AS5215-HQFT [AMSCO]

Programmable 360º Magnetic Angle Encoder with Buffered SINE & COSINE Output Signals; 可编程360°磁性角度编码器与缓冲正弦余弦和输出信号
AS5215-HQFT
型号: AS5215-HQFT
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Programmable 360º Magnetic Angle Encoder with Buffered SINE & COSINE Output Signals
可编程360°磁性角度编码器与缓冲正弦余弦和输出信号

编码器
文件: 总24页 (文件大小:739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS5215  
Programmable 360º Magnetic Angle Encoder with Buffered SINE &  
COSINE Output Signals  
1 General Description  
The AS5215 is a redundant, contactless rotary encoder sensor for  
accurate angular measurement over a full turn of 360º and over an  
extended ambient temperature range of -40ºC to +150ºC.  
2 Key Features  
Contactless angular position encoding  
High precision analog output  
Buffered Sine and Cosine signals  
Based on an integrated Hall element array, the angular position of a  
simple two-pole magnet is translated into analog output voltages.  
The angle information is provided by means of buffered sine and  
cosine voltages. This approach gives maximum flexibility in system  
design, as it can be directly integrated into existing architectures and  
optimized for various applications in terms of speed and accuracy.  
SSI Interface  
Low power mode  
Two programmable output modes: Differential or Single ended  
Wide magnetic field input range: 20 – 80 mT  
Wide temperature range: -40ºC to +150ºC  
Fully automotive qualified to AEC-Q100, grade 0  
Thin punched 32-pin QFN (7x7mm) package  
With two independent dies in one package, the device offers true  
redundancy. Usually the bottom die, which is exposed to slightly less  
magnetic field is employed for plausibility check.  
An SSI Interface is implemented for signal path configuration as well  
as a one time programmable register block (OTP), which allows the  
customer to adjust the signal path gain to adjust for different  
mechanical constraints and magnetic field.  
3 Applications  
The AS5215 is ideal for Electronic Power Steering systems and  
general purpose for automotive or industrial applications in  
microcontroller-based systems.  
Figure 1. AS5215 Block Diagram  
OTP Register  
PROG  
AS5215  
Digital Part  
CS  
VDD  
VSS  
POWER  
MANAGEMENT  
SSI Interface  
DCLK  
DIO  
BUFFER Stage  
BUFFER Stage  
SINP/SINN  
SINN/SINP/CM_SIN  
COSP/COSN  
Hall Array  
&
Frontend  
COSN/COSP/CM_COS  
Amplifier  
Note: This Block Diagram presents only one die.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
1 - 24  
AS5215  
Data Sheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 Pin Descriptions....................................................................................................................................................................................  
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
6.1 Timing Characteristics..........................................................................................................................................................................  
7 Detailed Description..................................................................................................................................................................  
7.1 Magnet Diameter and Vertical Distance ...............................................................................................................................................  
1
1
1
3
3
5
6
7
8
8
7.1.1 The Linear Range........................................................................................................................................................................ 8  
7.1.2 Magnet Thickness...................................................................................................................................................................... 11  
7.1.3 Axial Distance (Airgap) .............................................................................................................................................................. 12  
7.1.4 Angle Error vs. Radial and Axial Misalignment.......................................................................................................................... 12  
7.1.5 Mounting the Magnet................................................................................................................................................................. 12  
7.1.6 Summary ................................................................................................................................................................................... 14  
8 Application Information ........................................................................................................................................................... 15  
8.1 Sleep Mode ........................................................................................................................................................................................ 15  
8.2 SSI Interface....................................................................................................................................................................................... 15  
8.3 Device Communication / Programming.............................................................................................................................................. 16  
8.4 Waveform – Digital Interface at Normal Operation Mode................................................................................................................... 18  
