. Also the volume settings are set to their default values, and can’t be changed, as long the output  
stage is not enabled.  
LINE_CM pin, which needs a 0.1µF... 1µF pacitor outside gets charged on power-up with 1µA to ALVDD/2. After  
start-up the DC level of the following pins e the same: LOUT_L=LOUT_R=LINE_CM= ALVDD/2. The Start-up time  
before releasing mute is about 15ms ith 0.1µF. To avoid pop-noise 150ms discharging time of LINE_CM after a  
shutdown, have to be waited bore starting up again.  
9.10.3 Ground Noise Cancellation  
The purpose of te grond cancellation circuit is to compensate noise (ground noise) between different grounds (e.g.  
the ground where tAS3658 is soldered versus e.g. the ground of a car amplifier (see Figure 50)). This noise  
between thesdifferent grounds can be caused e.g. by a high current devices like a motor-fan. The ground  
cancellation cicuit can be used for line and headphone amplifiers.  
Thcircwoks as follows:  
Thground noise gets added inside the AS3658 to the audio signal (input LINE_CM for the Line Out amplifier or  
HP_Cfor headphone amplifier) in a way that it cancels inside the car amplifier. The sense point is connected with  
RGND_SEP (20Ω) to the battery ground.  
www.austriamicrosystems.com  
Revision 1v13  
109 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
The ground cancellation can be disabled by shorting the 20Ω resistor setting bit gnd_sw to ‘1’. This bit should be set if  
e.g. a headphone instead of the car amplifier is connected to the output jack.  
Note: A similar cicuit can be used for the headphone amplifier.  
Figure 50. Ground Noise Cancellation Application Schematic  
&/00ꢊ1  
ꢝꢓꢀꢄ3&!  
ꢑꢊ&ꢅꢅ  
ꢑꢊ&ꢅꢅ  
'#',-  
ꢈꢏꢍꢉꢈ(ꢆꢓꢈ  
ꢊ%/4ꢊ  
*+,-  
ꢑꢁꢒꢏꢓꢄꢔꢓꢁꢀꢕꢉꢖ  
ꢊꢏꢍꢉꢄ%ꢁꢁ  
ꢓꢍꢍꢉꢕꢓꢀ  
ꢗꢏꢘꢉꢀꢙ  
ꢑꢁꢒꢏꢓꢄꢅꢑ  
ꢗꢏꢕꢄꢓꢀꢄ  
ꢊꢉꢋꢁ  
ꢌꢇꢍꢍꢉꢈ  
ꢊ%/4(ꢊ  
ꢊ%/4(ꢎ  
ꢊꢏꢍꢉꢚꢍ  
ꢎꢏꢐꢌꢁ  
ꢉꢈ  
ꢊ%/4ꢎ  
*+,-  
ꢈꢏꢍꢉꢀ(ꢆꢓꢈ  
ꢊ%/4ꢊ  
6785  
ꢊ%/4ꢎ  
6785  
ꢉꢂꢇꢀꢉꢄ"ꢀꢓ  
ꢉ#ꢐ#ꢄꢝꢇꢀꢑ$ꢂꢈ  
ꢊꢚ).(  
ꢑꢊ&ꢅꢅ  
'
ꢀꢁ4ꢁꢂ  
ꢃꢄꢅꢄꢆꢇꢈꢁꢉ  
ꢊꢚ).(
''+ꢍ
ꢊꢏꢍꢉꢄ%ꢁꢁ  
ꢛ&ꢀꢀ  
&/00ꢊ1  
&ꢅꢑꢉ  
'
ꢀꢁꢇꢀꢁꢂ  
ꢃꢄꢅꢄꢆꢇꢈꢁꢉ  
ꢐꢍꢒ(ꢔ2  
ꢇꢀꢄꢛꢇꢁꢁꢉꢀꢜ  
ꢓꢀꢄꢝꢌꢇꢀꢐꢉꢀ !  
ꢁꢂꢂꢈꢜ  
ꢐꢀꢓꢁꢍꢒꢔꢉ  
")ꢅ(
-ꢅ)97'
ꢑ")ꢅ  
")ꢅ(:  
")ꢅ(.0  
'+5  
ꢑ")ꢅ  
*+,-  
9.10.4 Power Save Options  
To save power, a reduction of the bias urret can be selecte
Table 114. Line Power-Save Options  
IBR_LINE  
IDD_LINE (typ.)  
0
1
2.2mA  
1.5mA  
9.10.5 Parameter  
Table 115. Line out Block Characeristis  
Parameter  
Analog Performance  
Min  
Typ  
Max  
Unit  
R_Loaat LUT_L and LOUT_R single ended  
Gain Step Precision (RLmin-max,20Hz-20kHz)  
SINAD no load, LineIn-> Line out, A-weighted  
THD @ 1kHz, no load  
600  
Ω
±0.5  
-97  
-88  
-80  
90  
dB  
dB  
dB  
dB  
dB  
µA  
ms  
THD @ 1kHz, 600Ω  
PSRR (200Hz-20kHz)  
60  
IOUT_powerdown  
-20  
20  
Tpower_up (C_LINECM=100nF)  
150  
www.austriamicrosystems.com  
Revision 1v13  
110 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Table 115. Line out Block Characteristics  
Parameter  
Min  
Typ  
50  
Max  
Unit  
100Hz  
1kHz  
GND cancellation GND - AUDIO_GND to  
LOUT_R, LOUT_L no load  
50  
dB  
10kHz  
40  
9.10.6 Register Description  
To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. All  
other Line/headphone driver settings are controlled by the following two registers.  
Right Line Register  
Table 116. LINE_OUT_R Register  
LINE_OUT_R  
Addr:83  
These bits control the Line in volume and mod
Bit  
Bit Name  
Default Access  
olumettings for right Line oput, adjustable in 32  
steps @ 1.5dB  
00000  
00001  
......  
-40.5 dB gain  
-39 dB gain  
4:0  
liner_vol  
00000b  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gain  
Line_out amplifier input connected to mixer  
output  
0
1
5
dac2line_on  
ibr_line<1:0>  
0
R/W  
R/W  
Line_out amplifier input connected to Audio  
DAC output gain stage (Mixer is bypassed in  
this mode)  
Bias current reduction settings for line output:  
00  
0%  
7:6  
0b  
01  
10  
11  
17%  
34%  
50%  
www.austriamicrosystems.com  
Revision 1v13  
111 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Left Line Register  
Table 117. LINE_OUT_L Register  
LINE_OUT_L  
These bits control the Line in volume and mode  
Addr:84  
Bit  
Bit Name  
Default Access  
volume settings for left Line output, adjustable in 32  
steps @ 1.5dB  
00000  
00001  
......  
-40.5 dB gain  
-39 dB gain  
4:0  
liner_vol  
00000b  
R/W  
11110  
11111  
4.5 dB gain  
6 dB gain  
5
6
-
0
0
reserved  
0
1
Line stagnot owered  
power up Le stage  
nomal peration  
line_on  
R/W  
R/
7
line_mute  
0
Line ouut set to mute (mute is on during  
power-up)  
1
9.11 Headphone Output  
The headphone output is designed to provide te audio signal with 2x4W @ 16Ω or 2x20mW @32Ω, which are  
typical values for headphones.  
This output stage has an independent gairegulation for left and ght channel with 32 steps @ 1.5dB each. The gain  
can be set from –40.5dB to +6dB.  
9.11.1 Phantom Ground  
HP_CM_PWR pin is the buffered HP_CM output. can be used to drive the common mode level with a load of 2kΩ.  
The phantom ground can be switched off to save pweif not needed.  
9.11.2 No-Pop Function  
To avoiding click and pop noise during powup and shutdown, the output is automatically set to mute when the output  
stage is disabled. Also the volume settingare set to their default values, and can’t be changed, as long the output  
stage is not enabled.  
HP_CM pin, which needs a 100nto 1µF capacitor outside, gets charged on power-up with 1µA to AVDD/2. After start-  
up the DC level of the follwinpins are the same: HPR=HPL=HP_CM=HP_CM_PWR=AVDD/2. The Start-up time  
before releasing mute is about 150ms. To avoid pop-noise 150ms discharging time of HP_CM after a shutdown, have  
to be waited beforstartg up again.  
9.11.3 Ovecurrent Protection  
This outpstage has an over-current protection, which disables the output for 256ms or 512ms. This value can be set  
in he hephne registers. The over-current protection limit of HPR and HPL pin is about 260mA while HP_CM_PWR  
pin has a 370mA limit.  
www.austriamicrosystems.com  
Revision 1v13  
112 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9.11.4 Power Save Options  
To save power, especially when driving 32 Ω loads, a reduction of the bias current can be selected.  
Bias current reduction settings for headphone output:  
00: 0%  
01: 17%  
10: 34%  
11: 50%  
9.11.5 Parameters  
Table 118. Power Amplifier Parameter  
Parameter  
Min  
Typ  
Max  
Unit  
Analog Performance  
R_Load at AOUTR and AOUTL single ended  
16  
Ω
Vout  
.13  
Vp  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
µA  
ms  
Gain Step Precision (RLmin-max,20Hz-20kHz)  
SINAD no load, LineIn-> HPH, A-weighted  
THD @ 1kHz, no load  
±0
-97  
-88  
-80  
-74  
-68  
60  
THD @ 1kHz, 32Ω, 10mW  
THD @ 1kHz, 32Ω, 20mW  
-66  
-60  
THD @ 1kHz, 16Ω, 40mW  
Channel Separation (32Ω, dcoupled)  
PSRR (200Hz-20kz)  
60  
90  
Shorted ProtectioLevel  
260  
370  
Shorted Protection Levecommon mode er  
IOUT_powerdown  
-20  
20  
Tpower_up (HP_CM=0.1µF)  
150  
50  
100Hz  
1kHz  
GND cancellation GND - AUDIO_GND to  
HP_R, HP_L no oa
50  
dB  
10kHz  
40  
9.11.6 Register Description  
To get an interrupt on an ovr-curent event, the corresponding bit in the Interrupt enable register has to be set.  
Changing the bias currenor the output driver strength is done via AudioSet2 register. All other headphone driver  
settings are controlled by thfollowing two registers.  
www.austriamicrosystems.com  
Revision 1v13  
113 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
Right Headphone Register  
Table 119. HPH_OUT_R Register  
HPH_OUT_R  
These bits control the Right headphone ouput volume and mode  
Addr:81  
Bit  
Bit Name  
Default Access  
Description  
volume settings for right headphone output, adjustable  
in 32 steps @ 1.5dB  
00000  
00001  
......  
-40.5 dB gain  
-39 dB gain  
4:0  
hpr_vol  
00000b  
11110  
11111  
4.5 dB gain  
6 dB gain  
headphone phantom groundisble  
normaopertion  
5
hpcm_off  
0
1
disable commomode buffer  
headphone ovr curent time out:  
speaker over current time out:  
00  
01  
10  
256 ms  
128 ms  
512 ms  
0 ms  
7:6  
hp_ovc_to  
00h  
Left Headphone Register  
Table 120. HPH_OUT_L Register  
HPH_OUT_L  
Addr:82  
Thee bitcontrol the Left headphone ouput volume and mode  
Bit  
Bit Name  
efault Access  
volume settings for left headphone output, adjustable  
in 32 steps @ 1.5dB  
00000  
-40.5 dB gain  
-39 dB gain  
00001  
4:0  
hpl_vol  
00000b  
......  
11110  
4.5 dB gain  
6 dB gain  
11111  
0
1
0
1
0
use HPL1, HPR1 as headphone output  
use HPL2, HPR2 as headphone output  
headphone stage not powered  
power up headphone stage  
normal operation  
5
6
hp_mux  
hp_on  
0
0
R/W  
R/W  
7
hp_mute  
0
R/W  
headphone output set to mute (mute is on  
during power-up)  
1
www.austriamicrosystems.com  
Revision 1v13  
114 - 157  
AS3658  
Data Sheet Confidential - Detailed Description- Audio Functions  
9.12 SPDIF output  
Enables and controls the SPDIF output pin. SPDIF functionality is enabled, if internal masterclock is used (internal  
PLL), or the external masterclock = 256* LRCLK. (No SPDIF function if external masterclock= 128 *LRCLK)  
Table 121. SPDIF Register  
SPDIF  
Addr:89  
These bits control the SPDIF output  
Bit  
Bit Name  
Default Access  
Description  
ISPDIF output ON/OFF control and sample rate status  
bits  
00  
01  
10  
11  
SPDIF output OFF  
SPDIF output ON  
1:0  
spdif_cntr  
00b  
R/W  
reserved (do not use)  
reserved (do nt us
SPDIF sample tatubit  
samplvalid  
2
3
4
5
6
spdif_invalid  
spdif_mclk_inv  
spdif_copy_ok  
sdo3_select  
sclk_invert  
0
0
0
0
0
R/W  
R/W  
R/W  
R
R/W  
0
1
samplinvalid  
SPDIF master clock control bit  
master clock  
0
1
master clock inverted  
SPDIF copy control bit  
copy not permitted  
1
copy permitted  
Select source of SDO3 output  
Select adc_output  
0
1
Select Equalizer output  
Invert serial data clock of I2S1 and I2S2  
Normal mode  
0
1
Invert SCLK1 or SCLK2 input  
switch off audio functionality for low power  
touchpannel detection  
7
audio_of
0
R/W  
0
1
Normal mode  
audio bias switched off to reduce power  
www.austriamicrosystems.com  
Revision 1v13  
115 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10 Detailed Description - System Functions  
The system functions consist of the I2C interface, the reset controller, the interrupt controller, startup sequences and  
programming, the watchdog, internal references, the ON-key detect and the real time clock module.  
2
10.1 I C Serial Interface  
Table 122. I2C SDA,SCL Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
SCL,SDA Low Level  
input voltage  
VIL  
-0.3  
0.4  
V
SCL,SDA High Level  
input voltage  
VSUPP  
LY  
VIH  
1.3  
V
10.1.1 Feature List  
Fast-mode capability (max. SCL-frequency is 400 kHzkHz)  
7+1-bit addressing mode  
60h x 8-bit data registers (word address 0x00 - 0x60)  
Write formats: Single-Byte-Write, Page-Write  
Read formats: Current-Address-Read, Random-Read, ential-Read  
SDA input delay and SCL spike filtering by integrated Rcomponents  
10.1.2 Transfer Formats  
Figure 51. I2C Byte-Write  
S
Sr  
DW  
DR  
WA  
A
N
START condition after STOP  
repeated START  
device address for write  
device address for read  
word address  
S
DW  
A
WA  
A
reg_data P  
write register,  
WA++  
acknowledge  
no acknowledge  
P
stop condition  
white field  
grey field  
WA++  
slave as receiver  
slave as transmitter  
increment word address internally  
AS3658 device address write (DW):80h = 10000000b  
AS3658 device address rad (DR): 81h = 10000001b  
Figure 52. I2C Pa-Wrie:  
reg_data n A P  
S
DW  
A
WA  
A
reg_data 1  
A
reg_data 2  
A
write register  
WA++  
write register  
WA++  
write register  
WA++  
Byte-Write and Page-Write are used to write data to the slave.  
www.austriamicrosystems.com  
Revision 1v13  
116 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state  
(the bus is free). The device-write address is followed by the word address. After the word address any number of data  
bytes can be send to the slave. The word address is incriminated internally, in order to write subsequent data bytes on  
subsequent address locations.  
For reading data from the slave device, the master has to change the transfer direction. This can be done either with a  
repeated START condition followed by the device-read address, or simply with a new transmission START followed by  
the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register  
byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can be read from the slave.  
