AS3932 [AMSCO]

3D Low Frequency Wakeup Receiver; 3D低频唤醒接收器
AS3932
型号: AS3932
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

3D Low Frequency Wakeup Receiver
3D低频唤醒接收器

文件: 总33页 (文件大小:1055K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS3932  
3D Low Frequency Wakeup Receiver  
Wakeup sensitivity 100 µVRMS (typ.)  
Adjustable sensitivity level  
1 General Description  
The AS3932 is a 3-channel low power ASK receiver that is able to  
generate a wakeup upon detection of a data signal which uses a LF  
carrier frequency between 110 - 150 kHz. The integrated correlator  
can be used for detection of a programmable 16-bit wakeup pattern.  
The device can operate using one, two, or three active channels.  
Highly resistant to false wakeups  
False wakeup counter  
Periodical forced wakeup supported (1s – 2h)  
Low power listening modes  
The AS3932 provides a digital RSSI value for each active channel, it  
supports a programmable data rate and Manchester decoding with  
clock recovery. The AS3932 offers a real-time clock (RTC), which is  
either derived from a crystal oscillator or the internal RC oscillator.  
Current consumption in 3-channel listening mode 1.7 µA (typ.)  
Data rate adjustable from 0.5- 4 kbps (Manchester)  
Manchester decoding with clock recovery  
Digital RSSI values available for each channel  
Dynamic range 64dB  
The programmable features of AS3932 enable to optimize its  
settings for achieving a longer distance while retaining a reliable  
wakeup generation. The sensitivity level of AS3932 can be adjusted  
in presence of a strong field or in noisy environments.  
5 bit RSSI step (2dB per step)  
The device is available in 16 pin TSSOP and QFN 4x4 16LD  
packages.  
RTC based on 32kHz XTAL, RC-OSC, or External Clock  
Operating temperature range -40 to +85ºC  
Operating supply voltage 2.4 - 3.6V (TA = 25ºC)  
Bidirectional serial digital interface (SDI)  
Package option 16 pin TSSOP, QFN 4x4 16LD  
2 Key Features  
3-channel ASK wakeup receiver  
Carrier frequency range 110 - 150 kHz  
One, two, or three channel operation  
Reliable 1-, 2- or 3-D wakeup pattern detection  
Programmable wakeup pattern (16bits)  
Doubling of wakeup pattern supported  
Wakeup without pattern detection supported  
3 Applications  
The AS3932 is ideal for Active RFID tags, Real-time location  
systems, Operator identification, Access control, and Wireless  
sensors.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
1 - 33  
AS3932  
Data Sheet - Applications  
Figure 1. AS3932 Typical Application Diagram with Crystal Oscillator  
VCC  
VCC  
XIN  
CS  
CL_DAT  
DAT  
CL  
CBAT  
XTAL  
TRANSMITTER  
TX  
XOUT  
WAKE  
SCL  
LF1P  
LF2P  
LF3P  
LFN  
AS3932  
SDO  
SDI  
GND  
VSS  
Figure 2. AS3932 Typical Application Diagram with RC Oscillator  
VCC  
VCC  
XIN  
CS  
CL_DAT  
DAT  
CBAT  
XOUT  
LF1P  
LF2P  
LF3P  
LFN  
TRANSMITTER  
TX  
WAKE  
SCL  
AS3932  
SDO  
SDI  
GND  
VSS  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
2 - 33  
AS3932  
Data Sheet - Applications  
Figure 3. AS3932 Typical Application Diagram with Clock from External Source  
VCC  
CBAT  
VCC  
XIN  
CS  
CL_DAT  
DAT  
EXTERNAL CLOCK  
R
C
XOUT  
TRANSMITTER  
WAKE  
SCL  
LF1P  
LF2P  
LF3P  
LFN  
AS3932  
TX  
SDO  
SDI  
GND  
VSS  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
3 - 33  
AS3932  
Data Sheet - Contents  
Contents  
1 General Description.................................................................................................................................................................... 1  
2 Key Features ............................................................................................................................................................................... 1  
3 Applications ................................................................................................................................................................................ 1  
4 Pin Assignments......................................................................................................................................................................... 5  
4.1 TSSOP Package ......................................................................................................................................................................................5  
4.1.1 Pin Descriptions............................................................................................................................................................................5  
4.2 QFN Package........................................................................................................................................................................................... 6  
4.2.1 Pin Descriptions............................................................................................................................................................................6  
5 Absolute Maximum Ratings....................................................................................................................................................... 7  
6 Electrical Characteristics........................................................................................................................................................... 8  
7 Typical Operating Characteristics........................................................................................................................................... 10  
8 Detailed Description ..................................................................................................................................................................11  
8.1 Block Diagram ........................................................................................................................................................................................ 11  
8.2 Operating Modes.................................................................................................................................................................................... 12  
8.2.1 Power Down Mode ..................................................................................................................................................................... 12  
8.2.2 Listening Mode ........................................................................................................................................................................... 12  
8.2.3 Preamble Detection / Pattern Correlation................................................................................................................................... 13  
8.2.4 Data Receiving ........................................................................................................................................................................... 13  
8.3 System and Block Specification ............................................................................................................................................................. 13  
8.3.1 Register Table ............................................................................................................................................................................ 13  
8.3.2 Register Table Description and Default Values.......................................................................................................................... 14  
8.3.3 Serial Data Interface (SDI).......................................................................................................................................................... 15  
