AS3675 [AMSCO]

Flexible Lighting Management Unit; 灵活的照明管理单元
AS3675
型号: AS3675
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Flexible Lighting Management Unit
灵活的照明管理单元

文件: 总81页 (文件大小:5013K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
austriamicrosystems AG  
is now  
ams AG  
The technical content of this austriamicrosystems datasheet is still valid.  
Contact information:  
Headquarters:  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
e-Mail: ams_sales@ams.com  
Please visit our website at www.ams.com  
Datasheet  
AS3675  
Flexible Lighting Management Unit (Charge Pump, DCDC, 13  
Current Sinks, ADC, LED Test, LDO, Audio Controlled Light)  
1 General Description  
The AS3675 is a highly-integrated CMOS Power and  
Lighting Management Unit for mobile telephones, and  
other 1-cell Li+ or 3-cell NiMH powered devices.  
Led Pattern Generator  
- Autonomous driving for Fun RGB LEDs  
- Support indicator LEDs  
10-bit Successive Approximation ADC  
The AS3675 incorporates one Step Up DC/DC Con-  
verter for white backlight LEDs, one high-power Charge  
Pump, one Analog-to-Digital Converter, 13 current sinks,  
the RGB and white LEDs can be controlled by an audio  
input, LED in-circuit function test, a two wire serial inter-  
face, and control logic all onto a single device. Output  
voltages and output currents are fully programmable.  
- 27µs Conversion Time  
- Selectable Inputs: GPIO, all current sources,  
VBAT, CPOUT, DCDC_FB  
- Internal Temp. Measurement  
- Light Sensor input  
Support for automatic LED testin(opn and  
shorted LEDs can be identified
The AS3675 is part of to the austriamicrosystems  
AS3676, AS3687/87XM and AS3689 lighting mange-  
ment units family. It is software compatible to AS3687/  
87XM and AS3689 and pin and software compatible to  
AS3676.  
Support for external Tempture Sensor for high  
currenLED protection (CURR3x)  
StrobTimeout protecion  
- Up to 1600ms  
- Three different ming modes  
Two General urpose Inputs/Output  
2 Key Features  
- VANA/GPInput, GPIO Input/Output  
- Diginput, Digital Output using VANA/GPI sup-  
ply d Tistate  
- VANA/GPI internal pull down  
GPIO Programmable Pull-Up/Down  
High-Efficiency Step Up DC/DC Converter  
- Up to 16V/55mA (or 25V/35mA) for Whte LEDs  
- Programmable Output Voltage with Extenal Resis-  
tors and Serial Interface  
- Over voltage Protection  
Programmable LDO  
High-Efficiency High-Power Charump  
- 1.85 to 3.4V, 150mA  
- Programmable via Serial Interface  
Standby LDO always on  
- 1:1, 1:1.5, and 1:2 Mode  
- Automatic Up Switching (can be disabled an1:2  
mode can be blocked)  
- Output Current up to 300mA/500mA plsed  
- Efficiency up to 95%  
- Very Low effective Resistance (2.5Ω . in 1:1.5)  
- Only 4 External Capacitors Require
2 x 1µF Flying Capacitors, 2 x 2.2F Input/Output  
Capacitors  
- Regulated 2.5V max. output 10mA  
- 3µA Quiescent Current  
Audio can be used to drive RGB LED or up to four  
white LEDs  
- RGB Color and Brightness is dependent on audio  
input amplitude or frequency  
White LEDs can be controlled by amplitude or fre-  
quency (different modes like bar-type or two and two  
LEDs driven by frequency filters)  
- Supports LCD White Bckligt LEDs, or RGB  
LEDs  
13 Current Snks  
Wide Battery Supply Range: 3.0 to 5.5V  
Two Wire Serial Interface Control  
- All 13 current inks fully Programmable (8-bit)  
from: 0.15mA to 38.5mA (up to 75.6mA for  
CURR3...CRR33)  
- Thurrent sinks are High Voltage capable  
(CR, CURR2, CURR6)  
Over current and Thermal Protection  
WL-CSP30 3x2.5mm, 0.5mm pitch Package  
3 Applications  
Power- and lighting-management for mobile telephones  
and other 1-cell Li+ or 3-cell NiMH powered devices.  
Programmable Hardware Control (Strobe, and Pre-  
ew or PWM)  
- Selectively Enable/Disable Current Sinks  
Internal PWM Generation  
- 8 Bit resolution  
- Autonomous Logarithmic up/down dimming  
www.austriamicrosystems.com/AS3675  
(ptr)  
1v3  
1 - 80  
AS3675  
Datasheet - Applications  
Figure 1. Block Diagram  
ꢕꢂꢡꢡꢅꢃꢽ  
ꢞꢋ  
ꢀꢫ  
ꢋꢘꢙ  
ꢴꢋ  
ꢋꢒꢘꢮ  
ꢀꢭ  
ꢛꢎꢪꢘꢙ  
ꢞꢀꢞꢀꢗꢶꢓꢖꢼ  
ꢞꢀꢞꢀꢗꢢꢚꢢ  
ꢾꢋ  
ꢓꢢꢑꢫꢪꢏ  
ꢴꢣꢄꢁꢡꢣꢠꢄ  
ꢺꢂꢠꢂꢄꢅꢉꢅꢠꢡꢆ  
ꢝꢠꢣꢡ  
ꢴꢼꢞꢆ  
ꢖꢅꢥꢡ  
ꢢꢡꢅꢊꢆꢝꢊꢆꢞꢀꢳꢞꢀ  
ꢀꢹꢠꢸꢅꢃꢡꢅꢃ  
ꢟꢋ  
ꢒꢎꢋꢲ  
ꢟꢐ  
ꢋꢺꢲ  
ꢀꢪ  
ꢋꢎꢏꢠꢙ  
ꢞꢀꢞꢀꢗꢙꢕ  
ꢓꢈꢷꢣꢹ  
ꢀꢹꢠꢡꢃꢹꢯꢯꢅꢷ  
ꢴꢣꢄꢁꢡ  
ꢟꢑ  
ꢋꢒꢒꢤꢲ  
ꢀꢨ  
ꢠꢙ  
ꢓꢝꢞꢰꢜꢗꢰꢚ  
ꢓꢈꢷꢣꢹꢆꢰꢚ  
ꢕꢂꢡꢡꢅꢃꢽ  
ꢟꢶꢕꢆꣁꢆꢻꢁꢣꢡꢅꢆꢴꢼꢞꢥ  
ꢔꢕꢓꢖ  
ꢀꢐꢗꢇ  
ꢀꢐꢗꢚ  
ꢀꢋꢗꢇ  
ꢕꢂꢡꢡꢅꢃꢽꢆꢹꢃ  
ꢆꢀꢇꢜꢝꢖ  
ꢀꢈꢃꢃꢅꢠꢡꢆꢢꢣꢠꢤꢥ  
ꢒꢎꢋꢏꢧꢑꢨꢎꢐꢏꢉꢓ  
ꢀꢐ  
ꢀꢑ  
ꢋꢘꢙ  
ꢟꢶꢕꢋ  
ꢟꢶꢕꢐ  
ꢟꢶꢕꢋ  
ꢂꢃꢄꢅꢆꢇꢈꢉꢊ  
ꢋꢌꢋꢍꢆ
ꢒꢒꢉꢓ  
ꢞꢫ  
ꢞꢭ  
ꢞꢋꢐ  
ꢞꢋꢑ  
ꢞꢋꢛ  
ꢟꢶꢕꢑ  
ꢞꢪ  
ꢞꢨ  
ꢞꢋꢒ  
ꢞꢋꢋ  
ꢀꢛ  
ꢋꢘꢙ  
ꢚ  
ꢕꢂꢡꢡꢅꢃꢽꢆꢹꢃ  
ꢆꢀꢇꢜꢝꢖ  
ꢞꢋꢏꢍꢞꢋꢫꢍꢞꢋꢪ  
ꢀꢈꢃꢃꢅꢠꢡꢆꢢꢣꢠꢤꢥ  
ꢒꢎꢋꢏꢧꢑꢨꢎꢐꢏꢉꢓ  
ꢔꢢꢢꢗ
ꢀꢝꢟꢟꢛꢋ  
ꢀꢝꢟꢟꢛꢐ  
ꢀꢇꢜꢝꢖ  
ꢟꢶꢕꢐ  
ꢀꢝꢟꢟꢛꢑ  
ꢀꢈꢃꢢꢣꢠꢤꢥ  
ꢅꢂꢦꢁꢆꢒꢎꢎꢐꢏꢉꢓ  
ꢩꢪꢏꢎꢫꢉꢓꢬꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆ  
ꢞꢐ  
ꢞꢛ ꢞꢏ  
ꢞꢑ  
ꢞꢋꢨꢍꢞꢋꢭꢍꢞꢐꢒ  
ꢨꢕꢣꢡꢆꢇꢻꢺꢆ  
ꢶꢅꢠꢅꢃꢂꢡꢹ
ꢀꢝꢟꢟꢑꢒ  
ꢆꢆꢀꢏ  
ꢐꢎꢐꢘꢙ  
ꢓꢈꢡꢹꢉꢂꢡꢣꢦꢆꢞꢣꢉꢉ
ꢂꢠꢷꢆꢼꢞꢡꢡꢅꢃꢠ  
ꢅꢠꢅ
ꢀꢝꢟꢟꢑꢋ  
ꢀꢝꢟꢟꢑꢐ  
ꢀꢝꢟꢟꢑꢑ  
ꢔꢕꢓꢖ  
ꢟꢅꢱꢅꢃꢅꢠꢦꢅꢥ  
ꢂꢠꢷ  
ꢔꢐꢗꢏ  
ꢮꢔꢆꢀꢈꢃꢃꢅꢠꢡꢆꢢꢣꢠꢤꢥ  
ꢅꢂꢦꢁꢆꢒꢎꢋꢏꢧꢑꢨꢎꢐꢏꢉꢓ  
ꢖꢅꢉꢊꢅꢃꢂꢡꢈꢃꢅ  
ꢢꢈꢊꢅꢃꢸꢣꢥꢣꢹꢠ  
ꢀꢋ  
ꢋꢘꢙ  
ꢀꢝꢟꢟꢋ  
ꢀꢝꢟꢟꢐ  
ꢀꢝꢟꢟꢫ  
ꢔꢕꢓꢖ  
ꢶꢇꢰ  
ꢔꢓꢚꢓ  
ꢔꢓꢚꢓꢳꢶꢇꢰ  
ꢞꢜ  
ꢏꢧꢑꢎꢛꢔꢆꢳꢆꢋꢏꢒꢉꢓ  
ꢀꢋꢒ  
ꢐꢎꢐꢘꢙ  
ꢿꢅꢃꢹꢆꢇꢹꣀꢅꢃ  
ꢞꢅꢸꢣꢦꢅ  
ꢻꢂꢤꢅꢈꢊ  
ꢔꢐꢗꢏ  
ꢔꢞꢞꢗꢰꢳꢙ  
ꢔꢡꢅꢉꢊ  
ꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢶꢇꢰꢜꢳ  
ꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢆꢓꢞꢀ  
ꢟꢛ  
ꢋꢧꢋꢒꢤꢲ  
ꢟꢏ  
ꢜ  
ꢀꢴꢵ  
ꢀꢴꢵ  
ꢢꢅꢃꢣꢂꢯ  
ꢰꢠꢡꢅꢃꢱꢂꢦꢅ  
ꢂꢯꢯꢆꢦꢈꢃꢃꢥꢍꢆꢔꢕꢓꢖꢍ  
ꢞꢀꢞꢀꢗꢙꢕꢍ  
ꢀꢇꢜꢝꢖ  
ꢞꢓꢖꢓ  
ꢞꢓꢖꢓ  
ꢔꢢꢢ  
www.austriamicrosystems.com/AS3675  
1v3  
2 - 80  
AS3675  
Datasheet - Applications  
Contents  
1 General Description ............................................................................................................................1  
2 Key Features .......................................................................................................................................1  
3 Applications ........................................................................................................................................1  
4 Pinout ...................................................................................................................................................4  
4.1 Pin Definitions ..............................................................................................................................................5  
5 Absolute Maximum Ratings ...............................................................................................................6  
6 Electrical Characteristics ...................................................................................................................6  
7 Typical Operating Characteristics ...................................................................................................
8 Detailed Description .......................................................................................................................
8.1 Analog LDO ................................................................................................................................................9  
8.2 Step Up DC/DC Converter .......................................................................................................................11  
8.3 Charge Pump .........................................................................................................................................16  
8.4 Current Sinks .........................................................................................................................................24  
8.5 General Purpose Input / Output ............................................................................................................46  
8.6 LED Test ...............................................................................................................................................51  
8.7 Analog-to-Digital Converter ..................................................................................................................53  
8.8 Audio controlled LEDs .......................................................................................................................56  
8.9 Power-On Reset ....................................................................................................................................65  
8.10 Temperature Supervision ........................................................................................................................67  
8.11 Serial Interface ....................................................................................................................................67  
8.12 Operating Modes ..............................................................................................................................70  
9 Register Map .................................................................................................................................71  
10 External Components ...............................................................................................................74  
11 Package Drawings and Markgs .........................................................................................75  
11.1 Tape & Reel Information .........................................................................................................................76  
12 Ordering Information ...................................................................................................................77  
www.austriamicrosystems.com/AS3675  
1v3  
3 - 80  
AS3675  
Datasheet - Pinout  
4 Pinout  
Table 1. Pin Description for AS3675  
Pin  
Number  
Pin Name  
Type  
Description  
A1  
GPIO  
AIO  
AIO  
General Purpose Input Output  
A2  
VANA/GPI  
LDO Output/General Purpose Input  
Charge Pump flying capacitor; connect a ceramic capacitor of 500nF to this  
pin.  
A3  
A4  
A5  
C2_N  
C1_P  
AIO  
AIO  
AO  
Charge Pump flying capacitor; connect a ceramic capacitor of 500nF to thi
pin.  
Output voltage of the Charge Pump; connect a ceramic capacitor of µF  
(±20%).  
CPOUT  
A6  
B1  
B2  
DATA  
DIO  
AI  
Serial interface data input/output.  
Audio Input  
AUDIO_IN  
VSS_CP  
GND  
Ground Pad for Charge Pump  
Charge Pump flying caacitr; onnect a ceramic capaitor of 500nF to this  
pin.  
B3  
B4  
C1_N  
C2_P  
AIO  
AIO  
Charge Pump flycapacitor; connect a ceramic capacitor of 500nF to this  
pin.  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
DCDC_GATE  
CLK  
AO  
DI  
DCDC gatdriver.  
Clock input foserial interface.  
CURR41  
RGB3  
AI  
Anacurrent sink input  
AI  
Aalog current sink input  
VSS  
GND  
S
Ground pad  
VBAT  
Supply pad. Connect to battery.  
CURR30  
DCDC_SNS  
CURR43  
RGB1  
AI  
Analrent sink input, intended for activity icon LED  
Sense nput of shunt resistor for Step Up DC/DC Converter.  
Analog current sink input  
AI  
AI  
AI  
Analog current sink input  
CURR33  
CURR31  
CURR2  
DCDC_FB  
CURR42  
RGB2  
AI  
Analog current sink input, intended for activity icon LED  
Analog current sink input, intended for activity icon LED  
Analog current sink input (intended for Keyboard backlight)  
DCDC feedback. Connect to resistor string.  
Analog current sink input  
I  
I_HV  
AI  
AI  
AI  
Analog current sink input  
CURR32  
CURR6  
CURR1  
AI  
Analog current sink input, intended for activity icon LED  
Analog current sink input (intended for Keyboard backlight)  
Analog current sink input (intended for Keyboard backlight)  
AI_HV  
AI_HV  
Output voltage of the Low-Power LDO; always connect a ceramic capacitor of  
1µF (±20%) or 2.2µF (+100%/-50%).  
E6  
V2_5  
AO3  
Do not load this pin during device startup.  
www.austriamicrosystems.com/AS3675  
1v3  
4 - 80  
AS3675  
Datasheet - Pinout  
4.1  
Pin Definitions  
Table 2. Pin Type Definitions  
Type  
DI  
Description  
Digital Input  
Digital Output  
DO  
Digital Input/Output  
Analog Pad  
DIO  
AIO  
AI  
Analog Input  
High-Voltage (15V) Pin  
Analog Output (3.3V)  
Supply Pad  
AI_HV  
AO3  
S
Ground Pad  
GND  
www.austriamicrosystems.com/AS3675  
1v3  
5 - 80  
AS3675  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Table 4, “Operating  
Conditions,” on page 6 is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Applicable for high-voltage  
current sink pins CURR1,  
CURR2, CURR6  
VIN_HV  
15V Pins  
-0.3  
17  
V
Applicable for 5V pins  
VBAT, CURR30-3,  
CURR41-43, RGB1-3, C1_N,  
C2_N, C1_P, C2_P, CPOUT,  
DCDC_FB, CDC_GATE,  
CK, DATA;  
VIN_MV  
VIN_LV  
5V Pins  
-0.3  
-0.3  
7.0  
5.0  
V
V
Applicable or 3.3V pins  
V2; DCDC_SNS, GPIO,  
VAA/GPI, AUDIO_IN  
3.3V Pins  
Input Pin Current  
Storage Temperature Range  
Humidity  
-25  
5  
5
+5  
125  
85  
mA  
ºC  
%
At ºC, Norm: JEDEC 17  
Tstrg  
IIN  
Non-condensing  
Norm: MIL 883 E Method  
3015  
VESD  
Pt  
Electrostatic Discharge  
Total Power Dissipatio
Peak Body Temperature  
-2000  
2000  
05  
260  
V
TA = 70 ºC, Tjunc_max =  
125ºC  
W
ºC  
T = 20 to 40s, in accordance  
with IPC/JEDEC J-STD 020.  
TBODY  
6 Electrical Characteristics  
Table 4. Operating Conditions  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
General Operating Conditions  
Alicable for high-voltage current sink pins  
CURR1, CURR2 and CURR6.  
VHV  
VBAT  
VPERI  
V2_5  
High Voltage  
0.0  
3.0  
1.5  
2.4  
-30  
15.0  
5.5  
5.5  
2.6  
85  
V
V
Battery Voltag
Pin VBAT  
3.6  
PeripherSuply  
Voltge  
For serial interface pins.  
Internally generated  
V
Voge oPin V2_5  
2.5  
25  
V
Operating  
Temperature Range  
TAMB  
ºC  
Normal Operating current (see Operating  
Modes on page 71)  
IACT
Battery current  
35  
8
µA  
µA  
µA  
Current consumption in standby mode. Only  
2.5V regulator on, interface active  
ISNDBY Standby Mode Current  
13  
3
Shutdown Mode  
ISHUTDOWN  
interface inactive (CLKand DATA set to 0V)  
0.1  
Current  
www.austriamicrosystems.com/AS3675  
1v3  
6 - 80  
AS3675  
Datasheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
Figure 2. DCDC Step Up Converter: Efficiency of +15V,  
Figure 3. Charge Pump: Efficiency vs. VBAT  
Step Up to 15V vs. Load Current at VBAT=3.8V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
VOUT=14.2V  
VOUT=14.2V  
fclk=550kHz  
ILOAD=150mA  
85  
80  
75  
70  
65  
VOUT=22V  
VOUT=17.2V  
ILOAD=305mA  
ILOAD=80mA  
I
=40mA  
LOAD  
8  
3
3.2  
3.4  
6  
8  
4
4.2  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
VBAT [V
Load Current [A]  
Figure 4. Charge Pump: Battery Current vs. VBAT  
Figure Current Sink CURR1 vsV(CURRx)  
40.0  
600  
500  
400  
ICURR1=38.25mA  
35.0  
30.0  
25.0  
ILOA D=3mA  
ICURR1=19.2mAm  
300  
20
5.0  
10.0  
200  
ILO150mA  
ILOA D=80mA  
ILOA D=40mA  
100  
0
5.0  
0.0  
ICURR1=2.4mA  
2.8  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
0.0  
0.5  
1.0  
1.5  
2.0  
VBat[V]  
VCURR1 [V]  
Figure 6. Current Sink CURR1 Protectiourrent  
Figure 7. Current Sink CURR3x vs. VBAT  
3,0  
40.0  
curr_prot1_on=1  
CURR30  
I
=38.25mA  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
2,5  
2,0  
1,5  
1,0  
CURR30  
I
=19.2mAm  
4. 5uA  
curr_prot1_on=0  
0
0,0  
CURR30  
I
=2.4mA  
0.0  
0,0  
5,0  
10,0  
15,0  
20,0  
0.0  
0.5  
1. 0  
1. 5  
2. 0  
V(CURR1) [V]  
CURR30  
V
[V]  
www.austriamicrosystems.com/AS3675  
1v3  
7 - 80  
AS3675  
Datasheet - Typical Operating Characteristics  
Figure 8. Charge Pump Input and Output Ripple  
1:1.5 Mode, 100mA load  
Figure 9. Charge Pump Input and Output Ripple  
1:2 Mode, 100mA load  
ꢘꢜꢝ ! ꢀꢂꢛꢘꢅꢆꢇꢈ!  
ꢝ"#$ꢚꢌ%&ꢊꢆ  
ꢀꢋꢌꢍ ꢎꢂꢏꢐꢇꢀꢑꢅꢒꢓꢎ  
ꢌꢔꢕꢖꢃꢗꢘꢙꢆꢅ  
"'() ꢙ!ꢎ*ꢂꢂ ꢛꢘꢅꢆꢇꢈ!  
ꢝ"#$ꢚꢌ%&ꢊꢆ  
ꢔꢛꢜꢝꢍꢁꢎꢂ ꢏꢐꢇꢀꢑꢅꢒꢓꢎ  
ꢌꢔꢕꢖꢃꢗꢘꢙꢆꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢉꢊꢋꢄꢌꢍꢊꢆꢎꢏꢇꢐꢑꢎꢒꢋꢐꢐꢊꢍꢓꢎꢔꢕꢖꢗꢘꢙꢎꢚꢃꢎꢆꢊꢛꢚꢒꢚꢋꢍꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢉꢊꢋꢄꢌꢍꢊꢆꢎꢏꢇꢐꢑꢎꢒꢋꢐꢐꢊꢍꢓꢎꢔꢕꢖꢂꢂꢃꢄꢂꢅꢆꢃꢈꢃ  
Figure 10. Characteristics frequency mode, BP filter 512/2048Hz  
BP Gain +6/+4/+2/0/-2/-4/-6dB  
0.04  
0. 035  
0.03  
0. 025  
0.02  
0. 015  
0.01  
0. 005  
0
10  
100  
1000  
10000  
100000  
Frequency[Hz]  
VBAT = 3.6V, TA = +25ºC (unless otherwise secified).  
www.austriamicrosystems.com/AS3675  
1v3  
8 - 80  
AS3675  
Datasheet - Detailed Description  
8 Detailed Description  
8.1  
Analog LDO  
The LDO is a general purpose LDO and the output pin is shared with the general purpose input (GPI) connected to  
VANA/GPI. The design is optimized to deliver the best compromise between quiescent current and regulator perfor-  
mance for battery powered devices.  
Stability is guaranteed with ceramic output capacitors (of 1µF ±20% (X5R) or 2.2µF +100/-50%(Z5U). The low ESR of  
these capacitors ensures low output impedance at high frequencies. The low impedance of the power transistor  
enables the device to deliver up to 150mA even at nearly discharged batteries without any decrease in performance.  
The LDO is off by default after start-up.  
Figure 11. Analog LDO Block Diagram  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢆꢀꢇꢈ  
ꢎꢏ  
ꢆꢇꢉꢇꢊꢋꢌꢍ  
ꢐꢑ  
ꢏꢒꢏꢓꢔ  
AS3675  
Table 5. Electrical Characteristics  
Symbol  
VBAT  
Parameter  
Condtion  
Min  
Typ  
Max  
Unit  
Supply Voltage  
Range  
3.0  
5.5  
V
RON  
On Resistance  
@150mA, ull operating temperature range  
@150mAldoana_lpo (see page 10)= 0  
@50mA, ldo_ana_lpo= 0  
1.0  
150  
50  
Ω
mV  
mV  
mV  
µA  
VDROPOUT  
Dropout Voltage  
@5mA, ldo_ana_lpo= 1  
500  
Without load  
50  
3
Without load, ldo_ana_lpo= 1  
ldo_ana only  
ION  
Supply Currnt  
With 150mA load  
Without load  
150  
IOFF  
tstart  
Shutdown Current  
tart-up Time  
100  
200  
nA  
µs  
Output Voltage  
Tolerance  
Vout_tol  
VOU
-3  
+3  
%
VBAT > 3.0V and IOUT=150mA  
Full Programmable Range  
1.8  
1.8  
2.85  
3.35  
V
V
Output Voltage  
LDO Current Limit  
ldo_ana_lpo= 0  
Pin VANA. LDO acts as current source if the  
output current exceeds ILIMIT.  
4502  
8
300  
4
mA  
mA  
1
ILIMIT  
LDO Current Limit  
ldo_ana_lpo= 1  
VBAT-VANA0.2V  
www.austriamicrosystems.com/AS3675  
1v3  
9 - 80  
AS3675  
Datasheet - Detailed Description  
1. Not production tested – guaranteed by design and laboratory verification  
2. During startup of the LDO the current limit is half the value of ILIMIT  
8.1.1 LDO Registers  
Table 6. Reg. control Register  
Reg. control  
Addr: 00  
This register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs
current sinks, the Step Up DC/DC Converter, and low-power mode.  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
Analog LDO is switched off  
Analog LDO is switched on  
Normal Operation  
ldo_ana_on  
0
0
0
R/W  
R/W  
Low-power mode; current consumptin is reduced by  
about 75µA. Reduced performancof LDO: max 5mA  
lod, internal oscillator is swied o. The device will  
xit low-ower mode automaticly, if blocks requiring  
the oscillatr are enabled.  
ldo_ana_lpo  
7
1
Table 7. LDO ANA1 Voltage Register  
LDO ANA1 Voltae  
Addr: 07h  
This register sets the outpuvoltage (VANA) for the LDO.  
Bit  
Bit Name  
Default Access  
Description  
Controls LDO voltage selection.  
00000
..
1.85V  
LSB=50mV  
3.4V  
ldo_ana_voltage  
4:0  
0000b  
R/W  
111b  
www.austriamicrosystems.com/AS3675  
1v3  
10 - 80  
AS3675  
Datasheet - Detailed Description  
8.2  
Step Up DC/DC Converter  
The Step Up DC/DC Converter is a high-efficiency current mode PWM regulator, providing output voltage up to e.g.  
25V/35mA or e.g. 16V/55mA. A constant switching-frequency results in a low noise on the supply and output voltages.  
Figure 12. Step Up DCDC Converter Block Diagram Option: Current Feedback with Over voltage protection  
-ꢏꢊꢊꢈꢇ0  
 