8.5 Waveform – Digital Interface at Extended Mode ................................................................................................................................ 18  
8.6 Waveform – Digital Interface at Analog Readback of the Zener Diodes ............................................................................................ 19  
8.7 EasyZapp OTP Content ..................................................................................................................................................................... 19  
8.8 Analog Sin/Cos Outputs with External Interpolator ............................................................................................................................ 20  
8.9 OTP Programming.............................................................................................................................................................................. 21  
9 Package Drawings and Markings ........................................................................................................................................... 22  
10 Ordering Information............................................................................................................................................................. 24  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
2 - 24  
AS5215  
Data Sheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Top View)  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
DIO_1  
DIO_2  
24  
23  
22  
21  
20  
19  
18  
17  
NC  
NC  
TC_1  
NC  
TC_2  
NC  
AS5215  
A_TST_1  
A_TST_2  
PROG_1  
PROG_2  
NC  
NC  
COSN_2 / COSP_2 / CM_COS_2  
COSP_2 / COSN_2  
9
10 11 12 13 14 15 16  
4.1 Pin Descriptions  
Table 1. Pin Descriptions  
Pin Name  
DIO_1  
Pin Number  
Description  
1
Data I/O for digital interface  
Test coil  
DIO_2  
2
3
4
5
6
7
8
TC_1  
TC_2  
A_TST_1  
A_TST_2  
PROG_1  
PROG_2  
Analog test pin  
OTP Programming Pad  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
3 - 24  
AS5215  
Data Sheet - Pin Assignments  
Table 1. Pin Descriptions  
Pin Name  
Pin Number  
Description  
VSS_1  
9
Supply ground  
VSS_2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Switchable buffered analog output  
SINP_1 / SINN_1  
Switchable buffered analog or common mode output  
Switchable buffered analog output  
SINN_1 / SINP_1 / CM_SIN_1  
SINP_2 / SINN_2  
Switchable buffered analog or common mode output  
Switchable buffered analog output  
SINN_2 / SINP_2 / CM_SIN_2  
COSP_1 / COSN_1  
Switchable buffered analog or common mode output  
Switchable buffered analog output  
COSN_1 / COSP_1 / CM_COS_1  
COSP_2 / COSN_2  
Switchable buffered analog or common mode output  
COSN_2 / COSP_2 / CM_COS_2  
NC  
NC  
NC  
NC  
------  
NC  
NC  
NC  
NC  
VDD_1  
VDD_2  
DCLK_1  
DCLK_2  
CS_1  
CS_2  
Digital + analog supply  
Clock input for digital interface  
Clock input for digital interface  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
4 - 24  
AS5215  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 6 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Min  
-0.3  
Max  
7
Units  
V
Comments  
Supply voltage (VDD)  
Input pin voltage (V_in)  
VSS - 0.5  
-100  
7
V
Input current (latchup immunity), I_scr  
Electrostatic discharge (ESD)  
100  
±2  
275  
27  
mA  
kV  
Norm: EIA/JESD78 Class II Level A  
Norm: JESD22-A114E  
Total power dissipation (Ptot  
)
mW  
ºC/W  
ºC  
Package thermal resistance (Θ_JA)  
Velocity =0; Multi Layer PCB; Jedec Standard Testboard  
Storage temperature (T_strg)  
-65  
150  
Norm: IPC/JEDEC J-STD-020C.  
The reflow peak soldering temperature (body temperature)  
specified is in accordance with IPC/JEDEC J-STD-020C  
“Moisture/Reflow Sensitivity Classification for Non-  
Hermetic Solid State Surface Mount Devices”.  
The lead finish for Pb-free leaded packages is matte tin  
(100% Sn).  
Package body temperature (T_body)  
Humidity non-condensing  
260  
85  
ºC  
%
5
MSL = 3  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
5 - 24  
AS5215  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
Unless otherwise noted all in this specification defined tolerances of parameters are assured over the whole operation conditions range and also  
over lifetime.  
Table 3. Operating Conditions  
Symbol  
VDD  
Parameter  
Condition  
Min  
4.5  
0.0  
-40  
Typ  
Max  
5.5  
Unit  
V
Positive Supply Voltage  
Negative Supply Voltage  
Ambient temperature  
VSS  
0.0  
V
T_amb  
150  
ºC  
Table 4. DC/AC Characteristics for Digital Inputs and Outputs  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
CMOS Input  
0.7 *  
VDD +  
V_IH  
V_IL  
High level Input voltage  
V
VDD  
0.5  
VDD -  
0.5  
VDD +  
0.5  
Low level Input Voltage  
Input Leakage Current  
V
I_LEAK  
1
µA  
CMOS Output  
VDD -  
0.5  
V_OH  
V_OL  
High level Output voltage  
Low level Output Voltage  
4 mA  
4 mA  
V
V
VSS +  
0.4  
C_L  
Capacitive Load  
Slew Rate  
35  
30  
15  
pF  
ns  
ns  
t_slew  
t_delay  
Time Rise Fall  
CMOS Output Tristate  
I_OZ  
Tristate Leakage Current  
1
µA  
Table 5. Magnetic Input Specification  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Two pole cylindrical magnet, diametrically magnetized:  
dMAG  
Bpp  
Diameter  
4
20  
0
6
mm  
mt  
Magnetic input field amplitude  
Rotational speed  
200 – 800 Gauss  
Max 30000 RPM  
50  
80  
frot  
500  
Hz  
Table 6. Electrical System Specifications  
Symbol  