The word address is incriminated internally.  
The diagrams below show various read formats available:  
Figure 53. I2C Random-Read:  
S
DW  
A
WA  
A Sr  
DR  
A
data  
P
N
read register  
WA++  
W+  
Random-Read and Sequential-Read are combined formaThe repeated START condition is used to change the  
direction after the data transfer from the master.  
The word address transfer is initiated with a START conditioissued by the maer while the bus is idle. The START  
condition is followed by the device-write address and the word address.  
In order to change the data direction a repeated START condition is isson the 1st SCL pulse after the acknowledge  
bit of the word address transfer. After the recptioof the device-rd address, the slave becomes the transmitter. In  
this state the slave transmits register data ocatd by the previoureceed word address vector. The master responds  
to the data byte with a not-acknowledg, anissues a STOP onditn on the bus.  
Figure 54. I2C Sequential-Read:  
data 2  
data n  
S
DW  
A
WA  
A Sr  
DR  
A
data 1  
A
A
P
N
read register  
WA++  
WA++  
Sequential-Rad is the extended form of Random-Read, as more than one register-data bytes are transferred  
subsequetly. In difference to the Random-Read, for a sequential read the transferred register-data bytes are  
respondby an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited  
cnsider the behavior of the word-address counter). To terminate the transmission the master has to send a not-  
acknwledge following the last data byte and generate the STOP condition subsequently.  
www.austriamicrosystems.com  
Revision 1v13  
117 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Figure 55. I2C Current-Address-Read:  
A
data 2  
data n  
S
DR  
A
data 1  
A
N P  
read register  
WA++  
read register  
WA++  
read register  
WA++  
WA++  
To keep the access time as small as possible, this format allows a read access without the word address transfer in  
advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read  
address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the 1st regis
byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the data bytes as to  
be responded with an acknowledge from the master. For termination of the transmission the master sends a not-  
acknowledge following the last data byte and a subsequent STOP condition.  
10.2 Reset generator and XON-Key  
XRESET is a low active bi-directional pin. An external pull-up to he perhery supply has to be dded.  
During each reset cycle the following states are controlled by the S368:  
Pin XRESET is forced to GND  
Programmable Power-off function  
Programmable Power-on sequence and regulator voltages  
Programmable reset timer  
All registers are set to their default valueafr power-on, excpt threst control- and status-registers.  
Note: Programming is controlled by the nternl Mask-PROM ad thxternal resistor RPROGRAM  
Table 123. XRESET,XON Characteiss  
Symbol  
Parameter  
Min  
Max  
Unit  
Note  
XRESET Low Level  
input voltage  
VXRESET_IL  
-0.
0.4  
V
XRESET High Level  
input voltage  
VSUPP  
LY  
VXRESET_IH  
VXON_IL  
1.3  
V
XON Low Level inpu
voltage  
0.3*V2  
_5  
-0.3  
0.7*V2  
_5  
VXON_IH  
XON High Leel iput  
XON Pl up current  
V2_5  
IXON_PUP  
12  
µA  
10.2.1 Reset Conditons  
Reset can be activatd from 7 different sources:  
Power on battry or charger insertion)  
Low tery  
Softwre forced reset  
Pwer off mode  
External triggered through the pin RESET  
Overtemperature  
Watchdog  
www.austriamicrosystems.com  
Revision 1v13  
118 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Voltage detection:  
There are two types of voltage dependent resets: VPOR and VXRESET. VPOR monitors the voltage on V2_5 and  
VXRESET monitors the voltage on VSUPPLY. The linear regulator for V2_5 is always on and uses the voltage  
VCHARGER, VBAT or V_USB as its source.  
The pin RESET is only released if V2_5 is above VPOR and VSUPPLY is above VXRESETRISE  
.
Table 124. Reset Levels  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Monitor voltage on V2_5; power on  
reset for all internal functions  
VPOR  
Overall power on reset  
1.5  
2.0  
2.3  
V
Reset level for Vsupply  
rising  
ResVol  
trise  
Monitor voltage on Vsupply; risng  
level  
VXRESETRISE  
V
V
V
Monitor voltage on VSupply; flling  
level  
2.7  
Reset level for Vsupply  
falling  
VXRESETFALLING  
ResVol  
tfall  
if SupResn=1 only  
Duration foBATVXRESETFALLING  
until a resecycle is started1  
Mask time for  
VXRESETFALLING  
VRESETMASK  
2.0  
2.5  
3.0  
ms  
1. VRESET signal is debounced with the specified mask me for rising- and falling slope of VBAT.  
VRESETFALLING is only accepted if the reset condition is loner than VRESETSK. s guard time is used to avoid a  
complete reset of the system in case of short drops of VBAT.  
Power off:  
To put the chip into ultra low power mode, wte ‘1’ nto xon_enablnd ‘1’ into power_off. The chip stays in power off  
mode until the external pin XON is pulled ow, te charger is inseted othe level VPOR is touched to start a complete  
reset cycle. The bit power_off is automicallcleared by this rset ccle. During power_off state all circuits are shut-off  
except the Low Power LDO (V2_5). Ththe current consptioof AS3658 is reduced to less than 15 µA. The digital  
part is supplied by V2_5, all other circuits are turned off mode, including references and oscillator. Except the  
reset control registers all other registers are set to heir default value after power-on.  
Software forced reset  
Writing ‘1’ into the register bit force_reset immediately starts a reset cycle. The bit force_reset is automatically cleared  
by this reset.  
External triggered reset:  
If the pin XRESET is pulled from hih to low by an external source (e.g. microprocessor or button) a reset cycle is  
started as well.  
Overtemperature rese:  
The reset cycle cabe sarted by overtemperature conditions. (see Protection Functions on page 134)  
Watchdog reset:  
If the watchdog s armed (register bit wtdg_on = 1 and wtdg_res_on = 1) and the timer expires it causes a reset. (see  
Watchdon page 135).  
www.austriamicrosystems.com  
Revision 1v13  
119 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.2.2 Reset Control Bits  
Table 125. Reset Timer Register  
Reset Timer  
These bits control the reset timer and XON enable register  
Addr:22  
Bit  
Bit Name  
Default Access  
Description  
Set RESTIME  
RESTIME=10ms  
RESTIME=20ms  
RESTIME=35ms  
RESTIME=50ms  
RESTIME=65ms  
RESTIME=8ms  
RESTME=5ms  
RESTIME110ms  
000  
001  
010  
011  
100  
101  
110  
111  
2:0  
res_timer  
ROM  
R/W  
Ts flag enables the XON pad and sets the power on  
state of the ASIC  
XON pd disabled. Startup of chip; if  
0
3
xon_enable  
ROM  
R/W  
VT>VRESETRISING  
ON pad enabled. Startup of chip; if  
VAT>VRESETRISING and XON=0  
1
Table 126. Reset Control Register  
Reset Control  
Addr:105  
These bits cntrol the power off mode and reset timer  
Bit  
Bit Name  
Default Ac
Description  
0
force_reset  
0b  
R/W  
Setting to ‘1’ starts a complete reset cycle  
Setting to ‘1’ starts a reset cycle, but waits after the  
Reg_off state for a falling edge on the pin XON or until  
the charger is detected  
1
2
power_off  
xon_input  
0b  
R/W  
Read:This flag represents the state of the XON pad  
directly  
NA  
R/W  
Write: Setting to '1' resets the 5 sec. Onkey reset timer  
www.austriamicrosystems.com  
Revision 1v13  
120 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 126. Reset Control Register  
Reset Control  
These bits control the power off mode and reset timer  
Addr:105  
Bit  
Bit Name  
Default Access  
Description  
Flags to indicate to the software the reason for the last  
reset  
VPOR has been reached (battery or charger  
0000  
insertion from scratch)  
VRESETFALLING was reached (battery voltage  
0001  
drop below 2.75V)  
0010  
0011  
software forced by force_reset  
software forced by power_off and XON was  
pulled low  
software forced by power_f ancharger was  
detected  
0100  
6:3  
reset_reason  
NA  
R
0101  
110  
0111  
1000  
1001  
1010  
1011  
external triggered ougthe pin RESET  
reset caused by overmperature T140  
reset caused by watchdog  
reseaused by 5 seconds on press  
est caused by rtc_alarm register  
reet caused by rtc repeated wakeup  
rest caused by interrupt in standby mode  
reset caused by XON pulled low in standby  
mode  
1100  
0
1
Reset after 5 seconds ON pressed disabled  
Reset after 5 seconds ON pressed enabled  
7
Onkey_reset_5s  
1
R
Table 127. Internal references Bit definitions  
Internal references Bit definitions  
Addr:59  
These bits control the internal reference mode and internal clk  
frequency  
Bit  
Bit Name  
Default Access  
Description  
Setting to ‘1’ sets the AS3658 into standby mode. All  
regulators defined in reg.17h “Reg Power1Ctrl” and  
reg.1Eh “Reg Power2 Ctrl are disabled except those  
regulators enabled by reg.81h “Reg standby mode”.  
XRESET will be pulled to low. A normal startup of all  
regulators will be done with any interrupt (has to be  
enabled before entering standby mode). During this  
startup, regulators defined by Reg standby mode  
register are continuously on.  
4
standby_mode_on  
0
W
Divide internal clock oscillator by 2 to reduce  
quiescent current for low power operation  
0
1
Normal mode  
5
Clk_div2  
0
R/W  
Internal clock frequency divided by two. All  
timings are increased by two. Switching  
frequency of all DCDC converters are divided  
by two. Reduced transient performance of  
DCDC converters.  
www.austriamicrosystems.com  
Revision 1v13  
121 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 127. Internal references Bit definitions  
Internal references Bit definitions  
Addr:59  
These bits control the internal reference mode and internal clk  
frequency  
Bit  
Bit Name  
Default Access  
Description  
Normal mode  
0
1
The quiescent current of the following  
regulators is divided by approx. two: SD1,  
SD2, SD3, RF1, RF2, RF3. The current  
capability and performance is also reduce in  
that mode. (E.g. Use this bit only to reduce  
quiescent current, if system and processor i
in a low power mode)  
6
Reg_low_bias_mode  
0
R/W  
Table 128. Reg standby mode Bit definitions  
Reg standby mode  
Addr:129  
These bits control the on/off function of the regulatrs dring standby  
mode  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
RF1 LDO is disabed in standby mode  
RF1 O is enabled in standby mode  
RF2 DO is disabled in standby mode  
R2 LDO is enabled in standby mode  
DG1 LDO is disabled in standby mode  
DIG1 LDO is enabled in standby mode  
DIG2 LDO is disabled in standby mode  
DIG2 LDO is enabled in standby mode  
Step down 1 is disabled in standby mode  
Step down 1 is enabled in standby mode  
Step down 2 is disabled in standby mode  
Step down 2 is enabled in standby mode  
Step down 3 is disabled in standby mode  
Step down 3 is enabled in standby mode  
Charge pump is disabled in standby mode  
Charge pump is enabled in standby mode  
0
ldo_rf1_stby_on  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
2
3
4
5
6
7
ldo_rf2_stby_on  
ldo_dig1_stby_on  
ldo_dig2_stby_on  
sd1_stby_on  
sd2_stby_on  
sd3_stby_on  
cp_stbyon  
www.austriamicrosystems.com  
Revision 1v13  
122 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 129. Charger supervision  
Fuel Gauge  
This bit controls first startup out of power on reset  
Addr:14  
Bit  
Bit Name  
Default Access  
Description  
Switch on Power off mode at first startup(e.g. First  
battery insertion or first charger insertion)  
Startup of all regulators if battery is inserted,  
charger insertion, onkey pressed or rtc alarm.  
0
Startup of all regulators only if onkey is  
pressed or rtc alarm (no startup on battery  
insertion; no startup if charger detectedif  
no_charging=0). xon_enable has to be set
bootrom.  
Boot  
ROM  
4
auto_shutdown  
R/W  
If a charger is detected and the bit  
no_charging=0 (defined by ootROM) and  
1
ch_pwroff_en=0 the AS368 will start  
charging without regulatos statup (fully  
autonomous chargg).  
If the bit no_chargg=1 nd a charger is  
detected, the regulatos are started and the  
charging can be enabd with software  
corol.  
Table 130. Fuel Gauge  
FueGuge  
Addr:15  
Ths bit controls first strtup out of power on reset  
Bit  
Bit Name  
Defalt Access  
Description  
Swith on Power off mode if low Vsupply is detected  
duing active or standby mode (Pin XON= high and bit  
xon_enable=0)  
Boot  
R