ꢁ$%  
1ꢁ  
ꢁꢒ$ꢄ  
 
!  
"ꢓ#$%  
ꢞꢀꢞꢀ'*ꢙ+,  
ꢞꢀꢞꢀ'ꢋ(ꢋ')  
&ꢁ  
ꢋꢊꢈꢛꢆꢂꢛꢆꢞꢀꢞꢀ  
ꢝꢉ ꢈꢇꢊꢈꢇ  
ꢀꢁ  
ꢒꢓꢁ/  
ꢀꢃ  
ꢁ./  
#  
ꢁꢓꢔꢉ%  
ꢞꢀꢞꢀ'%-  
 
ꢉ%  
ꢀꢖ  
ꢁꢒꢒꢍ/  
 
#  
 
!  
ꢁꢃ  
ꢁꢖ  
ꢁ"  
ꢁꢒ  
ꢁꢁ  
ꢄꢅꢆꢀꢈꢇꢇꢈꢉꢌꢉꢍ
ꢈꢏꢐꢑꢆꢒꢓꢁꢔꢕꢖꢗꢓꢔꢘꢙ  
 ꢀꢁ  
ꢀꢃ  
ꢂꢀꢀꢚ  
AS3675  
Table 8. Step Up DC/DC Converter Paraers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IVDD  
Quiescent Curret  
Pulse skipping mode.  
140  
µA  
Feedback Voltae for  
External Resistor  
Dvider  
For constant voltage control.  
VFB1  
VFB2  
1.20  
0.4  
1.25 1.30  
V
V
step_up_res = 1  
Feedack Voltage for  
Current Sink  
on CURR1, CURR2 or CURR6 in regulation.  
0.5  
0.6  
step_up_res = 0  
Regulation  
Additional Tuning  
Current at Pin  
Adjustable by software using Register DCDC  
control1  
0
31  
6
µA  
%
DCDC_FB and over  
voltage protection  
1µA step size (0-31µA)  
IDCC_FB  
V
PROTECT = 1.25V +  
IDCDC_FB * R2  
Accuracy of Feedback  
Current at full scale  
-6  
www.austriamicrosystems.com/AS3675  
1v3  
11 - 80  
AS3675  
Datasheet - Detailed Description  
Table 8. Step Up DC/DC Converter Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
e.g., 0.66A for 0.1Ω sense resistor.  
46  
66  
85  
Current Limit Voltage  
at R1  
For fixed startup time of  
500us  
Vrsense_max  
25  
30  
33  
43  
43  
mV  
If Step up_lowcur= 1  
ON-resistance of external switching transistor.  
At 16V output voltage  
57  
1
RSW  
ILOAD  
fIN  
Switch Resistance  
Load Current  
Ω
mA  
MHz  
µF  
0
0
55  
35  
1.1  
At 25V output voltage  
Switching Frequency  
Output Capacitor  
Internally trimmed  
0.9  
1
Ceramic, ±20%. Use nominal 4.7µF capacitors  
to obtain at least 0.7µF under all conditions  
(voltage dependence of capacitors)  
COUT  
0.7  
7
4.7  
Use inductors with small Cparasitic (<100pF) to  
get high efficiency.  
L
Inductor  
10  
3  
µH  
tMIN_ON  
Minimum on Time  
Maximum Duty Cycle  
Voltage ripple >20kHz  
Voltage ripple <20kHz  
Efficiency  
90  
88  
14
1  
190  
ns  
%
MDC  
160  
40  
mV  
mV  
%
Vripple  
Cout=4.7µF,Iout=mA, VBAT=3.0...42V  
Iout=20mA,Vou=17V,VBAT=3.8V  
Efficiency  
85  
To ensure soft startup of the dcdc converter, the oecurent limits are reced or a fixed time after enabling the dcdc  
converter. The total startup time for an output vtage of e.g. 25V is leshan 2ms.  
8.2.1 Feedback Selection  
Register DCDC control1 and DCDC cotrol2 selects the type f feeback for the Step Up DC/DC Converter.  
The feedback for the DC/DC converten be selected eby current sinks (CURR1, CURR2, CURR6) or by a volt-  
age feedback at pin DCDC_FB. If the register bit step_uauto is set, the feedback path is automatically selected  
between CURR1, CURR2 and CURR6 (the lowest voltage of these current sinks is used).  
Setting step_up_fb enables feedback on the pins CURR1, CURR2 or CURR6. The Step Up DC/DC Converter is regu-  
lated such that the required current at the fedback path can be supported. (Bit step_up_res should be set to 0 in this  
configuration)  
Note: Always choose the path with the est voltage drop as feedback to guarantee adequate supply for the other  
(unregulated) paths or enable the register bit step_up_fb_auto.  
8.2.2 Over voltage Protetion in Current Feedback Mode  
The over voltage protection in current feedback mode (step_up_fb = 01, 10 or 11 or step_up_fb_auto = 1) works as fol-  
lows: Only resistor R2 and C7/C8 is soldered and R3 is omitted. An internal current source (sink) is used to generate a  
voltage drop acrss the resistor R2. If then the voltage on DCDC_FB is above 1.25V, the DCDC is momentarily dis-  
abled to avoid too hgh voltages on the output of the DCDC converter.  
The protectiovoltage can be calculated according to the following formula:  
VPROTECT = 1.25V + IDCDC_FB * R2  
(EQ 1)  
Nte: Te voltage on the pin DCDC_FB is limited by an internal protection diode to VBAT + one diode forward volt-  
age (typ. 0.6V).  
If the over voltage protection is not used in current feedback mode, connect DCDC_FB to ground.  
www.austriamicrosystems.com/AS3675  
1v3  
12 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 13. Step Up DC/DC Converter Detail Diagram; Option: Regulated Output Current, Feedback is  
automatically selected between CURR1, CURR2, CURR6 (step_up_fb_auto=1); over voltage protection  
is enabled (step_up_prot=1); 1MHz clock frequency (step_up_frequ=0)  
#ꢏꢊꢊꢈꢇ&  
 
ꢗꢘ  
'  
ꢁꢒ  
 
ꢎꢊꢈ(ꢛ(ꢛ3ꢇꢈ7  
$ꢄ8  
ꢔꢒꢒꢍꢄ8  
ꢐ9ꢍ  
 
2ꢓꢖꢗꢘ  
5$  
'+*ꢌꢐ  
 ꢏꢊꢈ  
ꢇꢌ)ꢈꢇ  
!"  
ꢛꢝ  
 
+)ꢛꢇꢇ  
ꢅꢇꢎꢈꢉꢎꢈꢘꢏ6  
ꢀꢁ  
ꢒꢓꢁ%  
ꢀꢃ  
$%  
 
ꢁꢓꢔꢉ  
ꢎꢊꢈ(ꢛ(ꢛ)ꢉꢌꢉ*  
ꢛꢘ#  
 
ꢁꢔꢉ  
ꢀꢖ  
ꢁꢒꢒꢍ%  
ꢁꢓꢃꢔꢅ  
ꢎꢊꢈ(ꢛ(ꢛ(+  
 
 
ꢚꢕ  
ꢁꢃ  
ꢁꢖ  
ꢁ2  
ꢇꢏꢘ(  
+)ꢈꢇꢎꢑ++ꢊꢆꢐ+(  
ꢁꢓꢖꢔꢅ  
ꢒꢓꢗꢅ  
ꢁꢒ  
ꢁꢁ  
ꢁꢓꢃꢔꢅ  
ꢒꢓꢔꢅ  
ꢈꢇꢇ+ꢇꢆ+ꢊꢏ  
ꢎꢊꢈ(ꢛ(ꢛ34  
ꢄꢅꢆꢀꢈꢇꢇꢊꢆꢋꢌꢉ  
ꢈꢏꢐꢁꢔꢕꢖꢗꢔꢘꢙ  
ꢎꢊꢈ(ꢛ(ꢛ34+  
ꢀꢁ  
ꢀꢃ  
ꢂꢀꢀꢚ  
+ꢘꢏꢊꢌꢐ  
3ꢈꢈ:4ꢏꢐꢍꢆꢎꢈ9ꢈꢐꢊ  
;ꢂꢀꢀꢁ<ꢃ<ꢚ=  
ꢂꢀꢀ>ꢆ+ꢉꢆꢏꢉ:  
ꢇꢇ>ꢛ+(?ꢒ  
AS3675  
8.2.3 Voltage Feedback  
Setting bit step_up_fb (see pae 15= 00 enables voltage feedback at pin DCDC_FB.  
The output voltage is reguatd to a constant value, given by (Bit step_up_res should be set to 1 in this configuration)  
UStep up_out = (R2+R3)/R3 *1.25 + IDCDC_FB * R2  
If R4 is not used, ouut voltage is by (Bit step_up_res should be set to 0 in this configuration)  
UStep up_out = 1.25 + IDCDC_FB * R2  
(EQ 2)  
(EQ 3)  
Where:  
ep p_out = Step Up DC/DC Converter output voltage  
R2 = Feedback resistor R2  
R3 = Feedback resistor R3  
www.austriamicrosystems.com/AS3675  
1v3  
13 - 80  
AS3675  
Datasheet - Detailed Description  
IDCDC_FB = Tuning current at ball DCDC_FB; 0 to 31µA  
Table 9. Voltage Feedback Example Values  
UStep up_out  
UStep up_out  
IDCDC_FB  
µA  
0
R2 = 1MΩ, R3 not used  
R2 = 500kΩ, R3 = 50kΩ  
-
13.75  
14.25  
14.75  
15.25  
15.75  
16.25  
16.75  
1.25  
17.75  
18.25  
18.75  
19.25  
19.75  
20.25  
20.75  
21.25  
1
-
2
-
3
-
4
-
5
6.25  
7.25  
8.25  
9.25  
10.25  
11.25  
15  
13
14.2
15.25  
16.25  
6
7
8
9
10  
11  
12  
13  
14  
15  
30  
31  
31.2
28.75  
29.25  
Note: The voltage on CURR1, CURR2 and CURR6 must not exceed 15V (see page 25)  
8.2.4 PCB Layout Hints  
To ensure good EMC performance of the DCDconverter, keep its external power components C6, R1, L1, Q1, D1  
and C9 close together. Connect the grounf C6, R1 and C9 locally together and connect this with a short path to  
AS3675 VSS. This ensures that local higequency currents will not flow to the battery.  
8.2.5 Step up Registers  
Table 10. Reg. control Registr  
Reg. control  
Add00  
This register enables/disables the Charge Pump and the Step Up DC/DC  
Converter.  
Bit  
Bit Name  
Default Access  
Description  
Enable the step up converter  
Disable the Step Up DC/DC Converter  
Enable the Step Up DC/DC Converter  
step_up_on  
0b  
1b  
3
0
R/W  
www.austriamicrosystems.com/AS3675  
1v3  
14 - 80  
AS3675  
Datasheet - Detailed Description  
Table 11. DCDC control1 Register  
DCDC control1  
Addr: 21h  
This register controls the Step Up DC/DC Converter.  
Bit  
Bit Name  
Default Access  
Description  
Defines the clock frequency of the Step Up DC/DC  
Converter.  
step_up_frequ  
R/W  
R/W  
0
0
0
1
1MHz  
500kHz  
Controls the feedback source if step_up_fb_auto = 0  
DCDC_FB enabled (external resistor divider
00  
Set step_up_fb=00 (DCDC_FB)  
step_up_fb  
2:1  
00  
01  
10  
11  
CURR1 feedback enabled (feedback via LDs)  
CURR2 feedback enabled (eedack via LEDs)  
CURR6 feedback enabled (feeback via LEDs)  
Defines the tuning current pin DCDC_FB.  
0000  
0001  
010  
....  
0 µA  
1 µA  
2 µA  
step_up_vtuning  
7:3  
00000  
R/W  
10000  
.....  
15 µA  
31 µA  
11111  
Table 12. DCDC control2 Register  
DCDC control2  
Addr: 22h  
This registecontrols the Step Up DC/DC Converter and low-voltage current  
sinks CURRx.  
Bit  
Bit Name  
Defalt Access  
Description  
Gain selection for Step Up DC/DC Converter  
Select 0 if Step Up DC/DC Converter is used  
with current feedback (CURR1, CURR2,  
CURR6) or if DCDC_FB is used with current  
feedback only – R2, C7, C8 connected, R3 not  
used  
0
1
step_up_res  
0
0
R/W  
Select 1 if DCDC_FB is used with external  
resistor divider using 2 resistors: R2 and R3  
Step Up DC/DC Converter output voltage at low loads,  
when pulse skipping is active  
skip_fast  
1
2
0
1
R/W  
R/W  
0
1
Accurate output voltage, more ripple  
Elevated output voltage, less ripple  
Step Up DC/DC Converter protection  
No over voltage protection  
0
1
step_up_prot  
Over voltage protection on pin DCDC_FB  
enabled voltage limitation =1.25V on DCDC_FB  
www.austriamicrosystems.com/AS3675  
1v3  
15 - 80  
AS3675  
Datasheet - Detailed Description  
Table 12. DCDC control2 Register  
DCDC control2  
Addr: 22h  
This register controls the Step Up DC/DC Converter and low-voltage current  
sinks CURR3x.  
Bit  
Bit Name  
Default Access  
Description  
Step Up DC/DC Converter coil current limit  
Normal current limit  
Step up_lowcur  
3
1
0
R/W  
R/W  
0
1
Current limit reduced by approx. 33%  
step_up_fb select the feedback of the DCDC  
converter  
0
The feedback is automatically chosen withn the  
current sinks CURR1, CURR2 and CURR6  
(never DCDC_FB). Only those are used for this  
selection, which are enabled (cuX_mode must  
not be 00) and not connectd to he charge  
pump (currX_on_cp mut be 0).  
step_up_fb_auto  
7
1
8.3  
Charge Pump  
The Charge Pump uses two external flying capacitors C3, C4 to enerae output voltages higer than the battery volt-  
age. There are three different operating modes of the chapump itself:  
1:1 Bypass Mode  
- Battery input and output are connected by a low-impednce switch  
- battery current = output current.  
1:1.5 Mode  
- The output voltage is up to 1.5 times thbatery voltage (witout ld), but is limited to VCPOUTmax all the time  
- battery current = 1.5 times output curen.  
1:2 Mode  
- The output voltage is up to 2 tmehe battery voltage (wihout load), but is limited to VCPOUTmax all the time  
- battery current = 2 times output rent  
As the battery voltage decreases, the Charge Pump muswitched from 1:1 mode to 1:1.5 mode and eventually in  
1:2 mode in order to provide enough supply for thcurrent sinks. Depending on the actual current the mode with best  
overall efficiency can be automatically or manually eleted:  
Examples:  
Battery voltage = 3.7V, LED dropout vage = 3.5V. The 1:1 mode will be selected and there is 200mV drop on the  
current sink and on the Charge Pump itch. Efficiency 95%.  
Battery voltage = 3.5V, LED dopout voltage = 3.5V. The 1:1.5 mode will be selected and there is 1.5V drop on the  
current sink and 250mV on the Chrge Pump. Efficiency 66%.  
Battery voltage = 3.8V, LED ropout voltage = 4.5V (Camera Flash). The 1:2 mode can be selected and there is  
600mV drop on the currensink and 2.5V on the Charge Pump. Efficiency 60%.  
The efficiency is dependenon the LED forward voltage given by:  
Eff=(V_LED*Iout)/(Uin*Iin)  
(EQ 4)  
The charge pump moe switching can be done manually or automatically with the following possible software settings:  
Automatic up al modes allowed (1:1, 1:1.5, 1:2)  
- Stith 1:1 mode  
- Swih up automatically 1:1 to 1:1.5 to 1:2  
utomatic up, but only 1:1 and 1:1.5 allowed  
- Start with 1:1 mode  
- Switch up automatically only from 1:1 to 1:1.5 mode; 1:2 mode is not used  
Manual  
- Set modes 1:1, 1:1.5, 1:2 by software  
www.austriamicrosystems.com/AS3675  
1v3  
16 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 14. Charge Pump Pin Connections  
!ꢀꢀꢅꢃꢁ  
ꢂꢃꢖ  
ꢀꢐꢗꢇ  
ꢀꢐꢗꢅ  
ꢀꢋꢗꢇ  
ꢀꢋꢗꢅ  
ꢀꢐ  
ꢄ  
ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊ  
ꢋꢌꢋꢍꢆꢋꢌꢋꢎꢏꢍꢆꢋꢌꢐ  
ꢀꢇꢇꢈꢖ  
ꢆꢆꢀꢏ  
AS3675  
The Charge Pump requires the external components listed in the flowing table:  
Table 13. Charge Pump External Components  
Symbol  
Parameter  
Coition  
Min  
Typ  
Max  
Unit  
External Decoupling  
Capacitor  
Ceramic low-ESR capacitor betweepins  
VAT and VSS.  
C2  
1.0  
µF  
Ceramilow-ESR capacor been pins  
C1and C1_N, betweeins C2_P and  
C2N and between VBAT and VSS  
External Flying  
Capacitor (2x)  
C3, C4  
C5  
1.0  
2.2  
µF  
µF  
Ceramic low-ESR caacitobetween pins  
OUT and VSS, pins COUT and VSS. Use  
nominal 2.2µacitors (size 0603)  
External Storage  
Capacitor  
Note: The connections of the external capacitors C2, C3, C4 and C5 should be kept as short as possible.  
The maximum voltage on the flying apacitors C3 and C4 is VBAT.  
Table 14. Charge Pump Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Output Currnt  
Continuous  
Depending on PCB layout  
0.0  
300  
mA  
ICPOUT  
max. 200ms  
VCPOUT=  
VBAT * CPMODE – ILOAD * RCP  
Output urrent  
ulsed  
0.0  
60  
500  
mA  
VCPOUTmax  
Ouut Voltage  
Efficiency  
Internally limited, Including output ripple  
5.6  
90  
V
Including current sink loss;  
ICPOUT < 100mA.  
η
%
ICP5  
ICP1_2  
Power Consumption  
without Load  
1:1.5 Mode  
3.4  
3.8  
mA  
1:2 Mode  
fclk = 1 MHz  
Rcp1_1  
Rcp1_1.5  
Rcp1_2  
1:1 Mode; VBAT 3.5V  
1:1.5 Mode; VBAT 3.3V  
1:1.2 Mode; VBAT 3.1V  
0.57  
2.65  
3.25  
Effective Charge  
Pump Output  
Resistance (Open  
Loop, fclk = 1MHz)  
Ω
Accuracy of Clock  
Frequency  
fclk Accuracy  
-10  
10  
%
www.austriamicrosystems.com/AS3675  
1v3  
17 - 80  
AS3675  
Datasheet - Detailed Description  
Table 14. Charge Pump Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
CURR1, 2, 6  
minimum voltage  
currhv_switch  
0.45  
V
CURR30-33, RGB1-  
3, CURR41-3  
If the voltage drops below this threshold, the  
charge pump will use the next available  
mode  
0.2  
0.4  
V
V
minimum voltage  
CURR30-33  
0-75.6mA range  
for strobe if  
curr3x_strobe_high=  
1
currlv_switch  
(1:1 -> 1:1.5 or 1:1.5 -> 1:2)  
cp_start_debounce=0  
240  
µse
ec  
CP automatic up-  
switching debounce  
time  
tdeb  
After switching on CP (cp_on set to 1), if  
cp_start_debounce=1  
2000  
8.3.1 Charge Pump Mode Switching  
If automatic mode switching is enabled (cp_mode_switching (see page 20) = 00 or cp_mode_swithing = 01) the  
charge pump monitors the current sinks, which are connected via a led o the output CPOUT. o identify these current  
sources (sinks), the registers CP mode Switch1 and CP mode Switch2 (gister bits curr30_on_cp (see page 21) …  
curr33_on_cp, rgb1_on_cp rgb3_on_cp, curr1_on_cp, curr2_o_cp, curr41_on_cp curr3_on_cp and  
curr6_on_cp) should be setup before starting the charge p(cp_on (see page 20) = 1). If any of the voltage on  
these current sources drops below the threshold (currlv_sw, currhv_switch), thnext higher mode is selected after  
the debounce time.  
To avoid switching into 1:2 mode (battery current = 2 times output current), st cp_mode_switching = 01.  
If the currX_on_cp=0 and the according current sink is onnected to tharge pump, the current sink will be func-  
tional, but there is no up switching of the chage ump, if the voltacoplince is too low for the current sink to sup-  
ply the specified current.  
www.austriamicrosystems.com/AS3675  
1v3  
18 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 15. Automatic Mode Switching  
-)ꢈꢈꢒꢁ.  
&-/0ꢄ*ꢐ  
ꢑꢄ*  
 