tpower_on  
tprop  
Parameter  
Power up time  
Condition  
Min  
200  
18  
Typ  
500  
22  
Max  
700  
30  
Unit  
µs  
Propagation delay  
Magnetic Sensitivity  
-40 to 150ºC  
1G = 0.1 mT  
µs  
M
1
6
mV/G  
Vss+  
0.25  
Vdd-  
0.5  
Vout  
Analog output range  
V
SF=SF25C  
- (AP1_1/  
AP2_1)  
Amplitude ratio tracking accuracy  
over temperature  
-40 to 150ºC  
Revision 1.8  
-1  
+1  
%
www.austriamicrosystems.com/AS5215  
6 - 24  
AS5215  
Data Sheet - Electrical Characteristics  
Table 6. Electrical System Specifications  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
SF=AP1_ Amplitude ratio mismatch at room  
-2  
2
%
1/AP2_1  
Voffset1  
Voffset2  
DCoffdrift  
THD  
temperature  
DC Offset  
0.294  
0.49  
-50  
0.3  
0.5  
0.306 V / VDD  
Ratiometric to VDD  
0.51  
+50  
0.2  
V / VDD  
µV/ºC  
%
DC Offset Drift  
Total Harmonic Distortion  
Slew Rate  
-40 to 150ºC  
SR  
1
V/µs  
pF  
CLOAD  
Capacitive Load  
1000  
6.1 Timing Characteristics  
Table 7. Timing Characteristics  
Symbol  
t1_3  
Parameter  
Condition  
Min  
30  
0
Typ  
Max  
Unit  
ns  
Chip select to positive edge of DCLK  
Chip select to drive bus externally  
-
-
t2_3  
ns  
Setup time command bit  
Data valid to positive edge of DCLK  
t3  
t4  
t5  
30  
15  
-
-
-
ns  
ns  
ns  
Hold time command bit  
Data valid after positive edge of DCLK  
Float time  
DCLK/  
2+0  
Positive edge of DCLK for last command bit to bus float  
Bus driving time  
Positive edge of DCLK for last command bit to bus  
drive  
DCLK/  
2+0  
t6  
-
ns  
Data valid time  
Positive edge of DCLK to bus valid  
DCLK/  
2+0  
DCLK/  
2+30  
t7  
t8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold time data bit  
Data valid after positive edge of DCLK  
DCLK/  
2+0  
-
-
Hold time chip select  
Positive edge DCLK to negative edge of chip select  
DCLK/  
2+0  
t9_3  
t10_3  
t11  
Bus floating time  
Negative edge of chip select to float bus  
-
30  
-
Setup time data bit at write access  
Data valid to positive edge of DCLK  
30  
15  
-
Hold time data bit at write access  
Data valid after positive edge of DCLK  
t12  
-
Bus floating time  
Negative edge of chip select to float bus  
t13_3  
30  
Remark: The digital interface will be reset during the low phase of the CS signal.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
7 - 24  
AS5215  
Data Sheet - Detailed Description  
7 Detailed Description  
The AS5215 is a redundant rotary encoder sensor front end. Based on an integrated Hall element array, the angular position of a simple two-pole  
magnet is translated into analog output voltages. The angle information is provided by means of sine and cosine voltages. This approach gives  
maximum flexibility in system design, as it can be directly integrated into existing architectures and optimized for various applications in terms of  
speed and accuracy.  
With two independent dies in one package, the device offers true redundancy. Usually the bottom die, which is exposed to slightly less magnetic  
field is employed for plausibility check.  
An SSI (SPI standard) protocol is implemented for internal test access to the different circuit blocks and for signal path configuration.  
A One Time Programmable register block (OTP) allows the customer to adjust the signal path gain to adjust for different mechanical constraints  
and magnetic field strengths. Furthermore, for internal use, the test mode can be enabled and the system oscillator is trimmable, DC offset of the  
output signal can be set to either 1.5V or 2.5V. A unique chip ID is stored to ensure traceability.  
For operating point control, a band gap circuit is implemented together with a central bias block to distribute all reference bias currents for the  
analog signal conditioning. The digital signal part is based on a 2MHz system, CLK derived via. divider from a 4MHz system oscillator.  
Figure 3. Typical Arrangement of AS5215 and Magnet  
7.1 Magnet Diameter and Vertical Distance  
Note: Following is just an abstract taken from the elaborate application note on the Magnet.  
For more detailed information, please visit our homepage www.austriamicrosystems.com Magnetic Rotary Encoders Magnet  
Application Notes  
7.1.1 The Linear Range  
The Hall elements used in the AS5000-series sensor ICs are sensitive to the magnetic field component Bz, which is the magnetic field vertical to  
the chip surface. Figure 4 shows a 3-dimensional graph of the Bz field across the surface of a 6mm diameter, cylindrical NdFeB N35H magnet at  
an axial distance of 1mm between magnet and IC.  
The highest magnetic field occurs at the north and south poles, which are located close to the edge of the magnet, at ~2.8mm radius (see Figure  
5). Following the poles towards the center of the magnet, the Bz field decreases very linearly within a radius of ~1.6mm. This linear range is the  
operating range of the magnet with respect to the Hall sensor array on the chip. For best performance, the Hall elements should always be within  
this linear range.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
8 - 24  
AS5215  
Data Sheet - Detailed Description  
Figure 4. 3D-Graph of Vertical Magnetic Field of a 6mm Cylindrical Magnet  
BZ; 6mm magnet @ Z=1mm  
area of X- Y-misalignment from cen-  
ter: ±0.5mm  
circle of Hall elements on chip  
Bz [mT]  
Y -displacement [mm]  
X -displacement [mm]  
As shown in Figure 5 (grey zone), the Hall elements are located on the chip at a circle with a radius of 1mm. Since the difference between two  
