AS5245_1 [AMSCO]

Programmable 360º Magnetic Angle Encoder with Absolute SSI and PWM Output; 可编程360º磁性角度编码器与绝对SSI和PWM输出
AS5245_1
型号: AS5245_1
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Programmable 360º Magnetic Angle Encoder with Absolute SSI and PWM Output
可编程360º磁性角度编码器与绝对SSI和PWM输出

编码器
文件: 总31页 (文件大小:877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS5245  
Programmable 360º Magnetic Angle Encoder with Absolute SSI and  
PWM Output  
Two digital 12-bit absolute outputs  
1 General Description  
The AS5245 is a contactless magnetic angle encoder for accurate  
measurement up to 360º and includes two AS5145 devices in a  
punched stacked leadframe.  
Quadrature A/B (10- or 12-bit) and Index output signal  
User programmable zero position  
Failure detection mode for magnet placement monitoring and  
loss of power supply  
It is a system-on-chip, combining integrated Hall elements, analog  
front end and digital signal processing in a single device.  
“Red-Yellow-Green” indicators display placement of magnet in  
Z-axis  
To measure the angle, only a simple two-pole magnet, rotating over  
the center of the chip is required. The magnet may be placed above  
or below the IC.  
Tolerant to magnet misalignment and air gap variations  
Wide temperature range: - 40ºC to +150ºC  
Unique Chip Identifier  
The absolute angle measurement provides instant indication of the  
magnet’s angular position with a resolution of 0.0879º = 4096  
positions per revolution. This digital data is available as a serial bit  
stream and as a PWM signal.  
Fully automotive qualified to AEC-Q100, grade 0  
Small package: QFN 32 LD (7x7)  
An internal voltage regulator allows operation of the AS5245 from  
3.3V or 5.0V supplies.  
3 Applications  
The AS5245 is fully automotive qualified to AEC-Q100, grade 0.  
The AS5245 is ideal for applications with an angular travel range  
from a few degrees up to a full turn of 360º. The device is suitable for  
Automotive applications like Throttle position sensors, Gas/brake  
pedal position sensing, Headlight position control, Contactless rotary  
position sensing, Front panel rotary switches and Replacement of  
potentiometer.  
2 Key Features  
Contactless high resolution rotational position encoding over a  
full turn of 360º  
Figure 1. AS5245 Block Diagram  
VDD3V3  
MagINCn  
MagDECn  
VDD5V  
LDO 3.3V  
PWM  
PWM  
Interface  
Sin  
Ang  
DO  
DSP  
Absolute  
Interface  
(SSI)  
Cos  
Mag  
Hall Array  
&
CSn  
Frontend  
Amplifier  
CLK  
OTP  
Register  
PDIO  
DTEST1_A  
DTEST2_B  
Incremental  
Interface  
Mux  
AS5245  
Mode_Index  
Note: This Block Diagram presents only one die  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
1 - 31  
AS5245  
Data Sheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 Pin Descriptions....................................................................................................................................................................................  
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
6.1 System Specifications ..........................................................................................................................................................................  
7 Timing Characteristics ..............................................................................................................................................................  