 
ꢑꢄ,  
ꢐꢄ*  
ꢐꢄ,  
ꢂ)ꢁꢘꢒꢖ*ꢀ ꢏ  
ꢔꢍꢕꢒꢖꢗꢆꢇꢈꢉꢂꢇꢎꢘ  
ꢐꢙꢐꢖꢚꢛꢖꢐꢙꢐꢜꢝ  
ꢐꢙꢐꢜꢝꢖꢚꢛꢖꢐꢙꢑ  
ꢐꢙꢐ+ꢖꢐꢙꢐꢜꢝ+ꢖꢐꢙꢑ  
ꢉꢏꢄ ꢍꢕꢒ!ꢐꢙꢌꢛ  
%  
&ꢗꢗꢄ*  
ꢉꢊꢋꢌ  
ꢍꢍꢍꢍꢎ  
ꢋꢏꢏꢑ  
ꢋꢏꢏꢐꢒ  
ꢉꢀꢁꢁꢋꢌꢄꢍꢎꢄꢉꢏ  
ꢉꢀꢁꢁꢋꢐꢄꢍꢎꢄꢉꢏ  
ꢋꢏꢏꢐꢓ  
ꢋꢏꢏꢐꢐ  
ꢉꢀꢁꢁꢋꢑꢄꢍꢎꢄꢉꢏ  
ꢉꢀꢁꢁꢋꢋꢍꢎꢄꢉꢏ  
#1-ꢐ  
#1-ꢑ  
ꢁꢘꢓꢍꢎꢄꢉꢏ  
ꢁꢘꢓꢑꢄꢍꢎꢄꢉꢏ  
ꢁꢘꢓꢋꢄꢍꢎꢄꢉꢏ  
#1-ꢋ  
ꢒꢓꢍꢀꢎꢉꢒ  
"##%ꢐ  
"##%ꢑ  
ꢉꢀꢁꢁ%ꢄꢍꢎꢉꢏ  
ꢉꢀꢁꢁ%ꢑꢄꢍꢎꢄꢉꢏ  
ꢉꢀꢁꢁ%ꢋꢄꢍꢎꢄꢉꢏ  
"##%ꢋ  
ꢑꢌꢌ &  
'ꢉꢀꢁꢁ(ꢃꢄꢅꢆꢇꢈꢉꢂꢊ  
ꢉꢀꢁꢁꢐꢄꢍꢎꢄꢉꢏ  
ꢉꢀꢁꢁꢑꢄꢍꢎꢄꢉꢏ  
ꢋꢏꢏꢒ  
ꢋꢏꢏꢓ  
ꢔꢎꢑꢕꢖ  
ꢗꢘꢀꢁꢁꢂꢃꢄꢅꢆꢇꢈꢉꢂꢊ  
ꢉꢀꢁꢁ$ꢄꢍꢎꢄꢉꢏ  
"##$  
AS3675  
8.3.2 Soft Start  
An implemented soft start mechanism reduces the inrush current. Battery current is smoothed when switching the  
charge pump on and also at each switching condition. This precaution reduces electromagnetic radiation significantly.  
www.austriamicrosystems.com/AS3675  
1v3  
19 - 80  
AS3675  
Datasheet - Detailed Description  
8.3.3 Charge Pump Registers  
Table 15. Reg. control Register  
Reg. control  
This register controls the Charge Pump.  
Default Access Description  
Addr: 00h  
Bit  
Bit Name  
Set Charge Pump into 1:1 mode (off state) unless  
0
cp_auto_on is set  
cp_on  
2
0
R/W  
1
Enable manual or automatic mode switching  
Table 16. CP control Register  
CP control  
Addr: 23h  
This register enables/disables the Charge Pump and the Step Up DC/DC  
Converter.  
Bit  
Bit Name  
Default Access  
Description  
Clock frequency sectio.  
1 MHz  
cp_clk  
0
0
R/W  
0
1
500 kz  
rge Pump mode manual mode sets this mode, in  
automatic modrepothe actual mode used)1  
00  
01  
10  
11  
1:1 mode  
cp_mode  
2:1  
00b  
RW  
1:1.5 mode  
1:2 mode  
NA  
Set the mode switching algorithm  
Automatic Mode switching; 1:1, 1:1.5 and 1:2  
allowed  
0  
01  
10  
Automatic Mode switching; only 1:1 and 1:1.5  
allowed  
cp_mode_switching  
4:3  
00b  
RW  
Manual Mode switching; register cp_mode defines  
the actual charge pump mode used  
11  
0
Reserved  
Mode switching debounce timer is always 240µs  
Upon startup (cp_on set to 1) the mode switching  
debounce time is first started with 2ms then  
reduced to 240µs  
cp_start_debunc
cp_auto_on  
5
6
0
0
R/W  
R/W  
1
0
Charge Pump is switched on/off with cp_on  
Charge Pump is automatically switched on if a  
current sink, which is connected to the charge  
pump (defined by registers CP Mode Switch 1 & 2)  
is switched on  
1
1. Dect switching from 1:1.5 mode into 1:2 in manual mode and vice versa is not allowed. Always switch over 1:1  
mode.  
www.austriamicrosystems.com/AS3675  
1v3  
20 - 80  
AS3675  
Datasheet - Detailed Description  
Table 17. CP mode Switch1 Register  
CP mode Switch1  
Setup which current sinks are connected (via leds) to the charge pump; if set to  
‘1’ the correspond current source (sink) is used for automatic mode selection of  
the charge pump  
Addr: 24h  
Bit  
Bit Name  
Default Access  
Description  
current Sink CURR30 is not connected to charge  
pump  
0
1
0
1
0
1
0
1
0
1
0
curr30_on_cp  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
current sink CURR30 is connected to charge pump  
current Sink CURR31 is not connected to charge  
pump  
curr31_on_cp  
curr32_on_cp  
curr33_on_cp  
rgb1_on_cp  
rgb2_on_cp  
rgb3_on_cp  
1
2
3
4
5
6
current sink CURR31 is connected to charge pump  
current Sink CURR32 is not connected to charge  
pump  
current sink CURR32 is connecteto carge pump  
current Sink CURR33 is t conected to charge  
pump  
curret sink CURR33 s conected to charge pump  
current Sink RGB1 is not connected to charge  
pump  
current sink GB1 is connected to charge pump  
current Snk RGB2 is not connected to charge  
pump  
urrent sink RGB2 is connected to charge pump  
current Sink RGB3 is not connected to charge  
pump  
current sink RGB3 is connected to charge pump  
Table 18. CP mode Switch2 Register  
CP mode Switch2  
Setup hich current sinks are connected (via LEDs) to the charge pump; if set  
tthe correspond current source (sink) is used for automatic mode selection  
of the charge pump  
Addr: 25h  
Bit  
Bit Name  
Default Access  
Description  
current Sink CURR1is not connected to charge  
pump  
0
1
0
1
0
1
0
1
curr1_on_p  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
current sink CURR1 is connected to charge pump  
current Sink CURR2 is not connected to charge  
pump  
cur2_on_cp  
curr41_on_cp  
curr42_on_cp  
1
2
3
current sink CURR2 is connected to charge pump  
current Sink CURR41 is not connected to charge  
pump  
current sink CURR41 is connected to charge pump  
current Sink CURR42 is not connected to charge  
pump  
current sink CURR42 is connected to charge pump  
www.austriamicrosystems.com/AS3675  
1v3  
21 - 80  
AS3675  
Datasheet - Detailed Description  
Table 18. CP mode Switch2 Register (Continued)  
CP mode Switch2  
Setup which current sinks are connected (via LEDs) to the charge pump; if set  
to ‘1’ the correspond current source (sink) is used for automatic mode selection  
of the charge pump  
Addr: 25h  
Bit  
Bit Name  
Default Access  
Description  
current Sink CURR43 is not connected to charge  
pump  
0
1
0
1
curr43_on_cp  
curr6_on_cp  
4
0
0
R/W  
R/W  
current sink CURR43 is connected to charge pump  
current Sink CURR6 is not connected to charge  
pump  
7
current sink CURR6 is connected to charge ump  
Table 19. Curr low voltage status1 Register  
Curr low voltage status1  
Indicates the low voltage status of the current sinks. the urrX_low_v bit is  
set, the voltage on the urrensink is too low, to drive the selected output  
current  
Addr: 2Ah  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
1
0
0
1
0
1
0
1
0
1
voltage of cunt Sink CURR30 >currlv_switch  
voltage ocrent Sink CURR30 <currlv_switch  
voltage of current Sink CURR31 >currlv_switch  
voge f current Sink CURR31 <currlv_switch  
oltage of current Sink CURR32 >currlv_switch  
voltage of current Sink CURR32 <currlv_switch  
voltage of current Sink CURR33 >currlv_switch  
voltage of current Sink CURR33 <currlv_switch  
voltage of current Sink RGB1 >currlv_switch  
voltage of current Sink RGB1 <currlv_switch  
voltage of current Sink RGB2 >currlv_switch  
voltage of current Sink RGB2 <currlv_switch  
voltage of current Sink RGB3 >currlv_switch  
voltage of current Sink RGB31 <currlv_switch  
voltage of current Sink CURR6 >currlv_switch  
voltage of current Sink CURR6 <currlv_switch  
curr30_low_v  
curr31_low_v  
curr32_low_v  
curr33_low_v  
rgb1_low_v  
rgb2_low_v  
rgb3_low_v  
curr6_lw_v  
0
NA  
NA  
A  
NA  
NA  
N
NA  
NA  
R
R
R
R
R
R
R
1
2
3
4
5
6
7
Table 20. Curlow voage status2 Register  
Curr low voltage status2  
Indicates the low voltage status of the current sinks. If the currX_low_v bit is  
set, the voltage on the current sink is too low, to drive the selected output  
current  
Addr: 2Bh  
Bit  
Bit Name  
curr1_low_v  
Default Access  
Description  
0
1
voltage of current Sink CURR1 >currhv_switch  
voltage of current Sink CURR1 <currhv_switch  
0
NA  
R
www.austriamicrosystems.com/AS3675  
1v3  
22 - 80  
AS3675  
Datasheet - Detailed Description  
Table 20. Curr low voltage status2 Register (Continued)  
Curr low voltage status2  
Indicates the low voltage status of the current sinks. If the currX_low_v bit is  
set, the voltage on the current sink is too low, to drive the selected output  
current  
Addr: 2Bh  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
1
0
1
0
1
voltage of current Sink CURR2 >currhv_switch  
voltage of current Sink CURR2 <currhv_switch  
voltage of current Sink CURR41 >currlv_switch  
voltage of current Sink CURR41 <currlv_swith  
voltage of current Sink CURR42 >currlv_sitch  
voltage of current Sink CURR42 <currlv_swch  
voltage of current Sink CURR43 >urrlv_switch  
voltage of current Sink CURR43 currlv_switch  
curr2_low_v  
curr41_low_v  
curr42_low_v  
curr43_low_v  
1
NA  
NA  
NA  
NA  
R
R
R
R
2
3
4
www.austriamicrosystems.com/AS3675  
1v3  
23 - 80  
AS3675  
Datasheet - Detailed Description  
8.4  
Current Sinks  
The AS3675 contains general purpose current sinks intended to control RGB LEDs, white LEDs (e.g. backlights) and  
can also be used for buzzers or vibrators. All current sinks have an integrated over voltage protection.  
CURR1, CURR2 and CURR6 are also used as feedback for the Step Up DC/DC Converter (regulated to 0.5V in this  
configuration) see Feedback Selection on page 12.  
Current sinks CURR1, CURR2 and CURR6 are high-voltage compliant (15V) current sinks, used e.g., for series of  
white LEDs  
Current sinks CURR3x (CURR30, CURR31, CURR32 and CURR33) are parallel 5V current sinks, used for back-  
lighting, indicator LEDs or RGB LEDs.  
Current sinks RGB1, RGB2, and RGB3 are general purpose current sinks e.g. for a fun LED.  
Current sinks CURR4x (CURR41, CURR42, and CURR43) are general purpose current sinks.  
Table 21. Current Sink Function Overview  
Max.  
Current Sink Voltage  
(V)  
Max.  
Current  
(mA)  
Resolution  
Software  
Current  
Control  
Can be assignto  
Auio Controlled  
LEChannel  
Hardware On/Off  
Control  
(Bits)  
(mA)  
CURR1  
ch1  
ch2  
ch3  
LED Pattern;  
Internal PWM  
CURR2  
CURR6  
15.0  
38.25  
8
8
0.15  
Searate  
CURR30  
CURR31  
CURR32  
38.25  
Flash ED Strobe  
(CUR1 or  
CRR30) &  
Prview  
(CURR2);  
Internal PWM;  
ombined in  
Strobe/  
Preview  
or  
Completely individual  
assignment of the  
audio channels  
ch1,ch2 and ch3 to the  
outputs  
(75.6mA  
for strobe  
if  
curr3x_str  
obe_high=  
1)  
0.15  
Separate
LED Pattern  
CURR33  
RGB1  
VBAT  
(5.5V)  
ch1  
ch2  
ch3  
ch1  
ch2  
ch3  
LED Pattern;  
Internal PWM  
RGB2  
38.25  
38.25  
8
8
0.15  
0.15  
Searate  
Separate  
RGB3  
CURR41  
CURR42  
CURR43  
LED Pattern;  
Internal PWM  
www.austriamicrosystems.com/AS3675  
1v3  
24 - 80  
AS3675  
Datasheet - Detailed Description  
8.4.1 High Voltage Current Sinks CURR1, CURR2, CURR6  
The high voltage current sinks have a resolution of 8 bits. Additionally an internal protection circuit monitors with a volt-  
age divider (max 3µA @ 15V) the voltage on CURR1, CURR2 and CURR6 and increases the current in off state in  
case of over voltage.  
Table 22. HV Current Sinks Characteristics  
Symbol  
IBIT7  
Parameter  
Condition  
Min  
Typ  
19.2  
9.6  
Max  
Unit  
Current sink if Bit7 = 1  
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
matching Accuracy  
absolute Accuracy  
IBIT6  
IBIT5  
4.8  
IBIT4  
2.4  
For V(CURRx) > 0.45V  
CURR1,CURR2,CURR6  
mA  
IBIT3  
1.2  
IBIT2  
0.6  
IBIT1  
03  
IBIT0  
0.15  
Δm  
-10  
-15  
+10  
+15  
15  
%
%
V
Δ
VCURR1,2,6x  
Voltage compliance  
Over voltage  
0.45  
At 13V, indepennt of curr1_prot_on,  
curr2_prot_oor curr6_prot_on  
Ov_prot_13V Protection of current  
sink CURR1,2,6  
3.0  
4.0  
µA  
A1V, step_up_on=1,  
curr1_prot_on=1 for CR1,  
urr2_prot_on=1 or CR,  
curr6_prot_on=1 foCURR6  
Over voltage  
Ov_prot_15V Protection of current  
sink CURR1,2,6  
0.8  
mA  
High Voltage Current Sinks CURRCURR2, CURR6 Rgisters  
Table 23. Curr1 current Register  
Curr1 current  
Thiregister controls the High voltage current sink current.  
Addr: 09h  
Bit  
Bit Name  
DefauAccess  
Description  
Defines current into current sink curr1  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr1_curren
7:0  
0
R/W  
FFh  
38.25 mA  
www.austriamicrosystems.com/AS3675  
1v3  
25 - 80  
AS3675  
Datasheet - Detailed Description  
Table 24. Curr2 current Register  
Curr2 current  
Addr: 0Ah  
This register controls the High voltage current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into current sink curr2  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr2_current  
7:0  
0
R/W  
FFh  
38.25 mA  
Table 25. curr6 current Register  
curr6 current  
Addr: 2Fh  
This register controls the High voltage current sink curret.  
Bit  
Bit Name  
Default Access  
Description  
Defies current into current ink CURR6  
00h  
....  
0 A  
0.15 mA  
....  
curr6_current  
7:0  
0
R/W  
FFh  
38.25 mA  
Table 26. curr12 control Register  
curr12 control  
Addr: 01h  
his register select the mode of the current sinks controls High voltage current  
sink current.  
Bit  
Bit Name  
Default Acces
Description  
Select the mode of the current sink curr1  
00b  
01b  
10b  
11b  
off  
curr1_mode  
on  
PWM controlled  
1:0  
0
0
R/W  
R/W  
LED pattern controlled  
Select the mode of the current sink curr2  
off  
00b  
01b  
10b  
11b  
curr2_mde  
on  
3:2  
PWM controlled  
LED pattern controlled  
www.austriamicrosystems.com/AS3675  
1v3  
26 - 80  
AS3675  
Datasheet - Detailed Description  
Table 27. curr rgb control Register  
curr rgb control  
Addr: 02h  
This register select the mode of the current sinks CURR6.  
Bit  
Bit Name  
Default Access  
Description  
Select the mode of the current sink CURR6  
00b  
01b  
10b  
11b  
off  
on  
curr6_mode  
7:6  
0
R/W  
PWM controlled  
LED pattern controlled  
Table 28. DCDC control2 Register  
DCDC control2  
Addr: 22h  
This register controls the Step Up DC/DC Converter and lo-volge current  
sinks CURR3x.  
Bit  
Bit Name  
Default Access  
Descriptio
0
0
1
0
1
No over voltage protection  
Pull down current on CURR1 switched on, if  
voltage CURR1 exceeds 13.75V, and  
step_up_on=1  
curr1_prot_on  
4
0
0
0
R/W  
R/W  
R/W  
Nover voltage protection  
don current on CURR2 switched on, if  
oltage exceeds on CURR2 13.75V, and  
step_up_on=1  
curr2_prot_on  
curr6_prot_on  
5
6
No over voltage protection  
Pull down current on CURR6 switched on, if  
voltage on CURR6 exceeds 13.75V, and  
step_up_on=1  
8.4.2 Current Sinks CURR30, CURR31, URR32, CURR33  
These current sinks have a resolution of 8 its and can sink up to 38.25mA. The current values can be controlled indi-  
vidually with curr30_current curr33_current r common with curr3x_strobe or curr3x_preview.  
Table 29. Current Sinks CURR30,31,3,3Parameters  
Symbol  
IBIT7  
IBIT6  
IBIT5  
IBIT4  
IBIT3  
IBIT2  
IB
IBIT0  
Δm  
Parameter  
Condition  
For V(CURR3x) > 0.2V  
CURR30-33  
Min  
Typ  
19.2  
9.6  
Max  
Unit  
Current sink if Bit= 1  
Current sinif B6 = 1  
Current nk if Bit5 = 1  
rensink if Bit4 = 1  
Currnt sink if Bit3 = 1  
Crrent sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
matching Accuracy  
4.8  
2.4  
mA  
1.2  
0.6  
0.3  
0.15  
-10  
-15  
0.2  
0.4  
+10  
+15  
%
%
Δ
absolute Accuracy  
CPO  
UT  
VCURR3X  
Voltage compliance  
V
curr3x_strobe_high=1 and strobe function  
www.austriamicrosystems.com/AS3675  
1v3  
27 - 80  
AS3675  
Datasheet - Detailed Description  
Current Sinks CURR3x Registers  
Table 30. Curr3 control2 Register  
Curr3 control2  
Addr: 12h  
This register selects the modes of the current sinks30..33 current.  
Bit  
Bit Name  
Default Access  
Description  
Select the switch off mode after strobe pulse  
normal preview/strobe mode  
0
1
preview_off_after strobe  
0
0b  
R/W  
R/W  
switch off preview after strobe duration has  
expired. To reinitiate the torch mode the  
preview_ctrl has to be set off and on agan  
Preview is triggered by  
off  
00b  
01b  
software trigger (setting thibit utomatically  
triggers previe)  
preview_ctrl  
2:1  
00b  
10b  
11
CURR2 active higet gi_curr2_en=1  
CURR2 active low; sepi_curr2_en=1  
Double current on CURR0...CURR33  
during strobe function  
curr3x_strobe_high  
strobe_pin  
5
7
0b  
R/W  
R/W  
0
1
normal trobe current (0-37.8mA)  
oublstrobe current (0-75.6mA)  
Select stronput pin and current sink outputs (only if  
strobe_ctrl=10 or 11)  
CURR1 is strobe input; CURR30...CURR33  
0
0
flash output; set gpi_curr1_en=1  
CURR30 is strobe input; CURR1, CURR2,  
CURR6 flash output; set gpi_curr30_en=1  
1
Table 31. Curr3 strobe control Register  
Curr3 strobe control  
Addr: 11h  
his register selects the modes of the current sinks30..33 current.  
Bit  
Bit Name  
Delt Access  
Description  
Strobe is triggered by  
off  
00b  
01b  
software trigger (setting this bit automatically  
triggers strobe)  
strobectrl  
1:0  
00b  
R/W  
CURR1 (or CURR30 see strobe_pin)  
active high  
10b  
11b  
CURR1 (or CURR30 see strobe_pin)  
active low  
Selects strobe mode  
Mode1 (Tstrobe=Ts; strobe trigger signal ≥  
00b  
10µs)  
strobe_mode  
3:2  
00b  
R/W  
01b  
10b  
11b  
Mode 2 (Tstrobe=max Ts)  
Mode 3 (Tstrobe = strobe signal)  
not used  
www.austriamicrosystems.com/AS3675  
1v3  
28 - 80  
AS3675  
Datasheet - Detailed Description  
Table 31. Curr3 strobe control Register (Continued)  
Curr3 strobe control  
This register selects the modes of the current sinks30..33 current.  
Addr: 11h  
Bit  
Bit Name  
Default Access  
Description  
Selects strobe time (Ts)  
100 msec  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000
100b  
1010b  
11b  
100b  
1101b  
1110b  
1111b  
200 msec  
300 msec  
400 msec  
500 msec  
600 msec  
700 mse
strobe_timing  
7:4  
0000b  
R/W  
800 msec  
900 sec  
1000 msec  
1100 msec  
1200 msec  
1300 msec  
1400 msec  
1500 msec  
1600 msec  
Table 32. Curr3x strobe Register  
Curr3x strobe  
This egister selects the strobe current of the current sinks30..33  
Addr: 0Eh  
Bit  
Bit Name  
Default Access  
Description  
Defines Strobe current of Current sinks curr30-33  
00h  
01h  
....  
0 mA  
curr3x_strobe  
5:0  
00  
R/W  
0.6 mA (1.2mA if curr3x_strobe_high=1)  
....  
3Fh  
37.8 mA (75.6mA if curr3x_strobe_high=1)  
Table 33. Curr3previw Register  
Curr3x preview  
Addr: 0Fh  
This register selects the preview current of the current sinks30..33  
Bit  
Bit Name  
Default Access  
Description  
Defines Preview current of Current sinks curr30-33  
00h  
01h  
....  
0 mA  
0.6 mA  
....  
curr3x_preview  
5:0  
00  
R/W  
3Fh  
37.8 mA  
www.austriamicrosystems.com/AS3675  
1v3  
29 - 80  
AS3675  
Datasheet - Detailed Description  
Table 34. Curr3x other Register  
Curr3x other  
Addr: 10h  
This register selects the current of the current sinks30..33  
Bit  
Bit Name  
Default Access  
Description  
Selects curr30 current, if curr30 is not used for strobe/  
preview (curr30_mode=11b)  
00h  
01h  
....  
0 mA  
0.6 mA  
....  
curr3x_other  
5:0  
00  
R/W  
3Fh  
37.8 mA  
Table 35. Curr30 current Register  
Curr30 current  
This register selects the current of the currensin30  
Addr: 40h  
Bit  
Bit Name  
Default Access  
Descriptio
Selcts cur0 current, if cur30 is not used for strobe/  
preview (curr3_moe=11b)  
h  
01h  
....  
0 mA  
0.15 mA  
....  
curr30_current  
7:0  
00  
R/W  
FFh  
38.25 mA  
Table 36. Curr31 current Register  
Curr31 current  
This er selects the current of the current sink31  
Addr: 41h  
Bit  
Bit Name  
Default Access  
Description  
Selects curr30 current, if curr30 is not used for strobe/  
preview (curr31_mode=11b)  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr31_current  
7:0  
R/W  
FFh  
38.25 mA  
Table 37. Curr32 current Register  
Curr32 current  
This register selects the current of the current sink32  
Addr: 42h  
Bit  
Bit Name  
Default Access  
Description  
Selects CURR32 current, if CURR32 is not used for strobe/  
preview (curr32_mode=11b)  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr32_current  
7:0  
00  
R/W  
FFh  
38.25 mA  
www.austriamicrosystems.com/AS3675  
1v3  
30 - 80  
AS3675  
Datasheet - Detailed Description  
Table 38. Curr33 current Register  
Curr33 current  
Addr: 43h  
This register selects the current of the current sink33  
Bit  
Bit Name  
Default Access  
Description  
Selects curr33 current, if curr33 is not used for strobe/  
preview (curr33_mode=11b)  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr33_current  
7:0  
00  
R/W  
FFh  
38.25 mA  
Table 39. curr3 control1 Register  
curr3 control1  
This register select the mode of the current sinks30 33  
Addr: 03h  
Bit  
Bit Name  
Default Access  
Descriptio
Selecthe mode of thcurrent sink curr30  
off  
00b  
1b  
10b  
strobe/preview  
curr30_mode  
1:0  
0
0
0
R/W  
R/W  
R/W  
curr30_currnt or curr3x_other PWM controlled  
curr30current or curr3x_other - don’t use  
curr3x_other if softdim_pattern=1, use  
curr30_current instead  
11b  
Selct the mode of the current sink curr31  
b  
1b  
10b  
off  
strobe/preview  
curr31_mode  
3:2  
curr31_current or curr3x_other PWM controlled  
curr31_current - don’t use curr3x_other if  
softdim_pattern=1, use curr31_current instead  
11b  
Select the mode of the current sink CURR32  
00b  
01b  
10b  
off  
strobe/preview  
curr32_mode  
5:4  
curr32_current or curr3x_other PWM controlled  
curr32_current or curr3x_other - don’t use  
curr3x_other if softdim_pattern=1, use  
curr32_current instead  
11b  
Select the mode of the current sink curr33  
00b  
01b  
10b  
off  
strobe/preview  
curr33_mode  
7:6  
0
R/W  
curr33_current or curr3x_other PWM controlled  
curr33_current or curr3x_other- don’t use  
curr3x_other if softdim_pattern=1, use  
curr33_current instead  
11b  
www.austriamicrosystems.com/AS3675  
1v3  
31 - 80  
AS3675  
Datasheet - Detailed Description  
Table 40. Pattern control Register  
Pattern control  
Addr: 18h  
This register controls the LED pattern  
Description  
Bit  
Bit Name  
Default Access  
Additional CURR33 LED pattern control bit  
CURR30 controlled according curr30_mode  
curr30_pattern  
4
0b  
0b  
0b  
0b  
R/W  
R/W  
R/W  
R/W  
0b  
register  
1b  
CURR30 controlled by LED pattern generator  
Additional CURR33 LED pattern control bit  
CURR31 controlled according curr31_mode  
register  
curr31_pattern  
curr32_pattern  
curr33_pattern  
5
6
7
0b  
1b  
CURR31 controlled by LED pattern genetor  
Additional CURR33 LED patterconrol bit  
CURR32 controlled accoding curr33_mode  
reister  
0b  
1b  
CRR32 controlled by LD pattern generator  
ddiional CURR33 LED patern control bit  
CURR33 ntrolled according curr33_pattern  
register  
b  
1b  
CURR33 cntrolled by LED pattern generator  
8.4.3 Current Sinks RGB1, RGB2, RGB3  
These current sinks have a resolution of 8 bs and can sink up to .25mA.  
Table 41. Current Sinks RGB1, RGB2, RB3 Parameters  
Symbol  
IBIT7  
IBIT6  
IBIT5  
IBIT4  
IBIT3  
IBIT2  
IBIT1  
IBIT0  
Δm  
Parameter  
Conition  
Min  
Typ  
19.2  
9.6  
Max  
Unit  
Current sink if Bit7 =
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit= 1  
Current sink iBit1 = 1  
Current snif Bit0 = 1  
matching Accuracy  
4.8  
2.4  
For V(RGBx) > 0.2V  
RGB1, RGB2, RGB3  
mA  
1.2  
0.6  
0.3  
0.15  
-10  
-15  
+10  
+15  
%
%
Δ
bsolte Accuracy  
CPO  
UT  
VRGBX  
Voltage compliance  
0.2  
V
www.austriamicrosystems.com/AS3675  
1v3  
32 - 80  
AS3675  
Datasheet - Detailed Description  
RGB Current Sinks Registers  
Table 42. curr rgb control Register  
curr rgb control  
Addr: 02h  
This register select the mode of the current sinks RGB1, RGB2, RGB3  
Bit  
Bit Name  
Default Access  
Description  
Select the mode of the current sink RGB1  
00b  
01b  
10b  
11b  
off  
rgb1_mode  
1:0  
0
0
0
R/W  
R/W  
R/W  
on  
PWM controlled  
LED pattern controlled  
Select the mode of the current sink RGB2  
00b  
01b  
10b  
11b  
off  
rgb2_mode  
rgb3_mode  
3:2  
5:4  
on  
PWM cotrolled  
LED pattern controlled  
Select the mode of the current sink RGB3  
off  
0b  
01b  
10b  
11b  
on  
PWM controlled  
LED pattern controlled  
Table 43. Rgb1 current Register  
Rgb1 current  
Addr: 0Bh  
Thiter controls the RGB current sink current.  
Bit  
Bit Name  
Default Acess  
Description  
Defines current into Current sink RGB1  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
rgb1_current  
7:0  
R/W  
FFh  
38.25 mA  
Table 44. Rgb2 current Rgister  
Rgb2 current  
Addr: 0Ch  
This register controls the RGB current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into Current sink RGB2  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
rgb2_current  
7:0  
0
R/W  
FFh  
38.25 mA  
www.austriamicrosystems.com/AS3675  
1v3  
33 - 80  
AS3675  
Datasheet - Detailed Description  
Table 45. Rgb3 current Register  
Rgb3 current  
Addr: 0Dh  
This register controls the RGB current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into Current sink RGB3  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
rgb3_current  
7:0  
0
R/W  
FFh  
38.25 mA  
8.4.4 General Purpose Current Sinks CURR4x  
These low voltage current sinks have a resolution of 8 bits and can sink up to 38.25mA.  
Table 46. CURR4x Sinks Characteristics  
Symbol  
IBIT7  
IBIT6  
IBIT5  
IBIT4  
IBIT3  
IBIT2  
IBIT1  
IBIT0  
Δm  
Parameter  
Condition  
Min  
Typ  
19.2  
9.6  
Max  
Unit  
Current sink if Bit7 = 1  
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
matching Accuray  
4.8  
2.4  
For V(CRRx) > 0.2V  
CURRCURR2  
mA  
1.2  
0.6  
0.3  
0.15  
-10  
-15  
+10  
+15  
%
%
Δ
absolute Accuracy  
CPO  
UT  
VCURR41,42,43x Voltage compliance  
0.2  
V
General Purpose Current Sinks CURR4Registers  
Table 47. curr4 control Register  
curr4 control  
Addr: 04h  
This register selects the mode of the current sinks CURR41, CURR42,  
CURR43  
Bit  
Bit Nme  
Default Access  
Description  
Select the mode of the current sink CURR41  
00b  
01b  
10b  
11b  
off  
on  
crr41_mode  
1:0  
0
R/W  
PWM controlled  
LED pattern controlled  
www.austriamicrosystems.com/AS3675  
1v3  
34 - 80  
AS3675  
Datasheet - Detailed Description  
Table 47. curr4 control Register (Continued)  
curr4 control  
Addr: 04h  
This register selects the mode of the current sinks CURR41, CURR42,  
CURR43  
Bit  
Bit Name  
Default Access  
Description  
Select the mode of the current sink CURR42  
00b  
01b  
10b  
11b  
off  
curr42_mode  
3:2  
0
0
R/W  
R/W  
on  
PWM controlled  
LED pattern controlled  
Select the mode of the current sink CURR43  
00b  
01b  
10b  
11
off  
on  
curr43_mode  
5:4  
PWM ontroed  
LED pattern ontrolled  
Table 48. Curr41 current Register  
Curr41 currnt  
Addr: 13h  
This register controls the curr1 current sink current.  
Bit  
Bit Name  
Default Accs
Description  
Defis crrent into Current sink CURR41  
00h  
1h  
....  
0 mA  
0.15 mA  
....  
curr41_current  
7:0  
0
R/W  
FFh  
38.25 mA  
Table 49. Curr42 current Register  
Curr42 current  
Addr: 14h  
This register controls the curr42 current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into Current sink CURR42  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr42_curent  
7:0  
0
R/W  
FFh  
38.25 mA  
www.austriamicrosystems.com/AS3675  
1v3  
35 - 80  
AS3675  
Datasheet - Detailed Description  
Table 50. Curr43 current Register  
Curr43 current  
Addr: 15h  
This register controls the curr43 current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into Current sink CURR43  
00h  
01h  
....  
0 mA  
0.15 mA  
....  
curr43_current  
7:0  
0
R/W  
FFh  
38.25 mA  
8.4.5 LED Pattern Generator  
The LED pattern generator is capable of producing a pattern with 32 bits length and 1 second duration (31.25ms for  
each bit). The pattern itself can be started every second, every 2nd, 3rd up to 7th second1.  
With this pattern all current sinks can be controlled. The pattern itself switches the configured current surces between  
0 and their programmed current.  
If everything else is switched off, the current consumption in this mode iACTIVE. (excluding currnt through switched  
on current source) and the charge pump, if required. The charge pmp cn be automaticlly swtched on/off depending  
on the pattern (set register cp_auto_on on page 20=1) to ce the overall current consumption.  
Figure 16. LED Pattern Generator AS3675 for pattern_colo= 0  
%ꢆꢝꢉꢀꢆꢚꢂ"ꢁꢂ"ꢉꢇꢂꢉꢀꢇꢗꢆꢂꢈꢆꢇꢄ#ꢂꢅꢆ$ꢉꢈꢇꢆꢅꢂ#ꢙꢇꢇꢆꢅꢀ&ꢚꢙꢇ
ꢉꢀꢂꢇꢗꢉꢈꢂꢆ'ꢙꢘ#ꢛꢆꢂꢇꢂꢃꢜꢆꢂꢉꢈꢂꢋ ꢋꢋꢋ  ꢋꢋꢔ
2ꢀꢁꢂꢃꢄꢅꢅꢆꢀꢇꢂꢈꢉꢀꢊ  
         