opposite Hall sensors is measured, there will be no difference in signal amplitude when the magnet is perfectly centered or if the magnet is  
misaligned in any direction as long as all Hall elements stay within the linear range.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
9 - 24  
AS5215  
Data Sheet - Detailed Description  
For the 6mm magnet (shown in Figure 5), the linear range has a radius of 1.6mm, hence this magnet allows a radial misalignment of 0.5mm  
(1.6mm linear range radius; 1mm Hall array radius). Consequently, the larger the linear range, the more radial misalignment can be tolerated. By  
contrast, the slope of the linear range decreases with increasing magnet diameter, as the poles are further apart. A smaller slope results in a  
smaller differential signal, which means that the magnet must be moved closer to the IC (smaller airgap) or the amplification gain must be  
increased, which leads to a poorer signal-to-noise ratio. More noise results in more jitter at the angle output. A good compromise is a magnet  
diameter in the range of 5…8mm.  
Small Diameter Magnet (<6mm)  
Large Diameter Magnet (>6mm)  
+ stronger differential signal =  
good signal / noise ratio,  
larger airgaps  
+ wider linear range =  
larger horizontal misalignment area  
- weaker differential signal =  
poorer signal / noise ratio,  
smaller airgaps  
- shorter linear range =  
smaller horizontal misalignment area  
Figure 5. Vertical Magnetic Field Across the Center of a Cylindrical Magnet  
Bz; 6mm magnet @ y=0; z=1mm  
Hall elements (side view)  
X -displacement [mm]  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
10 - 24  
AS5215  
Data Sheet - Detailed Description  
7.1.2 Magnet Thickness  
Figure 6 shows the relationship of the peak amplitude in a rotating system (essentially the magnetic field strength of the Bz field component) in  
relation to the thickness of the magnet. The X-axis shows the ratio of magnet thickness (or height) [h] to magnet diameter [d] and the Y-axis  
shows the relative peak amplitude with reference to the recommended magnet (d=6mm, h=2.5mm). This results in an h/d ratio of 0.42.  
Figure 6. Relationship of Peak Amplitude vs. Magnet Thickness  
Bz amplitude vs. magnet thickness  
of a cylindrical diametric magnet with 6mm diameter  
160%  
140%  
120%  
100%  
80%  
60%  
d= 6mm x h= 2.5mm ref. magnet:  
h/d = 0.42  
Rel. amplitude = 100%  
40%  
20%  
0%  
0,0  
0,2  
0,4  
0,6  
0,8  
1,0  
1,2  
1,4  
1,6  
1,8  
thicknessto diameter [h/d] ratio  
As the graph in Figure 6 shows, the amplitude drops significantly at h/d ratios below this value and remains relatively flat at ratios above 1.3.  
Therefore, the recommended thickness of 2.5mm (at 6mm diameter) should be considered as the low limit with regards to magnet thickness.  
It is possible to get 40% or more signal amplitude by using thicker magnets. However, the gain in signal amplitude becomes less significant for h/  
d ratios >~1.3. Therefore, the recommended magnet thickness for a 6mm diameter magnet is between 2.5 and ~8 mm.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
11 - 24  
AS5215  
Data Sheet - Detailed Description  
7.1.3 Axial Distance (Airgap)  
Figure 7. Sinusoidal Magnetic Field Generated by the Rotating Magnet  
B
vertical  
field  
0
360º  
The recommended magnetic field, measured at the chip surface on a radius equal to the Hall sensor array radius (typ 1mm) should be within a  
certain range. This range lies between 45 and 75mT or between 20 and 80mT, depending on the encoder product.  
Linear position sensors are more sensitive as they use weaker magnets. The allowed magnetic range lies typically between 5 and 60mT.  
7.1.4 Angle Error vs. Radial and Axial Misalignment  
The angle error is the deviation of the actual angle vs. the angle measured by the encoder. There are several factors in the chip itself that  
contribute to this error, mainly offset and gain matching of the amplifiers in the analog signal path. On the other hand, there is the nonlinearity of  
the signals coming from the Hall sensors, caused by misalignment of the magnet and imperfections in the magnetic material.  
Ideally, the Hall sensor signals should be sinusoidal, with equal peak amplitude of each signal. This can be maintained, as long as all Hall  
elements are within the linear range of the magnetic field Bz (see Figure 5).  
7.1.5 Mounting the Magnet  
Generally, for on-axis rotation angle measurement, the magnet must be mounted centered over the IC package. However, the material of the  
shaft into which the magnet is mounted, is also of big importance.  
Magnetic materials in the vicinity of the magnet will distort or weaken the magnetic field being picked up by the Hall elements and cause  
additional errors in the angular output of the sensor.  
Figure 8. Magnetic Field Lines in Air  
Figure 8 shows the ideal case with the magnet in air. No magnetic materials are anywhere nearby.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
12 - 24  
AS5215  
Data Sheet - Detailed Description  
Figure 9. Magnetic Field Lines in Plastic or Copper Shaft  
If the magnet is mounted in non-magnetic material, such as plastic or diamagnetic material, such as copper, the magnetic field distribution is not  
disturbed. Even paramagnetic material, such as aluminium may be used. The magnet may be mounted directly in the shaft (see Figure 9).  