8.4 Channel Amplifier and Frequency Detector............................................................................................................................................ 18  
8.4.1 Frequency Detector / AGC ......................................................................................................................................................... 18  
8.4.2 Antenna Damper......................................................................................................................................................................... 19  
8.5 Channel Selector / Demodulator / Data Slicer........................................................................................................................................ 20  
8.6 Correlator................................................................................................................................................................................................ 21  
8.7 Wakeup Protocol - Carrier Frequency 125 kHz...................................................................................................................................... 22  
8.7.1 Without Pattern Detection (Manchester decoder disabled) ........................................................................................................ 23  
8.7.2 Single Pattern Detection (Manchester decoder disabled) .......................................................................................................... 23  
8.7.3 Single Pattern Detection (Manchester decoder enabled)........................................................................................................... 25  
8.8 False Wakeup Register .......................................................................................................................................................................... 25  
8.9 Real Time Clock (RTC)........................................................................................................................................................................... 26  
8.9.1 Crystal Oscillator......................................................................................................................................................................... 27  
8.9.2 RC-Oscillator ..............................................................................................................................................................................27  
8.9.3 External Clock Source ................................................................................................................................................................ 28  
8.10 Channel Selection in Scanning Mode and ON/OFF Mode................................................................................................................... 28  
9 Package Drawings and Markings............................................................................................................................................ 29  
10 Ordering Information.............................................................................................................................................................. 33  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
4 - 33  
AS3932  
Data Sheet - Pin Assignments  
4 Pin Assignments  
4.1 TSSOP Package  
Figure 4. Pin Assignments 16 pin TSSOP Package  
1
2
3
CS  
16  
15  
CL_DAT  
DAT  
SCL  
SDI  
SDO  
VCC  
WAKE  
14  
13  
12  
4
5
6
7
AS3932  
VSS  
XOUT  
GND  
LF3P  
LF2P  
11  
10  
9
XIN  
LFN  
LF1P  
8
4.1.1 Pin Descriptions  
Table 1. Pin Descriptions 16 pin TSSOP Package  
Pin  
Number  
Pin Name  
Pin Type  
Description  
CS  
SCL  
1
2
DI  
DI  
Chip select  
SDI interface clock  
SDI data input  
SDI  
3
DI  
SDO  
VCC  
4
DO_T  
S
SDI data output (tristate when CS is low)  
Positive supply voltage  
5
GND  
LF3P  
LF2P  
LF1P  
LFN  
6
S
Negative supply voltage  
Input antenna channel three  
Input antenna channel two  
Input antenna channel one  
Common ground for antenna one, two and three  
Crystal oscillator input  
7
AIO  
AIO  
AIO  
AIO  
AIO  
AIO  
S
8
9
10  
11  
12  
13  
14  
15  
16  
XIN  
XOUT  
VSS  
Crystal oscillator output  
Substrate  
WAKE  
DAT  
DO  
DO  
DO  
Wakeup output IRQ  
Data output  
CL_DAT  
Manchester recovered clock  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
5 - 33  
AS3932  
Data Sheet - Pin Assignments  
4.2 QFN Package  
Figure 5. Pin Assignments QFN 4x4 16LD Package  
16  
13  
15  
14  
LF3P  
1
2
12 SCL  
LF2P  
LF1P  
LFN  
CS  
11  
10  
9
AS3932  
3
4
CL_DAT  
DAT  
8
6
5
7
4.2.1 Pin Descriptions  
Table 2. Pin Descriptions QFN 4x4 16LD Package  
Pin  
Pin Name  
Pin Type  
Description  
Number  
LF3P  
LF2P  
LF1P  
LFN  
1
2
AIO  
AIO  
AIO  
AIO  
AIO  
AIO  
S
Input antenna channel three  
Input antenna channel two  
Input antenna channel one  
3
4
Common ground for antenna one, two and three  
Crystal oscillator input  
Crystal oscillator output  
Substrate  
XIN  
5
XOUT  
VSS  
6
7
WAKE  
DAT  
8
DO  
DO  
DO  
DI  
Wakeup output IRQ  
9
Data output  
CL_DAT  
CS  
10  
11  
12  
13  
14  
15  
16  
Manchester recovered clock  
Chip select  
SCL  
DI  
SDI interface clock  
SDI  
DI  
SDI data input  
SDO  
VCC  
DO_T  
S
SDI data output (tristate when CS is low)  
Positive supply voltage  
Negative supply voltage  
GND  
S
PIN Types:  
S: supply pad  
AIO: analog I/O  
DI: digital input  
DO: digital output  
DO_T: digital output / tristate  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
6 - 33  
AS3932  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only. Functional operation of the  
device at these or any other conditions beyond those indicated in Section 6 Electrical Characteristics on page 8 is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
DC supply voltage (VDD)  
Min  
-0.5  
-0.5  
-100  
±2  
Max  
5
Units  
V
Notes  
Input pin voltage (VIN)  
5
V
Input current (latch up immunity) (ISOURCE)  
Electrostatic discharge (ESD)  
100  
mA  
kV  
Norm: Jedec 78  
Norm: MIL 883 E method 3015 (HBM)  
Total power dissipation  
(all supplies and outputs)  
(Pt)  
0.07  
mW  
Storage temperature (Tstrg  
)
-65  
5
150  
260  
85  
ºC  
ºC  
%
Norm: IPC/JEDEC J-STD-020C1  
Package body temperature (Tbody  
)
Humidity non-condensing  
1. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020C “Moisture/Reflow Sensitivity  
Classification for Nonhermetic Solid State Surface Mount Devices”.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
7 - 33  
AS3932  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
Table 4. Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Operating Conditions  
AVDD  
AVSS  
Tamb  
Positive supply voltage  
Negative supply voltage  
Ambient temperature  
2.4  
0
3.6  
0
V
V
-40  
85  
ºC  
DC/AC Characteristics for Digital Inputs and Outputs  
CMOS Input  
0.58 *  
0.7 *  
0.83 *  
VIH  
VIL  
High level input voltage  
V
VDD  
VDD  
VDD  
0.125 *  
VDD  
0.2 *  
VDD  
0.3 *  
DVDD  
Low level input voltage  
Input leakage current  
V
ILEAK  
100  
nA  
CMOS Output  
VDD -  
0.4  
VOH  
High level output voltage  
With a load current of 1mA  
V
VSS +  
VOL  
CL  
Low level output voltage  
Capacitive load  
With a load current of 1mA  
V
0.4  
For a clock frequency of 1 MHz  
400  
pF  
Tristate CMOS Output  
VDD -  
0.4  
VOH  
High level output voltage  
With a load current of 1mA  
V
VSS +  
VOL  
IOZ  
Low level output voltage  
Tristate leakage current  
With a load current of 1mA  
to DVDD and DVSS  
V
0.4  
100  
nA  
Table 5. Electrical System Specifications  
Symbol  
Input Characteristics  
Rin  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Input Impedance  
In case no antenna damper is set (R1<4>=0)  
2
M Ohm  
kHz  
Fmin  