1
1
1
3
4
5
6
7
9
8 Detailed Description................................................................................................................................................................ 10  
8.1 Mode_Index Pin.................................................................................................................................................................................. 10  
8.2 Synchronous Serial Interface (SSI) .................................................................................................................................................... 11  
8.2.1 Serial Data Contents.................................................................................................................................................................. 11  
8.2.2 Z-axis Range Indication (Push Button Feature, Red/Yellow/Green Indicator)........................................................................... 12  
8.2.3 Incremental Mode...................................................................................................................................................................... 12  
8.2.4 Sync Mode................................................................................................................................................................................. 14  
8.2.5 Sine/Cosine Mode ..................................................................................................................................................................... 14  
8.2.6 Daisy Chain Mode ..................................................................................................................................................................... 14  
8.3 Pulse Width Modulation (PWM) Output.............................................................................................................................................. 15  
8.3.1 Changing the PWM Frequency.................................................................................................................................................. 16  
8.4 Analog Output..................................................................................................................................................................................... 16  
9 Application Information ........................................................................................................................................................... 17  
9.1 Programming the AS5245 .................................................................................................................................................................. 17  
9.1.1 Zero Position Programming....................................................................................................................................................... 17  
9.1.2 OTP Memory Assignment.......................................................................................................................................................... 18  
9.1.3 User Selectable Settings ........................................................................................................................................................... 18  
9.1.4 OTP Default Setting................................................................................................................................................................... 19  
9.1.5 Redundancy............................................................................................................................................................................... 19  
9.1.6 Redundant Programming Option............................................................................................................................................... 19  
9.2 Alignment Mode.................................................................................................................................................................................. 20  
9.3 3.3V / 5V Operation............................................................................................................................................................................ 21  
9.4 Choosing the Proper Magnet.............................................................................................................................................................. 22  
9.5 Failure Diagnostics............................................................................................................................................................................. 23  
9.5.1 Magnetic Field Strength Diagnosis............................................................................................................................................ 23  
9.5.2 Power Supply Failure Detection ................................................................................................................................................ 23  
9.6 Angular Output Tolerances................................................................................................................................................................. 23  
9.6.1 Accuracy.................................................................................................................................................................................... 23  
9.6.2 Transition Noise......................................................................................................................................................................... 25  
9.6.3 High Speed Operation ............................................................................................................................................................... 25  
9.6.4 Propagation Delays ................................................................................................................................................................... 26  
9.6.5 Internal Timing Tolerance.......................................................................................................................................................... 26  
9.6.6 Temperature .............................................................................................................................................................................. 26  
9.6.7 Accuracy over Temperature ...................................................................................................................................................... 26  
9.7 AS5245 Differences to AS5045.......................................................................................................................................................... 27  
10 Package Drawings and Markings ......................................................................................................................................... 28  
11 Ordering Information ............................................................................................................................................................. 30  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
2 - 31  
AS5245  
Data Sheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Top View)  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
DTest1_A_Bottom  
DTest2_B_Top  
DTest2_B_Bottom  
NC  
24  
23  
22  
21  
20  
19  
18  
17  
VDD3V_Bottom  
NC  
NC  
NC  
AS5245  
NC  
NC  
Mode_Index_Top  
Mode_Index_Bottom  
VSS_Top  
PWM_Top  
PWM_Bottom  
CSn_Top  
9
10 11 12 13 14 15 16  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
3 - 31  
AS5245  
Data Sheet - Pin Assignments  
4.1 Pin Descriptions  
Table 1. Pin Descriptions  
Pin Name  
DTest1_A  
DTest2_B  
NC  
Pin Number  
Pin Type  
Digital output  
Digital output  
-
Description  
Test output in default mode  
Test output in default mode  
1, 32  
2, 3  
For internal use. Must be left unconnected  
4, 5  
Select between slow (open, low: VSS) and fast (high) mode. Internal pull-  
down resistor. Hard wired connection to VDD or GND recommended.  
Mode_Index  
VSS  
6, 7  
8, 9  
Digital I/O pull-down  
Supply pin  
Negative Supply Voltage (GND)  
OTP Programming Input and Data Input for Daisy Chain mode.  
Internal pull-down resistor (74kΩ). Should be connected to VSS if  
programming is not used.  
PDIO  
10, 11  
Digital input pull-down  
Digital input, Schmitt-  
trigger input  
Clock Input of Synchronous Serial Interface; Schmitt-Trigger input  
Data Output of Synchronous Serial Interface  
CLK  
DO  
12, 13  
14, 15  
16, 17  
Digital output / tri-  
state  
Chip Select. Active low. Schmitt-Trigger input, internal pull-up resistor  
(50kΩ)  
Digital input pull-up,  
Schmitt-trigger input  
CSn  
Pulse Width Modulation  
PWM  
NC  
18, 19  
20, 21  
22, 23  
Digital output  
For internal use. Must be left unconnected  
For internal use. Must be left unconnected  
-
-
NC  
3V-Regulator Output for internal core, regulated from VDD5V. Connect to  
VDD5V for 3V supply voltage. Do not load externally.  