Note: Stainless steel may also be used, but some grades are magnetic. Therefore, steel with magnetic grades should be avoided.  
Figure 10. Magnetic Field Lines in Iron Shaft  
If the magnet is mounted in a ferromagnetic material, such as iron, most of the field lines are attracted by the iron and flow inside the metal shaft  
(see Figure 10). The magnet is weakened substantially.  
This configuration should be avoided!  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
13 - 24  
AS5215  
Data Sheet - Detailed Description  
Figure 11. Magnetic Field Lines with Spacer Between Magnet and Iron Shaft  
If the magnet has to be mounted inside a magnetic shaft, a possible solution is to place a non-magnetic spacer between shaft and magnet, as  
shown in Figure 11. While the magnetic field is rather distorted towards the shaft, there are still adequate field lines available towards the sensor  
IC. The distortion remains reasonably low.  
7.1.6 Summary  
Small diameter magnets (<6mm Ø) have a shorter linear range and allow less lateral misalignment. The steeper slope allows larger axial  
distances.  
Large diameter magnets (>6 mm Ø) have a wider linear range and allow a wider lateral misalignment. The flatter slope requires shorter axial  
distances.  
The linear range decreases with airgap; Best performance is achieved at shorter airgaps.  
The ideal vertical distance range can be determined by using magnetic range indicators provided by the encoder ICs. These indicators are  
named MagInc, MagDec, MagRngn, or similar, depending on product.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
14 - 24  
AS5215  
Data Sheet - Application Information  
8 Application Information  
8.1 Sleep Mode  
The target is to provide the possibility to reduce the total current consumption. No output signal will be provided when the IC is in sleep mode.  
Enabling or disabling sleep mode is done by sending the SLEEP or WAKEUP commands via. the SSI interface. Analog blocks are powered  
down with respect to fast wake up time.  
8.2 SSI Interface  
The setup for the device is handled by the digital interface. Each communication starts with the rising edge of the chip select signal. The  
synchronization between the internal free running analog clock oscillator and the external used digital clock source for the digital interface is  
done in a way that the digital clock frequency can vary in a wide range.  
Table 8. SSI Interface Pin Description  
Port  
Chip select  
Symbol  
CS  
Function  
Indicates the start of a new access cycle to the device  
CS = LO reset of the digital interface  
Clock source for the communication over the digital interface  
DCLK  
DCLK  
DIO  
Command and data information over one single line  
The first bit of the command defines a read or write access  
Bidirectional data input output  
Table 9. SSI Interface Parameter Description  
Symbol Parameter  
Notes  
Min  
Typ  
Max  
Unit  
f_DCLK Clock frequency at normal operation  
no limit  
5
6
MHz  
The nominal value for the clock frequency can  
be derived from a 10MHz oscillator source.  
Clock frequency at easy zap read  
f_EZ_RW  
no limit  
200  
5
-
6
kHz  
kHz  
write access  
Correct access to the programmable zener  
diode block needs a strict timing – the zap pulse  
is exact one period.  
f_EZ_PR Clock frequency at easy zap access  
650  
OG  
program OTP  
The nominal value for the clock frequency can  
be derived from a 10MHz oscillator source.  
20pF external load allowed.  
f_EZ_AR Clock frequency at easy zap analog  
readback  
no limit  
156.3  
162.5  
kHz  
B
The nominal value for the clock frequency can  
be derived from a 10MHz oscillator source.  
Interface General at normal mode  
Protocol: 5 command bit + 16 data input output  
Command  
5 bit command: cmd<4:0> bit<21:16>  
16 bit data: data<15:0> bit<15:0>  
Data  
Interface General at extended mode  
Protocol: 5 command bit + 33 data input output  
Command  
5 bit command: cmd<4:0> bit<38:34>  
34 bit data: data<33:0> bit<33:0>  
Data  
Interface Modes  
Normal read operation mode  
Extended read operation mode  
Normal write operation mode  
Extended write operation mode  
cmd<4:0> = <00xxx> 1 DCLK per data bit  
cmd<4:0> = <01xxx> 4 DCLK per data bit  
cmd<4:0> = <10xxx> 1 DCLK per data bit  
cmd<4:0> = <11xxx> 4 DCLK per data bit  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
15 - 24  
AS5215  
Data Sheet - Application Information  
8.3 Device Communication / Programming  
Table 10. Digital Interface at Normal Mode  
#
command  
bin  
mode  
write  
write  
15  
go2sleep  
1
14  
gen_rst  
0
13 12 11 10  
9
analog_sig  
0
8
OB_bypassed  
0
7
6
5
4
3
2
1
0
WRITE CONFIG  
1
23  
16  
10111  
10000  
EN_PROG  
0
0
1
1
1
0
1
0
1
1
1
0
Name  
Functionality  
Enter/leave low power mode (no output signals)  
Generates global reset  
go2sleep  
gen_rst  
Switches the channels to the test bus after the PGA  
Disable and bypass output buffer for testing purpose  
analog_sig  
OB_bypassed  
Table 11. Digital Interface at Extended Mode  
Factory Settings  
User Settings  
<9> <8:7>  
#
command  
bin  
mode  
<43:  
26>  
<22:2 <19:1 <17:1  
<45:44>  
<25:23>  
<13> <12>  
<11>  
<10>  
<6>  
<5:0>  
0>  
8>  
4>  
lock_O  
n.c.  
invert_  
dc_  
hall_  
bias  
WRITE OTP  
PROG_OTP  
31  
25  
11111 xt write otp test  
11001 xt write otp test  
ID 10µbiastrim  
ID 10µbiastrim  
ID 10µbiastrim  
vref  
osc  
cm_sin cm_cos  
cm_sin cm_cos  
cm_sin cm_cos  
gain  
gain  
gain  
TP  
channel  
offset  
lock_O  
n.c.  
invert_  
channel  
dc_  