If low battery is detected, continuously monitor  
5
power_off_at_v_suplow  
ROM  
0
1
battery voltage and startup if battery voltage is  
above ResVoltrise  
If low battery is detected, enter power off  
mode  
10.2.3 Reset Cycle  
During a reset cycle the pin XRESET is fed to low for at least RESTIME and all registers are set to their default  
values (except the registers markd green in theTable 186 on page 148). During the reset time a normal startup  
happens (see Startup on page 29), the reset is active until the reset timer (set by register bits res_timer<2:0>) expires.  
Then the voltage on the pin RESET is pulled high by the external resistor and the whole system is leaving the reset  
state.  
10.2.4 Reset Ctrolres_con  
Reset is internally generated from a power supply supervisor and provided to internal logic as well as externally  
through the oen-dain pad XRESET. At this point, it could be also forced externally from an external power supply  
supervisdditionally Reset can be forced by software.  
www.austriamicrosystems.com  
Revision 1v13  
123 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.3 Interrupt Controller  
The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the  
Interrupt 1…3 register is set by pulling low pin XINT. All the interrupt sources can be enabled in the Interrupt Mask 1…3  
register. The Interrupt 1…3 registers are cleared automatically after the host controller has read them. To prevent the  
AS3658 device from losing an interrupt event, the register that is read is captured before it is transmitted to the host  
controller via the serial interface. As soon as the transmission of the captured value is complete a logical AND  
operation with the bit wise inverted captured value is applied to the register to clear all interrupt bits that have already  
been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the  
clearing process has completed will yield a value of ‘0’. Note that an interrupt that has been present at the previous  
read access will be cleared as well in case it occurs again before the clearing process has completed.  
During a read access to one of the interrupt registers the XINT pin will be released. As soon as the transferred bito
the interrupt register have been cleared the XINT pin will be pulled low in case a new interrupt has occurred in he  
meantime. By doing so the interrupt controller will work correctly with host controllers that are edge- and level-sesitive  
on their interrupt request input. Multiple byte read access is recommended to avoid reading the Interrupt 1 register  
over and over again in response to a new interrupt that has occurred in the same register (and thus pling low pin  
XINT) before the Interrupt 2,3 register has been read.  
Table 131. Interrupt Status 1 Register  
Inerrupt Status1  
Addr:50  
These bits show the status of the iterrupts  
register is t power-on-reset and after each read access  
Bit  
0
Bit Name  
Default Acces
escription  
Bit is set whethe fllowing status bits are set or reset:  
Trickle, CVM, NoBat  
chstate_i  
cheoc_i  
NA  
NA  
N
R
R
R
1
Bit is swhen the EOC status bits are set or reset:  
Bit is set when charge timeout ( tricke, CV, CC) has  
been expired  
2
charging_tmax_i  
3
4
5
usb_chdet_i  
chdet_i  
NA  
NA  
NA  
R
R
Bit is set when the USB_ChDet Bit is set or reset.  
Bit is set when the ChDet Bit is set or reset.  
Bit is set when status XON bit is set or reset.  
Onkey_i  
Bit is set when the lower temperature threshold  
Temp110 of the temperature sensor is exceeded for  
6
7
ovtmp_i  
Lowsup  
NA  
NA  
R
R
longer than tRESMASK  
.
Bit is set when the main supply voltage VSUPPLY has  
dropped below VRESFALL for longer than tRESMASK  
.
Table 132. Interrupt Status 2 Rgister  
Interrupt Status2  
Addr51  
These bits show the status of the interrupts  
register is reset at power-on-reset and after each read access  
Bit  
Bit Name  
Default Access Description  
Bit is set when voltage of step down1 drops below low  
voltage threshold (1msec debounce timer)  
0
sd1_lv_i  
NA  
NA  
R
R
Bit is set when voltage of step down2 drops below low  
voltage threshold  
2
sd2_lv_i  
sd3_lv_i  
(1msec debounce timer)  
Bit is set when voltage of step down3 drops below low  
voltage threshold  
NA  
R
(1msec debounce timer)  
www.austriamicrosystems.com  
Revision 1v13  
124 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 132. Interrupt Status 2 Register  
Interrupt Status2  
Addr:51  
These bits show the status of the interrupts  
register is reset at power-on-reset and after each read access  
Bit  
Bit Name  
Default Access  
Description  
Bit is set when voltage of LdoDig1 drops below low  
voltage threshold  
3
dig1_lv_i  
NA  
R
(1msec debounce timer)  
Bit is set when voltage of LdoDig2 drops below low  
voltage threshold  
4
5
dig2_lv_i  
hphcurr_i  
NA  
NA  
R
R
(1msec debounce timer)  
Bit is set when output stage of headphone amlifie
exceeds overcurrent limit.  
Bit is set when bit bat_hightemp or ba_lowtemp is set  
or reset  
6
7
bat_temp_i  
stpup1_i  
NA  
NA  
R
R
Bit is set when stpup1_oc or stpup_det is set.  
Table 133. Interrupt Status 3 Register  
nterrupt Status3  
Addr:52  
Ths show the sttus of the interrupts  
register is reet at power-on-reset nd after each read access  
Bit  
Bit Name  
Default Access  
Description  
Bit is shen voltage of LdoDig3 drops below low  
voltage threshold  
0
dig3_lv_i  
NA  
NA  
R
R
(1msec debounce timer)  
t is set when voltage of LdoDig4 drops below low  
voltage threshold  
1
dig4_lv_i  
(1msec debounce timer)  
2
3
4
rtc_alarm_i  
rtc_rep_i  
NA  
NA  
NA  
R
R
Bit is set by the RTC, if alarm registers=rtc registers  
Bit is set by the RTC every second (Bit irq_min=0) or  
minute (Bit irq_min=1)  
mic_con_i  
Bit is set if a microphone is detected on MIC input  
Bit is set, if the microphone supply is increased  
(remote key press detected) -> measure MICS supply  
current  
5
mic_rem_i  
NA  
R
6
7
voxm_i  
tpeni  
NA  
NA  
R
R
Bit is set, if voice is detected on MIC input  
Bit is set, if the touchpen pendown is detected  
Table 134. Interrupt mask Register  
Interrupt Mask1  
These bits mask the interrupt  
Description  
Addr47  
Bit  
Bit Name  
Default Access  
0
1
0
1
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
0
chstate_int_mask  
1b  
1b  
R/W  
R/W  
1
cheoc_int_mask  
www.austriamicrosystems.com  
Revision 1v13  
125 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 134. Interrupt mask 1 Register  
Interrupt Mask1  
Addr:47  
These bits mask the interrupt  
Description  
Bit  
Bit Name  
Default Access  
0
1
0
1
0
1
0
1
0
0
1
Interrupt is enabled  
2
charging_tmax_int_mask  
1b  
1b  
1b  
1b  
1b  
1b  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabld  
Interrupt is enabed  
Interrupdisbled  
Interrupt is enabled  
Interrupt s disabled  
3
4
5
6
7
usb_chdet_int_mask  
chdet_int_mask  
onkey_int_mask  
ovtmp_int_mask  
LowSup_int_mask  
Table 135. Interrupt mask 2 Register  
Interupt Mask2  
Addr:48  
These mask the interrupt  
Description  
Bit  
Bit Name  
DfaulAccess  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Interrupt is enabled  
0
sd1_lv_int_mask  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
1
2
3
4
5
6
7
sd2_lv_int_mask  
sd3_lv_int_mask  
dig1_lv_int_mask  
dig2_lv_int_msk  
hphcrr_in_mask  
ba_temp_int_mask  
stpup1_int_mask  
www.austriamicrosystems.com  
Revision 1v13  
126 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 136. Interrupt mask 3 Register  
Interrupt Mask3  
Addr:49  
These bits mask the interrupt  
Description  
Bit  
Bit Name  
Default Access  
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
Interrupt is enabled  
0
dig3_lv_int_m  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
/W  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabld  
Interrupt is enabed  
Interrupdisbled  
Interrupt is enabled  
Interrupt s disabled  
Interrupt is enabled  
Interrupt is disabled  
Interrupt is enabled  
Interrupt is disabled  
1
2
3
4
5
6
7
dig4_lv_int_m  
rtc_alarm_int_m  
rtc_rep_int_m  
mic_con_int_m  
mic_rem_int_m  
voxm_intm  
tpen_i_m  
Table 137. Low voltage status1 Register
Low voltage status1  
Addr:53  
These bits he low voltage status of the step down and digital  
regulators  
Bit  
0
Bit Name  
sd1_lv  
sd2_lv  
sd3_lv  
dig1_v  
dig2_lv  
-
DefaulAccess  
Description  
NA  
N
NA  
NA  
NA  
-
R
R
R
R
R
-
Step down1 low voltage status bit (-10% voltage drop)  
Step down2 low voltage status bit (-10% voltage drop)  
Step down3 low voltage status bit (-10% voltage drop)  
Ldo Dig1 low voltage status bit (-50mV voltage drop)  
Ldo Dig2 low voltage status bit (-50mV voltage drop)  
-
1
2
3
4
5
Bit is set by analog part, if overcurrent of DCDC  
StepUp1 occurs for more than 5msec (latched state)  
6
7
stpp1_oc  
stpup1_det  
NA  
NA  
R
R
Current Detection signal of step up 1  
Table 13ow voltage status2 Register1  
Low voltage status2  
Addr:54  
These bits show the low voltage status of the step down and digital  
regulators  
Bit  
0
Bit Name  
dig3_lv  
Default Access  
Description  
0b  
0b  
R
R
Ldo Dig3 low voltage status bit (-50mV voltage drop)  
Ldo Dig4 low voltage status bit (-50mV voltage drop)  
1
dig4_lv  
www.austriamicrosystems.com  
Revision 1v13  
127 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 138. Low voltage status2 Register1  
Low voltage status2  
Addr:54  
These bits show the low voltage status of the step down and digital  
regulators  
Bit  
2
Bit Name  
Default Access  
Description  
dcdc_curr1_lv  
dcdc_curr2_lv  
dcdc_curr3_lv  
bat_lowtemp  
bat_hightemp  
0b  
0b  
0b  
0b  
0b  
R
R
R
R
R
Indicates low voltage on dcdc_curr1  
3
Indicates low voltage on dcdc_curr2  
4
Indicates low voltage on dcdc_curr3  
5
Indicates NTC temperature of battery below 0º  
Indicates NTC temperature of batter above 45º (50º
6
www.austriamicrosystems.com  
Revision 1v13  
128 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.4 Startup  
Figure 56. Startup flow chart  
Power on reset  
xon_enable=0  
batsw_on=0  
batsw_mode=0  
Reset registers  
except  
xon_enable  
xon_enable=1 and  
(chdet=0 or  
USBChdet=0)  
YES  
NO  
XON pin pulled  
to GND  
NO  
YES  
NO  
YES  
VBAT>VResVolt  
?
Switch on  
Battery switch  
NO  
batsw_on=1  
batsw_mode=1  
Charger  
detected ?  
YES  
YES  
ChEn=1  
NO  
NO  
USB Sup.  
detected and  
ChDet=0?  
S  
USB_ChEn=1  
VSUPPLY>sVolt  
?
YES  
Startup Device  
Astate  
batsw_mode  
batsw_on  
trickle  
0
1
1
1
0
batsw_on=0  
batsw_mode=0  
Switch on  
Switch off  
X
power_off=1  
NO  
YES  
YES  
YES  
NO  
batsw_on=0  
batsw_mode=0  
VSUPPLY<VResVolt  
?
NO  
force_reset=1  
10.4.1 Normal Startup  
During a normareset cycle (e.g. after the battery or a charger is inserted; (see Reset generator and XON-Key on page  
118)), aV2_5 is above VPOR and Vsupply is above VRESETRISE a normal startup happens:  
The external capacitor on CREF is charged to 1.8V  
Th3bit A/D conversion is performed to measure the external resistor value RPROGRAM  
Startup State machine reads out the internal Boot-ROM (address defined by boot_ctrl), Start sequence of Step-  
Down Converter and LDO’s controlled by the Boot-ROM  
Reset-Timer is set by the Boot-ROM  
The reset is released when the Reset Timer expires (external pin XRESET)  
www.austriamicrosystems.com  
Revision 1v13  
129 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.4.2 Startup from Charger  
If the voltage on pin VCHARGER is within VSTARTCHARGER, the AS3658 is started (even with VBAT = 0V). This  
allows the battery to be charged (even from deeply discharged batteries) and finally a normal startup to happen.  
Table 139. Charger Startup Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
unit  
Note  
Voltage on  
VCHARGER for  
system to start  
VSTARTCHARGER  
4.0  
5.0  
15  
V
on Pin VCHARGER  
10.4.3 Programmable Startup Sequences—Boot ROM  
The startup- and reset sequences of the device are highly configurable. The configuration of these sequences is  
defined by the ratio of the internal trimmed bias resistors and RPROGRAM. At the beginning of each reset cycle a 3 bt  
AD-conversion is performed. The result of this conversion is used to select 1 of 8 possible address-ranges of an  
internal mask-programmable ROM. The information that is stored in this ROM defines the following prameters:  
Voltage levels for all regulators and step down dcdc converters  
power-on sequence of RF_1, RF_2, DIG_1, DIG_2, SD1, SD2 and SD3  
duration of the reset cycle  
several other configuration bits (e.g. charger)  