Minimum Input Frequency  
Maximum Input Frequency  
110  
150  
Fmax  
kHz  
Current Consumption  
IPWD  
Power Down Mode  
400  
2.7  
800  
nA  
Current Consumption in  
standard listening mode with  
one active channel and RC-  
oscillator as RTC  
I1CHRC  
I2CHRC  
I3CHRC  
µA  
Current Consumption in  
standard listening mode with  
two active channels and RC-  
oscillator as RTC  
4.2  
5.7  
µA  
µA  
Current Consumption in  
standard listening mode with  
three active channels and RC-  
oscillator as RTC  
8.3  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
8 - 33  
AS3932  
Data Sheet - Electrical Characteristics  
Table 5. Electrical System Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Current Consumption in  
scanning mode with three  
active channels and RC-  
oscillator as RTC  
I3CHSCRC  
2.7  
µA  
Current Consumption in ON/  
OFF mode with three active  
channels and RC-oscillator as  
RTC  
11% Duty Cycle  
50% Duty Cycle  
1.7  
I3CHOORC  
I3CHXT  
IDATA  
µA  
µA  
µA  
3.45  
Current Consumption in  
standard listening mode with  
three active channels and  
crystal oscillator as RTC  
6.5  
8.3  
8.9  
12  
Current Consumption in  
Preamble detection / Pattern  
correlation / Data receiving  
mode (RC-oscillator)  
With 125 kHz carrier frequency and 1 kbps  
data-rate. No load on the output pins.  
Input Sensitivity  
With 125 kHz carrier frequency, chip in default  
mode, 4 half bits burst + 4 symbols preamble  
and single preamble detection  
Input Sensitivity on all  
channels  
SENS  
100  
µVrms  
µs  
Channel Settling Time  
TSAMP  
Amplifier settling time  
250  
Crystal Oscillator  
FXTAL  
Frequency  
Start-up Time  
Crystal dependent  
Crystal dependent  
32.768  
kHz  
s
TXTAL  
1
IXTAL  
Current consumption  
1
1
µA  
External Clock Source  
IEXTCL  
RC Oscillator  
FRCNCAL  
Current consumption  
µA  
Frequency  
Frequency  
If no calibration is performed  
27  
31  
32.768  
32.768  
42  
kHz  
kHz  
If calibration with 32.768 kHz reference signal  
is performed  
FRCCAL32  
34.5  
Maximum achievable frequency after  
calibration  
FRCCALMAX  
FRCCALMIN  
TCALRC  
Frequency  
Frequency  
35  
30  
kHz  
kHz  
Minimum achievable frequency after calibration  
Periods of  
reference  
clock  
Calibration time  
65  
IRC  
Current consumption  
200  
nA  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
9 - 33  
AS3932  
Data Sheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
Figure 6. Sensitivity over Voltage and Temperature  
Figure 7. Sensitivity over RSSI  
1000000  
120  
95 o  
C
C
100000  
10000  
1000  
100  
100  
80  
60  
40  
20  
0
27 o  
-40 o  
C
10  
1
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
2.4  
3
Supply Voltage [V]  
3.6  
RSSI [dB]  
Figure 8. RC-Osc Frequency over Voltage (calibr.)  
Figure 9. RC-Osc Frequency over Temperature (calibr.)  
34.5  
34.5  
34  
34  
33.5  
33  
33.5  
33  
32.5  
32  
32.5  
32  
31.5  
31  
31.5  
31  
-36 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Operating Temperature [oC]  
Supply Voltage [V]  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
10 - 33  
AS3932  
Data Sheet - Detailed Description  
8 Detailed Description  
The AS3932 is a three-dimensional low power low-frequency wakeup receiver. The AS3932 is capable to detect the presence of an inductive  
coupled carrier and extract the envelope of the On-Off-Keying (OOK) modulated carrier. In case the carrier is Manchester coded the clock is  
recovered from the transmitted signal and the data can be correlated with a programmed pattern. If the detected pattern corresponds to the  
stored one a wake-up signal (IRQ) is risen up. The pattern correlation can be bypassed in case and the wake-up detection is based only on the  
frequency detection.  
The AS3932 is made up by three independent receiving channels, one envelop detector, one data correlator, one Manchester decoder, 8  
programmable registers with the main logic and a real time clock.  
The digital logic can be accessed by an SPI. The real time clock can be based on a crystal oscillator or on an internal RC one. In case the  
second is used to improve its accuracy a calibration can be performed.  
8.1 Block Diagram  
Figure 10. Block Diagram  
AS3932  
IRQ  
SCL  
Wakeup  
Amp Out  
Channel  
Amplifier 1  
Main  
Logic  
RSSI  
SDI  
SDI  
LF1P  
SDO  
CS  
Amp Out  
Channel  
Selector  
Envelope Detector /  
Data Slicer  
Correlator  
RSSI  
Channel  
Amplifier 2  
LF2P  
Manchester  
Decoder  
DAT  
Amp Out  
CL_DAT  
Channel  
Amplifier 3  
RSSI  
LF3P  
LFN  
I/V  
Bias  
RC RTC  
Xtal RTC  
VCC  
GND  
XIN  
XOUT  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
11 - 33  
AS3932  
Data Sheet - Detailed Description  
AS3932 needs the following external components:  
Power supply capacitor - CBAT – 100 nF  
32.768 kHz crystal with its two pulling capacitors – XTAL and CL – (it is possible to omit these components if the internal RC oscillator is  
used instead of the crystal oscillator).  
One, two, or three LC resonators according to the number of used channels.  
In case the internal RC-oscillator is used (no crystal oscillator is mounted), the pin XIN has to be connected to the supply, while pin XOUT should  
stay floating. Application diagrams with and without crystal are shown in Figure 1and Figure 2  
8.2 Operating Modes  
8.2.1 Power Down Mode  
In Power Down Mode AS3932 is completely switched off. The typical current consumption is 400 nA.  
8.2.2 Listening Mode  
In listening mode only the active channel amplifiers and the RTC are running. In this mode the system detects the presence of a carrier. In case  
the carrier is detected the RSSI can be displayed.  
If the three dimensional detection is not required it is possible to deactivate one or more channels. In case only two channels are required the  
deactivated channel must be the number three, while if only one channel detection is needed the active channel must be the number one.  
Inside this mode it is possible to distinguish the following three sub modes:  
8.2.2.1 Standard Listening mode  
All channels are active at the same time  
8.2.2.2 Scanning mode (Low Power mode 1)  
All used channels are active, but only one per time slot, where the time slot T is defined as 1ms. If, for example all three channels are used in the  
first millisecond the only active channel is the number one, after the first millisecond the channel three will be active for the same period of time  
and at the end the channel two will be working for one millisecond, handing over to the channel one again. This channel rotation goes on until the  
presence of the carrier is detected by any of the channels; then immediately all three channels will become active at the same time. Now AS3932  
can perform a simultaneous multidirectional evaluation (on all three channels) of the field and evaluate which channel has the strongest RSSI.  
The channel with the highest RSSI will be put through to the demodulator. In this way it is possible to perform multidirectional monitoring of the  
field with a current consumption of a single channel, keeping the sensitivity as good as if all channels are active at the same time.  
Figure 11. Scanning Mode  
Channel1  
Channel2  
tim e  
Channel3  
tim e  
Presence  
of carrier  
tim e  
t 0  
t 0 + T  
t 0 + 2 T  
t 0 + 3 T  
t 0 + 4 T  
t 0 + 5 T  
t 1  
tim e  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
12 - 33  
AS3932  
Data Sheet - Detailed Description  
8.2.2.3 ON/OFF mode (Low Power mode 2)  
All active channels are on at the same time but not for the whole time (time slot T is defined as 1ms). An on-off duty-ratio is defined. This duty  