VDD3V3  
VDD5V  
24, 25  
26, 27  
28, 29  
Supply pin  
Supply pin  
Positive Supply Voltage, 3.0V to 5.5V  
Magnet Field Magnitude Increase. Active low. Indicates a distance  
reduction between the magnet and the device surface.  
Digital output open  
drain  
MagINCn  
Magnet Field Magnitude Decrease. Active low. Indicates a distance  
increase between the device and the magnet.  
Digital output open  
drain  
MagDECn  
30, 31  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
4 - 31  
AS5245  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 6 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Min  
-0.3  
-0.3  
-0.3  
-100  
Max  
7
Units  
V
Comments  
DC supply voltage at pin VDD5V  
DC supply voltage at pin VDD3V3  
Input pin voltage  
5
V
7
V
Pins Prog, MagINCn, MagDECn, CLK, CSn  
Norm: EIA/JESD78 Class II Level A  
Norm: JESD22-A114E  
Input current (latchup immunity)  
Electrostatic discharge  
100  
±2  
+150  
mA  
kV  
ºC  
Storage temperature  
-55  
t=20 to 40s, Norm: IPC/JEDEC J-Std-020C  
Lead finish 100% Sn “matte tin”  
Body temperature (Lead-free package)  
260  
ºC  
Humidity non-condensing  
Ambient temperature  
5
85  
%
-40  
150  
ºC  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
5 - 31  
AS5245  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
TAMB = -40 to +150ºC, VDD5V = 3.0-3.6V (3V operation) VDD5V = 4.5-5.5V (5V operation) unless otherwise noted.  
Table 3. Electrical Characteristics  
Symbol  
Operating Conditions  
TAMB  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Ambient temperature  
Supply current  
-40  
+150  
21  
ºC  
Isupp  
(one die only)  
16  
mA  
VDD5V  
Supply voltage at pin VDD5V  
4.5  
3.0  
5.0  
5.5  
5V Operation  
V
V
Voltage regulator output voltage at pin  
VDD3V3  
3.3  
3.6  
VDD3V3  
VDD5V  
Supply voltage at pin VDD5V  
Supply voltage at pin VDD3V3  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
3.3V Operation  
(pin VDD5V and VDD3V3 connected)  
VDD3V3  
Power-on reset thresholds  
VON  
1.37  
1.08  
2.2  
1.9  
2.9  
2.6  
On voltage; 300mV typ. hysteresis  
V
VDD  
DC supply voltage 3.3V (  
3V3)  
Power-on reset thresholds  
Off voltage; 300mV typ. hysteresis  
VOFF  
Programming Conditions  
VPROG  
Programming voltage  
Programming voltage off level  
Programming current  
Voltage applied during programming  
Line must be discharged to this level  
Current during programming  
3.3  
0
3.6  
1
V
V
VProgOff  
IPROG  
100  
mA  
Ω
Rprogrammed  
Programmed fuse resistance (log 1)  
10µA maximum current@100mV  
100k  
50  
Unprogrammed fuse resistance (log  
0)  
Runprogrammed  
2mA maximum current@100mV  
100  
Ω
DC Characteristics CMOS Schmitt-Trigger Inputs: CLK, CSn (CSn = Internal Pull-up)  
0.7 *  
VIH  
VIL  
High level input voltage  
Low level input voltage  
Normal operation  
V
VDD5V  
0.3 *  
V
V
VDD5V  
VIon- VIoff  
ILEAK  
IiL  
Schmitt Trigger hysteresis  
Input leakage current  
1
CLK only  
-1  
1
µA  
Pull-up low level input current  
CSn only, VDD5V: 5.0V  
-30  
-100  
DC Characteristics CMOS / Program Input: PDIO  
0.7 *  
VDD5V  
V
V
VIH  
High level input voltage  
High level input voltage  
VDD5V  
During programming,  
Either with 3.3V or 5V supply  
VPROG  
3.3  
3.6  
0.3 *  
V
VIL  
Low level input voltage  
High level input current  
VDD5V  
IiL  
VDD5V: 5.5V  
30  