The following values of RPROGRAM are used to select the ssible address ranges (8 different startup voltage /  
sequences settings can be used):  
000: open  
001: 320kΩ  
010: 160kΩ  
011: 80kΩ  
100: 40kΩ  
101: 20kΩ  
110: 10kΩ  
111: 0Ω  
Table 140. Boot ROM Bits definitions  
Boot_status  
These bits show the boot status  
Default Access Description  
Addr:107  
Bit  
2:0  
3
Bit Name  
rom_adr  
NA  
1
R
R
Boot-ROM address  
rom_vaid  
If ‘1’ Boot-ROM address is valid  
Note: For detaied statup sequences see austriamicrosystems AG document AS3658_BootROM_*.  
www.austriamicrosystems.com  
Revision 1v13  
130 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.4.4 Additional Startup Settings  
Table 141. Boot ROM Bits definitions  
LDO_RF2_Voltage  
These bits defines the startup sequence  
Addr:4  
Bit  
Bit Name  
Default Access  
Description  
0
1
Normal reset pulse  
Apply double reset pulse after the normal rest  
pulse that is define by res_timer. (pulse on  
XRESET with 2msec high time and 2msec  
low time  
double_reset  
ROM  
ROM  
R/W  
R/W  
7
Normal startup of LDOs defined in boot rom  
with a separation of 1 milliseconds  
0
1
slow_startup  
6
Startup of all LDOs defined by boot rom with a  
time separation of 4 millseconds  
10.4.5 Programmable Startup Sequences with fuse registers—Boot OTP  
Its possible to program some startup registers, by using the fuse block
Table 142. ROMF Bit definitions  
FUS4  
Addr:196  
These bitcontrol the startup anare set by factory test  
Bit  
Bit Name  
Default Access  
Description  
0
1
Fusible startup rom disabled  
7
romf_en  
0
R
Feasible startup of rom enabled  
(UniqueID0.UniqueID10) used for startup  
Table 143. ROMF Bit definitions  
addrf0  
Addr:197  
These bits control the startup and are set by factory test  
Bit  
Bit Name  
Default Access  
Description  
Each bit represents a register address of the bootrom  
table (0....31)  
Use data of ROM table during startup for the  
0
7:0  
addrf<7:0>  
0
R
according address (0....31)  
Use data of fuse register during startup for the  
according address, starting with data of  
register romf0 (up to register romf6 max.)  
1
Table 144. ROMBit dfinitions  
addrf0  
Addr:198  
These bits control the startup and are set by factory test  
Bit  
Bit Name  
Default Access  
Description  
Each bit represents a register address of the bootrom  
table (0....31)  
Use data of ROM table during startup for the  
0
7:0  
addrf<15:8>  
0
R
according address (0....31)  
Use data of fuse register during startup for the  
according address, starting with data of  
register romf0 (up to register romf6 max.)  
1
www.austriamicrosystems.com  
Revision 1v13  
131 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 145. ROMF Bit definitions  
addrf2  
These bits control the startup and are set by factory test  
Addr:199  
Bit  
Bit Name  
Default Access  
Description  
Each bit represents a register address of the bootrom  
table (0....31)  
Use data of ROM table during startup for the  
0
7:0  
addrf<23:16>  
0
R
according address (0....31)  
Use data of fuse register during startup for the  
according address, starting with data of  
register romf0 (up to register romf6 max.)  
1
Table 146. ROMF Bit definitions  
addrf3  
Addr:200  
These bits control the startup and are set by fatory test  
Bit  
Bit Name  
Default Access  
Descripion  
ach it epresents a register adress of the bootrom  
table (0....31)  
Use data of ROM table during startup for the  
0
7:0  
addrf<31:24>  
0
R
cording address (0....31)  
Use data of fuse register during startup for the  
acordig address, starting with data of  
regier romf0 (up to register romf6 max.)  
1
Table 147. ROMF Bit definitions  
romf0  
Addr:201  
These bits cntrol the startup and are set by factory test  
Bit  
Bit Name  
Default Ac
00h  
Description  
Data for startup register (used for the first “1” in the  
addrf<31:0> register  
7:0  
romf0  
R
Table 148. ROMF Bit definitions  
romf1  
Addr:202  
These bits control the startup and are set by factory test  
Bit  
Bit Name  
Default Access  
Description  
Data for startup register (used for the second “1” in the  
addrf<31:0> register  
7:0  
romf1  
00h  
R
Table 149. ROMF it denitions  
romf2  
Adr:203  
These bits control the startup and are set by factory test  
Bit  
Bit Name  
Default Access  
00h  
Description  
Data for startup register (used for the third “1” in the  
addrf<31:0> register  
70  
romf2  
R
www.austriamicrosystems.com  
Revision 1v13  
132 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 150. ROMF Bit definitions  
romf3  
These bits control the startup and are set by factory test  
Addr:204  
Bit  
Bit Name  
Default Access  
00h  
Description  
Data for startup register (used for the fourth “1” in the  
addrf<31:0> register  
7:0  
romf3  
R
Table 151. ROMF Bit definitions  
romf4  
Addr:205  
These bits control the startup and are set by factory test  
Bit  
Bit Name  
Default Access  
00h  
Description  
Data for startup register (used for the fifth “1” in he  
addrf<31:0> register  
7:0  
romf4  
R
Table 152. ROMF Bit definitions  
romf5  
Addr:206  
These bits cotrol thstartup and are set by factory test  
Bit  
Bit Name  
Default Acc
00h  
Description  
Data for startup reister (used for the sixth “1” in the  
addr31:0> register  
7:0  
romf5  
R
Table 153. ROMF Bit definitions  
omf6  
Addr:207  
These bits control he startup and are set by factory test  
Bit  
Bit Name  
Default Access  
00h  
Description  
Data for startup register (used for the seventh “1” in  
the addrf<31:0> register  
7:0  
romf6  
www.austriamicrosystems.com  
Revision 1v13  
133 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.5 Protection Functions  
All LDO’s, the DCDC step ups and DCDC step downs have an integrated overcurrent protection. An overtemperature  
protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on  
(enabled by default; it is not recommended to disable the overtemperture protection). The chip has two signals for the  
serial interface: ov_temp_110 and ov_temp_140. The flag ov_temp_110 is automatically reset if the overtemperature  
condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140.  
If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The flag ov_temp_140 is not  
affected by this reset cycle allowing the software to detect the reason for this unexpected shutdown.  
Table 154. Overtemperature Detection  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
ov_temp_110 rising  
threshold  
T110  
95  
110  
125  
ºC  
ov_temp_140 rising  
threshold  
T140  
125  
140  
5
155  
ºC  
ºC  
ov_temp_110 and  
ov_temp_140  
hysteresis  
Thyst  
Table 155. Overtermperature detection Bit definition  
Overtemperare Control  
These bits control the startup anare set by factory test  
Addr:106  
Bit  
Bit Name  
Default Access  
Description  
Switch off of temperature supervision; default: on  
ll her bits are only valid if set to ‘1’  
Leave at 1, do not disable  
0
temp_pmc_on  
1
R/W  
R
Flg that the overtemperature threshold 1 (T110) has  
been reached  
1
2
ov_temp_110  
ov_temp_140  
NA  
Flag that the overtemperature threshold 2 (T140) has  
been reached – this flag is not reset by a  
overtemperature caused reset and has to be reset by  
rst_ov_temp_140  
NA  
0
R
If the overtemperature threshold 2 has been reached,  
the flag ov_temp_140 is set and a reset cycle is  
started. ov_temp_140 should be reset by writing 1 and  
afterward 0 to rst_ov_temp_140  
3
rst_ov_temp_140  
W
10.5.1 Temperature Supervison  
A temperature sensor is impemeted to provide over-temperature protection of the chip. It generates two flags linked  
to the two temperature theshods (110 degrees, 140 degrees). Both thresholds have an hysteresis to prevent  
oscillation effects.  
First threshold (110 egrees) sets the flag ov_temp_110, signalling the serial interface part and software the 110  
degrees overtmperature condition. If enabled (ovtmp_int_mask=0), an interrupt can be send (interrupt ‘ovtmp’). Thus  
software can ract and can shutdown power consuming functions to decrease temperature.  
Thsecd threshold (140 degrees) initiates a reset cycle and sets ov_temp_140: this sets all regulators into power-  
down mode and stops charging, and performs the reset cycle of the AS3658.  
rst_ov_temp_140 flag  
In case of overtemperature and an activated reset (temp_pmc_on=1), the system loses any information about the error  
which activated the reset state. Therefore, a flag is implemented, which indicates that the reset was caused by  
overtemperature activation (ov_temp_140 is set). This flag is only resetable by writing ‘1’ to rst_ovtemp_140.  
www.austriamicrosystems.com  
Revision 1v13  
134 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.6 Watchdog  
The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must receive a  
continuous trigger signal within a programmable time window. If there is no signal anymore for a certain time period  
from a defined pad or special serial interface bit, it starts either a complete reset cycle or changes the state of an output  
pin, which can be used e.g. as an interrupt to the processor.  
The watchdog is highly configurable by the following register bits:  
The complete block can be switched on by wtdg_on = 1 and off by wtdg_on = 0.  
The watchdog time window is defined by the register wtdg_min_timer and wtdg_max_timer.  
The trigger signal can be configured by register wtdg_trigger and wtdg_gpio_input. (Pin CURR1-CURR4 (GPIO1-  
GPIO4) or register bit)  
If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1  
Any of the general purpose input / outputs can be configured to output the watchdog signal. The Watchdog dlivers  
a signal “wtdg_alarm”, which is normal ‘0’ and goes to ‘1’ in the case of a timer-overflow. This signal can be usd as  
e.g. a reset or interrupt for a processor.  
Table 156. Watchdog Register definitions  
Wchdog control  
Addr:60  
These bits control the watchdog fnctions  
Bit  
Bit Name  
Default Acce
Description  
Switcheon the complete watchdog  
watchdog off  
0
wtdg_on  
0
R/W  
R/W  
0
1
watchdog enabled  
If the watchdog expires and wtdg_res_on = 1 a reset  
1
2
wtdg_res_on  
wtdg_trigger  
cycle will be started  
Use the register bit wtdg_sw_signal as trigger  
0
signal for the watchdog  
Use one of the GPIO pins CURR1_GPIO1 …  
CURR4_GPIO4 as trigger input for the  
0
R/W  
watchdog; the actual pin is selected by setting  
1
GPIOXIOSF to 01b(watchdog mode) and  
GPIOXMode=010b (GPIO digital input)  
(X=1...4)  
Table 157. Watchdog minimum timer deions  
Watchdog_min timer  
Addr:61  
These bits set the watchdog minimum timer  
Bit  
Bit ame  
Default Access  
00h R/W  
Description  
Defines the minimum watchdog trigger time  
(LSB=7.5ms, range: 0 – 1.9s)  
7:0  
tdg_in_timer  
Table 158. Wtchog max timer definitions  
Watchdog_max timer  
Addr:62  
These bits set the watchdog maximum timer  
Bit  
Bit Name  
Default Access  
FFh R/W  
Description  
Defines the maximum watchdog trigger time  
(LSB=7.5ms, range: 7.5ms – 1.9s), do not set to (00)h  
7:0  
Wtdg_max_timer  
www.austriamicrosystems.com  
Revision 1v13  
135 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 159. Watchdog software signal definitions  
Watchdog software signal  
This bit sets the watchdog software trigger  
Addr:63  
Bit  
Bit Name  
wtdg_sw_signal  
Default Access  
R/W  
Description  
0
0
Trigger input by the serial interface if wtdg_trigger = 0  
Figure 57. Watchdog timing diagram  
tmin  
tmax  
wtdg_trigger  
tmin  
tmax  
10.7 General Purpose 10 Bit ADC  
Table 160. ADC Characteristics  
Symbol  
Parameter  
Min  
Ty
ax  
Unit  
Note  
Resolution  
10  
Bit  
Input Voltage  
Range  
Vin  
DNL  
INL  
0
1.8  
V
Differential  
Nonlinearity  
1LSB 1.76mV (depending on  
selected channel)  
± 0.25  
± 0.5  
LSB  
LSB  
LSB  
Integral  
Nonlinearity  
Input Offset  
Voltage  
Vos  
Input Impedance  
Input Capacitance  
Rin  
Cin  
10
MΩ  
9
pF  
Power Supply  
Current  
Idd  
Idd  
500  
100  
µA  
nA  
During conversion only  
Power Down  
Current  
Transient Parameters (25°C
Conversion Time  
Tc  
40  
µs  
internal CLK frequency/8  
Programmable:  
fclk_int  
8
/
Clock Frequency  
fc  
kHz  
0.2 to 0.2875 MHz  
Settling timof  
S&H  
ts  
1
µs  
DC_Ipll up  
current  
Pull up current for ADC_IN1, if  
adc_idc=1111b  
14.25  
15  
15.75  
µA  
www.austriamicrosystems.com  
Revision 1v13  
136 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 161. ADC control Registers bits  
ADC_control  
This register controls the 10 Bit ADC  