ꢍꢌ          
 
ꢍꢋꢔꢌꢏꢘꢈ  
(ꢌꢏ ꢘꢈꢂꢉꢝꢂ#ꢙꢇꢇꢆꢅꢀ&ꢈꢛꢜ)*ꢋ+  
ꢖꢇꢂꢇꢗꢉꢈꢂꢇꢉꢘꢆꢂꢜꢝꢂ ꢈ!ꢋꢈ!ꢌꢈ!ꢔꢔꢔ!ꢒꢈ!ꢋꢐꢈ!ꢌꢎꢈ!ꢍꢌꢈ!ꢎ ꢈ!ꢎꢒꢈ!ꢏꢐꢈ  
ꢃꢙꢀꢂ"ꢆꢂ#ꢅꢜ$  
To select the different current sinks to be controlled y the LED pattern generator, see the ‘xxxx’_mode registers  
(where ‘xxxx’ stands for the to be controlled urrent sink, e.g. curr1_mode for CURR1 current sink). See also the  
description of the different current sinks.  
To allow the generator of a color patterns the bit pattern_color to ‘1’. Then the pattern can be connected to CURRx  
as follows:  
Figure 17. LED Pattern Generaor AS3675 for pattern_color = 1  
%ꢘꢕꢔꢚꢘ&ꢓ'(ꢓ'ꢔꢎꢓꢔꢚꢓꢎ)ꢘꢓꢐꢘꢎ*ꢖꢓꢙꢘ+ꢔꢐꢎꢘꢙꢓꢖꢗꢎꢎꢘꢙꢚꢛ&ꢗꢎꢗ  
ꢔꢚꢓꢎ)ꢔꢐꢓꢘ,ꢗꢏꢖꢜꢘꢓꢎ)ꢘꢓ-ꢝ&ꢘꢓꢔꢐꢓꢆꢆꢆꢆꢆꢁꢁꢁꢆꢁꢆꢆꢆꢆꢆꢁꢁꢁꢆꢆꢁꢆꢆꢆꢎꢎꢎ  
ꢎꢎꢎ  
ꢎꢎꢎ  
ꢎꢎꢎ  
33"3ꢀꢁꢂꢃꢄꢄꢅꢆꢂꢄꢇꢈꢆ  
ꢃꢄꢄꢉꢂꢃꢄꢃꢄꢄꢅꢉꢂꢄꢇꢈꢉ  
ꢃꢄꢄꢄꢀꢉꢋꢀꢀꢂꢃꢄꢄꢅꢀꢂꢄꢇꢈꢀ  
  #  
ꢉꢒ   #  
ꢎꢎꢎ  
 $   
    