100  
µA  
DC Characteristics CMOS Output Open Drain: MagINCn, MagDECn  
IOZ  
Open drain leakage current  
Low level output voltage  
1
µA  
V
VSS  
+0.4  
VOL  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
6 - 31  
AS5245  
Data Sheet - Electrical Characteristics  
Table 3. Electrical Characteristics  
Symbol  
Parameter  
Output current  
Condition  
VDD5V: 4.5V  
VDD5V: 3V  
Min  
Typ  
Max  
4
Unit  
IO  
mA  
2
DC Characteristics CMOS Output: PWM  
VDD5V–  
0.5  
VOH  
High level output voltage  
V
V
VSS  
VOL  
Low level output voltage  
Output current  
+0.4  
VDD5V: 4.5V  
VDD5V: 3V  
4
2
IO  
mA  
DC Characteristics CMOS Output: A, B, Index  
VDD5V–  
0.5  
VOH  
High level output voltage  
Low level output voltage  
V
V
VSS  
+0.4  
VOL  
VDD5V: 4.5V  
VDD5V: 3V  
4
2
IO  
Output current  
mA  
DC Characteristics Tri-state CMOS Output: DO  
VDD5V–  
0.5  
VOH  
High level output voltage  
Low level output voltage  
V
V
VSS  
+0.4  
VOL  
VDD5V: 4.5V  
VDD5V: 3V  
4
2
1
IO  
Output current  
mA  
µA  
IOZ  
Tri-state leakage current  
6.1 System Specifications  
TAMB = -40 to +150ºC, VDD5V = 3.0 to 3.6V (3V operation) VDD5V = 4.5 to 5.5V (5V operation) unless otherwise noted.  
Table 4. Input Specification  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RES  
Resolution  
0.088 deg  
12  
bit  
Maximum error with respect to the best line fit.  
Centered magnet without calibration, TAMB  
=25ºC.  
INLopt  
Integral non-linearity (optimum)  
Integral non-linearity (optimum)  
±0.5  
±0.9  
deg  
deg  
Maximum error with respect to the best line fit.  
Centered magnet without calibration,  
INLtemp  
º
TAMB = -40 to +150 C  
Best line fit = (Errmax – Errmin) / 2  
Over displacement tolerance with 6mm  
diameter magnet, without calibration,  
TAMB = -40 to +150ºC  
INL  
DNL  
TN  
Integral non-linearity  
Differential non-linearity  
Transition noise  
±1.4  
deg  
deg  
12bit, no missing codes  
±0.044  
0.06  
1 sigma, fast mode (MODE = 1)  
Deg  
RMS  
1 sigma, slow mode  
(MODE = 0 or open)  
0.03  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
7 - 31  
AS5245  
Data Sheet - Electrical Characteristics  
Table 4. Input Specification  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Fast mode (Mode = 1);  
Until status bit OCF = 1  
20  
tPwrUp  
Power-up time  
ms  
Slow mode (Mode = 0 or open);  
Until OCF = 1  
80  
System propagation delay  
absolute output : delay of ADC, DSP  
and absolute interface  
Fast mode (MODE = 1)  
96  
tdelay  
µs  
Slow mode (MODE = 0 or open)  
384  
TAMB  
º
= 25 C, slow mode  
(MODE=0 or open)  
2.48  
2.35  
9.90  
9.38  
2.61  
2.61  
2.74  
2.87  
10.94  
11.46  
1
Internal sampling rate for absolute  
output:  
fS  
kHz  
TAMB  
º
= -40 to +150 C, slow mode (MODE=0  
or open)  
TAMB  
º
= 25 C, fast mode  
10.42  
10.42  
(MODE = 1)  
Internal sampling rate for absolute  
output  
fS  
kHz  
TAMB  
º
= -40 to +150 C, fast mode  
(MODE=1)  
Maximum clock frequency to read out serial  
data  
CLK/SEL  
Read-out frequency  
MHz  
Figure 3. Integral and Differential Non-Linearity Example  
10bit code  
α
1023  
1023  
Actual curve  
Ideal curve  
TN  
2
1
DNL+1LSB  
INL  
0.35°  
0
512  
512  
0
°
360  
180°  
[degrees]  
°
α
0
Integral Non-Linearity (INL) is the maximum deviation between actual position and indicated position.  