Addr:96  
Bit  
Bit Name  
Default Access  
Description  
Selects an ADC channel  
ADC1_IN (LSB = 1.76mV)  
ADC2_IN (LSB = 1.76mV)  
VBAT Battery voltage (LSB=5.27mV)  
0000  
0001  
0010  
0011 VCHARGER (LSB=17. 6mV) clamping at 0
0100  
0101  
V_USB Voltage (LSB=5.27mV)  
not used  
3:0  
adc_select  
0000b  
R/W  
temperature sensr:  
DIE temperature [°C] = ad_reslt * 0.866 –  
274  
0110  
0111  
100  
01  
ADC test chael – o not use  
heck voltage on MICS for remote control or  
external voltage asrement (LSB=3.52mV)  
VCK voltage (LSB=3.52mV)  
seleADampling frequency  
275kHz (conversion time: 60µs)  
70kHz (conversion time: 240µs)  
reserved (do not use)  
4
5
adc_slow  
-
0b  
-
R/W  
-
0
1
Wring a 1 into this bit continuously activates the ADC  
S/H and the input multiplexer. The ADC and the MUX  
are also activated for a conversion period when  
start_conversion is set to ‘1’ – useful for high  
6
7
adc_on  
0b  
0b  
R/W  
R/W  
impedance input sources on ADC1_IN or ADC2_IN  
start_conversion  
Writing a 1 into this bit starts one ADC conversion.  
Table 162. ADC MSB result register  
ADC_MSB result  
Addr:97  
This register shows the MSB result of the ADC conversion  
Bit  
0
Bit Name  
D3  
Default Access  
Description  
ADC result register  
ADC result register  
ADC result register  
ADC result register  
ADC result register  
ADC result register  
ADC result register  
Indicates end of conversion  
result is ready  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
R
R
R
R
R
R
R
1
4  
2
D5  
3
D6  
4
D7  
5
D8  
6
D9  
7
result_not_ready  
NA  
R
0
1
conversion is running  
www.austriamicrosystems.com  
Revision 1v13  
137 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 163. ADC LSB result register  
ADC_LSB result  
This register shows the LSB result of the ADC conversion  
Addr:98  
Bit  
0
Bit Name  
Default Access  
Description  
D0  
D1  
D2  
-
NA  
NA  
NA  
-
R
R
R
-
ADC result register  
ADC result register  
ADC result register  
reserved (do not use)  
1
2
7:3  
Table 164. ADC IDAC register  
ADC idac  
This register controls the current sink on pin ADC_IN1  
Addr:46  
Bit  
Bit Name  
Default Access  
Description  
Current source at AC_I1 input  
Set to 0000 if battery mperture supervision  
is enaed.  
000  
001  
...  
0µA (crrnt ink disabled)  
1µA  
0
adc_idac  
000b  
R/
1111  
15 µA  
Figure 58. ADC Timing-diagram  
start_conversion=1  
I2C Bus  
1
2
12  
13  
275kHz  
Sample  
ADC_ON  
start_adc  
result_not ready  
D<9:0>  
old_Data  
Data not valid  
Data ready  
www.austriamicrosystems.com  
Revision 1v13  
138 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.8 Internal References (V, I, fclk)  
The internal reference circuits needs the following external components:  
Table 165. Reference External Components  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Ceramic low-ESR capacitor  
between CREF and VSS  
CEXT  
External filter capacitor -10%  
100  
+10%  
nF  
External bias current  
-1%  
Bias Current set resistor between  
RBIAS and VSS  
RBIAS  
220  
+1%  
kΩ  
set resistor  
Table 166. References Parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Low noise trimmed voltag
reference – connected to Pad  
CREF; do nt load  
VCEXT  
Reference Voltage  
-1%  
1.8  
+1%  
V
Accuracy of Internal  
reference clock  
Adjustable by srial iterface  
regisr clkint  
fCLK  
-10  
fCLK  
+10  
%
To reduce the current consumption of the chip, the circuit can be set into a special low power mode with the serial  
interface bit ‘low_power_on’. All specification parameters except te noise parameters are sl valid for this mode.  
Table 167. Internal references Bit definitions  
Internal referenceBit definitions  
Addr:59  
These bits control the internareference mode and internal clk  
requency  
Bit  
Bit Name  
DfaulAccess  
Description  
0
1
Standard mode  
0
low_power_on  
0b  
R/W  
Low power mode – all specification except  
noise parameters are still valid  
Sets the internal CLK frequency fCLK used for fuel  
gauge, DCDCs, PWM, charge pump.  
All frequencies, timings and delays in this datasheet  
are based on 2.2MHz clk_int  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1.6 MHz  
1.7 MHz  
1.8 MHz  
3:1  
clk_int  
110b  
R/W  
1.9 MHz  
2.0 MHz  
2.1 MHz  
2.2 MHz (default)  
2.3 MHz  
108.1 w Power Mode  
Usbit low_power_on (reg. References Control (see Table 167)) to activate the Low Power Mode. In this mode the  
on-chvoltage reference and the temperature supervision comparators are operating in pulsed mode. This reduces  
the quiescent current of the AS3658 by 45uA (typ.). Because of the pulsed function some specifications are not fulfilled  
in this mode (e.g. increased noise), but still the full functionality is available.  
Note: Low power mode can be controlled by the serial interface.  
www.austriamicrosystems.com  
Revision 1v13  
139 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.9 Real-Time Clock (RTC) Module  
The RTC module provides time information to the system. It is implemented as a 6-bit counter that is incremented  
every second - with the 32kHz oscillator delivering the necessary accurate time base – and is reset to 0 each time the  
counter value is 60. An additional 24-bit minute counter is incriminated each time the 6-bit counter is reset to 0. Both  
counters are set to 0 at a power-on-reset. The host controller can set the counter to any value by setting the RTC 1…4  
registers.  
To prevent ambiguous time information because of the 30-bit value being incremented before all of the 4 registers  
have been read or written, a 30-bit parallel shadow register is implemented. Every time a write/read access via the  
serial interface occurs the parallel shadow register is updated with the current value of the 30-bit counter. Any write  
access to the RTC 1 register will disable the update of the parallel register and set the value of the appropriate byte of  
the parallel register. Any subsequent write access to the RTC 4 register will transfer the current value of the 30-bi
parallel register to the RTC 1…4 registers and the update of the parallel register is enabled again. Similarly, any rea
access to the RTC 1 register will freeze the current value of the parallel register and submit the appropriate byte o the  
host controller via the serial interface. Any subsequent read access to the RTC 4 register will enable the update f the  
parallel register again. This mechanism makes sure that the maximum error of the value that is written o or read from  
the registers is 1 second.  
The startup state after power on reset:RTCSecond=3F, RTCMinute1=FF, RTCMinute2=FF, RTCMiute3=FF  
To start the RTC, rtc_mode bits have to be set to a non zero vale, anhe RTC registers have o be set.  
The RTC stops automatically at its highest value (3F,FF,FF,FF) tpreveoverrun.  
Table 168. RTC Second Register  
RTCSecod  
Addr:64  
These bits represents te actal RTC second register  
register is reset at power-on-reset only  
Bit  
5:0  
7:6  
Bit Name  
RTCSecond  
-
Defalt Access  
Description  
0h  
-
R/W  
Bits 5:0 of the 6-bit RTC second counter  
reserved  
Table 169. RTC Minute1 Register  
RTCMinute1  
Addr:65  
Tese bits represents the actual RTC Minute1 register  
register is reset at power-on-reset only  
Bit  
Bit Name  
efault Access  
00h R/W  
Description  
7:0  
RTCMinute1  
Bits 7…0 of the 24-bit RTC minute counter  
Table 170. RTC Minute2 Regiter  
RTCMinute2  
Addr:66  
These bits represents the actual RTC Minute2 register  
register is reset at power-on-reset only  
Bit  
it Name  
Default Access  
00h R/W  
Description  
7:0  
RTCMinute2  
Bits 15:8 of the 24-bit RTC minute counter  
Tble 17RTC Minute3 Register  
RTCMinute3  
Addr:67  
These bits represents the actual RTC Minute3 register  
register is reset at power-on-reset only  
Bit  
Bit Name  
Default Access  
Description  
7:0  
RTCMinute3  
00h  
R/W  
Bits 23:16 of the 24-bit RTC minute counter  
www.austriamicrosystems.com  
Revision 1v13  
140 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
The RTC module includes an alarm function. When the content of the RTC 1…4 registers equals the content of the  
RTC Alarm 1…4 registers bit RTCAlarm will be set in the Interrupt 1 register. Furthermore the RTC module can  
generate an interrupt every second (RTC1Sec will be set) and every minute (RTC1min will be set every time the 6-bit  
second counter is reset to 0). For further details on interrupt generation please refer to Interrupt Controller on page  
124.  
To avoid ambiguous behavior during write access to the RTC Alarm 1…4 registers any write access to the RTC Alarm  
1 register will disable the alarm function; any subsequent write access to the RTC Alarm 4 will enable the alarm  
function again.  
Table 172. RTC Alarm second Register  
RTC AlarmSecond  
Addr:68  
These bits set the RTC Alarm Seconds  
register is reset at power-on-reset only  
Bit  
Bit Name  
Default Access  
3Fh R/W  
Description  
5:0  
RTCAlarmSecond  
Bits 5…0 of 6-bit RTC seconalam value  
Table 173. RTC Alarm minute1 Register  
RTAlarmMinute1  
Addr:69  
These its set the RTC Alarm Mnute1  
ter is reset at power-on-reset only  
Bit  
Bit Name  
Default Acces
escription  
7:0  
RTCAlarmMinute1  
FFh  
Bits 7:0 the 4-bit RTC minute alarm value  
Table 174. RTC Alarm minute2 Register  
RTC AlarmMinute2  
Addr:70  
These its set the RTC Alarm Minute2  
regiter is reset at power-on-reset only  
Bit  
Bit Name  
Default Ac
FFh  
Description  
7:0  
RTCAlarmMinute2  
Bits 15:8 of the 24-bit RTC minute alarm value  
Table 175. RTC Alarm minute3Register  
RTC AlarmMinute3  
Addr:71  
These bits set the RTC Alarm Minute3  
register is reset at power-on-reset only  
Bit  
Bit Name  
Default Access  
Description  
7:0  
RTCAlarmMnute3  
FFh  
Bits 23:16 of the 24-bit RTC minute alarm value  
www.austriamicrosystems.com  
Revision 1v13  
141 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 176. RTCT Register  
RTCT  
Addr:72  
These bits set the RTC correction and RTC interrupt mode  
register is reset at power-on-reset only  
Bit  
Bit Name  
Default Access  
Description  
These bits are used to correct the inaccuracy of the  
used 32kHz crystal. Correction is done all 8 seconds  
by removing or adding two clock cycles.  
Trimming register for RTC, 128 steps @ 7.6ppm  
100000  
100001  
- 480.4ppm  
-472.8ppm  
6:0  
RTC_TBC<6:0>  
0000000  
R/W  
111111  
000000  
000001  
-7.6ppm  
0ppm(defalt)  
7.6pp
01110  
011111  
0
4728ppm  
480.4ppm  
generae an interrupt every second  
geneate an interrupt every minute  
he interrupt has to be enabled by  
rtc_rep_int_m=0  
7
rtc_irq_mode  
0
R/W  
1
Table 177. Reset Timer Register  
Reset Timer  
Addr:22  
These bits set RTC modes  
Description  
Bit  
Bit Name  
Default Ac
Disables RTC alarm wakeup in power off  
0
1
0
mode  
4
rtc_alarm_wakeup_en  
ROM  
ROM  
R/W  
R/W  
Enable RTC alarm wakeup in power off mode  
Disables RTC repeated wakeup in power off  
mode  
5
rtc_rep_wakeup_n  
rt_mode  
Enable RTC repeated wakeup in power off  
mode  
1
00  
01  
10  
11  
32kHz oscillator off  
32kHz oscillator enabled  
7:6  
ROM  
R/W  
32kHz oscillator enabled, Pin Q32k enabled  
reserved (do not use)  
www.austriamicrosystems.com  
Revision 1v13  
142 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.10 Touchpen Interface  
The touchpen interface controls a resistive touchpen. It has the following features:  
Low Power Pen Detect  
Measure pen X,Y position  
Measure pen pressure (Z-position)  
Interrupt, if X,Y,Z data is available; one dedicated output – CURR4_GPIO4 can be configured to be used as  
touchpen interrupt output and/or standard interrupt output XINT  
The conversion interval can be adjusted  
Up to 16 ADC conversion can be averaged internally  
The sample time of the ADC can be adjusted  
The pin CURR3_GPIO3 can be configured to enable/disable the ADC conversion (useful if the processor udat
the LCD to avoid parallel reading of the touchpen position)  
The touchpen interface shares the pins with the SPDIF output and the I2S Output 3. If the touchpen iterface is used,  
the SPDIF and the I2S Output 3 cannot be used (and has to be disabled).  
Note: The touchpen interface and the ‘General Purpose 10 Bit ADC’ can be used at the same tie.  
Figure 59. Touchpen Block diagram  
ꢃꢄꢅꢆꢇ$ꢐꢚꢖꢗꢚꢖ  
ꢈ*+ꢖꢘ&ꢒ*ꢖ,-ꢘ$.ꢚꢒꢝꢖ,ꢑꢒ  
%ꢚ"ꢖ$ꢜꢘ$ꢛ,"*ꢜ+ꢘꢛꢉ  
ꢕꢃ$-ꢘ&$ꢍ  
ꢖꢘ&ꢒ*ꢖ,-ꢘ$.ꢚꢒꢝꢖ,ꢑꢒ  
%ꢚ"ꢖ$ꢜꢘ$ꢛ,"*ꢜ+ꢘꢛꢉ  
ꢕꢃ  
ꢔꢆꢕꢃ  
ꢃꢄꢅꢆꢇꢈꢁꢂꢉ  
ꢃꢊꢋꢌꢍꢂꢉ  
ꢖꢗꢒꢙꢝꢚ&ꢘ""  
ꢕ  '(    
ꢖꢗꢘꢒꢙꢗꢚ  
ꢁꢂ  
ꢇꢈꢄꢁ  
ꢀꢁꢂꢃꢄꢁꢅꢁꢆꢅ  
ꢇꢈꢄꢁ  
ꢑꢒ  
 