ꢉꢌ  $   
ꢀꢁ     
ꢎꢎꢎ  
ꢎꢎꢎ  
ꢆꢁꢁꢏꢐ  
ꢑꢒꢁꢁꢏꢐꢓꢔꢕꢓꢖꢗꢎꢎꢘꢙꢚꢛꢐꢜꢝ !ꢆ"  
.ꢎꢓꢎ)ꢔꢐꢓꢎꢔꢏꢘꢓꢗꢓ&ꢘꢜꢗ(ꢓꢝꢕꢓꢁꢐꢋꢆꢐꢋꢉꢐꢋꢎꢎꢎꢋꢒꢐꢋꢆꢊꢐꢋꢉꢅꢐꢋꢀꢉꢐꢋꢅꢁꢐꢋꢅꢒꢐꢋ$ꢊꢐ  
-ꢗꢚꢓ'ꢘꢓꢖꢙꢝ+ꢙꢗꢏꢏꢘ&  
1. All times can be extended by a factor of 8 by setting pattern_slow=1 (this result in a delay of up to 56s)  
www.austriamicrosystems.com/AS3675  
1v3  
36 - 80  
AS3675  
Datasheet - Detailed Description  
Only those current sinks will be controlled, where the ‘xxxx’_mode register is configured for LED pattern.  
If the register bit pattern_slow is set, all pattern times are increased by a factor of eight. (bit duration: 250ms if  
pattern_color=0 / 800ms if pattern_color=1, delays between pattern up to 56s).  
Soft Dimming for Pattern  
The internal pattern generator can be combined with the internal pwm dimming modulator to obtain as shown in the fol-  
lowing figure:  
Figure 18. Soft dimming Architecture for the AS3675 (softdim_pattern=1 and pattern_color = 1)  
ꢙꢂꢅ  
ꢆꢎꢅ  
ꢆꢎꢅ  
ꢆꢎꢅ  
ꢌꢘ  
ꢃꢂꢙꢂꢅ ꢕꢈꢍꢋꢕꢆꢍ  
ꢚꢛꢌꢌꢜꢝꢚꢛꢌꢌ !ꢝꢚꢛꢌꢌ"ꢜꢝꢌꢁ#ꢜ  
ꢚꢛꢌꢌ$ꢝꢚꢛꢌꢌ ꢜꢝꢚꢛꢌꢌ"$ꢝꢌꢁ#$  
ꢚꢛꢌꢌ%ꢝꢚꢛꢌ $&  ꢚꢛꢌꢌ" ꢝꢌꢁ#  
ꢙꢂꢅ  
ꢌꢘ  
ꢃꢂꢙꢂꢅ ꢕꢈꢍꢋꢕꢆꢍ  
/ꢁꢂꢂꢃꢄ  
ꢁꢂꢀꢂꢃꢄꢅꢆꢃ  
ꢙꢂꢅ  
ꢌꢘ  
ꢃꢂꢙꢂꢅ ꢕꢈꢍꢋꢕꢆꢍ  
ꢖꢂꢃꢆ  
ꢇꢂꢅꢂꢗꢅ  
ꢗꢆꢀꢅꢃꢕꢙꢋꢗꢂꢀꢅꢋꢙꢆꢎꢃꢗꢂꢙꢋ'ꢆꢀꢝꢆ(()ꢋ(ꢆꢃ  
ꢗꢎꢃꢃꢂꢀꢙꢆꢎꢃꢂꢋꢐ*ꢂꢃꢂ  
ꢋꢗꢎꢃꢃ+,ꢉꢏꢂꢋ-ꢋ./ꢇꢋꢍꢄꢅꢅꢂꢃꢀ  
ꢇꢈꢉꢉꢈꢀꢊꢋꢋꢋ  
ꢌꢄꢉꢍ  
ꢁꢂꢀ  
ꢎꢍꢋꢏꢆꢐꢀ  
ꢒꢓ
ꢔꢆꢏꢎꢕꢄ  
With the AS3675 smooth fade-in and fade-out effects cn be automaticgenerated.  
As there is only one dimming ramp generatoanone pwm moduor flowing constraints have to be considered  
when setting up the pattern (applies only ipaern_color=1):  
Figure 19. Soft dimming example Wavorm for CURR30-32  
ꢑꢊꢔꢔꢍꢈꢕꢊꢖꢋꢊꢗꢂꢃꢃꢀꢅꢘꢊꢙꢚꢈꢊꢎꢐ  
ꢌꢉꢚꢜꢉꢐꢛꢊꢉꢝꢐꢊꢓꢍꢔꢔꢍꢈꢕꢊ  
ꢓꢆꢒꢈꢊꢗꢂꢃꢃꢀꢁꢘꢊꢍꢌꢊꢜꢍꢈꢍꢌꢝꢐꢓ  
ꢃꢄꢄꢀꢁ  
ꢆꢇ  
ꢂꢃꢃꢀꢄ  
ꢂꢃꢃꢀꢅ  
ꢆꢇ  
ꢈꢆꢉꢊꢋꢆꢌꢌꢍꢎꢏꢐ  
ꢑꢊꢈꢐꢒꢊꢓꢍꢔꢔꢍꢈꢕꢊꢖꢋꢊꢗꢂꢃꢃꢀꢅꢘꢊꢙꢚꢈꢈꢆꢉꢊꢎꢐ  
ꢌꢉꢚꢛꢉꢐꢓꢊꢚꢜꢉꢐꢛꢊꢆꢛꢊꢒꢝꢍꢏꢐꢊꢆꢈꢐꢊꢙꢝꢚꢈꢈꢐꢏꢊꢗꢂꢃꢃꢀꢁꢘ  
ꢍꢌꢊꢓꢍꢔꢔꢍꢈꢕꢊꢖꢋ  
However ng the identical dimming waveform for two channels is possible as shown in the following figure:  
www.austriamicrosystems.com/AS3675  
1v3  
37 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 20. Soft dimming example Waveform for CURR30-32  
ꢂꢃꢄꢄꢅꢆ  
ꢂꢃꢄꢄꢅꢇ  
ꢂꢃꢄꢄꢅꢈ  
 ꢀ  
ꢁꢀ  
ꢁꢀ  
LED Pattern Registers  
Table 51. Pattern data0...Pattern data3 Registers  
Pattern data0, Pattern data1, Pattern data2, Pattern data3  
Addr: 19h,1Ah,1Bh,1Ch  
This registers contains the pattern data for the current sinks.  
Bit  
Bit Name  
Default Access  
Description  
pattern_data[7:0]1  
7:0  
7:0  
7:0  
7:0  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
Pattern data0  
pattern_data[15:8]11111  
pattern_data[23:16]11111  
pattern_data[31:24]11111  
Pattern dat
Pattern data
Pattern data3  
1. Update any of the pattern register only if none of the curret sources is conneced to the pattern generator  
('xxxx'_mode must not be 11b). The pattern generator is automatically startd at the same time when any of the  
current sources is connected to the pattern generato
Table 52. Pattern control Register  
Pattern control  
Addr: 18h  
is register controls the LED pattern  
Bit  
Bit Name  
Default Access  
Description  
Defines the pattern type for the current sinks  
single 32 bit pattern (also set currX_mode = 11)  
0b  
1b  
pattern_color  
0
0
R/W  
R/W  
R/W  
RGB pattern with each 10 bits (set all  
currX_mode = 11)  
Delay between pattern, details (see Table 55); together with  
pattern_delay2 sets the delay time between patterns  
pattern_delay  
2:1  
3
00b  
0b  
Enable the ‘soft’ dimming feature for the pattern generator  
Pattern generator directly control current  
softdim_pttern1  
0
sources  
1
‘Soft Dimming’ is performed (see page 37)  
1. If softdim_ptter=1, don’t set curr30_mode, curr31_mode, curr32_mode or curr33_mode to 11b.  
Tble 53. gpo current Register  
Addr: 2Ch  
Bit Name  
gpio current  
Description  
Bit  
Default Access  
Delay between pattern (see Table 55 on page 39); together  
with pattern_delay sets the delay time between patterns  
pattern_delay2  
4
0
R/W  
www.austriamicrosystems.com/AS3675  
1v3  
38 - 80  
AS3675  
Datasheet - Detailed Description  
Table 53. gpio current Register (Continued)  
Addr: 2Ch  
gpio current  
Description  
Bit  
Bit Name  
Default Access  
Pattern timing control  
normal mode  
0b  
1b  
pattern_slow  
6
0
R/W  
slow mode (all pattern times are increased by a  
factor of eight)  
Table 54. Pattern End Register  
Addr: 54h  
Pattern End  
Description  
Bit  
Bit Name  
Default Access  
pattern_end is toggled from 0 to 1 (or from 1 to 0) at ach  
end of the pattern just before restarting f the internal  
pattern generator at the first bit of te paern data  
(can be used to synchronize the basebansoftware to the  
pattern_end  
0
0
R
pattern genertor)
1. pattern_end toggles whenever the AS3675 is in active mode ee Secon 8.12 Operaing Modes on page 71)  
even if no pattern data has been setup.  
Table 55. LED Pattern timing  
pattern_delay2 pattern_delay[1..0]  
bit duratin [m]  
pattern  
duration [s]  
(total cycle  
time:  
pattern +  
delay)  
delay[s]  
between  
patterns  
pattern_slow  
delay between pattens  
pattern_lorpattern_color=1  
01  
1
0
0
00  
31  
100  
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
1
1
1
1
01  
10  
11  
0
1  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
31  
31  
100  
100  
100  
100  
100  
100  
100  
800  
800  
800  
800  
800  
800  
800  
800  
2
3
2
31  
3
4
31  
4
5
31  
5
6
31  
6
7
31  
7
8
250  
250  
250  
250  
250  
250  
250  
250  
0
8
8
16  
24  
32  
40  
48  
56  
64  
16  
24  
32  
40  
48  
56  
1. Even by setting 000 for pattern delay, there is a small delay before the new patterns starts.  
8.4.6 PWM Generator  
www.austriamicrosystems.com/AS3675  
1v3  
39 - 80  
AS3675  
Datasheet - Detailed Description  
The PWM generator can be used for any current sink. The setting applies for all current sinks, which are controlled by  
the pwm generator (e.g. CURR1 is pwm controlled if curr1_mode = 10). The pwm modulated signal can switch on/off  
the current sinks and therefore depending on its duty cycle change the brightness of an attached LED.  
Internal PWM Generator  
The internal PWM generator uses the 2MHz internal clock as input frequency and its dimming range is 6 bits digital  
(2MHz / 2^6 = 31.3kHz pwm frequency) and 2 bits analog. Depending on the actual code in the register pwm_code the  
following algorithm is used:  
If pwm_code bit 7 = 1  
Then the upper 6 bits (Bits 7:2) of pwm_code are used for the 6 bits PWM generation, which controls the selected cu
rents sinks directly  
If pwm_code bit 7 =0 and bit 6 = 1  
Then bits 6:1 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected current sins, but  
the analog current of these sinks is divided by 2  
If pwm_code bit 7 and bit 6 = 0  
Then bits 5:0 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected currnt sinks, but  
the analog current of these sinks is divided by 4  
Figure 21. PWM Control  
ꢖꢗꢗꢆꢘꢒꢈꢙꢑꢘꢚꢛꢙꢜꢈꢐꢖꢘꢝ ꢄ!  
ꢃꢖꢗꢗꢆꢘꢒꢙꢈꢝꢗꢆꢈꢅꢑ"ꢑꢅꢆꢅꢈꢐ  
ꢉꢈꢐꢑꢒꢈꢓꢔꢕ  
ꢉꢈꢐꢑꢒꢈꢓꢔꢕ  
ꢒꢄꢈꢃꢖꢗꢗꢆꢘꢒꢈꢙꢑꢘꢚꢛꢜꢈꢐꢖꢒꢘꢝ ꢄ!  
ꢃꢖꢗꢗꢆꢘꢒꢙꢈꢝꢗꢆꢈꢅꢑ"ꢆꢅꢈꢐ#ꢈꢍ  
ꢒꢄꢈꢆꢘꢘꢚ  
ꢉꢈꢐꢑꢒꢈꢓꢔꢕ  
ꢇꢈꢈꢉꢈꢈꢊꢈꢈꢋꢈꢈꢌꢈꢈꢍꢈꢈꢏ  
ꢀꢁꢂꢃ  
Automatic Up/Down Dimming  
If the register pwm_dim_mode is set to 01 (up diming) or 10 (down dimming) the value within the register pwm_code  
is increased (up dimming) or decreased (don dimming) every time and amount (either 1/4th or 1/8th) defined by the  
register pwm_dim_speed. The maximum alue of 255 (completely on) and the minimum value of 0 (off) is never  
exceeded. It is used to smoothly and atoically dim the brightness of the LEDs connected to any of the current  
sinks. The PWM code is readable all the e (also during up and down dimming).  
The waveform for up dimming loos as ollows (cycles omitted for simplicity):  
Figure 22. PWM Dimming Wveform for up dimming (pwm_dim_mode = 01); currX_mode = PWM controlled (not  
all steps show
$
ꢁꢂꢃꢃꢄꢅꢁꢂꢃꢃꢆꢇꢀ  
ꢈꢉꢊ  
ꢈꢉꢋ  
ꢇꢆꢘꢀꢌꢙꢀꢆꢐꢚꢌꢈꢉꢊꢌꢍꢎꢀꢏ  
ꢛꢓꢔꢌꢕꢂꢀꢖꢌꢁꢖꢁꢗꢆ  
ꢈꢉꢋꢌꢍꢎꢀꢏꢌꢂꢐꢌꢀꢑ  
ꢒꢓꢓꢔꢌꢕꢂꢀꢖꢌꢁꢖꢁꢗꢆ  
The internal pwm modulator circuit controls the current sinks as shown in the following figure:  
www.austriamicrosystems.com/AS3675  
1v3  
40 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 23. PWM Control Circuit (currX_mode = 10b (PWM controlled)); X = any current sink  
ꢗꢃꢃꢍꢈꢙ)ꢂ! ꢊ  
ꢊꢄꢈꢈꢋꢌꢆꢃꢃꢍꢈ  
ꢊꢄꢈꢈꢋꢌꢊꢄꢈꢈꢍꢎꢇ  
ꢜꢜꢋ  
ꢏꢐ  
ꢏꢑ  
ꢕꢖꢗꢘꢙꢙꢙ  
#ꢈꢂꢔꢙ$ꢍꢈ ꢆꢅ  
ꢕꢎꢇꢍꢈ%ꢆꢊꢍ  
$ꢄ&ꢋꢌꢍꢎ  
ꢒꢓꢔꢌꢊꢂꢃꢍ  
ꢀꢁ  
ꢁꢂꢃꢄꢅꢆꢇꢂꢈ  
ꢆꢃꢃꢍꢈꢌꢊꢄꢈꢈꢍꢎꢇꢋ  
ꢐꢁꢚꢛ  
AS3675  
ꢖ ꢔꢔ ꢎ!ꢙꢙꢙ  
ꢜꢆꢔꢒ  
"ꢍꢎ  
 %ꢙꢒꢓꢔꢌꢃ ꢔꢌꢔꢂꢃꢍꢙ'ꢙꢉ(ꢙꢂꢈꢙ(ꢉ  
The adder logic (available for all current sinks) is intended to allow dimming not only from 0% to 10% (o100% to 0%)  
of currX_current, but also e.g. from 10% to 110% (or 110% to 10%) of currX_current. The starting cuent or up dim-  
ming is defined by 0 + currX_adder and the end current is defined by currX_current + currX_adde
An overflow of the internal bus (8 Bits wide to the IDAC) has to e avod by the register settins (currX_current +  
currX_adder must not exceed 255).  
If the register subX_en is set, the result from the pwm motor is inverted logically. That means for up dimming the  
starting current is defined by currX_adder - 1 and the end nt is defined by cX_adder - currX_current - 1. An  
overflow of the internal bus (8 Bits wide to the IDAC) has to e avoided by the registr settings (currX_adder -  
currX_current - 1 must not be below zero).  
Its purpose is to dim one channel e.g. CURR30 frm e.. 110% to 10% ocurr3_current and at the same time dim  
another channel e.g. CURR31 from 20% to 120% of curr31_current.  
Note: The adder logic operates indepenent of the currX_mode setng, but its main purpose is to work together with  
the pwm modulator (improved up/dwn dimming)  
If the adder logic is not used aore, set the bit rX_dder to 0. (Setting adder_currentX to 0 is not suffi-  
cient)  
At the end of up/down dimming, the pwm_code register keeps its final value (for up-dimming 255 and for down-  
dimming 0). This can be used to identify thexact time, when up/down dimming is finished.  
Table 56. PWM Dimming Table  
Decrease by 1/4th  
every step  
ecrease by 1/8th  
every step  
Seconds  
Seconds  
Seconds  
Seconds  
50msec/  
Step  
25msec/  
Step  
5msec/  
Step  
2.5msec/  
Step  
Step  
%Dimming  
PW
%Dimming  
PWM  
1
2
100,0  
75,3  
,5  
42,4  
31,8  
23,9  
18,0  
13,7  
10,6  
8,2  
25
192  
144  
108  
81  
100,0  
87,8  
76,9  
67,5  
59,2  
52,2  
45,9  
40,4  
35,7  
31,4  
27,5  
255  
224  
196  
172  
151  
133  
117  
103  
91  
0,00s  
0,05s  
0,10s  
0,15s  
0,20s  
0,25s  
0,30s  
0,35s  
0,40s  
0,45s  
0,50s  
0,00s  
0,03s  
0,05s  
0,08s  
0,10s  
0,13s  
0,15s  
0,18s  
0,20s  
0,23s  
0,25s  
0,000s  
0,005s  
0,010s  
0,015s  
0,020s  
0,025s  
0,030s  
0,035s  
0,040s  
0,045s  
0,050s  
0,000s  
0,003s  
0,005s  
0,008s  
0,010s  
0,013s  
0,015s  
0,018s  
0,020s  
0,023s  
0,025s  
3
4
5
6
61  
7
46  
8
35  
9
27  
10  
11  
21  
80  
6,3  
16  
70  
www.austriamicrosystems.com/AS3675  
1v3  
41 - 80  
AS3675  
Datasheet - Detailed Description  
Table 56. PWM Dimming Table  
Decrease by 1/4th  
every step  
Decrease by 1/8th  
every step  
Seconds  
Seconds  
Seconds  
Seconds  
50msec/  
Step  
25msec/  
Step  
5msec/  
Step  
2.5msec/  
Step  
Step  
%Dimming  
PWM  
%Dimming  
PWM  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
4,7  
3,5  
2,7  
2,4  
2,0  
1,6  
1,2  
0,8  
0,4  
0,0  
12  
9
7
6
5
4
3
2
1
0
24,3  
21,6  
19,2  
16,9  
14,9  
13,3  
11,8  
10,6  
9,4  
62  
55  
49  
43  
38  
34  
30  
27  
24  
21  
19  
1
14  
13  
12  
11  
10  
0,55s  
0,60s  
0,65s  
0,70s  
0,75s  
0,80s  
0,85s  
0,90s  
0,95s  
1,00s  
1,5s  
1,10s  
1,15s  
1,20s  
1,2
1,s  
,35s  
1,40s  
1,45s  
1,50s  
1,55s  
1,60s  
1,65s  
1,70s  
1,75s  
1,80s  
1,85s  
1,90s  
0,28s  
0,30s  
0,33s  
0,35s  
0,38s  
0,40s  
0,43s  
0,45s  
0,48s  
0,50s  
0,53s  
0,55s  
,58s  
0,60s  
0,63s  
0,65s  
0,68s  
0,70s  
0,73s  
0,75s  
0,78s  
0,80s  
0,83s  
0,85s  
0,88s  
0,90s  
0,93s  
0,95s  
0,055s  
0,060s  
0,065s  
0,070s  
0,075s  
0,080s  
0,085s  
0,90s  
0095s  
0,10s  
0,105s  
0,110s  
0,115s  
0,120s  
0,125s  
0,130s  
0,135s  
0,140s  
0,145s  
0,150s  
0,155s  
0,160s  
0,165s  
0,170s  
0,175s  
0,180s  
0,185s  
0,190s  
0,028s  
0,030s  
0,033s  
0,035s  
0,03s  
0,040s  
0,043s  
0,045s  
0,048s  
0,050s  
0,053s  
0,055s  
0,058s  
0,060s  
0,063s  
0,065s  
0,068s  
0,070s  
0,073s  
0,075s  
0,078s  
0,080s  
0,083s  
0,085s  
0,088s  
0,090s  
0,093s  
0,095s  
8,2  
7,5  
6,7  
5,9  
5,5  
5,1  
,7  
4,
3,9  
3,5  
3,1  
2,7  
7
2,4  
6
2,0  
5
1,6  
4
1,2  
3
0,8  
2
0,4  
1
0,0  
0
www.austriamicrosystems.com/AS3675  
1v3  
42 - 80  
AS3675  
Datasheet - Detailed Description  
PWM Generator Registers  
Table 57. Pwm control Register  
Pwm control  
This register controls PWM generator  
Description  
Addr: 16h  
Bit  
Bit Name  
Default Access  
Selects the dimming mode  
no dimming; actual content of register  
00b  
01b  
pwm_code is used for pwm generator  
logarithmic up dimming (codes are increased)
Start value is actual pwm_code  
pwm_dim_mode  
2:1  
00b  
R/W  
logarithmic down dimming (codes ar
decreased). Start value is actual pwm_ce;  
switch off the dimmed curret source after  
dimming is finished to avoid unecessary  
quiescent currnt  
10b  
11b  
NA  
Defins dimng speed by increase/ecrease pwm_code  
by 1/4th every 50 msec (total dim time 1.0s)  
000b  
by 1/8th evry 50 msec (total dim time 1.9s)  
1b  
by 1th evry 25 msec (total dim time 0.5s)  
010b  
1/8th every 25 msec (total dim time 0.95s)  
011b  
pwm_dim_speed  
5:3  
000b  
R/W  
by 1/4th every 5 msec (total dim time 100ms)  
100b  
by 1/8th every 5 msec (total dim time 190ms)  
11b  
by 1/4th every 2.5 msec (total dim time 50ms)  
10b  
by 1/8th every 2.5 msec (total dim time 95ms)  
111b  
Table 58. pwm code Register  
pwm code  
This register controls the Pwm code.  
Description  
Addr: 17h  
Bit  
Bit Name  
efault Access  
Selects the PWM code  
00h  
....  
0% duty cycle  
....  
pwm_coe  
7:0  
00b  
R/W  
FFh  
100% duty cycle  
www.austriamicrosystems.com/AS3675  
1v3  
43 - 80  
AS3675  
Datasheet - Detailed Description  
Table 59. Adder Current 1 Register  
Adder Current 1  
Addr: 30h  
This register defines the current which can be added to CURR1, CURR30,  
CURR41, RGB1  
Bit  
Bit Name  
Default Access  
Description  
Selects the added current value – do not exceed together  
with currX_current the internal 8 Bit range (see text)  
00h  
....  
0 (represents 0mA)  
....  
adder_current1  
7:0  
00b  
R/W  
FFh  
255 (represents 38.25mA)  
Table 60. Adder Current 2 Register  
Adder Current 2  
Addr: 31h  
This register defines the current which can be added to CUR2, CURR31,  
CURR42, RGB2  
Bit  
Bit Name  
Default Access  
Description  
Selecthe aded current vaue – do not exceed together  
with crrX_current the internal 8 Bit range (see text)  
h  
....  
0 (represents 0mA)  
....  
adder_current2  
7:0  
00b  
R/W  
FFh  
255 (represents 38.25mA)  
Table 61. Adder Current 3 Register  
Adder Current 3  
Addr: 32h  
This register defines te current which can be added to CURR6, CURR32,  
CURR43, RGB3  
Bit  
Bit Name  
Default Access  
Description  
Selects the added current value – do not exceed together  
with currX_current the internal 8 Bit range (see text)  
00h  
....  
0 (represents 0mA)  
....  
adder_current3  
7:0  
00b  
R/W  
FFh  
255 (represents 38.25mA)  
Table 62. Adder Current 4 Regier  
Adder Current 4  
This register defines the current which can be added to CURR33  
Addr: 52h  
Bit  
it Name  
Default Access  
Description  
Selects the added current value – do not exceed together  
with currX_current the internal 8 Bit range (see text)  
00h  
....  
0 (represents 0mA)  
....  
adder_current4  
7:0  
00b  
R/W  
FFh  
255 (represents 38.25mA)  
www.austriamicrosystems.com/AS3675  
1v3  
44 - 80  
AS3675  
Datasheet - Detailed Description  
Table 63. Adder Enable 1 Register  
Adder Enable 1  
Addr: 33h  
Enables the adder circuit for the selected current sources  
Bit  
Bit Name  
Default Access  
Description  
Enables adder circuit for current source RGB1  
Normal Operation of the current source  
0
1
rgb1_adder  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
/W  
R/W  
adder_current1 gets added to the current  
source current  
Enables adder circuit for current source RGB2  
Normal Operation of the current source  
0
1
rgb2_adder  
rgb3_adder  
1
2
3
4
5
adder_current2 gets added to the currnt  
source current  
Enables adder circuit for current ourcRGB3  
Normal Operation of the cuent source  
0
1
adder_current3 getdded to the current  
source curent  
Enbles adder circuit for urret source CURR41  
Normaperation of the current source  
curr41_adder  
curr42_adder  
curr43_adder  
addercurre1 gets added to the current  
source current  
1
Enables er crcuit for current source CURR42  
0
Nrmal Operation of the current source  
adder_current2 gets added to the current  
source current  
1
Eables adder circuit for current source CURR43  
Normal Operation of the current source  
adder_current3 gets added to the current  
source current  
Table 64. Adder Enable 2 Register  
Adder Enable 2  
Addr: 34h  
Enables the adder circuit for the selected current sources  
Bit  
Bit Name  
Default Access  
Description  
Enables adder circuit for current source CURR1  
Normal Operation of the current source  
0
1
crr1adder  
0
0
0
0
R/W  
R/W  
R/W  
adder_current1 gets added to the current  
source current  
Enables adder circuit for current source CURR2  
Normal Operation of the current source  
0
1
curr2_adder  
curr6_adder  
1
2
adder_current2 gets added to the current  
source current  
Enables adder circuit for current source CURR6  
Normal Operation of the current source  
0
1
adder_current3 gets added to the current  
source current  
www.austriamicrosystems.com/AS3675  
1v3  
45 - 80  
AS3675  
Datasheet - Detailed Description  
Table 64. Adder Enable 2 Register (Continued)  
Adder Enable 2  
Addr: 34h  
Enables the adder circuit for the selected current sources  
Bit  
Bit Name  
Default Access  
Description  
Enables adder circuit for current source CURR30  
0
Normal Operation of the current source  
curr30_adder  
3
0
0
0
0
R/W  
R/W  
R/W  
R/W  
adder_current1 gets added to the current  
source current  
1
Enables adder circuit for current source CURR31  
0
Normal Operation of the current source  
curr31_adder  
curr32_adder  
curr33_adder  
4
5
6
adder_current2 gets added to the currnt  
source current  
1
Enables adder circuit for current surce CURR32  
0
Normal Operation of the cuent source  
adder_current3 getdded to the current  
source curent  
1
Enbles adder circuit for urret source CURR33  
Normaperation of the current source  
addercurre4 gets added to the current  
source current  
1
Table 65. Subtract Enable Register  
Subtract Enable  
Addr: 35h  
Enable the inversiofrom the signal from the pwm generator  
Bit  
Bit Name  
fault Access  
Description  
Inverts the signal from the pwm generator  
Direct Operation (no inversion)  
0
1
sub_en1  
0
0
0
0
R/W  
R/W  
R/W  
The signal from the pwm generator for which  
the adder is enabled (curr1_adder = 1,  
curr30_adder = 1, rgb1_adder = 1,  
curr41_adder = 1) is inverted  
Inverts the signal from the pwm generator  
Direct Operation (no inversion)  
0
1
sub_en
sub_en3  
1
2
The signal from the pwm generator for which  
the adder is enabled (curr2_adder = 1,  
curr31_adder = 1, rgb2_adder = 1,  
curr42_adder = 1) is inverted  
Inverts the signal from the pwm generator  
Direct Operation (no inversion)  
0
1
The signal from the pwm generator for which  
the adder is enabled (curr6_adder = 1,  
curr32_adder = 1, rgb3_adder = 1,  
curr43_adder = 1) is inverted  
www.austriamicrosystems.com/AS3675  
1v3  
46 - 80  
AS3675  
Datasheet - Detailed Description  
Table 65. Subtract Enable Register (Continued)  
Subtract Enable  
Addr: 35h  
Enable the inversion from the signal from the pwm generator  
Bit  
Bit Name  
Default Access  
Description  
Inverts the signal from the pwm generator  
Direct Operation (no inversion)  
0
1
sub_en4  
3
0
R/W  
The signal from the pwm generator for which  
the adder is enabled (curr33_adder = 1)  
is inverted  
8.5  
General Purpose Input / Output  
The GPIO is a highly-configurable general purpose input/output pin which can be used for the following functionlity:  
Digital Schmitt Trigger Input  
Digital Output with 4mA Driving Capability at 2.8V Supply (VANA)  
Tristate Output  
Analog Input to the ADC  
Default Mode for GPIO and VANA/GPI is Input (Pull-Down)  
Table 66. GPIO Pin Function Summary  
GPIO Pin  
Configuration  
Additional Function  
ADC Input  
Digital Input, Totem-Pole Output (Psh/Pull),  
Open Drain (PMOS or NMOS), High-Z, Pull-  
Down or Pull-Up Resistor  
GPIO  
VANA/GPI  
DigitInput  
ADC Input, LDO output  
Figure 24. GPIO and VANA/GPI Blockdiram  
AS3675  
ꢋꢛꢜꢝ  
"#ꢀ  
ꢋꢜ ꢜ!"#ꢀ  
 