Differential Non-Linearity (DNL) is the maximum deviation of the step length from one position to the next.  
Transition Noise (TN) is the repeatability of an indicated position.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
8 - 31  
AS5245  
Data Sheet - Timing Characteristics  
7 Timing Characteristics  
TAMB= -40 to +150ºC, VDD5V= 3.0 to 3.6V (3V operation) VDD5V= 4.5 to 5.5V (5V operation), unless otherwise noted.  
Table 5. Timing Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Synchronous Serial Interface (SSI)  
Time between falling edge of CSn and  
data output activated  
tDOactive  
tCLKFE  
Data output activated (logic high)  
First data shifted to output register  
Start of data output  
100  
ns  
ns  
ns  
ns  
ns  
Time between falling edge of CSn and  
first falling edge of CLK  
500  
500  
Rising edge of CLK shifts out one bit at a  
time  
TCLK/2  
Time between rising edge of CLK and  
data output valid  
tDOvalid  
tDOtristate  
tCSn  
fCLK  
Data output valid  
413  
100  
After the last bit DO changes back to “tri-  
state”  
Data output tri-state  
CSn =high; To initiate read-out of next  
angular position  
Pulse width of CSn  
Read-out frequency  
500  
>0  
ns  
Clock frequency to read out serial data  
1
MHz  
Pulse Width Modulation Output  
Signal period = 4098µs ±10% at TAMB  
fPWM  
PWM frequency  
220  
244  
268  
Hz  
= -40 to +150ºC  
PWMIN  
Minimum pulse width  
Maximum pulse width  
Position 0d; angle 0 degree  
0.90  
1
1.10  
µs  
µs  
PWMAX  
Position 4098d; angle 359.91 degrees  
3686  
4096  
4506  
Programming Conditions  
tPROG  
tCHARGE  
fLOAD  
Programming time per bit  
Refresh time per bit  
LOAD frequency  
Time to prog. a singe fuse bit  
Time to charge the cap after tPROG  
Data can be loaded at n x 2µs  
Read the data from the latch  
Write the data to the latch  
10  
1
20  
µs  
µs  
500  
2.5  
2.5  
kHz  
MHz  
MHz  
fREAD  
READ frequency  
fWRITE  
WRITE frequency  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
9 - 31  
AS5245  
Data Sheet - Detailed Description  
8 Detailed Description  
The AS5245 is manufactured in a CMOS standard process and uses a spinning current Hall technology for sensing the magnetic field  
distribution across the surface of the chip. The integrated Hall elements are placed around the center of the device and deliver a voltage  
representation of the magnetic field at the surface of the IC.  
Through Sigma-Delta Analog / Digital Conversion and Digital Signal-Processing (DSP) algorithms, the AS5245 provides accurate high-resolution  
absolute angular position information. For this purpose, a Coordinate Rotation Digital Computer (CORDIC) calculates the angle and the  
magnitude of the Hall array signals. The DSP is also used to provide digital information at the outputs MagINCn and MagDECn that indicate  
movements of the used magnet towards or away from the device’s surface. A small low cost diametrically magnetized (two-pole) standard  
magnet provides the angular position information (see Figure 16).  