ꢞ<  
ꢖꢗꢘꢒꢙ"ꢖꢙꢗꢘꢒ  
ꢖꢗꢘꢒꢙ"ꢑꢝꢙꢗꢛ  
ꢛꢘꢜꢑꢚꢒꢝꢘ  
ꢓꢔ  
ꢄꢁ  
ꢖꢗꢘꢒꢙꢛꢘꢜꢑꢚꢒꢝꢘ  
ꢈꢓ  !"#$ꢍ%"ꢉ  
ꢁꢀ  
ꢖꢗꢘꢒꢙ"ꢑꢝ  
ꢋꢏꢊꢋꢌꢍꢈꢁꢀꢉ  
ꢃꢅꢐꢍꢈꢎꢀꢉ  
ꢂꢃꢄꢁꢅꢁ
ꢇꢈ
ꢂꢅꢁꢍꢂꢊꢈꢂꢐꢓ  
ꢖꢗꢘꢒꢙꢑꢒ  
ꢀꢁꢂꢃꢄꢁꢅꢁꢆꢅ  
ꢇꢈꢄꢁ  
ꢌꢊꢇꢈꢄꢁ  
ꢋꢊꢇꢈꢄꢁ  
ꢉꢊꢇꢈꢄꢁ  
ꢅ,6,ꢖ*+  
ꢊꢑꢒꢖ&ꢑ+  
ꢔꢆꢕꢃ  
ꢀꢁꢂꢃ  
ꢄꢁꢅꢁꢆꢅ  
ꢌꢊꢇꢈꢄꢁ  
ꢋꢊꢇꢈꢄꢁ  
ꢉꢊꢇꢈꢄꢁ  
/ꢑꢚꢝ0"ꢝ&ꢘꢘꢒ  
"1,ꢖꢝ0ꢘ"2%ꢚ3  
ꢖꢗꢘꢒꢙꢘꢑꢝ  
ꢑꢒ  
ꢃ'4  
$$$$ꢓ ꢜ,ꢖ$ꢃ)ꢏ  
$$$$)ꢅꢊ  
)-ꢘ&ꢀ  
9ꢓ ; <  
*6ꢘ  
ꢎꢂ#ꢎꢀ#ꢁꢂ#ꢁꢀ  
1*,ꢖ  
ꢃꢘꢖ$>ꢄꢆꢐꢍ@ꢑꢛꢘA ꢓ ꢜ  
*ꢒꢛ$>ꢄꢆꢐꢍꢆꢐꢃꢇAꢓꢓꢜ  
ꢖꢗꢘꢒꢙ"*%ꢗ+ꢘ  
ꢈꢍ'ꢓ '5 'ꢕ  !"ꢉ  
ꢖꢗꢘꢒꢙ*-6  
ꢈꢓ'('7'ꢓ8$"*%ꢗ+ꢘ"ꢉ  
ꢄꢆꢐꢍꢙꢊ?ꢏꢏꢍ  
>ꢄꢆꢐ  
ꢋꢑ6,ꢝ  
*ꢝꢖ,-ꢘ$0,60$ꢛꢚ&,ꢒ6  
1&,ꢖ,$ꢖꢑ$ꢛ
ꢖꢗꢘꢒꢙꢖ,%ꢘꢑꢚꢖꢙꢘꢒ  
ꢆ'ꢇ  
ꢏꢘ6,"ꢖꢘ&  
ꢃꢘꢖ$>ꢄꢆꢐ(@ꢑꢛꢘAꢑꢚꢖꢗꢚꢖ$  
ꢈꢘB6B$   ꢜ$ꢑ&$  ꢓꢜꢉ  
*ꢒꢛ$>ꢄꢆꢐ(ꢆꢐꢃꢇAꢓꢓꢜ  
ꢖꢗꢘꢒꢙ3%"ꢜ9:; <  
ꢖꢗꢘꢒꢙ3+"ꢜ9ꢓ; <  
ꢌꢊꢇꢈꢄꢁ  
ꢍꢁꢎꢏꢐꢅ  
>ꢄꢆꢐ(ꢙꢊ?ꢏꢏ(  
>ꢄꢆꢐ  
ꢋꢑ6,ꢝ  
ꢝ*ꢖꢘꢛ$ꢖꢑꢚꢝ0"ꢝ&ꢘꢘꢒ  
,ꢒꢖꢘ&.*ꢝꢘ$,ꢒꢖꢘ&&ꢚꢗꢖ  
ꢃ0*ꢛꢑ1  
ꢏꢘ6,"ꢖꢘ&  
ꢆ'ꢇ  
ꢏꢘ6,"ꢖꢘ&  
ꢖꢗꢘꢒꢙ=%"ꢜ9:; <  
ꢖꢗꢘꢒꢙ=+"ꢜ9ꢓ; <  
ꢋꢊꢇꢈꢄꢁ  
ꢍꢁꢎꢏꢐꢅ  
ꢃ0*ꢛꢑ1  
ꢏꢘ6,"ꢖꢘ&  
ꢆ'ꢇ  
ꢏꢘ6,"ꢖꢘ&  
ꢖꢗꢘꢒꢙ%"ꢜ9:; <  
ꢖꢗꢘꢒꢙ+"ꢜ9ꢓ; <  
ꢎꢆ/  
ꢆꢒꢖꢘ&&ꢚꢗꢖ  
ꢋꢑ6,ꢝ  
ꢉꢊꢇꢈꢄꢁ  
ꢍꢁꢎꢏꢐꢅ  
ꢗ&ꢑꢝꢘ""ꢑ&$,ꢒꢖꢘ&&ꢚꢗꢖ  
/ꢑꢚꢝ0"ꢝ&ꢘꢘꢒ  
ꢆꢒꢖꢘ&.*ꢝꢘ  
.&ꢑ%$ꢖꢗꢘꢒꢙꢘꢑꢝ  
ꢖꢗꢘꢒꢙ3%"ꢜ  
&ꢘ*ꢛꢑꢚꢖ$"ꢖ*&ꢖꢘꢛ  
www.austriamicrosystems.com  
Revision 1v13  
143 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
The touchpen controller is operating according to the following state diagram:  
Figure 60. Touchpen State diagram  
ꢆꢇꢂꢈꢃꢇꢇꢉꢍꢊꢋꢃꢇ  
ꢁꢂꢃꢄꢅ  
ꢒꢓ  
ꢆꢇꢂꢗꢋꢂ(&  
ꢆꢇꢂꢗꢋꢂ("  
ꢎꢈ  
ꢎꢓ  
ꢆꢇꢂꢈꢃꢇꢇꢉꢁ  
ꢊꢋꢃꢇ  
ꢅꢂꢆꢀꢁꢂꢃꢂꢄꢃ("  
ꢒꢈ  
ꢀꢁꢂꢀꢁꢂꢃꢂꢄꢃ(&  
ꢎꢍꢊꢋꢃꢇ  
ꢀꢇꢌꢇꢉꢍꢎꢈꢊꢋꢃꢇ  
ꢊꢇꢁꢀꢏꢐꢇꢍꢑꢒꢓꢑꢔꢍꢑꢒꢈꢑ  
ꢕꢐꢖꢇꢍꢋꢍꢆꢇꢂꢗꢘ  
*+,  
ꢒꢓ  
ꢎꢈ  
ꢎꢓ  
ꢀꢇꢌꢇꢉꢍꢒꢈꢊꢋꢃꢇ  
ꢊꢇꢁꢀꢏꢐꢇꢍꢑꢎꢈꢑꢔꢍꢑꢎꢓꢑ  
ꢕꢐꢖꢇꢍꢋꢍꢆꢇꢂꢗꢅꢍ  
ꢀꢙꢁꢃꢋꢕꢍꢐꢇꢚꢖꢀꢇꢐ  
ꢒꢍ  
ꢒꢓ  
ꢀꢇꢌꢇꢉꢍꢛꢈꢊꢋꢃꢇ  
ꢊꢇꢁꢀꢏꢐꢇꢍꢑꢎꢈꢑ  
ꢕꢐꢖꢇꢍꢋꢍꢆꢇꢂꢗꢜ  
ꢀꢙꢁꢃꢋꢕꢍꢐꢇꢚꢖꢀꢇꢐ  
ꢎꢈ  
*+,  
ꢝꢁꢖꢆꢇꢂꢗꢉꢋꢂ ꢖꢂꢁ  
!"#"$%#&#&"ꢊꢀ'  
ꢛꢍꢊꢋꢃ
ꢒꢓ  
ꢎꢈ  
ꢎꢓ  
.
ꢆꢇꢂꢗꢕꢍ-  
ꢒꢈ  
*+,  
ꢕꢁꢖꢍ)ꢋꢐꢍꢐꢇꢁꢃꢋꢏꢍꢋ
ꢆꢇꢂꢗꢘꢊꢀꢄ  
10.10.1 Software guidelines  
1. Setup the configuratioregisters (tpen – control 1..3) according the hardware  
2. Enable receivng of ouchpen interrupts (either through XINT or GPIO4_CURR4)  
3. Upon receiving a touchpen interrupt, readout tpen_xmsb, tpen_ymsb (and if required tpen_pressmsb and  
tpen_xypresslsb) wth a single I2C blockread. This ensured, that the x,y,z is correctly readout and all data belong  
to one singe tochpen x,y,z conversion  
4. Perfoall the required processing with the data (e.g. accept a pen-down only if the pen is forced onto the  
touchren with a minimum pressure [z-position])  
www.austriamicrosystems.com  
Revision 1v13  
144 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
10.10.2 Touchpen Registers  
Table 178. Touchpen Register Map  
Register  
Addr Default  
Definition  
Content  
Name  
b6  
b5  
XD7  
YD7  
PD7  
0
b4  
b3  
b2  
XD4  
YD4  
PD4  
0
b1  
b0  
tpen_xmsb  
108  
109  
110  
111  
NA  
NA  
NA  
NA  
XD9  
YD9  
PD9  
PD1  
XD8  
YD8  
PD8  
PD0  
XD6  
YD6  
PD6  
YD1  
XD5  
YD5  
PD5  
YD0  
XD3  
YD3  
PD3  
XD1  
XD2  
YD2  
PD2  
XD0  
tpen_ymsb  
tpen_pressmsb  
tpen_xypresslsb  
tpen_st_ tpen_eo  
pen  
tpen – control 1  
tpen – control 2  
tpen – control 3  
112  
113  
114  
00h  
00h  
00h  
tpen_avg  
tpen_soc  
tpen_convint  
tpen_pu  
tpn_
c
tpen_so tpen_wa tpen_curr  
cpd  
it  
press  
tpen_timeo tpen_deb  
ut _en ounce  
tpen_sample  
Note: The cells marked in color are Read only  
Table 179. Touchpannel Result Register Bits  
Touchpad_XMB result  
X-MSB rsuregister  
Addr:108  
Bit  
Bit Name  
Defalt  
Access  
Description  
X – MSB Data  
7:0  
tpen_xmsb  
0000000  
R
Table 180. Touchpannel Result Register its  
Touchpad_YMSB result  
Y-MSB result register  
Description  
Y – MSB Data  
Addr:109  
Bit  
Bit Name  
Defaut  
Access  
7:0  
tpen_ymsb  
0000000
R
Table 181. Touchpannel Result Register Bits  
Touchpad_Pressure result  
Pressure result register  
Description  
Pressure - Data  
Addr:110  
Bit  
Bit Name  
Default  
Access  
7:0  
tpen_essmsb  
00000000  
R
Table 182. TouchnneResult Register Bits  
Touchpad_XY - LSB result  
X - MSB result register  
Description  
Adr:111  
Bit  
1:0  
4:3  
7:6  
Bit Name  
tpen_xlsb  
Default  
00  
Access  
R
R
R
X – LSB Data  
Y – LSB Data  
tpen_ylsb  
00  
tpen_presslsb  
00  
Pressure – LSB Data  
www.austriamicrosystems.com  
Revision 1v13  
145 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 183. Touchpannel Control Register Bits  
Touchpad – control 1  
This register controls the different modes of the Touchpad  
Addr:112  
Bit  
Bit Name  
Default  
Access  
Description  
Enables Touch Pen Function  
OFF (No wakeup on pen down)  
0
1
0
tpen_on  
0
R/W  
Pen Detect enabled wakes up Pen  
Digitizer Check Pen_Status -> if pen-  
detect or tpen_soc_pd=1 and tpen_soc=1  
then perform X,Y,Z measurements  
Conversion Interval Timer  
00  
01  
No delay between conversions  
every 512 clock periods (,5 ms) ADC –  
Averaging limiteto ax. 4  
2:1  
tpen_convint  
00  
R/W  
every 1024 clock peiods 1ms) ADC –  
Averaging imiteto max. 8  
10  
11  
every 10240 clocperiods (10ms)  
Start Conversion (x,y, nd z conversion)  
No nversion if pen down detected  
0
1
3
tpen_soc  
tpen_avg  
0
0
R
R/W  
StarConversion if pen down detected or  
ten_sc_pd=1 and tpen_on=1 (X, Y and  
Z-Pressure Measurement)  
Averaging of x and y measurement  
no averaging  
0  
01  
10  
11  
5:4  
4 measurements (per channel)  
8 measurements (per channel)  
16 measurements (per channel)  
ADC - End of Conversion bit  
TP in Power down or Conversion ongoing  
0
1
6
7
tpen_eoc  
0
0
R/W  
Valid TP data available (x,y, and pressure)  
generates an interrupt on GPIO4_CURR4  
and/or XINT; the interrupt is released when  
the readout from the tpen_xmsb is started  
Pen status  
penup  
tpen_st_en  
R
0
1
pendown  
www.austriamicrosystems.com  
Revision 1v13  
146 - 157  
AS3658  
Data Sheet Confidential - Detailed Description - System Functions  
Table 184. Touchpannel Control Register Bits  
Touchpad – control 2  
This register controls the different modes of the Touchpad  
Addr:113  
Bit  
Bit Name  
Default  
Access  
Description  
Internal Resistor used for Pen detection  
00000  
Do not use this Setting  
00001  
00010  
...  
4kΩ  
8kΩ  
00100  
...  
16kΩ  
32kΩ  
4:0  
tpen_pu  
00000  
R/W  
01000  
...  
0000  
...  
64kΩ (st sesitive)  
~ 2kΩ  
11111  
Current ud for pressure measurement  
5
6
7
tpen_currpress  
tpen_wait  
0
0
0
R/
R/W  
0
1
0
200µA  
400µA  
Do not wait until tpen_xmsb is readout  
Start next ADC – conversion after data is  
read from Register tpen_xmsb  
1
0
1
Start conversion only if tpen_st_pen is 1  
and tpen_soc=1 and tpen_on=1  
tpen_soc_pd  
Measure regardless of pen Status (only if  
tpen_soc=1 and tpen_on=1)  
Table 185. Touchpannel Control Register Bts  
Touchpad – control 3  
This register controls the different modes of the Touchpad  
Addr:114  
Bit  
Bit Name  
Default  
Access  
Description  
Sample Time of ADC  
0
1
2
3
0
1
3µs  
0:1  
pe_sample  
00  
R/W  
10µs  
50µs  
200µs  
Pen-down Debounce Time 100µs  
Pen-down Debounce Time = 3ms  
2
3
tpen_debounce  
0
0
R/W  
R/W  
Enables Timeout Signal (ADC conversion is  
stopped during tiemeout = 1)  
tpen_timeout _en  
0
off  
GPIO3_CURR3 can be configured as input  
for the timeout signal – see block diagram  
1
www.austriamicrosystems.com  
Revision 1v13  
147 - 157  
AS3658  
Data Sheet Confidential - Register map  
11 Register map  
Table 186. Register Map  
Register  
Definition  
Content  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Step Down  
Voltage1  
sd1_clki sd1_freq  
0
1
2
3
4
5
6
7
8
9
0h ROM  
1h ROM  
2h ROM  
3h ROM  
4h ROM  
5h ROM  
6h ROM  
7h ROM  
8h ROM  
9h ROM  
step_down1_v  
step_down2_v  
step_down3_v  
nv  
u
Step Down  
Voltage2  
sd2_clki sd2_freq  
nv  
u
Step Down  
Voltage3  
sd3_clki sd3_freq  
nv  
u
LDO_RF1  
Voltage  
rf1_swpr rf1_lcurr  
ot_en _en  
ldo_rf1_v  
LDO_RF2  
Voltage  
double_r slow_sta rf2_lcurr  
eset rtup _en  
ldo_rf2_v  
ldo__v  
LDO_RF3  
Voltage  
rf3_hotpl rf3_lcurr  
ug_en  
_en  
LDO_DIG1  
Voltage  
ldo_di1_v  
LDO_DIG2  
Voltage  
ldo_dig2_v  
ldo_dig3_v  
ldo_dig4_v  
LDO_DIG3  
Voltage  
LDO_DIG4  
Voltage  
dis_bats  
w_tmp  
_pro
USB Charger  
Control  
ext_bas No_char  
usb_chg  
En  
10 Ah ROM  
usb_Current  
en  
ging  
Auto  
Resume  
Charger  
Control1  
Isolate_b ch_det_ ging usb_hol  
CHOVD Ch_pwr  
11 Bh ROM  
12 Ch ROM  