ratio is programmable see R4<7:6>.  
Figure 12. ON/OFF Mode  
Channel1  
Channel2  
time  
Channel3  
time  
Presence  
of carrier  
time  
time  
t0  
t0+T  
2*t0  
2*t0+T  
3*t0  
For each of these sub modes it is possible to enable a further feature called Artificial Wake-up. The Artificial Wake-up is a counter based on the  
used RTC. Three bits define a time window see R8<2:0>. If no activity is seen within this time window the chip will produce an interrupt on the  
WAKE pin that lasts 128 µs. With this interrupt the microcontroller (µC) can get feedback on the surrounding environment (e.g. read the false  
wakeup register, see Correlator register R13<7:0>) and/or take actions in order to change the setup.  
8.2.3 Preamble Detection / Pattern Correlation  
The chip can go in to this mode after detecting a LF carrier only if the data correlator function is enabled see R1<1>. The correlator searches  
first for preamble frequency (constant frequency of Manchester clock defined according to bit-rate transmission) and then for data pattern.  
If the pattern is matched the wake-up interrupt is displayed on the WAKE output and the chip goes in Data receiving mode. If the pattern fails the  
internal wake-up (on all active channels) is terminated and no IRQ is produced.  
8.2.4 Data Receiving  
The user can enable this mode allowing the pattern correlation or just on the base of the frequency detection. In this mode the chip can be  
retained a normal OOK receiver. The data is provided on the DAT pin and in case the Manchester decoder is enabled see R1<3>, the recovered  
clock is present on the CL_DAT. It is possible to put the chip back to listening mode either with a direct command (CLEAR_WAKE (see Table 12))  
or by using the timeout feature. This feature automatically sets the chip back to listening mode after a certain time R7<7:5>.  
8.3 System and Block Specification  
8.3.1 Register Table  
Table 6. Register Table  
7
6
5
4
3
2
1
0
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
n.a.  
MUX_123  
ATT_ON  
EN_A2  
EN_A3  
EN_PAT2  
EN_A1  
PWD  
ON_OFF  
ABS_HY  
S_ABSH  
HY_20m  
AGC_TLIM  
AGC_UD  
EN_MANCH  
Reserved  
EN_WPAT  
EN_RTC  
W_PAT_T<1:0>  
HY_POS  
S_WU1<1:0>  
FS_ENV<2:0>  
GR<3:0>  
FS_SLC<2:0>  
T_OFF<1:0>  
R_VAL<1:0>  
TS2<7:0>  
TS1<7:0>  
T_OUT<2:0>  
T_HBIT<4:0>  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
13 - 33  
AS3932  
Data Sheet - Detailed Description  
Table 6. Register Table  
7
6
5
4
3
2
1
0
R8  
R9  
n.a.  
T_AUTO<2:0>  
n.a.  
Reserved  
R10  
R11  
R12  
R13  
n.a.  
n.a.  
n.a.  
RSSI1<4:0>  
RSSI3<4:0>  
RSSI2<4:0>  
F_WAKE  
8.3.2 Register Table Description and Default Values  
Table 7. Default Values of Registers  
Default  
Register  
Name  
Type  
Description  
Value  
R0<5>  
R0<4>  
R0<3>  
R0<2>  
R0<1>  
R0<0>  
R1<7>  
R1<6>  
R1<5>  
R1<4>  
R1<3>  
R1<2>  
R1<1>  
R1<0>  
R2<7>  
R2<6:5>  
R2<4:2>  
R2<1:0>  
ON_OFF  
MUX_123  
EN_A2  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
0
0
On/Off operation mode. (Duty-cycle defined in the register R4<7:6>)  
Scan mode enable  
1
Channel 2 enable  
EN_A3  
1
Channel 3 enable  
EN_A1  
1
Channel 1 enable  
PWD  
0
Power down  
ABS_HY  
AGC_TLIM  
AGC_UD  
ATT_ON  
EN_MANCH  
EN_PAT2  
EN_WPAT  
EN_RTC  
S_ABSH  
W_PAT  
0
Data slicer absolute reference  
AGC acting only on the first carrier burst  
AGC operating in both direction (up-down)  
Antenna damper enable  
0
1
0
0
Manchester decoder enable  
Double wakeup pattern correlation  
Data correlation enable  
0
1
1
Crystal oscillator enable  
0
Data slicer threshold reduction  
Pattern correlation tolerance (see Table 19)  
Reserved  
00  
000  
00  
S_WU1  
W
W
Tolerance setting for the stage wakeup (see Table 13)  
Data slicer hysteresis  
if HY_20m = 0 then comparator hysteresis = 40mV  
if HY_20m = 1 then comparator hysteresis = 20mV  
R3<7>  
R3<6>  
HY_20m  
0
0
Data slicer hysteresis only on positive edges (HY_POS=0, hysteresis on both  
edges, HY_POS=1, hysteresis only on positive edges)  
HY_POS  
W
R3<5:3>  
R3<2:0>  
FS_SCL  
FS_ENV  
W
W
100  
000  
Data slices time constant (see Table 17)  
Envelop detector time constant (see Table 16)  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
14 - 33  
AS3932  
Data Sheet - Detailed Description  
Table 7. Default Values of Registers  
Default  
Value  
Register  
Name  
Type  
Description  
Off time in ON/OFF operation mode  
T_OFF=00  
T_OFF=01  
T_OFF=10  
T_OFF=11  
1ms  
R4<7:6>  
T_OFF  
W
00  
2ms  
4ms  
8ms  
R4<5:4>  
R4<3:0>  
D_RES  
GR  
W
W
01  
Antenna damping resistor (see Table 15)  
Gain reduction (see Table 14)  
0000  
2nd Byte of wakeup pattern  
R5<7:0>  
R6<7:0>  
TS2  
TS1  
W
W
01101001  
10010110  
1st Byte of wakeup pattern  
Automatic time-out (see Table 20)  
Bit rate definition (see Table 18)  
Artificial wake-up  
No artificial wake-up  
1 sec  
R7<7:5>  
R7<4:0>  
T_OUT  
T_HBIT  
W
W
000  
01011  
T_AUTO=000  
T_AUTO=001  
T_AUTO=010  
T_AUTO=011  
T_AUTO=100  
T_AUTO=101  
T_AUTO=110  
T_AUTO=111  
5 sec  
R8<2:0>  
T_AUTO  
W
000  
20 sec  
2 min  
15min  
1 hour  
2 hour  
R9<6:0>  
R10<4:0>  
R11<4:0>  
R12<4:0>  
R13<7:0>  
000000  
Reserved  
RSSI1  
RSSI3  
RSSI2  
F_WAK  
R
R
RSSI channel 1  
RSSI channel 3  
RSSI channel 2  
False wakeup register  
R
WR  
8.3.3 Serial Data Interface (SDI)  
This 4-wires interface is used by the Microcontroller (µC) to program the AS3932. The clock operation frequency of the SDI is 1MHz.  
Table 8. Serial Data Interface (SDI) pins  
Name  
Signal  
Signal Level  
Description  
CS  
Digital Input with pull down  
CMOS  
Chip Select  
Serial Data input for writing registers, data to  
transmit and/or writing addresses to select  
readable register  
SDI  
Digital Input with pull down  
CMOS  
Serial Data output for received data or read  
value of selected registers  
SDO  
Digital Output  
CMOS  
CMOS  
SCLK  
Digital Input with pull down  
Clock for serial data read and write  
Note: SDO is set to tristate if CS is low. In this way more than one device can communicate on the same SDO bus.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
15 - 33  
AS3932  
Data Sheet - Detailed Description  
8.3.3.1 SDI Command Structure  
To program the SDI the CS signal has to go high. A SDI command is made up by a two bytes serial command and the data is sampled on the  
falling edge of SCLK. The Table 9 shows how the command looks like, from the MSB (B15) to LSB (B0). The command stream has to be sent to  
the SDI from the MSB (B15) to the LSB (B0).  
Table 9. SDI Command Structure  
Mode  
B15 B14  
Register address / Direct Command  
B12 B11 B10 B9  
Register Data  
B4 B3  
B13  
B8  
B7  
B6  
B5  
B2  
B1  
B0  
The first two bits (B15 and B14) define the operating mode. There are three modes available (write, read, direct command) plus one spare (not  
used), as shown in Table 10.  
Table 10. SDI Command Structure  
B15  
0
B14  
0
Mode  
WRITE  
0
1
READ  
1
0
NOT ALLOWED  
DIRECT COMMAND  
1
1
In case a write or read command happens the next 5 bits (B13 to B9) define the register address which has to be written respectively read, as  
shown in Table 11.  
Table 11. SDI Command Structure  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
B8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Read/Write register  
R0  
R1  
0
0
0
0
0
0
0
0
R2  
0
0
0
0
R3  
0
0
0
1
R4  
0
0
0
1
R5  
0
0
0
1
R6  
0
0
0
1
R7  
0
0
1
0
R8  
0
0
1
0
R9  
0
0
1
0
R10  
R11  
R12  
R13  
0
0
1
0
0
0
1
1
0
0
1
1
The last 8 bits are the data that has to be written respectively read. A CS toggle high-low-high terminates the command mode.  
If a direct command is sent (B15-B14=11) the bits from B13 to B9 defines the direct command while the last 8 bits are omitted. The Table 12  