The AS5245 senses the orientation of the magnetic field and calculates a 12-bit binary code. This code can be accessed via. a Synchronous  
Serial Interface (SSI). In addition, an absolute angular representation is given by a Pulse Width Modulated signal at pin 12 (PWM). This PWM  
signal output also allows the generation of a direct proportional analog voltage, by using an external Low-Pass-Filter. The AS5245 is tolerant to  
magnet misalignment and magnetic stray fields due to differential measurement technique and Hall sensor conditioning circuitry.  
Figure 4. Typical Arrangement of AS5245 and Magnet  
8.1 Mode_Index Pin  
The Mode_Index pin activates or deactivates an internal filter that is used to reduce the analog output noise. Activating the filter (Mode pin =  
LOW or open) provides a reduced output noise of 0.03º rms. At the same time, the output delay is increased to 384µs. This mode is  
recommended for high precision, low speed applications.  
Deactivating the filter (Mode pin = HIGH) reduces the output delay to 96µs and provides an output noise of 0.06º rms. This mode is  
recommended for higher speed applications.  
Setting up the Mode pin affects the following parameters:  
Table 6. Slow and Fast Mode Parameters  
Parameter  
Slow Mode (mode=low or open)  
Fast Mode (mode=high, VDD=5V)  
Sampling rate  
2.61 kHz (384 µs)  
0.03º rms  
384µs  
10.42 kHz (96µs)  
0.06º rms  
96µs  
Transition noise (1 sigma)  
Output delay  
Maximum speed @ 4096 samples/rev  
Maximum speed @ 1024 samples/rev  
Maximum speed @ 256 samples/rev  
Maximum speed @ 64 samples/rev  
38 rpm  
153 rpm  
153 rpm  
610 rpm  
610 rpm  
2441 rpm  
9766 rpm  
2441 rpm  
Note: A change of the Mode during operation is not allowed. The setup must be constant during power up and during operation.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
10 - 31  
AS5245  
Data Sheet - Detailed Description  
8.2 Synchronous Serial Interface (SSI)  
Figure 5. Synchronous Serial Interface with Absolute Angular Position Data  
t
CLKFE  
CSn  
T
CLK/2  
t
CSn  
t
CLKFE  
1
1
8
18  
CLK  
DO  
Mag Mag Even  
INC DEC PAR  
D11  
D9 D8  
D6 D5  
D10  
D7  
D11  
D4 D3 D2 D1 D0 OCF  
COF LIN  
t
DO valid  
t
DO Tristate  
t
DO active  
Angular Position Data  
Status Bits  
If CSn changes to logic low, Data Out (DO) will change from high impedance (tri-state) to logic high and the read-out will be initiated.  
After a minimum time tCLK FE, data is latched into the output shift register with the first falling edge of CLK.  
Each subsequent rising CLK edge shifts out one bit of data.  
The serial word contains 18 bits, the first 12 bits are the angular information D[11:0], the subsequent 6 bits contain system information,  
about the validity of data such as OCF, COF, LIN, Parity and Magnetic Field status (increase/decrease).  
A subsequent measurement is initiated by a “high” pulse at CSn with a minimum duration of tCSn.  
8.2.1 Serial Data Contents  
D11:D0 – Absolute angular position data (MSB is clocked out first).  
OCF – (Offset Compensation Finished). Logic high indicates the finished Offset Compensation Algorithm.  
COF – (Cordic Overflow). Logic high indicates an out of range error in the CORDIC part. When this bit is set, the data at D9:D0 is invalid. The  
absolute output maintains the last valid angular value. This alarm may be resolved by bringing the magnet within the X-Y-Z tolerance limits.  
LIN – (Linearity Alarm). Logic high indicates that the input field generates a critical output linearity. When this bit is set, the data at D9:D0 may still  
be used, but can contain invalid data. This warning may be resolved by bringing the magnet within the X-Y-Z tolerance limits.  
Even Parity – Bit for transmission error detection of bits 1…17 (D11…D0, OCF, COF, LIN, MagINC, MagDEC). Placing the magnet above the  
chip, angular values increase in clockwise direction by default.  