ChEn  
at  
500ms  
_tmax d_chdet  
etEn  
off_en  
Battery voltage  
monitor  
FastRes SupRes  
ResVoltFall  
ResVoltRise  
ChVoltEOC  
En  
En  
Charger Config 13 Dh ROM  
Charger  
CholtResume  
Vsupply_min  
ntc_high auto_sh  
14 Eh ROM ntc_e ntc_hyst  
ch_timeout  
supervision  
_temp  
utdown  
power_o  
ff_at_vs  
uplow  
FuelGauge  
15 Fh RM  
ntc_on  
CalMod  
CalReq UpdReq FGEn  
Charger  
Current  
16 10h ROM  
17 11h ROM  
18 12h ROM  
19 13h ROM  
20 14h ROM  
21 15h ROM  
ch_voltage  
sdx_1A_mode  
ConstantCurrent  
sd1_dvm_time  
TrickleCurrent  
Charge Pump  
Control  
cp_puls  
eskip  
cp_freq  
gpio1_in  
vert  
GP
GPIO 2  
GPIO 3  
GPIO 4  
gpio1_pulls  
gpio2_pulls  
gpio3_pulls  
gpio4_pulls  
gpio1_iosf  
gpio2_iosf  
gpio3_iosf  
gpio4_iosf  
gpio1_mode  
gpio2_mode  
gpio3_mode  
gpio4_mode  
gpio2_in  
vert  
gpio3_in  
vert  
gpio4_in  
vert  
www.austriamicrosystems.com  
Revision 1v13  
148 - 157  
AS3658  
Data Sheet Confidential - Register map  
Table 186. Register Map  
Register  
Definition  
Content  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
rtc_rep_ rtc_alar  
wakeup m_wake  
xon_ena  
ble  
Reset Timer  
22 16h ROM  
rtc_mode  
res_timer  
_en  
up_en  
Reg Power1  
ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
23 17h ROM cp_on  
cp_on  
sd3_on sd2_on sd1_on  
Ctrl @ 6 msec  
_on  
_on  
on  
on  
ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
sd3_on sd2_on sd1_on  
Reg Power1  
Ctrl @ 7 msec  
_on  
@ 7  
msec  
_on  
@ 7  
msec  
on  
@ 7  
msec  
on  
@ 7  
se
24 18h ROM  
25 19h ROM  
26 1Ah ROM  
27 1Bh ROM  
28 1Ch ROM  
@ 7  
@ 7  
msec  
@ 7  
msec  
@ 7  
msec  
msec  
ldo_dig2 ldo_dig1 ldo_rf2_ ldorf1_  
cp_on  
@ 8  
msec  
sd3_on sd2_on sd1_on  
Reg Power1  
Ctrl @ 8 msec  
_on  
@ 8  
msec  
_on  
@ 8  
msec  
on  
@ 8  
mse
on  
@ 8  
msec  
@ 8  
msec  
@ 8  
msec  
@ 8  
msec  
ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
cp_on  
@ 9  
msec  
sd3_on sd2_on sd1_on  
Reg Power1  
Ctrl @ 9 msec  
_on  
@ 9  
msec  
_o
@ 9  
msec  
on  
@ 9  
msec  
on  
@ 9  
msec  
@ 9  
msec  
@ 9  
mse
9  
msc  
ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
cp_on  
@10  
msec  
sd3_on sd1_on  
Reg Power1  
Ctrl @ 10 msec  
n  
@ 1
msec  
_on  
@10  
msec  
on  
@10  
msec  
on  
@ 10  
msec  
@ 10  
msec  
10  
mec  
@ 10  
msec  
o_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
cp_on  
@ 11  
msec  
sd3on sd2_on sd1n  
Reg Power1  
Ctrl @ 11 msec  
_on  
@ 11  
msec  
_on  
@ 11  
msec  
on  
@ 11  
msec  
on  
@ 11  
msec  
@11  
sec  
@ 11  
msec  
@ 1  
msc  
ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
cp_o
sd3_on sd2on sd1_on  
Reg Power1  
Ctrl @ 12 msec  
_on  
_on  
on  
on  
29 1Dh ROM 12  
ec  
@ 12  
msec  
@ 12  
sec  
@ 12  
msec  
@ 12  
msec  
@ 12  
msec  
@ 12  
msec  
@ 12  
msec  
Reg Power2  
Ctrl  
stpup2_ stpup1_  
n on  
ldo_dig4 ldo_dig3  
_on _on  
30 1Eh ROM rf3_sw  
rf2_sw  
rf1_sw  
ldo_rf3  
ldo_d3 sd3_gpi sd2_gpi sd1_gpi ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_  
Reg GPIO Ctrl 31 1Fh ROM  
_gpio  
o
o
o
_gpio  
_gpio  
gpio  
gpio  
Step Up DC/DC  
32 20h 00h  
Control  
stupr  
e
stpup2_f stpup2_f stpup1_r  
stpup1_f stpup2_  
req b_auto es  
req  
clkinv  
stpp1_o  
Step Up1 DC/  
stpup1_ stpup1_  
shortprot clkinv  
33 21h 0h c_timeou  
t
stpup1_v  
stpup2_v  
DC Control  
Step Up2 DC/  
DC Control  
stpup2_p  
34 2h 00h  
rot  
stpup2_fb  
Step Down  
Control1  
sd2_nsw  
323h 00h  
_on  
sd2_psw sd1_nsw  
sd1_psw  
_on  
_on  
_on  
Step Down  
Con
sd3_dis_ sd2_dis sd1_dis  
sd3_nsw  
_on  
sd3_psw  
_on  
36 24h 00h  
37 25h 02h  
38 26h 40h  
39 27h 00h  
sdX_lpo  
pon  
_pon  
_pon  
Step w
chrger control  
sd3_dis sd2_dis sd1_dis  
_curmin _curmin _curmin  
sdc_pas  
s_mode  
sdc_freq  
u
sdc_pon  
Backup Battery  
charger  
BBCPwr  
Save  
BBCRes  
Off  
BBCVolt  
BBCCur  
BBCMode  
DCDC_CURR1  
value  
dcdc_curr1_current  
www.austriamicrosystems.com  
Revision 1v13  
149 - 157  
AS3658  
Data Sheet Confidential - Register map  
Table 186. Register Map  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
DCDC_CURR2  
value  
40 28h 00h  
dcdc_curr2_current  
CURR1 value 41 29h 00h  
CURR2 value 42 2Ah 00h  
CURR3 value 43 2Bh 00h  
CURR4 value 44 2Ch 00h  
curr1_current  
curr2_current  
curr3_current  
curr4_current  
DCDC_CURR3  
45 2Dh 00h  
value  
dcdc_curr3_current  
ADC idac  
46 2Eh 00h  
adc_ida
usb_chd charging  
LowBat_i ovtmp_ onkey_ chdet_  
ceoc_i chstate_  
nt_m int_m  
Interrupt Mask1 47 2Fh FFh  
Interrupt Mask2 48 30h FFh  
et_  
_tmax_i  
ntm  
nt_m  
int_m  
int_m  
int_m  
int_m  
stpup1_i bat_tem hphcu_ dig2v_i dig1_lv_i sd3_lv_sd2_lv_i sd1_lv_i  
nt_m  
p_m  
int_m  
ntm  
nt_m  
nt_m  
nt_m  
nt_m  
voxm_in em mic_con rtc_rep_i rtc_alar dig4_lv_i dig3_lv_i  
Interrupt Mask3 49 31h FFh  
Interrupt  
-
t_m  
m  
_int_m  
nm m_int_m nt_m  
nt_m  
us_chd charging  
cheoc_i  
chstate_  
i
50 32h NA LowBat_i ovtmp_i onkey_i chdet_i  
Status1  
eti  
_tmax_i  
Interrupt  
Status2  
bat_tem hphcurr_  
51 33h NA stpup1_i  
dig_i dig1_lv_i sd3_lv_i sd2_lv_i sd1_lv_i  
p_i  
i
Interrupt  
Status3  
mic_rem mc_con  
rtc_alar  
m_i  
52 34h NA  
53 35h NA  
54 36h NA  
voxm_i  
rtc_rep_i  
dig4_lv_i dig3_lv_i  
sd2_lv sd1_lv  
dig4_lv dig3_lv  
gpio2 gpio1  
_
_i  
Low voltage  
Status1  
st1_d stpup1_  
t oc  
dig2_lv dig1_lv sd3_lv  
Low voltage  
Status2  
bat_high _lowt dcdc_cu dcdc_cu dcdc_cu  
tmp  
emp  
rr3_lv  
rr2_lv  
rr1_lv  
GPIO Signal  
55 37h NA gpio4in gpio3_in gpio2_in gpio1_in gpio4  
gpio3  
PWM  
Frequency  
Control High  
Time  
56 38h 00h  
57 39h 00
pwm_h_time  
pwm_l_time  
PWM  
Frequency  
Control Low  
Time  
CURR control 58 3Ah 00h  
pwm_div  
Reg_low  
dcdc_curr3_ctrl  
standby  
dcdc_curr2_ctrl  
clk_int  
dcdc_curr1_ctrl  
References  
59 3Bh 0ch  
Control  
low_pow  
er_on  
_bias_m clk_div2 _mode_  
ode on  
Watog  
60 3Ch 02h  
Conol  
wtdg_tri wtdg_re  
wtdg_on  
gger  
s_on  
Wahdog_min  
61 3Dh 00h  
Tmer  
wtdg_min_timer  
wtdg_max_timer  
Watchdog_max  
62 3Eh FFh  
Timer  
Watchdog  
wtdg_  
sw_sig  
63 3Fh 00h  
Software Signal  
www.austriamicrosystems.com  
Revision 1v13  
150 - 157  
AS3658  
Data Sheet Confidential - Register map  
Table 186. Register Map  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
RTCSecond  
RTCMinute1  
RTCMinute2  
RTCMinute3  
64 40h 00h  
65 41h 00h  
66 42h 00h  
67 43h 00h  
second<7:0>  
minute<7:0>  
minute<15:8>  
minute<23:16>  
RTCAlarmSeco  
nd  
68 44h 3Fh  
69 45h FFh  
70 46h FFh  
71 47h FFh  
alarmsecond<7:0>  
alarmminute<7:0>  
alarmminute<15:8>  
alarmminute<23:16>  
RTCAlarmMinu  
te1  
RTCAlarmMinu  
te2  
RTCAlarmMinu  
te3  
rtc_irq_  
mode  
RTCT  
SRAM  
72 48h 00h  
73 49h 00h  
rtc_tbc<6:0>  
sram<7:0>  
m_inv aud_ldo gnd_w  
Audio Set1  
74 4Ah 00h equ_on mclk256  
mix_on dac_on  
dith_on  
lin_on  
rt  
_on  
on  
I2S_mclk I2S_sele  
75 4Bh 00h  
2S_3_o  
n
Audio Set2  
Audio Set3  
ibr_hph  
ibr_dac  
_en  
ct  
linmix_omimix_ dacmix_  
voxm_o hp_pulld pll_mod  
76 4Ch 00h  
agc_off mic_on  
f
off  
off  
n
_en  
e
dac_mut  
e_off  
DAC_L  
DAC_R  
77 4Dh 00h  
78 4Eh 00h  
dal_vol  
dar_vol  
adl_vol  
adr_vol  
hpr_vol  
ad_mut  
off  
ADC_L  
79 4Fh 00h ad_fs2  
adc_on  
ADC_R  
80 50h 00h  
81 51h 00h  
acmux  
hovc_to  
adc2dac  
hpcm_of  
f
HPH out R  
HPH out L  
Line out R  
82 52h 00h hp_mute hp_on hp_mux  
hpl_vol  
83 53h 0h  
84 5h 0h  
ibr_line  
liner_vol  
line_mut  
dac2line  
_on  
Line out L  
LINE_IN_R  
LINE_IN_
MIR  
line_on  
linel_vol  
lir_vol  
e
mute_mi  
c_sf  
mute_off  
_inr  
5 5h 00h  
6 56h 00h  
87 57h 00h  
mute_off  
_inl  
lil_vol  
mic_agc  
_off  
pre_gain  
mr_vol  
ml_vol  
mute_off  
_d  
MIC_L  
88 58h 00h msup_off  
rdet_off  
sclk_inv sdo3_se spdif_co spdif_m spdif_inv  
SPDIF  
EQ_LP  
89 59h 00h audio_off  
90 5Ah 00h  
spdif_cntr  
ert  
lect  
py_ok  
clk_inv  
alid  
eq_lp_gain  
www.austriamicrosystems.com  
Revision 1v13  
151 - 157  
AS3658  
Data Sheet Confidential - Register map  
Table 186. Register Map  
Register  
Definition  
Content  
Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
EQ_Band1  
EQ_Band2  
EQ_Band3  
EQ_HP  
91 5Bh 00h  
92 5Ch 00h  
93 5Dh 00h  
94 5Eh 00h  
95 5Fh 00h  