shows all possible direct commands:  
Table 12. List of Direct Commands  
COMMAND_MODE  
clear_wake  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
0
B8  
0
reset_RSSI  
0
0
0
0
0
1
www.austriamicrosystems.com/AS3932  
Revision 1.2  
16 - 33  
AS3932  
Data Sheet - Detailed Description  
Table 12. List of Direct Commands  
COMMAND_MODE  
B13  
0
B12  
0
B11  
0
B10  
0
B9  
1
B8  
0
trim_osc  
clear_false  
0
0
0
0
1
1
preset_default  
0
0
0
1
0
0
All direct commands are explained below:  
- clear_wake: clears the wake state of the chip. In case the chip has woken up (WAKE pin is high) the chip is set back to listening mode  
- reset_RSSI: resets the RSSI measurement.  
- trim_osc: starts the trimming procedure of the internal RC oscillator (see Figure 22)  
- clear_false: resets the false wakeup register (R13=00)  
- preset_default: sets all register in the default mode, as shown in Figure 7  
8.3.3.2 Writing of Data to Addressable Registers (WRITE Mode)  
The SDI is sampled at the falling edge of CLK (as shown in the following diagrams).  
A CS toggling high-low-high indicates the end of the WRITE command after register has been written. The following example shows a write  
command.  
Figure 13. Writing of a Single Byte (falling edge sampling)  
CS  
SCLK  
X
X
0
0
A5  
A4  
A3  
A2  
A1  
SCLK  
falling edge  
Data is  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
SCLK raising  
edge Data is  
transfered from  
CS falling  
edge signals  
end of  
Two leading  
Zeros indicate  
WRITE Mode  
Data is moved  
to Address  
A5-A0  
µC  
WRITE Mode  
sampled  
Figure 14. Writing of Register Data with Auto-incrementing Address  
CS  
SCLK  
A
5
A
4
A
3
A
2
A
1
A
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
X
X
0 0  
SDI  
CS falling  
edge signals  
end of  
Two leading  
Zeros indicate  
WRITE Mode  
Data is moved  
to Address  
<A 5-A0>  
Data is moved  
to Address  
<A5-A0> +1  
Data is moved  
to Address  
<A5-A0 > + (n- 1)  
Data is moved  
to Address  
<A5-A0 >+ n  
WRITE Mode  
8.3.3.3 Reading of Data from Addressable Registers (READ Mode)  
Once the address has been sent through SDI, the data can be fed through the SDO pin out to the microcontroller.  
A CS LOW toggling high-low-high has to be performed after finishing the read mode session, in order to indicate the end of the READ command  
and prepare the Interface to the next command control Byte.  
To transfer bytes from consecutive addresses, SDI master has to keep the CS signal high and the SCLK clock has to be active as long as data  
need to be read.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
17 - 33  
AS3932  
Data Sheet - Detailed Description  
Figure 15. Reading of Single Register Byte  
CS  
SCLK  
X
X
0
1
A5  
A4  
A3  
A2  
A1  
A0  
SDI  
SDO  
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SCLK rais ing  
edge Data is  
mov ed from  
Address  
SCLK raising  
edge Data is  
transfered from  
SCLK  
falling edge  
Data is  
sampled  
SCLK falling  
edge Data is  
transfered to  
CS falling  
edge signals  
end of READ  
Mode  
01 pattern  
indicates  
READ Mode  
<A5-A0>  
µC  
µC  
Figure 16. Send Direct COMMAND byte  
8.4 Channel Amplifier and Frequency Detector  
Each of the 3 channels consists of a variable gain amplifier, an automatic gain control and a frequency detector. The latter detects the presence  
of a carrier. As soon as the carrier is detected the AGC is enabled, the gain of the VGA is reduced and set to the right value and the RSSI can be  
displayed.  
It is possible to enable/disable individual channels, in case not all three channels are needed. This enables to reduce the current consumption by  
1.5 µA (typ.) per channel.  
8.4.1 Frequency Detector / AGC  
The frequency detection uses the RTC as time base. In case the internal RC oscillator is used as RTC, it must be calibrated, but the calibration  
is guaranteed for a 32.768 kHz crystal oscillator only. The frequency detection criteria can be tighter or more relaxed according to the setup  
described in R2<1:0>(see Table 13).  
Table 13. Tolerance Settings for Wakeup  
R2<1>  
R2<0>  
Tolerance  
relaxed  
0
0
1
1
0
1
0
1
tighter (medium)  
stringent  
Reserved  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
18 - 33  
AS3932  
Data Sheet - Detailed Description  
The AGC can operate in two modes:  
AGC down only (R1<5>=0)  
AGC up and down (R1<5>=1)  
As soon as the AGC starts to operate, the gain in the VGA is set to maximum. If the AGC down only mode is selected, the AGC can only  
decrease the gain. Since the RSSI is directly derived from the VGA gain, the system holds the RSSI peak.  
When the AGC up and down mode is selected, the RSSI can follow the input signal strength variation in both directions.  
Regardless which AGC operation mode is used, the AGC needs maximum 35 carrier periods to settle.  
The RSSI is available for all 3 channels at the same time and it is stored in 3 registers (R10<4:0>, R11<4:0>, R12<4:0>)  
Both AGC modes (only down or down and up) can also operate with time limitation. This option allows AGC operation only in time slot of 256µs  
following the internal wake-up. Then the AGC (RSSI) is frozen till the wake-up or RSSI reset occurs.  
The RSSI is reset either with the direct command 'clear_wakeup' or 'reset_RSSI'. The 'reset_RSSI' command resets only the AGC setting but  
does not terminate wake-up condition. This means that if the signal is still present the new AGC setting (RSSI) will appear not later than 300µs  
(35 LF carrier periods) after the command was received. The AGC setting is reset if for duration of 3 Manchester half symbols no carrier is  
detected. If the wake-up IRQ is cleared the chip will go back to listening mode.  
In case the maximum amplification at the beginning is a drawback (e.g. in noisy environment) it is possible to set a smaller starting gain on the  
amplifier, according to the Table 14. In this way it is possible to reduce the false frequency detection.  
Table 14. Bit Setting of Gain Reduction  
R4<3>  
R4<2>  
R4<1>  
R4<0>  
0
Gain reduction  
no gain reduction  
n.a.  
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
1
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
n.a.  
-4dB  
-8dB  
-12dB  
-16dB  
-20dB  
-24dB  
8.4.2 Antenna Damper  
The antenna damper allows the chip to deal with higher field strength, it is enabled by register R1<4>. It consists of shunt resistors which  
degrade the quality factor of the resonator by reducing the signal at the input of the amplifier. In this way the resonator sees a smaller parallel  
resistance (in the band of interest) which degrades its quality factor in order to increase the linear range of the channel amplifier (the amplifier  
doesn't saturate in presence of bigger signals). Table 15 shows the bit setup.  
Table 15. Antenna Damper Bit Setup  
R4<5>  
R4<4>  
Shunt resistor (parallel to the resonator at 125 kHz)  
0
0
1
1
0
1
0
1
1 kΩ  
3 kΩ  
9 kΩ  
27 kΩ  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
19 - 33  
AS3932  
Data Sheet - Detailed Description  
8.5 Channel Selector / Demodulator / Data Slicer  
When at least one of three gain channel enters initial wake-up state the channel selector makes a decision which gain channel to connect to the  
envelope detector. If only one channel is in wake-up state the selection is obvious. If more than one channel enters wake-up state in 256µs  
following the first active channel the channel with highest RSSI value is selected. The output signal (amplified LF carrier) of selected channel is  
connected to the input of the demodulator.  