ꢄꢅꢆꢇꢈꢉꢅꢊꢋ  
ꢌꢌꢌꢌꢏꢐꢑꢒꢓꢎꢐꢔꢕꢑꢌꢖꢗꢓꢘꢐꢔꢙꢓꢚ  
ꢋꢜ ꢜ  
$ꢄ%  
&ꢅ&'(  
ꢙꢓꢏ)ꢌꢒꢑ*ꢗꢔꢒꢑ+ꢌꢔꢖ  
ꢌꢂꢃꢁꢌꢔ,ꢌꢗ,ꢑ+-ꢌꢓꢙꢐꢌ  
ꢗ,ꢑ+ꢌꢖꢙꢒꢌ"#ꢀꢌꢔꢓ.ꢗꢐ  
"#ꢀꢁꢌꢛꢏꢙꢘ4  
/.ꢔ0ꢔꢓ  
/.ꢔꢙ0ꢙꢗꢐ1ꢄ  
ꢎꢓ+ꢌ/.ꢔꢙ02ꢙ+ꢑ1%ꢄꢌꢙꢒꢌꢄꢄ  
ꢎꢓ+ꢌꢍꢓꢙꢐꢌ/.ꢔꢙ0.ꢗꢏꢏ,1ꢄꢄꢚ  
ꢙꢓ  
ꢙꢓ  
/.ꢔ0ꢑꢓ  
ꢐꢙꢌꢜꢃ$  
2ꢎ3  
/.ꢔꢙ0.ꢗꢏꢏ,  
/.ꢔꢙ0ꢔꢓ  
ꢋ&0ꢇ  
/.ꢔꢙ0ꢏꢙ50ꢘꢗꢒꢒ  
**ꢀꢁ  
ꢓꢙꢐꢌ/.ꢔꢙ0.ꢗꢏꢏ,1ꢄꢄ  
/.ꢔꢙ0ꢙꢗꢐ1%  
ꢎꢓ+ꢌ/.ꢔꢙ02ꢙ+ꢑ1%ꢄꢌꢙꢒꢌꢄ%  
ꢎꢓ+ꢌꢍꢓꢙꢐꢌ/.ꢔꢙ0.ꢗꢏꢏ,1ꢄꢄꢚ  
ꢐꢙꢌꢜꢃ$  
ꢍꢗ,ꢑꢌ/.ꢔꢙ0.ꢗꢏꢏ,1ꢄꢄꢚ  
8.5.1 Unused GPIO Pin  
If the pin GPIO is not used, they can be left open (an internal pulldown, which is enabled by default, will pull them to  
GND).  
www.austriamicrosystems.com/AS3675  
1v3  
47 - 80  
AS3675  
Datasheet - Detailed Description  
8.5.2 GPIO Characteristics  
Table 67. GPIO DC Characteristics  
Symbol  
Rpull  
Parameter  
Condition  
enabled by gpio_pulls  
=VANA/GPI  
Min  
30  
Typ  
Max  
75  
Unit  
kΩ  
V
Pull up/Pull down  
Resistance  
VGPIO  
Supply Voltage  
1.5  
3.4  
0.7·VANA  
min.  
1.75V  
High Level Input  
Voltage  
VIH  
V
V
0.3·  
VANA  
min.  
Low Level Input  
Voltage  
VIL  
0.75V  
0.1·  
VANA  
min.  
VHYS  
Hysteresis  
V
250mV  
ILEAK  
VOH  
Input Leakage Current To V2_5 or VANA/GPI and VSS  
-5  
5
µ A  
V
High Level Output  
at Iout  
0.8·VANA  
Voltage  
Low Level Output  
at Io
0.2·  
VANA  
VOL  
V
Voltage  
VANA/GPI = .8V,  
gpio_low_curr = 1  
4
IOUT  
Driving Capability  
mA  
pF  
VANA/GPI = 2.8V,  
pio_low_curr = 0  
16  
CLOAD  
Capacitive Load  
50  
8.5.3 GPIO Registers  
Table 68. GPIO output 1 Register  
GPIO output 1  
Addr: 05h  
This register controls GPIO outputs.  
Bit  
Bit Name  
DefaulAccess  
Description  
Enables the CURR1 input  
input disabled  
gpi_curr1_en  
0
0
0
0
R/W  
R/W  
R/W  
0
1
input enabled  
Enables the CURR2 input  
input disabled  
gpi_curr2en  
gpi_curr6_en  
1
0
1
input enabled  
Enables the CURR6 input  
input disabled  
2
4
0
1
input enabled  
not used  
Enables the CURR30 input  
input disabled  
gpi_curr30_en  
0
R/W  
0
1
input enabled  
www.austriamicrosystems.com/AS3675  
1v3  
48 - 80  
AS3675  
Datasheet - Detailed Description  
Table 68. GPIO output 1 Register (Continued)  
GPIO output 1  
This register controls GPIO outputs.  
Description  
Addr: 05h  
Bit  
Bit Name  
Default Access  
Enables the CURR31 input  
gpi_curr31_en  
5
0
0
0
R/W  
R/W  
R/W  
0
1
input disabled  
input enabled  
Enables the CURR32 input  
input disabled  
gpi_curr32_en  
gpi_curr33_en  
6
7
0
1
input enabled  
Enables the CURR33 input  
input disabed  
0
1
input enabled  
Table 69. GPIO signal 1 Register  
PIO signal 1  
Addr: 06h  
register controlGPIO outputs.  
Bit  
0
Bit Name  
gpi_curr1_in  
gpi_curr2_in  
gpi_curr6_in  
Default Access  
Decription  
N/A  
N/A  
N/A  
NA  
/A  
N/A  
N/A  
N/A  
R
R
R
Reads a logic sigal from pin CURR1; if gpi_curr1_en=1  
Reads a loignal from pin CURR2; if gpi_curr2_en=1  
Reads logic signal from pin CURR6; if gpi_curr6_en=1  
not used  
1
2
3
gpi_curr30_in  
gpi_curr31_in  
gpi_curr32_in  
gpi_curr33_in  
4
R
R
R
Reada logic signal from pin CURR30; if gpi_curr30_en=1  
ds a logic signal from pin CURR31; if gpi_curr31_en=1  
Reads a logic signal from pin CURR32; if gpi_curr32_en=1  
Reads a logic signal from pin CURR33; if gpi_curr33_en=1  
5
6
7
Table 70. GPIO output 2 Register  
GPIO output 2  
This register controls GPIO outputs.  
Description  
Addr: 50h  
Bit  
Bit Name  
Default Access  
Writes a logic signal to pin GPIO; this is independent of any  
other bit setting e.g., gpio_mode Table 72.  
gpio_ut  
0
0
R/W  
Enables the VANA/GPI input  
gpi_en  
1
3
0
R/W  
0
1
input disabled  
input enabled  
Enables the RGB1 input  
input disabled  
gpi_rgb1_en  
gpi_rgb2_en  
0
0
R/W  
R/W  
0
1
input enabled  
Enables the RGB2 input  
input disabled  
0
1
input enabled  
www.austriamicrosystems.com/AS3675  
1v3  
49 - 80  
AS3675  
Datasheet - Detailed Description  
Table 70. GPIO output 2 Register (Continued)  
GPIO output 2  
This register controls GPIO outputs.  
Description  
Addr: 50h  
Bit  
Bit Name  
Default Access  
Enables the RGB3 input  
gpi_rgb3_en  
4
0
0
0
0
R/W  
R/W  
R/W  
R/W  
0
1
input disabled  
input enabled  
Enables the CURR41 input  
input disabled  
gpi_curr41_en  
gpi_curr42_en  
gpi_curr43_en  
5
6
7
0
1
input enabled  
Enables the CURR42 input  
input disabed  
0
1
input enabled  
Enables the CUR3 inpt  
input disabled  
0
1
input enabled  
Table 71. GPIO signal 2 Register  
GPIO ignal 2  
Addr: 51h  
This registontrols GPIO outputs.  
Bit  
Bit Name  
Defat Acess  
Description  
Reads logic signal from pin GPIO; this is independent of  
ny oter setting e.g.,Table 72 except gpio_pulls=11  
gpio _in  
0
N/
R
gpi_ in  
1
2
3
4
5
6
7
N/A  
N/A  
N/A  
N/
NA  
N/A  
R
R
R
R
R
R
R
Reads a logic signal from pin VANA/GPI; if gpi_en=1  
Reads a logic signal from pin RGB1; if gpi_rgb1_en=1  
Reads a logic signal from pin RGB2; if gpi_rgb2_en=1  
Reads a logic signal from pin RGB3; if gpi_rgb3_en=1  
Reads a logic signal from pin CURR41; if gpi_curr41_en=1  
Reads a logic signal from pin CURR42; if gpi_curr42_en=1  
Reads a logic signal from pin CURR43; if gpi_curr43_en=1  
gpi_rgb1_in  
gpi_rgb2_in  
gpi_rgb3_in  
gpi_curr41_in  
gpi_curr42_in  
gpi_curr43_in  
Table 72. GPIO control Regiser  
GPIO control  
Adr: 1E
This register controls GPIO and GPIO1 pin functions.  
Bit  
Bit Name  
Default Access  
Description  
Defines the direction for pin GPIO  
Input only  
00  
01  
Output (push and pull)  
gpio_mode  
1:0  
00  
R/W  
Output (open drain, only push; only NMOS is  
active)  
10  
11  
Output (open drain, only pull; only PMOS is  
active)  
www.austriamicrosystems.com/AS3675  
1v3  
50 - 80  
AS3675  
Datasheet - Detailed Description  
Table 72. GPIO control Register (Continued)  
GPIO control  
Addr: 1Eh  
This register controls GPIO and GPIO1 pin functions.  
Bit  
Bit Name  
Default Access  
Description  
Adds the following pullup/pulldown to pin GPIO; this is  
independent of setting of bits gpio_mode  
00  
01  
10  
None  
Pulldown  
Pullup  
gpio_pulls  
3:2  
01  
R/W  
ADC input (gpio_mode = XX); recommended f
analog signals  
11  
Table 73. GPIO driving cap Register  
GPIO driving cap  
Addr: 20h  
This register enables low current mode or GIOs.  
Bit  
Bit Name  
Default Access  
Description  
Defnes the driving capabily of pin GPIO  
gpio_low_curr  
0
0
R/W  
1
Iout  
Iout /4  
www.austriamicrosystems.com/AS3675  
1v3  
51 - 80  
AS3675  
Datasheet - Detailed Description  
8.6  
LED Test  
Figure 25. LED Function Testing  
ꢇꢋꢓꢋꢑꢓꢘꢙꢐꢏꢓꢋꢎꢖꢗꢇꢊ  
ꢇ$  
ꢚꢏꢐꢛꢀ  
ꢘꢓꢋꢕꢃꢕ  
ꢐꢍꢜꢋꢏꢓꢋꢏ  
 
"#  
$%&  
ꢒ(ꢊꢓꢋꢕ! ꢕ!ꢜꢓ ꢍ)ꢍꢝ*  
!ꢚꢈ  
ꢁꢂꢃꢄ  
ꢚꢏꢐꢛꢆꢀꢙꢉꢏꢝꢋꢆ  
ꢁ ꢛꢕ  
ꢆꢆꢀ
ꢈꢉꢊꢋꢌꢉꢍꢎ  
ꢁꢏꢐꢑꢋꢊꢊꢐꢏ  
ꢆꢇꢀ  
ꢒꢍꢓꢋꢏꢔꢉꢑꢋ  
AS3675  
ꢇꢋꢓꢋꢑꢓꢂꢕꢋꢍꢖꢗꢇꢊ  
The AS3675 supports the verification of the funtionality of all the conned LEDs (open and shorted LEDs can be  
detected). This feature is especially useful in prodction test to vethe correct assembly of the LEDs, all its connec-  
tors and cables. It can also be used in thfield o verify if any of the LDs is damaged. A damaged LED can then be  
disabled (to avoid unnecessary currens).  
The current sources, charge pump, dcconverter and thnteral ADC are used to verify the forward voltage of the  
LEDs. If this forward voltage is within the specified limitLEDs, the external circuitry is assumed to operate.  
8.6.1 Function Testing for single LEDs conncted to the Charge Pump  
For any current source connected to the carge pump (CURR30-33) where only one LED is connected between the  
charge pump and the current sink (see Figur1) use:  
Table 74. Function Testing for LEDs cnned to the Charge Pump  
Step  
Action  
Example Code  
Switch on the chrge ump and set it into manual  
1:2 mode (to avod automatic mode switching  
duing measurements)  
Reg 23h 14h (cp_mode = 1:2, manual)  
Reg 00h 04h (cp_on = 1)  
1
e.g. for register CURR31set to 9mA use  
Reg 10h 0Fh (curr3x_other = 9mA)  
2
3
Swih on he current sink for the LED to be tested  
Mesure with the ADC the voltage on CPOUT  
Reg 03h 0ch (curr31_mode = curr31_other)  
Reg 26h 95h (adc_select=CPOUT,start ADC)  
Fetch the ADC result from Reg 27h and 28h  
Measure with the ADC the voltage on the switched  
on current sink  
Reg 26h 8bh (adc_select=CURR31,start ADC)  
4
Fetch the ADC result from Reg 27h and 28h  
Switch off the current sink for the LED to be tested  
Reg 03h 00h (curr31_mode = off)  
Compare the difference between the ADC  
measurements (which is the actual voltage across  
the tested LED) against the specification limits of  
the tested LED  
6
Calculation performed in baseband uProcessor  
www.austriamicrosystems.com/AS3675  
1v3  
52 - 80  
AS3675  
Datasheet - Detailed Description  
Table 74. Function Testing for LEDs connected to the Charge Pump  
Step  
Action  
Example Code  
Do the same procedure for the next LED starting  
from point 2  
7
Jump to 2. If not all the LEDs have been tested  
Switch off the charge pump  
set charge pump automatic mode  
Reg 00h 00h (cp_on = 0)  
Reg 23h 00h  
8
8.6.2 Function Testing for LEDs connected to the Step Up DCDC Converter  
For LEDs connected to the DCDC converter (usually current sinks CURR1,CURR2 and CURR6) use the following pr-  
cedure:  
Table 75. Function Testing for LEDs connected to the DCDC converter  
Step  
Action  
Example Code  
e.g. Test LEDs on CURR1:  
Reg 01h 01h (curr1_moe=on)  
Reg 09h 3ch (curr1_curnt = 9mA)  
Switch on the current sink for the LED string to be  
tested (CURR1,2 or 6)  
1
Select the feedback path for the LED string to be  
tested (e.g. step_up_fb = 01 for LED string on  
CURR1)  
2
3
Reg 21h 02h (st_up_b=curr1)  
Set the current for step_up_vtuning exactly above  
the maximum forward voltage of the tested
string + 0.6V (for the current sink) + 0.25V; ad
margin (accuracy of step_up_vtuning); this sethe  
maximum output voltage limit for the DCDC  
converter  
e.g. 4 LEDs with UfMAX = 41V gives 17.25V +6% =  
18.29V; if R=1MΩ and R3 = open, then select  
step_up_vtuni= 18 (Reg 21h 92h; results in  
19.25V over voltagprotection voltage – Table 9 on  
page 14)  
4
5
6
Set step_up_prot = 1  
Reg 22h 04h  
Reg 00h 08h  
Switch on the DCDC onvrter  
Wait 80ms (DCDC_Fsetting time)  
Reg 26h 96h (adc_select=DCDC_FB, start ADC;  
7
8
9
Measure the voltage DCDC_FB (ADC)  
Fetch the ADC result from Reg 27h and 28h)  
If the voltage on DCDC_FB is above 1.0
tested LED string is broken – then skip the following  
steps  
(Code >199h)  
Switch off the over voltae protection  
(step_up_prot=0
Reg 22h 00h  
Reduce step_up_vtuning sby step until the  
measured voltage on DCDFB (ADC) is above  
1.0V.  
e.g.: Reg 21h 62h (step_up_vtuning=12): ADC  
10  
result=1,602V  
After changing step_u_vuning always wait 80ms,  
befoe AD-conversion  
11  
12  
Masurvoltage on DCDC_FB  
Switch off the DCDC converter  
e.g. DCDC_FB=1.602V  
Reg 00h 00h  
The vltage on the LED string can be calculated  
now as follows (R4 = open):  
VLEDTRING = V(DCDC_FB) + I(step_up_vtuning) *  
R2 – 0.5V (current sinks feedback voltage: VFB2).  
V(DCDC_FB) = ADC Measurement from point 11  
I(step_up_vtuning) = last setting used for point 10  
13  
1
e.g.: VLED = (1.602V + 12V – 0.5V) / 4 = 3.276V  
Compare the calculated value against the  
specification limits of the tested LEDs  
Note: With the above described procedures electrically open and shorted LEDs can be automatically detected  
www.austriamicrosystems.com/AS3675  
1v3  
53 - 80  
AS3675  
Datasheet - Detailed Description  
8.7  
Analog-to-Digital Converter  
The AS3675 has a built-in 10-bit successive approximation analog-to-digital converter (ADC). It is internally supplied  
by V2_5, which is also the full-scale input range (0V defines the ADC zero-code). For input signals exceeding V2_5  
(typ. 2.5V) a resistor divider with a gain of 0.4 (Ratioprescaler) is used to scale the input of the ADC converter. Conse-  
quently the resolution is:  
Table 76. ADC Input Ranges, Compliances and Resolution  
Channels (Pins)  
Input Range  
VLSB  
Note  
DCDC_FB, GPIO, AUDIO_IN, VANA/  
GPI, audio controlled LED buffer  
output  
0V-2.5V  
2.44mV  
VLSB=2.5/1024  
ADCTEMP_CODE  
-30°C to 125°C  
0V-5.5V  
1 / ADCTC  
6.1mV  
junction temperature  
CURR30-33, CURR4x, RGBx  
VBAT, CPOUT  
VLSB=2.5/1024 * 1/0.4; intenal  
resistor divider used  
CURR1, CURR2, CURR6  
0V-1.0V  
2.44mV  
VLSB=2.51024  
Table 77. ADC Parameters  
Symbol  
Parameter  
Conditon  
Min  
Typ  
Max  
Unit  
Resolution  
10  
Bit  
see  
Table  
76  
VIN  
Input Voltage Range  
VSU= V2_5  
VSS  
V
Differential Non-  
Linearity  
DNL  
± 0.25  
LSB  
INL  
Vos  
Rin  
Cin  
Integral Non-Linearity  
Input Offset Voltage  
Input Impedance  
± 0.5  
LSB  
LSB  
MΩ  
pF  
± 0.25  
100  
Input Capacitance  
9
VSUPPLY  
Power Supply Range  
± 2%, nally trimmed.  
Durig conversion only.  
2.5  
V
(V2_5)  
Idd  
Idd  
Power Supply Current  
Power Down Current  
500  
100  
µ A  
nA  
Temperature Sensor  
Accuracy  
TTOL  
ADCTOFFSET  
ADCTC  
@ 25 °C  
-10  
+10  
°C  
°C  
ADC temperatre  
measurement oset  
value  
375  
Code temprature  
cofficient  
1.293  
9
°C/  
Code  
Temperature change per ADC LSB  
For all low voltage current sinks, CPOUT  
and VBAT  
RatioPRESCALE  
R
atio f Prescaler  
0.4  
Transient Prameters (2.5V, 25 ºC)  
Tc  
fc  
ts  
Conversion Time  
Clock Frequency  
27  
1.0  
16  
µs  
MHz  
µs  
All signals are internally generated and  
triggered by start_conversion  
Settling Time of S&H  
The junction temperature (TJUNCTION) can be calculated with the following formula (ADCTEMP_CODE is the adc conver-  
sion result for channel 04h selected by register adc_select = 000100b):  
TJUNCTION [°C] = ADCTOFFSET - ADCTC · ADCTEMP_CODE  
(EQ 5)  
www.austriamicrosystems.com/AS3675  
1v3  
54 - 80  
AS3675  
Datasheet - Detailed Description  
ADC Registers  
Table 78. ADC_MSB result Register  
ADC_MSB result  
Addr: 27h  
Together with Register 27h, this register contains the results (MSB) of an ADC  
cycle.  
Bit  
Bit Name  
Default Access  
Description  
ADC results register.  
D9:D3  
6:0  
N/A  
N/A  
R
R
Indicates end of ADC conversion cycle  
Result is ready  
result_not_ready  
7
0
1
Conversion is running  
Table 79. ADC_LSB result Register  
ADC_LSB result  
Addr: 28h  
Together with Register 28h, this register contains the resus (LB) of an ADC  
cycle  
Bit  
Bit Name  
Default Access  
N/A  
Description  
D2:D0  
2:0  
R
ADC result regiter  
www.austriamicrosystems.com/AS3675  
1v3  
55 - 80  
AS3675  
Datasheet - Detailed Description  
Table 80. ADC_control Register  
ADC_control  
Addr: 26h  
This register input source selection and initialization of ADC  
Bit  
Bit Name  
Default Access  
Description  
Selects input source as ADC input  
000000 (00h)  
AUDIO_IN  
000001 (01h)  
000010 (02h)  
000011 (03h)  
000100 (04h)  
000101 (05h)  
000110 (06h)  
000111 (07h)  
001000 (08h)  
00100(09h)  
1010(0Ah)  
011 (0Bh)  
00100 (0Ch)  
001101 (0Dh)  
001110 (0Eh
001111 (0F)  
01000 (0h)  
0001 (11h)  
010 (12h)  
010011 (13h)  
010100 (14h)  
010101 (15h)  
010110 (16h)  
010111 (17h)  
VANA/GPI  
GPIO  
audio controlled LED buffer output  
reserved  
RGB1  
RGB
RGB3  
CRR1  
CURR2  
CURR30  
CURR31  
adc_select1  
5:0  
03h  
R/W  
CURR32  
CURR33  
CURR41  
CURR42  
CURR43  
reserved  
reserved  
CURR6  
VBAT  
CPOUT  
DCDC_FB  
ADCTEMP_CODE (junction temperature)  
011xxx,  
1xxxxx  
reserved  
NA  
6
7
st_coversion  
N/A  
W
Writing a 1 into this bit starts one ADC conversion cycle.  
1. See Table able 6 for ADC ranges and resultion.  
www.austriamicrosystems.com/AS3675  
1v3  
56 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 26. ADC Circuit  
ꢘꢔꢙꢃꢗꢅ*ꢗꢖꢄꢑꢗꢕꢕꢒꢙꢅ45ꢉ  
ꢂꢔ66ꢒꢑꢅꢗꢔꢄ#ꢔꢄ  
ꢇꢛꢉ/0ꢍ/2  
ꢋꢇ2ꢇ3.)/  
.)/0  
ꢋꢌꢍꢎ  
ꢊꢛꢈꢈꢀ  
ꢊꢛꢈꢈꢌ  
ꢊꢛꢈꢈꢜ  
ꢉꢊꢉꢊꢍꢝ  
ꢉꢏꢐꢉꢁ  
++++ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢅꢅꢅꢅꢇꢉꢊ  
!ꢄꢒ"#  
ꢑꢒꢓꢔꢕꢄꢍꢖꢗꢄꢍꢑꢒꢘꢙꢚ  
ꢈ. ꢀ  
ꢈ. ꢌ  
ꢈ. '  
ꢀ+,-  
ꢊꢛꢈꢈ'ꢁ  
ꢊꢛꢈꢈ'ꢀ  
ꢊꢛꢈꢈ'ꢌ  
ꢊꢛꢈꢈ''  
ꢊꢛꢈꢈ1ꢀ  
ꢊꢛꢈꢈ1ꢌ  
ꢊꢛꢈꢈ1'  
ꢋ ꢇ(  
ꢘꢙ*ꢍꢓꢒꢕꢒ*ꢄ  
ꢊꢗꢖꢄꢑꢗꢕ  
ꢓꢄꢘꢑꢄꢍ*ꢗꢖ!ꢒꢑꢓꢃꢗꢖ  
ꢋꢊ)  
ꢖ*  
ꢀ$ꢁ%&  
ꢀꢌꢁ%&  
AS3675  
8.8  
Audio controlled LEDs  
Up to four RGB LEDs and/or up to 13 LEDs (number of LEDis fully configurab) can be controlled by an audio  
source (connected to the pin AUDIO_IN). The audio controlled LED block caoperate in two modes:  
Amplitude Mode: The color of the RGB LED(s) or the bghtness of the le color LED(s) is depending on the input  
amplitude. For the RGB LEDs it starts from bactransitions to blue, grn, yan, yellow, red and for high amplitudes  
white is used (internal lookup table if audio_clor=000b).  
Frequency Mode: Three internal fully configurable filters define the brightness of the single color LED(s) or the color of  
the RGB LED(s). Each of the filters an e configured individuay in amplitude, frequency response and type (lowpass  
filter, bandpass filter, highpass filter).  
www.austriamicrosystems.com/AS3675  
1v3  
57 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 27. Audio controlled LED internal circuit  
ꢒꢆꢇꢈꢉꢃꢐꢒꢈꢙꢊꢊꢊꢊ)ꢋꢍꢇ$ꢌꢌꢌ*ꢜꢝꢇ$  
@ꢀꢁꢂꢃꢁꢄ  
ꢉ"ꢑꢈꢉꢙꢒꢓ  
ꢖ ꢋ  
ꢖ ꢍ  
ꢅꢆꢇꢈꢉꢊꢁꢄ  
ꢀꢈꢐꢈꢑꢒꢓ  
ꢊꢊꢊꢅꢀꢏ  
ꢔꢕꢉꢖꢗꢘꢘꢈꢙꢐ ꢖ ꢜ  
ꢋꢌꢍ  
ꢒꢇꢖꢃꢘꢗꢓꢗꢖꢑ  
ꢏꢚꢛꢛꢜꢝ  
ꢏꢚꢛꢛꢜꢋ  
ꢛꢛꢜꢍ  
ꢏꢚꢛꢛꢜꢜ  
ꢒꢆꢇꢃ%ꢆ+ꢃꢉꢙ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢛ#$ꢋ  
ꢛ#$ꢍ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢖ ꢋ  
ꢖꢆꢕꢕꢜꢝꢃꢒꢆꢇꢃꢘꢕꢖ  
ꢖ ꢍ  
ꢖ ꢜ  
ꢛ#$ꢜ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢖꢆꢕꢕꢜꢋꢃꢒꢆꢇꢃꢘꢕꢖ  
ꢕꢐ%&ꢃꢒꢆꢇꢃꢉꢙ  
ꢏꢚꢛꢛꢋ  
ꢏꢚꢛꢛꢍ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢖ ꢋ  
ꢖ ꢍ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢏꢚꢛꢛ'  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢖꢆꢕꢕꢜꢍꢃꢃꢘꢕ
 
ꢖꢆꢕꢕꢋꢍ'ꢃꢒꢆꢇꢃꢉꢙ  
ꢉꢑ ꢗꢕꢇꢗꢘ  
ꢏꢚꢛꢛ(ꢋ  
ꢏꢚꢛꢛ(ꢍ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢑ ꢗꢕꢊ!ꢗꢘ  
ꢖ ꢋ  
ꢖ ꢍ  
ꢖꢆꢕꢕꢜꢜꢃꢒꢆꢇꢃꢘꢕꢖ  
ꢏꢚꢛꢛ(ꢜ  
ꢉꢑ ꢗꢕꢊ!ꢉꢇꢗꢘ  
ꢖ ꢜ  
AS3675  
ꢖꢆꢕꢕ(&ꢃꢒꢆꢇꢃꢉꢙ  
The audio controlled LED block is enabled if any othe registers curr30_aud_src[1:0]...curr33_aud_src[1:0],  
curr126_aud_on, rgbx_aud_on or curr4x_aud_on ot eual zero.  
The audio input amplifier (enabled by aud_uf_on=1) is used to allow the attenuation (or amplification of the input sig-  
nal) and has the following parameters:  
Table 81. Audio input Parameters  
Symbol  
VIN  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input Voltage Range  
min. Input Ipedance  
0
2.5  
Rin_min  
at max. input gain (30dB)  
20  
kΩ  
The signal is conered with the ADC (If the audio controlled LED is active, the internal ADC is continuously running at  
a sample frequency of 45.4kHz. In this case the ADC cannot be used for any other purpose). The digital processing  
converts this sgnal into 3 channels (ch1, ch2, ch3):  
www.austriamicrosystems.com/AS3675  
1v3  
58 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 28. Audio controlled LED digital processing internal circuit  
ꢀꢚꢙꢚꢉꢎꢈꢋꢗꢘꢅꢊꢃ))ꢚ'ꢙ  
ꢑꢄꢕꢈꢚꢉꢐꢏꢃꢋ&ꢅꢏꢃ  
ꢇꢃꢆꢃꢈ  
ꢀꢃꢉꢃꢊꢉꢋꢌ  
ꢍꢎꢏꢃꢅꢐꢉ  
ꢇꢅꢅꢓ  
ꢔꢕ  
ꢎꢖꢈꢃ  
ꢑꢒꢁ  
ꢎꢐꢏꢚꢅ%)ꢕꢃꢃꢏ  
ꢎꢙꢊ%ꢊꢉꢘꢈ  
ꢎꢐꢏꢚꢅ%ꢊꢅꢈꢅꢘ  
ꢎꢐꢏ%ꢎꢄꢕꢈꢚꢉꢐꢏꢃ  
ꢀꢁ  
ꢂꢃꢄꢅꢆꢃ  
#ꢘꢅꢄ  
ꢑꢀꢁ  
ꢍꢘꢃ$ꢐꢃ'ꢊ(ꢋ&ꢅꢏꢃ  
ꢇꢃꢆꢃꢈ  
ꢀꢃꢉꢃꢊꢉꢋꢌ  
ꢍꢎꢏꢃꢅꢐꢉ  
ꢊ"ꢛ  
  