offset  
hall_  
bias  
vref  
vref  
osc  
osc  
TP  
lock_O  
n.c.  
invert_  
channel  
dc_  
offset  
hall_  
bias  
RD_OTP  
15  
9
01111 xt read  
otp test  
TP  
RD_OTP_ANA  
01001 xt read  
Remark:  
1. Send EN PROG (command 16) in normal mode before accessing the OTP in extended mode.  
2. OTP assignment will be defined/updated.  
Name  
Otp_test  
ID  
Functionality  
Dummy fuse bit used in production test  
Part identification  
Not connected  
n.c.  
10µ bias current trim bits  
Bias Block reference voltage trim bits  
Oscillator trimming bits  
10µbiastrim  
vref  
osc  
To disable the programming of the factory bits <45…14>  
lock_OTP  
Inverts SIN and COS channel before the PGA for inverted output function (0...SIN/COS, 1...SINN/  
COSN)  
invert_channel  
Common mode voltage output enabled at SINN / CM pin (0...differential, 1...common)  
Common mode voltage output enabled at COSN / CM pin (0...differential, 1...common)  
PGA gain setting (influences overall magnetic sensitivity), 2bit  
Output DC offset (0…1.5V, 1…2.5V)  
cm_sin  
cm_cos  
gain  
dc_offset  
Hall_b  
Hall bias setting (influences overall magnetic sensitivity), 6bit  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
16 - 24  
AS5215  
Data Sheet - Application Information  
Figure 12. Sensitivity Gain Settings - Relative Sensitivity in %  
Magnetic Sensitivity vs. OTP Hall Current & PGA Gain Setting  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
M_PGA_00  
M_PGA_01  
M_PGA_10  
M_PGA_11  
0
10  
20  
30  
40  
50  
60  
Hall Current OTP setting (6 bits)  
The amplitude of the output signal is programmable via sensitivity (6bit) and/or gain (2bit) settings (see Figure 12).  
Figure 13. Sensitivity Gain Settings - Sensitivity [mV/mT]  
Magnetic Sensitivity vs. OTP Hall Current & PGA Gain Setting  
70  
60  
50  
40  
30  
20  
10  
0
M_PGA_00  
M_PGA_01  
M_PGA_10  
M_PGA_11  
0
10  
20  
30  
40  
50  
60  
Hall Current OTP setting (6 bits)  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
17 - 24  
AS5215  
Data Sheet - Application Information  
8.4 Waveform – Digital Interface at Normal Operation Mode  
Figure 14. Digital Interface at Normal Operation Mode  
CMD_PHASE  
DATA_PHASE  
DCLK  
CS  
t9_3  
t1_3  
t5  
t6  
t2_3  
DIO  
DIO  
CMD  
CMD4  
t3  
CMD3  
CMD2  
CMD1  
CMD0  
t7  
t10_3  
D0  
t8  
D14  
t4  
READ  
D15  
D13  
t11  
t13_3  
D0  
t12  
D14  
DIO  
WRITE  
D15  
D13  
8.5 Waveform – Digital Interface at Extended Mode  
In the extended mode, the digital interface needs four clocks for one data bit. During this time, the device is able to handle internal signals for  
special access (e.g. the easy zap interface).  
Figure 15. Digital Interface at Extended Mode  
CMD_PHASE  
DATA_PHASE  
DCLK  
t1_3  
t9_3  
CS  
t7  
t5  
t2_3  
DIO  
CMD4  
CMD0  
CMD2  
CMD3  
CMD1  
CMD  
t10_3  
t13_3  
t8  
t3  
t6  
t4  
DIO  
DIO  
READ  
D45  
D44  
D0  
t11  
t12  
WRITE  
D45  
D44  
D0  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
18 - 24  
AS5215  
Data Sheet - Application Information  
8.6 Waveform – Digital Interface at Analog Readback of the Zener Diodes  
To be sure that all Zener-Diodes are correctly burned, an analog readback mechanism is defined. Perform the ‘READ OTP ANA’ sequence  
according to the command table and measure the value of the diode at the end of each phase.  
Figure 16. Digital Interface at Analog Readback of Zener Diodes  
CMD_PHASE  
DATA_PHASE_EXTENDED  
EXT D1  
EXT D0  
EXT D44  
EXT D45  
DCLK  
CS  
DIO  
CMD4 CMD3 CMD2 CMD1 CMD0  
OTP D45  
OTP D43  
OTP D0  
OTP D44  
PROG  
perform analog measurements at PROG  
Table 12. Serial Bit Sequence (16-bit read / write)  
Write Command  
Read / Write Data  
C4 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
8.7 EasyZapp OTP Content  
Each AS5215 die has an integrated 32-bit OTP ROM (Easyzapp) for trimming and configuration purposes. The PROM can be programmed via.  
the serial interface. For irreversible programming, an external programming voltage at PROG pin is needed. For security reasons, the factory  
trim bits can be locked by a lock bit.  
Name  
Hall Bias  
DC offset  
gain  
Bit Count OTP Start OTP End  
Access  
Comments  
Sets overall sensitivity  
6
1
2
1
0
6
5
6
user  
user  
Output DC offset setting  
Programmable gain amplifier setting  
Set in production test  
7
8
user  
Lock  
13  
13  
austriamicrosystems  
Inverts SIN and COS channel before the  
PGA for inverted output function  
invert_channel  
cm_sin  
1
1
1
11  
10  
9
11  
10  
9
user  
user  
user  
Common mode voltage output enabled at SINN /  
CM pin  
Common mode voltage output enabled at COSN /  
CM pin  
cm_cos  
Remark: OTP assignment will be defined/updated.  
Note: For more information, refer to the document “IP Easyzapp Application Note Rev C”.  
http://intranet.office.amsiag.com/engineering/ipr/Datasheets/easyzapp_application_note_revc.pdf  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
19 - 24  
AS5215  
Data Sheet - Application Information  
8.8 Analog Sin/Cos Outputs with External Interpolator  
Figure 17. Sine and Cosine Outputs for External Angle Calculation  
+5V  
VDD  
100k  
PROG  
VDD  
SINP_1/SINN_1  
VDD  
D
A
A
A
A
SINN_1/SINP_1/CM_SIN_1  
SINP_2 / SINN_2  
D
D
Micro  
SINN_2/SINP_2/CM_SIN_2  
Controller  
100n  
COSP_1/COSN_1  
COSN_1/COSP_1/CM_COS_1  
COSP_2/COSN_2  
D
COSN_2/COSP_2/CM_COS_2  
VSS  
VSS  
VSS  
Notes:  
1. We recommend to use a 100k pull-up resistance.  