eq_band1_gain  
eq_band2_gain  
eq_band3_gain  
eq_hp_gain  
EQ_preamp  
eq_ pre_gain  
adc_select  
start_con  
version  
adc_slo  
w
ADC_control  
96 60h 00h  
97 61h NA  
98 62h NA  
adc_on  
D9  
ADC_MSB  
result  
result_no  
t_ready  
D8  
D7  
D6  
D5  
D2  
D4  
D1  
D3  
ADC_LSB  
result  
D0  
ChargerStatus 99 63h NA ChLinear NoBat  
EOC  
CVM  
Trickle Resue ChAct  
ChDet  
ChargerStatus_  
100 64h NA  
usb  
ch_ver batsw_o batsw_ USB_Ch USB_Ch  
voltage  
n
mode  
Act  
Det  
DeltaChargeMS  
214  
26  
214  
26  
25  
213  
25  
212  
2
210  
29  
28  
101 65h NA  
102 66h NA  
103 67h NA  
104 68h NA  
sign  
B
DeltaChargeLS  
27  
215  
2
24  
2
24  
2
211  
23  
22  
210  
22  
21  
29  
21  
20  
28  
20  
B
ElapsedTimeM  
SB  
ElapsedTimeLS  
B
Oy_r  
t_5s  
xon_inp power_o force_re  
ut ff set  
Reset Control 105 69h NA  
ese_reason  
rst_ov_t  
emp_14  
0
Overtemperatu  
106 6Ah NA  
re Control  
ov_temp ov_temp temp_p  
_140  
_110  
mc_on  
rom_  
valid  
Boot_status 107 6Bh NA  
rom_adr  
tpen_xmsb  
tpen_ymsb  
108 6Ch NA  
109 6Dh NA  
X
D9  
PD9  
XD8  
YD8  
PD8  
XD7  
YD7  
PD7  
XD6  
YD6  
PD6  
XD5  
YD5  
PD5  
XD4  
YD4  
PD4  
XD3  
YD3  
PD3  
XD2  
YD2  
PD2  
tpen_pressmsb 110 6Eh NA  
tpen_xypressls  
111 6h NA  
b
PD1  
PD0  
0
YD1  
YD0  
0
XD1  
XD0  
tpen_st_ tpen_eo  
pen  
tpen_so  
c
tpen – control 1 12 70h 00h  
tpen – contro2 113 71h 00h  
en – control 3 114 72h 00h  
tpen_avg  
tpen_convint  
tpen_pu  
tpen_on  
c
tpen_soc tpen_wa tpen_cur  
pd  
it  
rpress  
tpen_tim tpen_de  
eout_en bounce  
tpen_sample  
ASC ID 1  
ASIC ID 2  
127 7Fh NA  
128 80h NA  
1
0
1
1
0
0
0
1
1
1
0
1
rev  
ldo_dig2 ldo_dig1  
_stby_o _stby_o  
Reg_ standby  
mod  
cp_stby_ sd3_stb sd2_stb sd1_stb  
ldo_rf2_ ldo_rf1_  
stby_on stby_on  
129 81h 00h  
on  
y_on  
y_on  
y_on  
n
n
www.austriamicrosystems.com  
Revision 1v13  
152 - 157  
AS3658  
Data Sheet Confidential - Register map  
Table 186. Register Map  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
Usb_current_tri  
m
130 82h  
131 83h  
00  
00  
usb_add_trim_current<2:0>  
i2s master  
control1  
i2s_clk_divider<7:0>  
sdo_on_  
mclk1_e  
n
i2s_lrclk  
i2s_mas  
_sclk_ou  
ter_on  
i2s master  
control2  
pcm_mo  
de  
i2s_mclk  
_out_en  
132 84h  
133 85h  
00  
00  
i2s_clk_divider<10:8>  
t_en  
step Down  
Control3  
sd3_uvli sd2_uvli s1_u
mit  
mit  
mit  
UniqueID0,  
addrf0  
197 C5h NA  
198 C6h NA  
199 C7h NA  
200 C8h NA  
201 C9h NA  
202 CAh NA  
203 CBh NA  
204 CCh NA  
205 CDh NA  
206 CEh NA  
207 CFh NA  
ID<7:0>, addrf<7:0>  
UniqueID1,  
addrf1  
ID<15:8>, addrf<15:8>  
D<23:1>, addrf<23:16>  
ID<31:24>, addrf<31:24>  
ID<39:32>, omf0  
UniqueID2,  
addrf2  
UniqueID3,  
addrf3  
UniqueID4,  
romf0  
UniqueID5,  
romf1  
ID<40>, romf1  
UniqueID6,  
romf2  
I<55:48>, romf2  
UniqueID7,  
romf3  
ID<63:56>, romf3  
UniqueID8,  
romf4  
ID<71:64>, romf4  
UniqueID9,  
romf5  
ID<79:72>, romf5  
UniqueID10,  
romf6  
ID<87:80>, romf6  
Entries marked are read only  
Entries are not reset in power off mode  
www.austriamicrosystems.com  
Revision 1v13  
153 - 157  
AS3658  
Data Sheet Confidential - Package Drawings and Marking  
12 Package Drawings and Marking  
Figure 61. CTBGA124 8x8 0.5mm pitch  
DWG NO.  
ISSUE  
97SPP01046A  
O
Advanced  
Semiconductor  
Engineering Korea, Inc.  
PACKAGE  
ASE  
OUTLINE  
DATE  
OCT.010, 2007  
TOP VIEW  
BOTTOM VIEW  
(124 SOLDER BALLS )  
SIE VIEW  
NOTE  
1. GENERAL TOLERANCE : 0.10  
Unit : mm  
Dimension & Tolerance  
ASME Y14.5M  
Customer : AMS  
COMPANY  
SHEET  
ASE KOREA  
1 OF 2  
ITLE : POD for FBGA 8mm X 8mm X 1.09mm,  
2L0.65CAP, 124BGA, 0.50PITCH, 0.30BALL  
www.austriamicrosystems.com  
Revision 1v13  
154 - 157  
AS3658  
Data Sheet Confidential - Package Drawings and Marking  
Figure 62. CTBGA124 Marking  
Table 187. Package Code AYWWZZZ  
A
Y
WW  
ZZZ  
B ... for Green  
year  
working week assembly / packaging  
free choice  
Table 188. Boot ROM revison  
x
B, C, D, E, E1 or F  
12.1 Pinout Drawing (Top view) CTBGA mm  
Figure 63. Pinout drawing  
Bottom View (Ball Side
14 13 12 11 10  
9
7
6
5
4
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
N
P
M
N
P
Inner Balls PCB Layout  
Example shown  
with dotted blue lines  
c
c
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
www.austriamicrosystems.com  
Revision 1v13  
155 - 157  
AS3658  
Data Sheet Confidential - Ordering Information  
13 Ordering Information  
The device is available as the standard products listed in Table 189.  
Table 189. Ordering Information  
Model  
Marking  
Descriptiom  
Delivery Form  
Package  
BGA124  
8x8mm, 0.5mm  
pitch  
Tape and Reel in  
Dry Pack  
Power and Audio Management Unit for Portable  
Devices, Boot-ROM Version B  
AS3658B-BCTP  
AS3658B  
BGA124  
8x8mm, 0.5mm  
pitch  
Tape and Reel in  
Dry Pack  
Power and Audio Management Unit for Portable  
Devices, Boot-ROM Version C  
AS3658C-BCTP  
AS3658D-BCTP  
AS3658E-BCTP  
AS3658E1-BCTP  
AS3658F-BCTP  
AS3658C  
AS3658D  
AS3658E  
AS3658E1  
AS3658F  
BGA12
8x8mm, 0.5m
pitc
Tape and Reel in  
Dry Pack  
Power and Audio Management Unit for Portable  
Devices, Boot-ROM Version D  
BGA14  
8x8mm, 0.5mm  
pitch  
Tape and Reel in  
Dry Pack  
Power and Audio Management Unit for Portable  
Devices, Boot-ROM Version E  
BGA124  
8x8mm, 0.5mm  
pitch  
Tape and Reein  
Dry Pk  
Power and Audio Management Unit for Portable  
Devices, Boot-ROM Verson E1  
BGA124  
8x8mm, 0.5mm  
pitch  
Tape and Reel in  
Dry Pak  
Power and Audio Management nit for ortable  
Devices, Boot-ROM Versin F  
Description: AS3658x-BCTP  
x: Boot-ROM version  
B: Teperature Range: Z = -40ºC to 85ºC  
CT: Pacakage: CTBGA  
P:Delivery Form: Tape and Reel in Dry Pck  
www.austriamicrosystems.com  
Revision 1v13  
156 - 157  
AS3658  
Data Sheet Confidential - Ordering Information  
Copyrights  
Copyright © 1997-2010, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding  
the information set forth herein or regarding the freedom of the described devices from patent infringement.  
austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice.  
Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG fo
current information. This product is intended for use in normal commercial applications. Applications equiring  
extended temperature range, unusual environmental requirements, or high reliability applications, uch s military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional rocessing by  
austriamicrosystems AG for each application. For shipments of lesthan 100 parts the manuturig flow might show  
deviations from the standard production flow, such as test flow otest oation.  
The information furnished here by austriamicrosystems AG is belived o be correct and acuate. However,  
austriamicrosystems AG shall not be liable to recipient or ird party for any damages, including but not limited to  
personal injury, property damage, loss of profits, loss of useterruption of busineor indirect, special, incidental or  
consequential damages, of any kind, in connection with or arsing out of the furnhing, performance or use of the  
technical data herein. No obligation or liability to recipient or any third party sall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosysteAG  
A-8141 Schloss Premstaetten, Austria  
Tel: +43 (0) 336 50 0  
Fax: +43136 525 01  
For Sles Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
B
www.austriamicrosystems.com  
Revision 1v13  
157 - 157  

相关型号:

AS3658E1-BCTP

Power and Audio Management Unit for Portable Devices
AMSCO

AS3658F-BCTP

Power and Audio Management Unit for Portable Devices
AMSCO

AS3658_07

Power and Audio Management Unit for Portable Devices
AMSCO

AS3661

Programmable 9-channel LED Dr iver
AMSCO

AS3661-BWLT

Programmable 9-channel LED Dr iver
AMSCO

AS3665

9 Channel Advanced Command Driven RGB/White LED Driver
AMSCO

AS3665-ZWLT

9 Channel Advanced Command Driven RGB/White LED Driver
AMSCO

AS3665_04

9 Channel Advanced Command Driven RGB/White LED Driver
AMSCO

AS3668

4 Channel Breathlight Controller
AMSCO

AS3668-BQFT

4 Channel Breathl ight Cont rol ler
AMSCO

AS3668-BWLT

4 Channel Breathlight Controller
AMSCO

AS3668_07

4 Channel Breathlight Controller
AMSCO