The performance of the demodulator can be optimized according to bit rate and preamble length as described in Table 16 and Table 17.  
Table 16. Bit Setup for the Envelop Detector for Different Symbol Rates  
R3<2>  
R3<1>  
R3<0>  
Symbol rate [Manchester symbols/s]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4096  
2184  
1490  
1130  
910  
762  
655  
512  
If the bit rate gets higher the time constant in the envelop detector must be set to a smaller value, this means that higher noise is injected  
because of the wider band. The next table is a rough indication of how the envelop detector looks like for different bit rates. By using proper data  
slicer settings it is possible to improve the noise immunity paying the penalty of a longer preamble. In fact if the data slicer has a bigger time  
constant it is possible to reject more noise, but every time a transmission occurs, the data slicer need time to settle. This settling time will  
influence the length of the preamble. Table 17 gives a correlation between data slicer setup and minimum required preamble length.  
Table 17. Bit Setup for the Data Slicer for Different Preamble Length  
R3<5>  
R3<4>  
R3<3>  
Minimum preamble length [ms]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.8  
1.15  
1.55  
1.9  
2.3  
2.65  
3
3.5  
Note: These times are minimum required, but it is recommended to prolong the preamble.  
The comparator of the data slicer can work only with positive or with symmetrical threshold (R3<6>). In addition the threshold can be 20 or 40 mV  
(R3<7>)  
In case the length of the preamble is an issue the data slicer can also work with an absolute threshold (R1<7>). In this case the bits R3<2:0>  
would not influence the performance. It is even possible to reduce the absolute threshold in case the environment is not particularly noisy  
(R2<7>).  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
20 - 33  
AS3932  
Data Sheet - Detailed Description  
8.6 Correlator  
After frequency detection the data correlation is only performed if the correlator is enabled (R1<1>=1).  
The data correlation consists of checking the presence of a preamble (ON/OFF modulated carrier) followed by a certain pattern.  
After the frequency detection the correlator waits 16 bits (see bit rate definition in Table 18) and if no preamble is detected the chip is set back to  
listening mode and the false-wakeup register (R13<7:0>) is incremented by one.  
To get started with the pattern correlation the correlator needs to detect at least 4 bits of the preamble (ON/OFF modulated carrier).  
The bit duration is defined in the register R7<4:0> according to the Table 18 as function of the Real Time Clock (RTC) periods.  
Table 18. Bit Rate Setup  
Bit duration in RTC  
clock periods  
Symbol rate (Manchester  
symbols/s)  
R7<4>  
R7<3>  
R7<2>  
R7<1>  
R7<0>  
Bit rate (bits/s)  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4
8192  
6552  
5460  
4680  
4096  
3640  
3276  
2978  
2730  
2520  
2340  
2184  
2048  
1926  
1820  
1724  
1638  
1560  
1488  
1424  
1364  
1310  
1260  
1212  
1170  
1128  
1092  
1056  
1024  
4096  
3276  
2730  
2340  
2048  
1820  
1638  
1489  
1365  
1260  
1170  
1092  
1024  
963  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
910  
862  
819  
780  
744  
712  
682  
655  
630  
606  
585  
564  
546  
528  
512  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
21 - 33  
AS3932  
Data Sheet - Detailed Description  
If the preamble is detected correctly the correlator keeps searching for a data pattern. The duration of the preamble plus the pattern should not  
be longer than 40 bits (see bit rate definition in Table 18). The data pattern can be defined by the user and consists of two bytes which are stored  
in the registers R5<7:0> and R6<7:0>. The two bytes define the pattern consisting of 16 half bit periods. This means the pattern and the bit  
period can be selected by the user. The only limitation is that the pattern (in combination with preamble) must obey Manchester coding and  
timing. It must be noted that according to Manchester coding a down-to-up bit transition represents a symbol "0", while a transition up-to-down  
represents a symbol "1". If the default code is used (96 [hex]) the binary code is (10 01 01 10 01 10 10 01). MSB has to be transmitted first.  
The user can also select (R1<2>) if single or double data pattern is used for wake-up. In case double pattern detection is set, the same pattern  
has to be repeated 2 times.  
Additionally it is possible to set the number of allowed missing zero bits (not symbols) in the received bitstream (R2<6:5>), as shown in the Table  
19.  
Table 19. Allowed Pattern Detection Errors  
R2<6>  
R2<5>  
Maximum allowed error in the pattern detection  
No error allowed  
0
0
1
1
0
1
0
1
1 missed zero  
2 missed zeros  
3 missed zeros  
If the pattern is matched the wake-up interrupt is displayed on the WAKE output. In case the Manchester decoder is enabled (R1<3>) the data  
coming out from the DAT pin are decoded and the clock is recovered on the pin DAT_CL.  
The data coming out from the DAT pin are stable (and therefore can be acquired) on the rising edge of the CL_DAT clock, as shown in Figure 17.  
Figure 17. Synchronization of Data with Recovered Manchester Clock  
CL_DAT  
DAT  
If the pattern detection fails the internal wake-up (on all active channels) is terminated with no signal sent to MCU and the false wakeup register  
will be incremented (R13<7:0>).  
8.7 Wakeup Protocol - Carrier Frequency 125 kHz  
The wake-up state is terminated with the direct command ‘clear_wake’ Table 12. This command terminates the MCU activity. The termination  
can also be automatic in case there is no response from MCU. The time out for automatic termination is set in a register R7<7:5>, as shown in  
the Table 20.  
Table 20. Timeout Setup  
R7<7>  
R7<6>  
R7<5>  
Time out  
0 sec  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
50 msec  
100 msec  
150 msec  
200 msec  
250 msec  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
22 - 33  
AS3932  
Data Sheet - Detailed Description  
Table 20. Timeout Setup  
R7<7>  
R7<6>  
R7<5>  
Time out  
300 msec  
350 msec  
1
1
1
1
0
1
8.7.1 Without Pattern Detection (Manchester decoder disabled)  
Figure 18. Wakeup Protocol Overview without Pattern Detection (only carrier frequency detection, Manchester decoder disabled)  
In case the data correlation is disabled (R1<1>=0) the AS3932 wakes up upon detection of the carrier frequency only as shown in Figure 18. In  
order to ensure that AS3932 wakes up the carrier burst has to last longer than 550 µs. To set AS3932 back to listening mode there are two  
possibilities: either the microcontroller sends the direct command clear_wake via SDI or the time out option is used (R7<7:5>). In case the latter  
is chosen, AS3932 is automatically set to listening mode after the time defined in T_OUT (R7<7:5>), counting starts at the low-to-high WAKE  
edge on the WAKE pin.  
8.7.2 Single Pattern Detection (Manchester decoder disabled)  
The Figure 19 shows the wakeup protocol in case the pattern correlation is enabled (R1<1>=1) for a 125 kHz carrier frequency. The initial carrier  
burst has to be longer than 550 µs and can last maximum 16 bits (see bit rate definition in Table 18). If the ON/OFF mode is used (R1<5>=1), the  
minimum value of the maximum carrier burst duration is limited to 10 ms. This is summarized in Table 21. In case the carrier burst is too long the  
internal wakeup will be set back to low and the false wakeup counter (R13<7:0>) will be incremented by one. The carrier burst must be followed  
by a preamble (0101... modulated carrier with a bit duration defined in Table 18) and the wakeup pattern stored in the registers R5<7:0> and  