ꢊ"!  
ꢗꢘꢅꢙꢘꢎꢄꢄꢎꢖꢈꢃꢋꢍꢚꢈꢉꢃꢘꢋꢛ  
ꢝꢗ  
ꢇꢗ  
ꢜꢗ  
ꢇꢃꢆꢃꢈ  
ꢀꢃꢉꢃꢊꢉꢋꢌ  
ꢍꢎꢏꢃꢅꢐꢉ  
ꢗꢘꢅꢙꢘꢎꢄꢄꢎꢖꢈꢃꢋꢍꢚꢈꢉꢃꢘꢋ  
ꢑꢒꢁ  
ꢝꢗ  
ꢇꢗ  
ꢜꢗ  
ꢇꢃꢆꢃꢈ  
ꢀꢃꢉꢃꢊꢉꢋꢌ  
ꢎꢏꢃꢅꢐꢉ  
ꢎꢙꢊ%ꢊꢉꢘꢈ  
ꢗꢘꢅꢙꢘꢎꢄꢄꢎꢖꢈꢃꢋꢍꢚꢈꢉꢃ!  
#ꢘꢃ$%ꢅꢏꢃ  
ꢝꢗ  
ꢇꢗ  
ꢜꢗ  
#ꢚꢈꢉ*ꢛ+ +!,%*ꢑ-+ꢖ-+ꢖꢛ+ꢖꢎꢛ+ꢎ , ꢎꢐꢏꢚꢅ%)ꢕꢃꢃꢏ  
AS3675  
These three output channels (ch1, ch2, ch3) can e oued to any of the rrensources according to Figure 27.  
The digital processing can be done in two diferet operating mods (dneby the register bit freq_mode):  
8.8.1 Amplitude Mode  
This mode is selected by freq_mod=0
The input amplitude is mapped into dient colors for RD(s) or brightness for single color LED(s). The mapping  
is controlled by the register audio_color. If audio_color = then the mapping is done as follows:  
Very low amplitudes are mapped to black, for highr amlitudes, the color smoothly transitions from blue, green, cyan,  
yellow, red and eventually to white (for high input amplitudes).  
www.austriamicrosystems.com/AS3675  
1v3  
59 - 80  
AS3675  
Datasheet - Detailed Description  
8.8.2 Frequency Mode  
This mode is selected by freq_mode=1.  
The input signal is frequency filtered by three digital filters. The filters are 2nd order biquad IIR (infinite impulse  
response filters). Each of these filters has the following structure (sampling frequency = 45.4kHz / internal clock of  
1MHz divided by 22):  
Figure 29. Audio controlled LED frequency filter  
ꢈꢉꢊꢋꢉꢇꢌꢌꢇꢅꢍꢎꢁꢏꢐꢍꢑꢎꢉ  
ꢀꢁꢁꢁ  
ꢃꢄ  
ꢂꢁꢁ  
ꢅꢄꢁꢁꢁ  
ꢅꢆꢁꢁꢁ  
ꢁꢁꢁꢃꢇꢄ  
ꢁꢁꢁꢃꢇꢆ  
ꢃꢄ  
ꢂꢁꢁ  
The mathematical formula for these filters is:  
y(n) = A0(x(n) + b1 x(n-1) + b2 x(n-2)) – a1 y(n-1) – a2 y(n-2)  
(EQ 6)  
The internal calculation is preformed using 12bts coefficients (state vales (z-1) are rounded to 12bit, the output  
uses 8bits). All coefficients can be set individally or each of the te fiers (filter1, filter2, filter3). (see Audio Con-  
trolled LED Registers on page 62), registrs fil_type (70h) and registrs 71h to 82h. It is recommended to use austri-  
amicrosystems ‘Demoboard Software’ for smple control of the filtecutoff frequencies and filter type.  
Note: Do not set filter cutoff frequenbelow 500Hz.  
8.8.3 AGC  
The AGC (available in amplitude and frequency mde) iused to ‘compress’ the input signal and to attenuate very low  
input amplitude signals (this is performed tensure no light output for low signals especially for noisy input signals).  
The AGC monitors the input signal amplitude nd filters this amplitude with a filter with a short attack time, but a long  
decay time (decay time depends on threter agc_ctrl). This amplitude measurement (represented by an integer  
value from 0 to 15) is then used to amplifattenuate the input signal with one of the following amplification ratios  
(output to input ratio) – the curve , B, r C is selected depending on the register agc_ctrl:  
www.austriamicrosystems.com/AS3675  
1v3  
60 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 30. AGC curve A (x-axis: input amplitude, y-axis: output amplitude; actual value: gain between output to  
input)  
Figure 31. AGC curve B (x-axis: input amplitude, y-axis: output mplitude; actual value: gain etween output to  
input)  
Figure 32. AGC curve C (x-axis: input amude, y-axis: output amplitude; actual value: gain between output to  
input)  
www.austriamicrosystems.com/AS3675  
1v3  
61 - 80  
AS3675  
Datasheet - Detailed Description  
8.8.4 Audio Controlled LED Registers  
Table 82. Audio Control Register  
Audio Control  
Addr: 46h  
Audio Sync Mode control  
Bit  
Bit Name  
Default Access  
Description  
Audio input buffer enable  
off; for audio direct input to ADC use  
adc_select = 00h (AUDIO_IN)  
aud_buf_on  
0
0b  
R/W  
0
1
on; set adc_select = 03h (buffer output)  
audio controlled LED color selection (amplitude mde)  
audio_color  
freq_mode  
4:2  
5
000b  
0b  
R/W  
R/W  
000  
color scheme defined by lookup tabl
001-111  
single color scheme (b2=R, 1=G, b0=B)  
audio controlled LED mode sectio
0
1
amplitde mde  
frequency ode  
Audio controlled LEperistence time  
01  
10  
11  
none  
audio_speed  
7:6  
00b  
R/W  
200ms  
400ms  
800ms  
Table 83. Audio input Register  
Audio input  
Addr: 47h  
Audio Sync input control  
Description  
Bit  
Bit Name  
Default Access  
Audio input buffer gain control  
000  
001  
010  
011  
100  
101  
110  
111  
-12dB  
-6dB  
0dB  
audio_gain  
2:0  
000b  
R/W  
+6dB  
+12dB  
+18dB  
+24dB  
+30dB  
www.austriamicrosystems.com/AS3675  
1v3  
62 - 80  
AS3675  
Datasheet - Detailed Description  
Table 83. Audio input Register (Continued)  
Audio input  
Addr: 47h  
Audio Sync input control  
Bit  
Bit Name  
Default Access  
Description  
Audio input buffer AGC function controls AGC switching  
threshold  
000  
AGC off  
Attenuate low amplitude signals otherwise linear  
response (to remove e.g. noise)  
001  
010  
011  
100  
101  
110  
111  
AGC curve A; slow decay of amplitude detection  
AGC curve A; fast decay of amplitude detecon  
AGC curve B; slow decay of amplitude detectn  
AGC curve B; fast decay of amplitue detection  
AGC curve C; slow decay of amplitde detection  
AGC curve C; fast decay amplude detection  
agc_ctrl  
5:3  
000b  
R/W  
Sttup Cotrol of audio inut buffer (used to charge  
opional external dc blockng capacitor)  
audio_man_start1  
audio_dis_start2  
6
7
0b  
0b  
R/W  
R/W  
1
tomatic prechging 300us (if audio_dis_start = 0)  
continuousprearging (if aud_buf_on = 1)  
Disable Startup ontrol of audio input buffer (used to  
charge ionaexternal dc blocking capacitor)  
0
1
precharging enabled  
precharging disabled  
1. Its safe to keep default value  
2. Its safe to keep default value  
Table 84. Audio output Register  
Audio output  
Audio Sync input control  
Description  
Addr: 48h  
Bit  
Bit Name  
Dult Access  
LED(s) output amplitude control (in percent of selected  
output current)  
000  
001  
010  
011  
100  
101  
110  
111  
6.25%  
12.5%  
25%  
aud_amplitude  
2:0  
000b  
R/W  
50%  
75%  
87.5%  
93.75%  
100%  
www.austriamicrosystems.com/AS3675  
1v3  
63 - 80  
AS3675  
Datasheet - Detailed Description  
Table 84. Audio output Register (Continued)  
Audio output  
Addr: 48h  
Audio Sync input control  
Bit  
Bit Name  
Default Access  
Description  
Audio controlled LED enable for CURR1, CURR2, CURR6  
curr126_aud_on  
4
0b  
0b  
0b  
R/W  
R/W  
R/W  
0
1
off  
on, audio controlled LED is enabled  
Audio controlled LED enable for RGB1-RGB3  
off  
rgbx_aud_on  
5
6
0
1
on, audio controlled LED is enable
Audio controlled LED enable for CURR41-CURR
curr4x_aud_on  
0
1
off  
on, audio controlled LED s enabled  
Table 85. CURR3x audio source Register  
CURR3x audio soure  
Controls CURR3033 audio outputand enables audio controlled LED  
Addr: 53h  
Bit  
Bit Name  
Default Access  
Decription  
Audio conrolled LED source for CURR30  
All other modes  
00  
01  
ch1 connected to CURR30, audio controlled  
LED on  
curr30_aud_src[1:0]  
1:0  
0b  
00b  
R/W  
R/W  
R/W  
ch2 connected to CURR30, audio controlled  
LED on  
0  
11  
ch3 connected to CURR30, audio controlled  
LED on  
Audio controlled LED source for CURR31  
All other modes  
00  
01  
ch1 connected to CURR31, audio controlled  
LED on  
curr31_aud_src[1:0]  
3:2  
ch2 connected to CURR31, audio controlled  
LED on  
10  
11  
ch3 connected to CURR32, audio controlled  
LED on  
Audio controlled LED source for CURR32  
All other modes  
00  
01  
ch1 connected to CURR32, audio controlled  
LED on  
curr32_aud_src[1:0]  
5:4  
ch2 connected to CURR32, audio controlled  
LED on  
10  
11  
ch3 connected to CURR32, audio controlled  
LED on  
www.austriamicrosystems.com/AS3675  
1v3  
64 - 80  
AS3675  
Datasheet - Detailed Description  
Table 85. CURR3x audio source Register (Continued)  
CURR3x audio source  
Controls CURR30,31,32,33 audio outputs and enables audio controlled LED  
Addr: 53h  
Bit  
Bit Name  
Default Access  
Description  
Audio controlled LED source for CURR33  
All other modes  
00  
01  
ch1 connected to CURR33, audio controlled  
LED on  
curr33_aud_src[1:0]  
7:6  
00b  
R/W  
ch2 connected to CURR33, audio controlled  
LED on  
10  
11  
ch3 connected to CURR33, audio contrlled  
LED on  
Table 86. filt_type Register  
filt_type  
Addr: 70h  
efine requency filter types  
Bit  
Bit Name  
Default Access  
Descrption  
nes filter1 (for ch1) characteristics and filter coefficients  
1 and b2  
00  
01  
10  
11  
don’t use  
filt1_type[1:0]  
filt2_type[1:0]  
filt3_type[1:0
1:0  
00b  
00b  
00b  
R/W  
R/W  
R/W  
lopass filter; filt1_b1=2, filt1_b2=1  
high pass filter; filt1_b1=-2, filt1_b2=1  
band pass filter; filt1_b1=0, filt1_b2=-1  
Defines ter2 (for ch2) characteristics and filter coefficients  
b1 and b2  
00  
01  
10  
11  
don’t use  
3:2  
5:4  
low pass filter; filt2_b1=2, filt2_b2=1  
high pass filter; filt2_b1=-2, filt2_b2=1  
band pass filter; filt2_b1=0, filt2_b2=-1  
Defines filter3 (for ch3) characteristics and filter coefficients  
b1 and b2  
00  
01  
10  
11  
don’t use  
low pass filter; filt3_b1=2, filt3_b2=1  
high pass filter; filt3_b1=-2, filt3_b2=1  
band pass filter; filt3_b1=0, filt3_b2=-1  
Registers 71h to 82h efine the filter coefficients filt{1,2,3}_{A0,a1,a2}. Each of the coefficients is 12 bits wide and is  
calculated acording to the following formula (2s complement number):  
- Bitused as sign bit 0…positive number, 1…negative number  
- Bitis multiplied by 2^0  
Bit9 is multiplied by 2^-1  
- …  
- Bit 1 is multiplied by 2^-9  
www.austriamicrosystems.com/AS3675  
1v3  
65 - 80  
AS3675  
Datasheet - Detailed Description  
- Bit 0 is multiplied by 2^-10  
Table 87. Filter Definitions Register  
Register  
Content  
b4 b3  
Definition  
Addr  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
filt1_A0[11:8]  
filt1_a1[11:8]  
filt1_a2[11:8]  
filt2_A0[18]  
fit2_a111:8]  
filt_a2[11:8]  
filt3_A0[11:8]  
filt3_a1[11:8]  
filt3_a2[11:8]  
filt1_A0_MSB  
filt1_A0_LSB  
filt1_a1_MSB  
filt1_a1_LSB  
filt1_a2_MSB  
filt1_a2_LSB  
filt2_A0_MSB  
filt2_A0_LSB  
filt2_a1_MSB  
filt2_a1_LSB  
filt2_a2_MSB  
filt2_a2_LSB  
filt3_A0_MSB  
filt3_A0_LSB  
filt3_a1_MSB  
filt3_a1_LSB  
filt3_a2_MSB  
filt3_a2_LSB  
71h 00h  
72h 00h  
73h 00h  
74h 00h  
75h 00h  
76h 00h  
77h 00h  
78h 00h  
79h 00h  
7ah 00h  
7bh 00h  
7ch 00h  
7dh 00h  
7eh 00h  
filt1_A0[7:0]  
filt1_a1[7:0]  
filt1_a2 [7:0]  
filt2_A0[7:0]  
fil2_a1[7:0]  
filt2_a2 [7:]  
filt3_A[7:0]  
filt3_a1[7:0]  
filt3_a2[7:0]  
7fh  
00h  
80h 00h  
81h 00h  
82h 00h  
8.9  
Power-On Reset  
The internal reset is controlled by two sources:  
VBAT Supply  
Serial interface state (CLK, DATA)  
The internal reset is forced if VBAT is low both interface pins (CLK, DATA) are low for more than tPOR_DEB (typ.  
100ms)2. Then device enters shutown mode.  
The reset levels control the stae of all registers. As long as VBAT and CLK/DATA are below their reset thresholds, the  
register contents are set to defau. Access by serial interface is possible once the reset thresholds are exceeded.  
2. Only if shutdwn_enab=1  
www.austriamicrosystems.com/AS3675  
1v3  
66 - 80  
AS3675  
Datasheet - Detailed Description  
Figure 33. Zero Power Device Wakeup block diagram  
AS3675  
#ꢋꢝꢀꢁꢐꢋꢆꢛꢇꢋꢛꢂꢆꢇꢀꢁꢆꢃꢄ  
ꢁꢀꢈꢀꢁꢀꢆꢉꢀ%ꢛꢃꢆ'ꢛꢓ*$ꢛꢊꢔ+  
ꢓ,ꢘꢙ  
ꢚꢀꢁꢋꢛꢜꢋꢝꢀꢁ  
ꢔꢀ ꢂꢉꢀꢛ!ꢃꢑꢀ"#  
ꢓ,ꢘꢙ  
ꢓ,ꢘꢙ  
%&"ꢇ'ꢆ'ꢂ%ꢃ(  
'ꢀ(ꢋ"ꢆꢉꢀ  
ꢇꢂ)ꢀꢁ  
ꢏ)%ꢕꢏꢒꢒ)%  
ꢋꢆ  
ꢓꢔꢔꢅꢕꢙ  
ꢈꢃ%ꢇ%&"ꢇ'ꢝꢆ  
ꢍꢎ  
ꢏꢐꢏꢑꢒ  
ꢍ$  
ꢓ*$  
ꢓ*$  
ꢔꢘꢙꢘ  
ꢔꢘꢙꢘ  
ꢀꢁꢂꢃꢄ  
ꢅꢆꢇꢀꢁꢈꢃꢉꢀ  
ꢊꢋꢌꢂꢉ  
ꢓ*$  
ꢖꢊꢗ  
ꢖꢊꢗ  
 