2. Default conditions for unused pins are: DCLK_1/2, CS_1/2, DIO_1/2, TC_1/2, A_TST_1/2, TBO_1/2, TB1_1/2, TB2_1/2,  
TB3_1/2 connect to VSS  
The AS5215 provides analog Sine and Cosine outputs (SINP, COSP) of the Hall array front-end for test purposes. These outputs allow the user  
to perform the angle calculation by an external ADC + µC, e.g. to compute the angle with a high resolution. The output driver capability is 1mA.  
The signal lines should be kept as short as possible, longer lines should be shielded in order to achieve best noise performance.  
Through the programming of one bit, you have the possibility to choose between the analog Sine and Cosine outputs (SINP, COSP) and their  
inverted signals (SINN, COSN). Furthermore, by programming the bits <9:10> you can enable the common mode output signals of SIN and  
COS.  
The DC bias voltage is 1.5 or 2.5 V.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
20 - 24  
AS5215  
Data Sheet - Application Information  
8.9 OTP Programming  
Figure 18. OTP Programming Connection  
+5V  
VDD  
CS_1  
Output  
VDD  
VDD  
DCLK_1  
DIO_1  
CS_2  
Output  
I/O  
Output  
100n  
Output  
I/O  
DCLK_2  
DIO_2  
Micro  
Controller  
8.0 - 8.5V  
+
PROG  
100n  
10µF  
VSS  
VSS  
VSS  
maximum  
parasitic cable  
inductance  
V
SUPPLY  
L<50nH  
VDD  
V
zapp  
V
prog  
PROG  
GND  
C1  
C2  
PROM Cell  
100nF  
10µF  
For programming of the OTP, an additional voltage has to be applied to the pin PROG. It has to be buffered by a fast 100nF capacitor (ceramic)  
and a 10µF capacitor. The information to be programmed is set by command 25. The OTP bits 16 until 45 are used for AMS factory trimming and  
cannot be overwritten.  
Symbol  
VDD  
Parameter  
Supply Voltage  
Ground level  
Min  
5
Max  
5.5  
0
Unit  
V
Note  
GND  
0
V
V_zapp  
T_zapp  
f_clk  
Programming Voltage  
Temperature  
8
8.5  
85  
V
At pin PROG  
At pin DCLK  
0
ºC  
kHz  
CLK Frequency  
100  
Remark: For normal operation, after programming, apply 100k pull up resistor at PROG pin!  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
21 - 24  
AS5215  
Data Sheet - Pack age Drawings and Markings  
9 Package Drawings and Markings  
The devices are available in a 32-pin QFN (7x7mm) package.  
Figure 19. 32-pin QFN (7x7mm) Package  
AS5215  
17919-001  
AYWWIZZ  
25  
32  
24  
1
8
17  
16  
9
Note: The distance between both dies is 150µm.  
Table 13. Package Dimensions  
mm  
inch  
Typ  
Symbol  
Min  
Typ  
7 BSC  
7 BSC  
4.28  
Max  
Min  
Max  
D
E
0.28 BSC  
0.28 BSC  
0.169  
D1  
E1  
L
4.18  
4.18  
0.45  
0.25  
4.38  
4.38  
0.65  
0.35  
0.165  
0.165  
0.018  
0.010  
0.172  
0.172  
0.026  
0.014  
4.28  
0.169  
0.55  
0.022  
b
0.30  
0.012  
e
0.65 BSC  
0.90  
0.026 BSC  
0.035  
A
0.80  
1.00  
0.031  
0.039  
A1  
0.203 REF  
0.008 REF  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
22 - 24  
AS5215  
Data Sheet - Revision History  
Revision History  
Revision  
Date  
Owner  
Description  
April 29, 2008  
July 03, 2008  
Initial revision  
1.0  
Redundancy Coding topic deleted.  
Updated Key Features, Table 1 - Pin Descriptions, Figure 1 and  
Figure 17.  
1.1  
1.2  
July 15, 2008  
July 14, 2009  
Updated min, typ, max values for ‘Power up time’ parameter in Table 6.  
Updated the following parameters in Table 6:  
- Values and conditions updated for  
1. Propagation delay  
July 31, 2009  
2. Amplitude ratio tracking accuracy over temperature  
3. DC Offset Drift  
1.3  
apg  
- Deleted the ‘Output Offset’ parameter from the table.  
Updated following bits related information on page 16 - invert_channel,  
cm_sin, cm_cos, gain, dc_offset, Hall_b  
Aug 24, 2009  
Inserted Figure 12 and updated Applications and Figure 17.  
Inserted Figure 13, Added a note in Package Drawings and Markings.  
Deleted ‘Displacement’ parameter from Table 5.  
1.4  
1.5  
1.6  
Aug 26, 2009  
Sept 01, 2009  
Sept 02, 2009  
Hall Array Radius value updated from 1.1mm to 1mm  
Updated Figure 13  
1.7  
1.8  
Nov 26, 2009  
Dec 11, 2009  
Updated values for ‘Magnetic Sensitivity’ parameter in Table 6.  
Note: Typos may not be explicitly mentioned under revision history.  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
23 - 24  
AS5215  
Data Sheet - Ordering Information  
10 Ordering Information  
The devices are available as the standard products shown in Table 14.  
Table 14. Ordering Information  
Ordering Code  
Description  
Delivery Form  
Package  
AS5215-HQFT  
Sine and cosine analog output magnetic rotary encoder  
Tape & Reel  
32-pin QFN (7x7mm)  
Note: All products are RoHS compliant and Pb-free.  
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect  
For further information and requests, please contact us mailto:sales@austriamicrosystems.com  
or find your local distributor at http://www.austriamicrosystems.com/distributor  
Copyrights  
Copyright © 1997-2009, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®.  
All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of  
the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale.  
austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding  
the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at  
any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for  
current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are  
specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100  
parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use,  
interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com/AS5215  
Revision 1.8  
24 - 24  