R6<7:0>. The preamble must have at least 4 bits and the preamble duration together with the pattern should not be longer than 40 bits. If the  
wakeup pattern is correct the signal on the WAKE pin is set to high and the data transmission can get started. To set the chip back to listening  
mode the direct command clear_false, as well as the time out option (R7<7:5>) can be used.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
23 - 33  
AS3932  
Data Sheet - Detailed Description  
Figure 19. Wakeup Protocol Overview with Single Pattern Detection (Manchester decoder disabled)  
Table 21. Preamble Requirements in Standard Mode, Scanning Mode and ON/OFF Mode  
Maximum duration of the carrier burst in Standard Maximum duration of the carrier burst in ON/OFF Mode  
Bit rate (bit/s)  
Mode and Scanning Mode (ms)  
(ms)  
8192  
6552  
5460  
4680  
4096  
3640  
3276  
2978  
2730  
2520  
2340  
2184  
2048  
1926  
1820  
1724  
1638  
1560  
1488  
1424  
1364  
1310  
1260  
1.95  
2.44  
2.93  
3.41  
3.90  
4.39  
4.88  
5.37  
5.86  
6.34  
6.83  
7.32  
7.81  
8.30  
8.79  
9.28  
9.76  
10.25  
10.75  
11.23  
11.73  
12.21  
12.69  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10.25  
10.75  
11.23  
11.73  
12.21  
12.69  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
24 - 33  
AS3932  
Data Sheet - Detailed Description  
Table 21. Preamble Requirements in Standard Mode, Scanning Mode and ON/OFF Mode  
Maximum duration of the carrier burst in Standard Maximum duration of the carrier burst in ON/OFF Mode  
Bit rate (bit/s)  
Mode and Scanning Mode (ms)  
(ms)  
13.20  
13.67  
14.18  
14.65  
15.15  
15.62  
1212  
1170  
1128  
1092  
1056  
1024  
13.20  
13.67  
14.18  
14.65  
15.15  
15.62  
8.7.3 Single Pattern Detection (Manchester decoder enabled)  
The Figure shows the wakeup protocol in case both the pattern correlation and the Manchester decoder are enabled (R1<1>=1 and R1<3>=1)  
for a 125 kHz carrier frequency. The initial carrier burst has to be at least 42 Manchester symbols long and has to be followed by a separation bit  
(one bit of no-carrier). The carrier burst must be followed by a minimum 4 Manchester symbol preamble (10101010) and the pattern stored in the  
R5<7:0> and R6<7:0>. The preamble can only be made up by integer Manchester symbol and the preamble duration together with the pattern  
should not be longer than 40 bits. If the pattern is correct the signal on the WAKE pin is set to high, the data are internally decoded and the  
Manchester clock is recovered. To set the AS3932 back to listening mode the direct command clear_false or the time out option (R7<7:5>) can  
be used.  
In case the On/OFF mode is enabled the Manchester decoder can not be used.  
Figure 20. Wakeup Protocol Overview with Single Pattern Detection (Manchester decoder enabled)  
8.8 False Wakeup Register  
The wakeup strategy in the AS3932 is based on 2 steps:  
1. Frequency Detection: in this phase the frequency of the received signal is checked.  
2. Pattern Correlation: here the pattern is demodulated and checked whether it corresponds to the valid one.  
If there is a disturber or noise capable to overcome the first step (frequency detection) without producing a valid pattern, then a false wakeup call  
happens.Each time this event is recognized a counter is incremented by one and the respective counter value is stored in a memory cell (false  
wakeup register). Thus, the microcontroller can periodically look at the false wakeup register, to get a feeling how noisy the surrounding  
environment is and can then react accordingly (e.g. reducing the gain of the LNA during frequency detection, set the AS3932 temporarily to  
power down etc.), as shown in the Figure 21. The false wakeup counter is a useful tool to quickly adapt the system to any changes in the noise  
environment and thus avoid false wakeup events.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
25 - 33  
AS3932  
Data Sheet - Detailed Description  
Most wakeup receivers have to deal with environments that can rapidly change. By periodically monitoring the number of false wakeup events it  
is possible to adapt the system setup to the actual characteristics of the environment and enables a better use of the full flexibility of AS3932.  
Note: If the Manchester decoder is enabled, the false wakeup register is not able anymore to store the false wakeup events.  
Figure 21. Concept of the False Wakeup Register together with the system  
Wakeup  
Level2  
Wakeup  
Level1  
WAKE  
Frequency Detector  
Pattern Correlator  
Unsuccessful  
pattern  
correlation  
False wakeup  
register  
Register Setup  
READ FALSE WAKEUP REGISTER  
Microcontroller  
8.9 Real Time Clock (RTC)  
The RTC can be based on a crystal oscillator (R1<0>=1), the internal RC-oscillator (R1<0>=0), or an external clock source (R1<0>=1). The  
crystal oscillator has higher precision of the frequency with higher current consumption and needs three external components (crystal plus two  
capacitors). The RC-oscillator is completely integrated and can be calibrated if a reference signal is available for a very short time to improve the  
frequency accuracy. The calibration gets started with the trim_osc direct command. Since no non-volatile memory is available on the chip, the  
calibration must be done every time after battery replacement. Since the RTC defines the time base of the frequency detection, the selected  
frequency (frequency of the crystal oscillator or the reference frequency used for calibration of the RC oscillator) should be about one forth of the  
carrier frequency:  
FRTC ~ FCAR * 0.25  
Where: FCAR is the carrier frequency and FRTC is the RTC frequency  
The third option for the RTC is the use of an external clock source, which must be applied directly to the XIN pin (XOUT floating).  
(EQ 1)  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
26 - 33  
AS3932  
Data Sheet - Detailed Description  
8.9.1 Crystal Oscillator  
Table 22. Characteristics of XTAL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
±120  
60  
Units  
Crystal accuracy  
(initial)  
Overall accuracy  
p.p.m.  
Crystal motional resistance  
Frequency  
KΩ  
32.768  
±5  
kHz  
Contribution of the oscillator to the  
frequency error  
p.p.m  
Start-up Time  
Duty cycle  
Crystal dependent  
1
50  
1
s
45  
55  
%
Current consumption  
µA  
8.9.2 RC-Oscillator  
Table 23. Characteristics of RCO  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
If no calibration is performed  
If calibration is performed  
Periods of reference clock  
27  
31  
32.768  
32.768  
42  
34.5  
65  
kHz  
kHz  
Frequency  
Calibration time  
cycles  
nA  
Current consumption  
200  
To trim the RC-Oscillator, set the chip select (CS) to high before sending the direct command trim_osc over SDI. Then 65 digital clock cycles of  
the reference clock (e.g. 32.768 kHz) have to be sent on the clock bus (SCL), as shown in Figure 22. After that the signal on the chip select (CS)  
has to be pulled down.  
The calibration is effective after the 65th reference clock edge and it will be stored in a volatile memory. In case the RC-oscillator is switched off  
or a power-on-reset happens (e.g. battery change) the calibration has to be repeated.  
Figure 22. RC-Oscillator Calibration via SDI  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
27 - 33  
AS3932  
Data Sheet - Detailed Description  
8.9.3 External Clock Source  
To clock the AS3932 with an external signal the crystal oscillator has to be enabled (R1<1>=1). As shown in the Figure 3 the clock must be  