Table 88. Audio input Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
2.41  
1.38  
Unit  
Overall Power-On  
Reset  
Montor voltage on V2_5powon eset for  
all internal funions.  
VPOR_VBAT  
1.8  
2.15  
V
Reset Level for pins  
CLK, DATA  
VPOR_PERI  
Monitor voltage on pis CLK, DATA  
0.29  
1.0  
V
Reset debounce tim
for pins CLK, DATA  
tPOR_DEB  
tstart  
80  
4
100  
6
120  
8
ms  
ms  
Interface Startup Time  
1. Guaranteed by design - min./max. limits ot production tested  
8.9.1 Reset control register  
Table 89. Overtemp control Regier  
Overtemp control  
This register reads and resets the overtemperature flag.  
Default Access Description  
Addr: 29h  
Bit  
BiName  
Enable Shutdown mode and serial interface reset.  
Serial Interface reset disabled. Device does not  
0
enter Shutdown mode  
shutdwn_enab  
4
0
R/W  
Serial Interface reset enabled, device enters  
shutdown when SCL and SDA remain low for  
min. 120ms  
1
8.10 Temperature Supervision  
An integrated temperature sensor provides over-temperature protection for the AS3675. This sensor generates a flag  
if the device temperature reaches the overtemperature threshold of 140º. The threshold has a hysteresis to prevent  
oscillation effects.  
www.austriamicrosystems.com/AS3675  
1v3  
67 - 80  
AS3675  
Datasheet - Detailed Description  
If the device temperature exceeds the T140 threshold all current sources, the charge pump and the dcdc converter is  
disabled and the ov_temp flag is set. After decreasing the temperature by THYST operation is resumed.  
The ov_temp flag can only be reset by first writing a 1 and then a 0 to the register bit rst_ov_temp.  
Bit ov_temp_on = 1 activates temperature supervision Table 91. It is recommend to leave this bit set (default state).  
Table 90. Overtemperature Detection  
Symbol  
T140  
Parameter  
Condition  
Min  
Typ  
140  
5
Max  
Unit  
ºC  
ov_temp Rising  
Threshold  
THYST  
ov_temp Hysteresis  
ºC  
Table 91. Overtemp control Register  
Overtemp control  
This register reads and resets the overtemperaturflag.  
Default Access Description  
Addr: 29h  
Bit  
Bit Name  
Activates/deactivates device temperture upervision.  
DefaultOff - all other bits are only alid ithis bit is set to 1  
Tmperature supervision is disabled. No reset  
ov_temp_on  
0
1
W
0
1
will be generateithdevice temperature  
exceeds 140ºC  
Tempeature supervision is enabled  
Indicates hat the overtemperature threshold  
has ben reached; this flag is not cleared by an  
erteperature reset. It has to be cleared  
using rst_ov_temp  
ov_temp  
1
2
N/A  
0
R
1
The ov_temp flag is cleared by first setting this bit to 1, and  
then setting this bit to 0.  
rst_ov_temp  
R/W  
8.11 Serial Interface  
The AS3675 is controlled using serial interface pins CLK DATA:  
Figure 34. Serial interface block diagram  
ꢓꢔꢔꢅꢕꢙ  
ꢍꢎ  
ꢏꢐꢏꢑꢒ  
AS3675  
ꢓ  
ꢔꢘꢙꢘ  
ꢔꢘꢙꢘ  
-ꢀꢁꢂꢃꢄ  
ꢅꢆꢇꢀꢁꢈꢃꢉꢀ  
ꢊꢋꢌꢂꢉ  
ꢖꢊꢗ  
ꢖꢊꢗ  
www.austriamicrosystems.com/AS3675  
1v3  
68 - 80  
AS3675  
Datasheet - Detailed Description  
The clock line CLK is never held low by the AS3675 (as the AS3675 does not use clock stretching of the bus).  
Table 92. Serial Interface Timing  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
High Level Input  
Voltage  
VIHI/F  
1.38  
VBAT  
V
Low Level Input  
Voltage  
VILI/F  
0.0  
0.52  
V
Pins DATA and CLK  
VHYSTI/F  
tRISE  
Hysteresis  
Rise Time  
0.1  
V
0
0
1000  
300  
ns  
ns  
ns  
ns  
tFALL  
Fall Time  
tCLK_FILTER  
tDATA_FILTER  
Spike Filter on CLK  
Spike Filter on DATA  
100  
300  
The AS3675 is compatible to the NXP two wire specification http://www.nxp.com/acrobat_downlod/liteature/9398/  
39340011.pdf, Version 2.1, January 2000 for standard and fast mode (no high speed mode) with the ollowing excep-  
tion:  
Data set-up time for fast mode: tSU;DAT=250ns (instead of 100ns rom le 5, p32)  
8.11.1 Serial Interface Features  
Fast Mode Capability (Maximum Clock Frequency is 4z
7-bit Addressing Mode  
Write Formats  
- Single-Byte Write  
- Page-Write  
Read Formats  
- Current-Address Read  
- Random-Read  
- Sequential-Read  
DATA Input Delay and CLK spike filtering by integracomponents  
8.11.2 Device Address Selection  
The serial interface address of the AS3675 has the following address:  
80h – Write Commands  
81h – Read Commands  
Figure 35. Complete Serial Data ransfer  
DATA  
CLK  
8
9
1-7  
8
9
1-7  
1-7  
8
9
P
S
Stop  
Condition  
Start  
Condition  
Address R/W  
ACK  
Data  
ACK  
Data  
ACK  
Serial Data Transfer Formats  
www.austriamicrosystems.com/AS3675  
1v3  
69 - 80  
AS3675  
Datasheet - Detailed Description  
Definitions used in the serial data transfer format diagrams are listed in the following table:  
Table 93. Serial Data Transfer Byte Definitions  
Symbol  
Definition  
Start Condition after Stop  
Repeated Start  
R/W (AS3675 Slave)  
Note  
S
Sr  
R
R
R
R
R
W
R
R
R
R
R
1 bit  
1 bit  
10000000b (80h).  
10000001b (81h)  
8 bits  
DW  
DR  
Device Address for Write  
Device Address for Read  
Word Address  
WA  
A
Acknowledge  
1 bit  
N
Not Acknowledge  
1 bit  
reg_data  
data (n)  
P
Register Data/Write  
Register Data/read  
Stop Condition  
8 bits  
1 it  
8 bits  
WA++  
Increment Word Address Internally  
ring Acknowledge  
Figure 36. Serial Interface Byte Write  
S
DW  
A
WA  
A
reg_data  
A P  
Writegister  
WA++  
AS3675  
AS367
(e) ceives data  
(= Slavetransmits data  
Figure 37. Serial Interface Page Write  
n
S
DW  
A
WA  
reg_data 1  
A
reg_ta 2  
A
reg_data  
A P  
ister  
WA++  
Write Register  
WA++  
Write Register  
WA++  
AS3675  
AS3675  
(= Slave) receives data  
(= Slave) transmits data  
Byte Write and Page Write formats are usd to rite data to the slave.  
The transmission begins with the START dition, which is generated by the master when the bus is in IDLE state  
(the bus is free). The device-write ddress is followed by the word address. After the word address any number of data  
bytes can be sent to the slave. Thwod address is incremented internally, in order to write subsequent data bytes on  
subsequent address locations.  
For reading data from the slavdevice, the master has to change the transfer direction. This can be done either with a  
repeated START condition ollowed by the device-read address, or simply with a new transmission START followed by  
the device-read adesswhen the bus is in IDLE state. The device-read address is always followed by the 1st register  
byte transmitted frothe slave. In Read Mode any number of subsequent register bytes can be read from the slave.  
The word addess is incremented internally.  
The followng diagrams show the serial read formats supported by the AS3675.  
Fure 38Serial Interface Random Read  
S
DW  
A
WA  
A
Sr  
DR  
A
data  
N P  
Read Register  
WA++  
AS3675  
AS3675  
(= slave) receives data  
(= slave) transmits data  
www.austriamicrosystems.com/AS3675  
1v3  
70 - 80  
AS3675  
Datasheet - Detailed Description  
Random Read and Sequential Read are combined formats. The repeated START condition is used to change the  
direction after the data transfer from the master.  
The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START  
condition is followed by the device-write address and the word address.  
In order to change the data direction a repeated START condition is issued on the 1st CLKpulse after the ACKNOWL-  
EDGE bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmit-  
ter. In this state the slave transmits register data located by the previous received word address vector. The master  
responds to the data byte with a NOT ACKNOWLEDGE, and issues a STOP condition on the bus.  
Figure 39. Serial Interface Sequential Read  
n
S
DW  
A
WA  
A
Sr  
DR  
A
data 1  
A
data 2  
...  
A
data  
N
Read Register  
WA++  
AS3675  
AS3675  
(= slave) receives data  
(= slave) transmits data  
Sequential Read is the extended form of Random Read, as multiple register-data bytes are subsquetly transferred.  
In contrast to the Random Read, in a sequential read the transfered register-data bytes are repondd by an acknowl-  
edge from the master. The number of data bytes transferred in oe sequnce is unlimited (considthe behavior of the  
word-address counter). To terminate the transmission the master as to send a NOT ACKOWLEDGE following the  
last data byte and subsequently generate the STOP cond
Figure 40. Serial Interface Current Address Read  
n
S
DR  
A
data 1  
A
data 2  
A
data  
N P  
Read Register  
WA++  
Read Register  
WA++  
Read Register  
WA++  
AS3675  
(= slave) eceives data  
AS3675  
(= e) transmits data  
To keep the access time as small as possible, this formws a read access without the word address transfer in  
advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read  
address.  
Analogous to Random Read, a single byte ansfer is terminated with a NOT ACKNOWLEDGE after the 1st register  
byte. Analogous to Sequential Read an unlimid number of data bytes can be transferred, where the data bytes must  
be responded to with an ACKNOWLEDGE om the master.  
For termination of the transmission the mter sends a NOT ACKNOWLEDGE following the last data byte and a sub-  
sequent STOP condition.  
8.12 Operating Modes  
If the voltage on CLK anDATA is less than 1V (for > tPOR_DEB), the AS3675 is in shutdown mode and its current con-  
sumption is minimized (IBAT = ISHUTDOWN) and all internal registers are reset to their default values.  
If the voltage at CLor DATA rises above 1V, the AS3675 serial interface is enabled and the AS3675 and the standby  
mode is selected. The AS3675 is switched automatically from standby mode (IBAT = ISTANBY) into normal mode (IBAT =  
IACTIVE) and bck, one of the following blocks are activated:  
Chapump  
Step p rgulator  
ny current sink  
ADC conversion started  
PWM active  
Pattern mode active.  
If any of these blocks are already switched on the internal oscillator is running and a write instruction to the registers is  
directly evaluated within 1 internal CLK cycle (typ. 1µs)  
www.austriamicrosystems.com/AS3675  
1v3  
71 - 80  
AS3675  
Datasheet - Detailed Description  
If all these blocks are disabled, a write instruction to enable these blocks is delayed by 64 CLK cycles (oscillator will  
startup, within max 200µs).  
www.austriamicrosystems.com/AS3675  
1v3  
72 - 80  
AS3675  
Datasheet - Register Map  
9 Register Map  
Table 94. Registermap  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
ldo_ana  
_lpo  
step_up  
_on  
ldo_ana  
_on  
cp_on  
Reg. control  
00h  
00  
curr2_mode  
curr1_mode  
rgb1_mode  
curr12 control  
curr rgb control  
curr3 control1  
curr4 control  
01h 00h  
02h 00h  
03h 00h  
04h 00h  
curr6_mode  
rgb3_mode  
rgb2_mode  
curr31_mode  
curr42_mode  
curr33_mode  
curr32_mode  
curr43_mode  
curr30_mode  
curr41_mode  
gpi_curr  
32_en  
gpi_curr  
30_en  
gpi_curr  
6_en  
gpi_curr  
1_en  
gpi_curr  
g_curr  
gpi_curr  
GPIO output 1  
GPIO signal 1  
05h 00h  
06h 00h  
07h 00h  
31_en  
2_n  
33_en  
gpi_curr  
32_in  
gpi_curr  
30_in  
gpi_curr  
6_n  
gpi_curr  
1_in  
gpi_curr  
31_in  
gpicurr  
2_in  
gpi_curr  
33_in  
LDO ANA1  
Voltage  
ldo_ana_voltage  
curr1_current  
Curr1 current  
Curr2 current  
Rgb1 current  
Rgb2 current  
Rgb3 current  
Curr3x strobe  
Curr3x preview  
Curr3x other  
09h 00h  
0Ah 00h  
0Bh 00h  
0Ch 00h  
0Dh 00h  
0Eh 00h  
0Fh 00h  
10h 00h  
curr2_current  
rgb1_crren
rgcurrent  
rg3_urrent  
curr3x_strobe  
curr3x_preview  
curr3x_other  
Curr3 strobe  
control  
stobe_timing  
strobe_mode  
strobe_ctrl  
11h 00h  
12h 00h  
curr3x_s  
trobe_hi  
gh  
preview_  
off_after  
strobe  
strobe_p  
in  
preview_ctrl  
Curr3 control2  
curr41_current  
Curr41 current  
Curr42 current  
Curr43 current  
Pwm control  
pwm code  
13h 00h  
14h 00h  
15h 00
16h 0h  
1h 00h  
curr42_current  
curr43_current  
pwm_dim_speed  
pwm_code  
curr33_p curr32_p curr31_p curr30_p softdim_  
pwm_dim_mode  
pattern_delay  
pattern_  
color  
Pattern control  
18h 00h  
attern attern attern attern pattern  
pattern_data[7:0]  
Pattern dat0  
Pattdaa1  
attern data2  
Pattern data3  
GPIO control  
19h 00h  
1Ah 00h  
1Bh 00h  
1Ch 00h  
1Eh 44h  
pattern_data[15:8]1111  
pattern_data[23:16]1111  
pattern_data[31:24]1111  
gpio_pulls  
gpio_mode  
gpio_low  
_curr  
GPIO driving cap 20h 00h  
www.austriamicrosystems.com/AS3675  
1v3  
73 - 80  
AS3675  
Datasheet - Register Map  
Table 94. Registermap  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
step_up  
_frequ  
step_up_vtuning  
step_up_fb  
DCDC control1  
DCDC control2  
21h 00h  
Step  
up_lowc  
ur  
step_up curr6_pr curr2_pr curr1_pr  
step_up  
_prot  
step_up  
_res  
skip_fast  
22h 04h  
23h 00h  
_fb_auto ot_on  
ot_on  
ot_on  
cp_start  
_deboun  
ce  
cp_auto  
_on  
cp_mode_switchin  
g
cp_mode  
cp_clk  
CP control  
rgb3_on rgb2_on rgb1_on curr33_o curr32_o curr31_o cur30_
CP mode Switch1 24h 00h  
CP mode Switch2 25h 00h  
_cp  
_cp  
_cp  
n_cp  
n_cp  
n_cp  
ncp  
curr6_on  
_cp  
curr43_o curr42_o curr41_o cur2_on curr1_on  
n_cp  
n_cp  
n_cp  
_c
_cp  
start_co  
nversion  
adc_on  
adc_select  
D9:D3  
ADC_control  
26h 03h  
result_n  
ot_ready  
ADC_MSB result 27h  
ADC_LSB result 28h  
NA  
NA  
D2:D0  
shutdwn  
_enab  
rst_ov_t  
emp  
ov_temp  
_on  
ov_temp  
Overtemp control 29h 01h  
curr6_lo rgb3_low rgb2_low rgb1_low curr33_l curr32_l curr31_l curr30_l  
Curr low voltage  
2Ah NA  
status1  
w_v  
_
_v  
_v  
w_v  
ow_v  
ow_v  
ow_v  
curr_l curr42_l curr41_l curr2_lo curr1_lo  
Curr low voltage  
2Bh NA  
status2  
w_v  
ow_v  
ow_v  
w_v  
w_v  
pattern_  
slow  
pattern_  
delay2  
gpio current  
curr6 current  
2Ch 00h  
2Fh 00h  
curr6_current  
adder_current1  
(cn be enabled for CURR30, CURR1, RGB1, CURR41)  
Adder Current 1 30h 00h  
Adder Current 2 31h 00h  
Adder Current 3 32h 00h  
adder_current2  
(can be enabled for CURR31, CURR2, RGB2, CURR42)  
adder_current3  
(can be enabled for CURR32, CURR6, RGB3, CURR43)  
curr43_a curr42_a curr41_a rgb3_ad rgb2_ad rgb1_ad  
dder dder dder der der der  
Adder Enable 1  
Adder Enable 2  
33h 00h  
34h 00h  
curr33_a curr32_a curr31_a curr30_a curr6_ad curr2_ad curr1_ad  
dder  
dder  
dder  
dder  
der  
der  
der  
sub_en4 sub_en3 sub_en2 sub_en1  
Subtract Enable 3h 00h  
ASIC ID1  
3Eh CBh  
3Fh 5Xh  
40h 00h  
41h 00h  
42h 00h  
43h 00h  
1
0
1
1
0
0
0
1
1
0
1
1
ASIC ID
revision  
curr30_current  
curr31_current  
curr32_current  
curr33_current  
Curr3rrent  
Curr31 current  
Cur32 current  
Curr33 current  
freq_mo  
de  
aud_buf  
_on  
audio_speed  
audio_color  
Audio Control  
46h 00h  
www.austriamicrosystems.com/AS3675  
1v3  
74 - 80  
AS3675  
Datasheet - Register Map  
Table 94. Registermap  
Register  
Content  
b4 b3  
agc_ctrl  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
audio_di audio_m  
s_start an_start  
audio_gain  
Audio input  
Audio output  
GPIO output 2  
GPIO signal 2  
47h 00h  
curr4x_a rgbx_au curr126_  
ud_on d_on aud_on  
aud_amplitude  
48h 00h  
50h 00h  
51h 00h  
gpi_curr gpi_curr gpi_curr gpi_rgb3 gpi_rgb2 gpi_rgb1  
43_en 42_en 41_en _en _en _en  
gpi_en gpio_out  
gpi_ in gpio _i
gpi_curr gpi_curr gpi_curr gpi_rgb3 gpi_rgb2 gpi_rgb1  
43_in 42_in 41_in _in _in _in  
adder_current4  
(can be enabled for CURR33)  
Adder Current 4 52h 00h  
curr33_aud_src[1:0 curr32_aud_src[1:0 curr31_aud_src[1:0 curr0_aud_src[1:0  
CURR3x audio  
53h 00h  
source  
]
]
]
]
pattern_  
end  
Pattern End  
54h 00h  
filt3_pe[1:0
filt2_type[1:0]  
filt1_type[1:0]  
filt_type  
70h 00h  
71h 00h  
72h 00h  
73h 00h  
74h 00h  
75h 00h  
76h 00h  
77h 00h  
78h 00h  
79h 00h  
7ah 00h  
7bh 00h  
7ch 00h  
7dh 00h  
7eh 00h  
filt1_A0[11:8]  
filt1_A0_MSB  
filt1_A0_LSB  
filt1_a1_MSB  
filt1_a1_LSB  
filt1_a2_MSB  
filt1_a2_LSB  
filt2_A0_MSB  
filt2_A0_LSB  
filt2_a1_MSB  
filt2_a1_LSB  
filt2_a2_MSB  
filt2_a2_LSB  
filt3_A0_MSB  
filt3_A0_LSB  
filt3_a1_MSB  
filt3_a1_LSB  
filt3_a2_MSB  
filt3_a2_LSB  
filt1_A0[7:0]  
filt1_a1[11:8]  
filt1_a2[11:8]  
filt2_A0[11:8]  
filt2_a1[11:8]  
filt2_a2[11:8]  
filt3_A0[11:8]  
filt3_a1[11:8]  
filt3_a2[11:8]  
filt1_a1[:0]  
ilt1_a2 [7:0]  
filt2_A0[7:0]  
filt2_a1[7:0]  
filt2_a2 [7:0]  
filt3_A0[7:0]  
filt3_a1[7:0]  
filt3_a2[7:0]  
7fh  
00h  
8000
8h 00h  
82h 00h  
Note: If writinto register, write 0 to unused bits  
ite to read only bits will be ignored  
yellow color = read only  
www.austriamicrosystems.com/AS3675  
1v3  
75 - 80  
AS3675  
Datasheet - External Components  
10 External Components  
Table 95. External Components List  
Value  
tol.  
(min.)  
Rating  
(max)  
Package  
(min.)  
Part Number  
Min  
Max  
Notes  
Typ  
Ceramic, X5R (V2_5 output)  
(e.g. Taiyo Yuden  
C1  
1µF  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
6.3V  
6.3V  
6.3V  
6.3V  
.3V  
6.3V  
25V  
0402  
0402  
002  
0402  
0403  
0402  
0402  
0402  
JMK105BJ105KV-F)  
Ceramic, X5R (VBAT) (e.g.  
Taiyo Yuden JMK105BJ105KV-  
F)  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
1µF  
1µF  
Ceramic, X5R (Charge Pump)  
(e.g. Taiyo Yuden  
JMK105BJ105KV-F)  
Ceramic, X5R (Charge Pup)  
(e.g. Taiyo Yuden  
1µF  
JMK105BJ105KV-F)  
Ceramic, X5R (Charge ump  
Output) (e.g. TaiyYuden  
JMK107BJ225MAT)  
2.2µF  
1µF  
Ceramic, X5R (Step Up DCDC  
input) (e.g. Taiyo Yuden  
JM105BJ105KV-F)  
Cerm, X5R (Step Up DCDC  
eedbck, 150pF for over  
voltage protection)  
1.5nF  
15nF  
Ceamic, X5R (Step Up DCDC  
Feedback, 1.5nF for over  
voltage protection)  
6.
Ceramic, X5R, X7R (Step Up  
DCDC output)  
3.2x1.6x  
1.25mm  
C9  
4.7µF  
±20
±20%  
25V  
(e.g. Taiyo Yuden  
TMK316BJ475KG)  
Ceramic, X5R (Vana1 output)  
(e.g. Taiyo Yuden  
C10  
2.2µF  
6.3V  
0403  
JMK107BJ225MA-T)  
only required if LDO is used  
R1  
R2  
100mΩ  
1MΩ  
±5%  
±1%  
Shunt Resistor  
0603  
0201  
Step Up DC/DC Converter  
Voltage Feedback  
Step Up DC/DC Converter  
Voltage Feedback - not  
required for over voltage  
protection  
R3  
00kΩ  
±1%  
±1%  
0201  
DATA Pullup resistor – usually  
already inside master  
R4  
R5  
1-10kΩ  
0201  
0201  
CLKPullup resistor – usually  
already inside master  
Recommended Type:  
Murata LQH3NPN100NJ0,  
Panasonic ELLSFG100MA  
or TDK VLF3012A  
3x3x1.2m  
m
L1  
10µH  
±20%  
Integrated NMOS and Schottky MicroFET  
Q1 (+ D1)  
D2:D14  
FDFMA3N109  
LED  
diode  
2x2mm  
As required by application  
www.austriamicrosystems.com/AS3675  
1v3  
76 - 80  
AS3675  
Datasheet - Package Drawings and Markings  
11 Package Drawings and Markings  
Figure 41. WL-CSP30 3x2.5mm 6x5 Balls Package Drawing  
ꢙꢅꢚꢃꢕꢛ  
ꢜꢚꢔꢅꢝꢑꢉꢁꢋ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢃꢈꢉꢊꢋꢁꢌꢍꢊꢎ  
ꢏꢁꢉꢉꢁꢐꢃꢄꢅꢆꢇꢃꢈꢏꢑꢒꢒꢃꢓꢅꢔꢆꢎ  
#
" !     
 
!
"
#
$
$
3675  
<Code>  
 
!
"
#
$
$
#
"
!
 
Note:  
Line 1:  
Line 2:  
Line 3:  
austriamicrosystems logo  
3675  
<Code>  
Encode datecode 4 characters  
Figure 42. WL-CSP30 3x2.5mm 6x5 Balls Detail Dimensions  
ꢜꢐꢝꢄꢒꢓꢔꢕꢄꢖꢑ !ꢐ"# ꢛ  
ꢏꢐꢊꢄꢒꢕꢄꢖꢏꢗꢘꢘꢄꢙꢓꢚꢔꢛ  
ꢙꢓꢚꢔꢄꢒꢓꢔꢕ  
ꢀꢃꢁ ꢈꢃꢁ  
ꢅꢆꢇ'ꢁ ꢅꢆꢇꢈꢁ  
$ꢓ%ꢄ&'  
(%ꢚꢓ)ꢗꢑꢐ!  
&ꢙꢀꢂꢎꢃꢆ&ꢙꢀꢂꢎꢂ  
ꢈꢌꢈꢍꢃ  
ꢉꢊ  
ꢈꢌꢈꢍꢃ  
ꢉꢊ  
ꢉꢊ  
ꢃꢁꢁꢉꢊ  
ꢃꢁꢁꢉꢊ  
ꢃꢁꢁꢉꢊ  
ꢃꢁꢁꢉꢊ  
ꢉꢊ  
ꢉꢊ  
&ꢙꢀꢂꢌꢎ  
&'  
ꢏ'  
*'  
+'  
,'  
&ꢈ  
ꢏꢈ  
*ꢈ  
+ꢈ  
,ꢈ  
&ꢀ  
ꢏꢀ  
*ꢀ  
+ꢀ  
,ꢀ  
&ꢋ  
ꢏꢋ  
*ꢋ  
+ꢋ  
,ꢋ  
ꢏꢃ  
*ꢃ  
+ꢃ  
,ꢃ  
&ꢂ  
ꢏꢂ  
*
+ꢂ  
,ꢂ  
ꢏꢂ  
*ꢂ  
+ꢂ  
,ꢂ  
&ꢃ  
&ꢋ  
ꢏꢋ  
*ꢋ  
+ꢋ  
,ꢋ  
&ꢀ  
ꢏꢀ  
*ꢀ  
+ꢀ  
,ꢀ  
&ꢈ  
ꢏꢈ  
*ꢈ  
+ꢈ  
,ꢈ  
&'  
ꢏ'  
*'  
+'  
,'  
ꢏꢃ  
*ꢃ  
+ꢃ  
,ꢃ  
ꢉꢊ  
4ꢀ  
ꢀꢁꢂꢃꢈꢁꢉꢊ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢂꢁꢁꢄꢅꢆꢇꢀꢁꢉꢊ  
ꢏꢗꢘꢘ-ꢄ&ꢀꢇ&ꢂ.ꢄꢏꢀꢇꢍꢍꢍꢄꢑꢐꢄ,ꢀꢇ,ꢂꢄꢗ!ꢔꢄꢝꢓ%ꢇ)ꢐꢊꢝꢗꢑꢓ/ꢘꢔ  
ꢑꢐꢄ&ꢙꢀꢂꢌꢎ0ꢄꢄꢗꢄ-ꢓ%#ꢘꢔꢄ$*ꢏꢄ)ꢗ%ꢄ"-ꢔꢄꢑ ꢔꢄꢓꢚꢔ%ꢑꢓ)ꢗꢘ  
ꢘꢗ1ꢐ"ꢑꢄ2ꢐ!ꢄ&ꢙꢀꢂꢌꢎꢄꢗ%ꢚꢄ&ꢙꢀꢂꢎꢃꢆꢎꢂꢄꢗ%ꢚꢄ-ꢐꢘꢚꢔ!ꢄ&ꢙꢀꢂꢌꢎ  
ꢐ!ꢄ&ꢙꢀꢂꢎꢃꢆꢎꢂꢄꢚꢔꢝꢔ%ꢚꢓ%#ꢄꢐ%ꢄꢑ ꢔꢄ2"%)ꢑꢓꢐ%-ꢄ!ꢔ3"ꢓ!ꢔꢚ  
www.austriamicrosystems.com/AS3675  
1v3  
77 - 80  
AS3675  
Datasheet - Package Drawings and Markings  
11.1 Tape & Reel Information  
Figure 43. Tape & Reel Dimensions  
www.austriamicrosystems.com/AS3675  
1v3  
78 - 80  
AS3675  
Datasheet - Ordering Information  
12 Ordering Information  
The devices are available as the standard products shown in Table 96.  
Table 96. Ordering Information  
Model  
Description  
Delivery Form  
Package  
AS3675  
30pin WL-CSP  
(3x2.5mm)  
RoHS compliant / Pb-Free  
Wafer Level Chip Scale Package,  
size 3x2.5mm, 6x5 balls, 0.5mm pitch,  
Pb-Free  
AS3675-ZWLT  
Tape & Reel  
Note: AS3675-ZWLT  
AS3675-  
Z
Temperature Range: -30ºC - 85ºC  
WL Package: Wafer Level Chip Scale Package (WL-CSP) 3x2.5mm  
Delivery Form: Tape & Reel  
T
www.austriamicrosystems.com/AS3675  
1v3  
79 - 80  
AS3675  
Datasheet - Ordering Information  
Copyrights  
Copyright © 1997-2010, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, trans-  
lated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regadin
the information set forth herein or regarding the freedom of the described devices from patent infringement. autria
crosystems AG reserves the right to change specifications and prices at any time and without notice. Therefre, prior  
to designing this product into a system, it is necessary to check with austriamicrosystems AG for curent information.  
This product is intended for use in normal commercial applications. Applications requiring extendetemperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical le-support or life-  
sustaining equipment are specifically not recommended without adional processing by auramrosystems AG for  
each application. For shipments of less than 100 parts the manufcturiflow might show deviaons from the standard  
production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems Aelieved to be correct and acurate. However, austriami-  
crosystems AG shall not be liable to recipient or any third pfor any damages, cluding but not limited to personal  
injury, property damage, loss of profits, loss of use, interruptn of business or iirecspecial, incidental or conse-  
quential damages, of any kind, in connection with or arising out of the furnisng, prformance or use of the technical  
data herein. No obligation or liability to recipient oy hird party shall e or ow out of austriamicrosystems AG  
rendering of technical or other services.  
Contact Informati
Headquarters  
austriamicrosstems AG  
Tobelbarasse 30  
Shloss emstätten  
A-841 Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com/AS3675  
1v3  
80 - 80  

相关型号:

AS3675-ZWLT

Flexible Lighting Management Unit
AMSCO

AS3676

Flexible Lighting Management
AMSCO

AS3676-ZWLT

Flexible Lighting Management
AMSCO

AS3677

Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver
AMSCO

AS3677-ZWLT

Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver
AMSCO

AS3681

Power AND Lighting Management Unit
AMSCO

AS3682

480mA Camera Lighting Management Unit
AMSCO

AS3682-EA1

480mA Camera Lighting Management Unit
AMSCO

AS3682-EA2

480mA Camera Lighting Management Unit
AMSCO

AS3682-EB1

480mA Camera Lighting Management Unit
AMSCO

AS3682-EB2

480mA Camera Lighting Management Unit
AMSCO

AS3682-PDM

480mA Camera Lighting Management Unit
AMSCO