相关型号:

AS5215-HQFT-OM

Programmable 360o Magnetic Angle Encoder with Buffered SINE & COSINE Output Signals
AMSCO

AS5215OM-HMFP

Programmable 360 Magnetic Angle Encoder with Buffered SINE COSINE Output Signals
AMSCO

AS5215_04

Programmable 360 Magnetic Angle Encoder with Buffered SINE COSINE Output Signals
AMSCO

AS5215_1

Programmable 360o Magnetic Angle Encoder with Buffered SINE & COSINE Output Signals
AMSCO

AS5245

Programmable 360º Magnetic Angle Encoder with Absolute SSI and PWM Output
AMSCO

AS5245HQFT

Programmable 360º Magnetic Angle Encoder with Absolute SSI and PWM Output
AMSCO

AS5245_04

Programmable 360 Magnetic Angle Encoder with Absolute SSI and PWM Output
AMSCO

AS5245_1

Programmable 360º Magnetic Angle Encoder with Absolute SSI and PWM Output
AMSCO

AS5261

12-Bit Automotive Angle Position Sensor
AMSCO

AS5261-HMFP

12-Bit Automotive Angle Position Sensor
AMSCO

AS5262

12-Bit Magnetic Angle Position Sensor
AMSCO

AS5262-HMFP

12-Bit Magnetic Angle Position Sensor
AMSCO