applied on the pin XIN while the pin XOUT must stay floating. The RC time constant has to be 100μs with a tolerance of ±10% (e.g. R=680 kΩ  
and C=22pF). In the Table 24 the clock characteristics are summarized.  
Table 24. Characteristics of External Clock  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
0.1 *  
VDD  
VI  
Low level  
0
V
0.9 *  
VDD  
Vh  
High level  
VDD  
V
Tr  
Tf  
Rise-time  
Fall-time  
3
3
µs  
µs  
µs  
T=1/2πRC  
RC Time constant  
90  
100  
110  
Note: In power down mode the external clock has to be set to VDD.  
8.10 Channel Selection in Scanning Mode and ON/OFF Mode  
In case only 2 channels are active and one of the Low Power modes is enabled, then the channels 1 and 3 have to be active. If the chip works in  
On-Off mode and only one channel is active then the active channel has to be the channel 1.  
Both Low Power modes are not allowed to be enabled at the same time.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
28 - 33  
AS3932  
Data Sheet - Package Drawings and Markings  
9 Package Drawings and Markings  
Figure 23. Package Diagram 16 pin TSSOP  
Table 25. Package Dimensions 16 pin TSSOP  
Symbol  
A
Min  
Typ  
Max  
1.10  
0.15  
0.95  
Symbol  
Min  
Typ  
Max  
E
6.40 BSC  
A1  
A2  
aaa  
b
0.05  
0.85  
L
a
0.50  
0º  
0.60  
4º  
0.70  
8º  
0.90  
0.076  
N, P, P1  
See Variations  
0.19  
0.19  
-
0.22  
0.30  
0.25  
Variations:  
b1  
D
P
1.59  
3.1  
3.0  
4.2  
P1  
3.2  
3.0  
3.0  
3.0  
3.2  
3.0  
N
8
AA/AAT  
AB-1/ABT-1  
AB/ABT  
AC/ACT  
2.90  
4.90  
4.90  
6.40  
7.70  
9.60  
3.00  
5.00  
5.00  
6.50  
7.80  
9.70  
3.10  
5.10  
5.10  
6.60  
7.90  
9.80  
bbb  
C
0.10  
14  
16  
20  
24  
28  
0.09  
0.09  
-
0.20  
0.16  
C1  
D
0.127  
See Variations  
4.40  
AD/ADT  
5.5  
E1  
e
4.30  
4.50  
AE/AET  
5.5  
0.65 BSC  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
29 - 33  
AS3932  
Data Sheet - Package Drawings and Markings  
Note:  
1. Die thickness allowable is 0.279 ± 0.0127.  
2. Dimensioning and tolerances conform to ASME Y14.5M-1994.  
3. Datum plane H located at mold parting line and coincident with lead, where lead exits plastic body at bottom of parting line.  
4. Datum A-B and D to BE determined where center line between leads exits plastic body at datum plane H.  
5. D & E1 are reference datum and do not include mold flash or protrusions, and are measured at the bottom parting line. Mold lash or pro-  
trusions shall not exceed 0.15mm on D and 0.25mm on E per side.  
6. Dimension is the length of terminal for soldering to a substrate.  
7. Terminal positions are shown for reference only.  
8. Formed leads shall be planar with respect to one another within 0.076mm at seating plane.  
9. The lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.07mm total in excess of the lead  
width dimension at maximum material condition. Dambar cannot be located on the lower radius or the foot. Minimum space between  
protrusions and an adjacent lead should be 0.07mm for 0.65mm pitch.  
10. Section B-B to be determined at 0.10mm to 0.25mm from the lead tip.  
11. Dimensions P and P1 are thermally enhanced variations. Values shown are maximum size of exposed pad within lead count and body  
size. End user should verify available size of exposed pad for specific device application.  
12. All dimensions are in millimeters, angle is in degrees.  
13. N is the total number of terminals.  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
30 - 33  
AS3932  
Data Sheet - Package Drawings and Markings  
Figure 24. Package Diagram QFN 4x4 16LD  
5
6
7
8
4
3
9
1 0  
2
1 1  
1 2  
# 1  
1 6  
1 5  
1 4  
1 3  
Table 26. Package Dimensions QFN 4x4 16LD  
Symbol  
Min  
Typ  
0.85  
Max  
Symbol  
Min  
Typ  
0.65 BSC  
0.50  
Max  
A
A1  
b
0.75  
0.95  
e
L
0.203 REF  
0.30  
0.40  
0.60  
0.10  
0.25  
0.35  
L1  
P
D
4.00 BSC  
4.00 BSC  
2.40  
45º BSC  
0.15  
E
aaa  
ccc  
D2  
E2  
2.30  
2.30  
2.50  
2.50  
0.10  
2.40  
Note:  
1. Die thickness allowable is 0.279 ± 0.0127.  
2. Dimensioning and tolerances conform to ASME Y14.5M-1994.  
3. Dimension b applies to metallized terminal and is measured between 0.25mm and 0.30mm from terminal tip. Dimension L1 represents  
terminal full back from package edge up to 0.1mm is acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
31 - 33  
AS3932  
Data Sheet - Revision History  
Revision History  
Table 27. Revision History  
Revision  
1.0  
Date  
Owner  
esn  
Description  
Feb 12, 2009  
Feb 24, 2009  
1.0a  
esn  
Table 28 (Ordering information), -Z removed from part numbers  
New figure inserted Figure 2 on page 2, all subsequent chapters and page numbers are  
therefore incremented by one  
1.1  
Apr 2, 2009  
esn  
Default Values of RegistersTable 7, default value of R4<3:0> corrected  
Bit Setting of Gain ReductionTable 14, stepsize of gain reduction increased to -4dBm  
Description of external components on page 12 updated  
1.11  
1.12  
Apr 22, 2009  
May 25, 2009  
esn  
esn  
Update of Section 10 Ordering Information on page 33  
Updated Wakeup Protocol - Carrier Frequency 125 kHz 8.7 and description of Section  
8.9.2 RC-Oscillator on page 27  
1.13  
July 13, 2009  
esn  
Updated Key Features for External Clock  
Added Figure 3 AS3932 Typical Application Diagram with Clock from External Source  
Added External Clock Source in Electrical System SpecificationsTable 5  
1.2  
Oct 13, 2009  
mrh  
Deleted table Minimum duration of carrier burst in ON/OFF mode (Manchester decoder  
enabled)  
Updated Real Time Clock (RTC) 8.9 with External Clock  
Added External Clock Source 8.9.3  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
32 - 33  
AS3932  
Data Sheet - Ordering Information  
10 Ordering Information  
Table 28. Ordering Information  
Delivery Form1  
Ordering Code  
Type  
Marking  
Description  
AS3932-BTST  
AS3932-BQFT  
16 pin TSSOP  
QFN 4x4 16LD  
AS3932  
AS3932  
Tape&Reel (AS3932 TSSOP)  
Tape&Reel (AS3932 QFN)  
Tape&Reel (1000 pcs)  
Tape&Reel (1000 pcs)  
1. Dry Pack Sensitivity Level =3 according to IPC/JEDEC J-STD-033A for full reels.  
Note: All products are RoHS compliant and Pb-free.  
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect  
For further information and requests, please contact us mailto:sales@austriamicrosystems.com  
or find your local distributor at http://www.austriamicrosystems.com/distributor  
Copyrights  
Copyright © 1997-2009, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®.  
All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of  
the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale.  
austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding  
the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at  
any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for  
current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are  
specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100  
parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use,  
interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com/AS3932  
Revision 1.2  
33 - 33  

相关型号:

AS3932-BQFT

3D Low Frequency Wakeup Receiver
AMSCO

AS3932-BTST

3D Low Frequency Wakeup Receiver
AMSCO

AS3932_07

3D Low Frequency Wakeup Receiver
AMSCO

AS3933

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BQFT

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BSWB

3D Low Frequency Wake-Up Receiver
AMSCO

AS3933-BTST

3D Low Frequency Wake-Up Receiver
AMSCO

AS393A

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AM-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AM-G1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AMTR-E1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI

AS393AMTR-G1

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS
BCDSEMI