Data D11:D0 is valid, when the status bits have the following configurations:  
Table 7. Status Bit Outputs  
OCF  
COF  
LIN  
Mag INC  
Mag DEC  
Parity  
0
0
1
1
0
1
0
1
Even checksum of bits  
1:15  
1
0
0
Note: MagInc=MagDec=1 is only recommended in YELLOW mode (see Table 8)  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
11 - 31  
AS5245  
Data Sheet - Detailed Description  
8.2.2 Z-axis Range Indication (Push Button Feature, Red/Yellow/Green Indicator)  
The AS5245 provides several options of detecting movement and distance of the magnet in the Z-direction. Signal indicators MagINCn and  
MagDECn are available both as hardware pins (pins #1 and 2) and as status bits in the serial data stream (see Figure 5). Additionally, an OTP  
programming option is available with bit MagCompEn that enables additional features:  
In the default state, the status bits MagINC, MagDec and pins MagINCn, MagDECn have the following function:  
Table 8. Magnetic Field Strength Red-Yellow-Green Indicator (OTP option)  
Status Bits  
Hardware Pins  
OPT: Mag CompEn = 1 (Red-Yellow-Green Programming Option)  
Description  
Mag  
INC  
Mag  
DEC  
Mag  
Mag  
LIN  
0
INCn  
DECn  
No distance change  
Magnetic input field OK (GREEN range, ~45…75mT)  
0
1
1
0
1
1
Off  
On  
Off  
Off  
YELLOW range: magnetic field is ~ 25…45mT or ~75…135mT. The AS5245  
may still be operated in this range, but with slightly reduced accuracy.  
0
RED range: magnetic field is ~<25mT or >~135mT. It is still possible to  
operate the AS5245 in the red range, but not recommended.  
1
On  
n/a  
On  
n/a  
Not available  
All other combinations  
Note: Pin 1 (MagINCn) and pin 2 (MagDECn) are active low via. open drain output and require an external pull-up resistor. If the magnetic  
field is in range, both outputs are turned off.  
The two pins may also be combined with a single pull-up resistor. In this case, the signal is high when the magnetic field is in range. It is low in all  
other cases (see Table 8).  
8.2.3 Incremental Mode  
The AS5245 has an internal interpolator block. This function is used if the input magnetic field is too fast and a code position is missing. In this  
case an interpolation is done.  
With the OTP bits OutputMd0 and OutputMd1 a specific mode can be selected. For the available pre-programmed incremental versions (10bit  
and 12bit), these bits are set during test at austriamicrosystems. These settings are permanent and can not be recovered.  
A change of the incremental mode (WRITE command) during operation could cause problems. A power-on-reset in between is recommended.  
During operation in incremental mode it is recommended setting CSn = High, to disable the SSI-Interface.  
Table 9. Incremental Resolution  
DTest1_A  
and  
DTest2_B  
Pulses  
Output  
Md1  
Output  
Md0  
Mode  
Description  
Resolution  
Index Width  
AS5245 function DTEST1_A and  
DTEST2_B are not used. The  
Default mode Mode_Index pin is used for selection of  
the decimation rate (low speed/high  
speed).  
0
0
0
1
10 bit  
Incremental  
DTEST1_A and DTEST2_B are used as  
10  
12  
256  
mode  
(low DNL)  
A and B signal. In this mode the  
1/3  
LSB  
Mode_Index Pin is switched from input  
to output and will be the Index Pin. The  
12 bit  
Incremental  
mode (high  
DNL)  
decimation rate is set to 64 (fast mode)  
1
1
0
1
1024  
and cannot be changed from external.  
In this mode a control signal is switched  
Sync mode  
to DTEST1_A and DTEST2_B.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
12 - 31  
AS5245  
Data Sheet - Detailed Description  
Figure 6. Incremental Output  
Programmed  
Zero Position  
Counter ClockWise  
ClockWise  
D Test1_A  
D Test2_B  
1 LSB  
3 LSB  
Mode_Index  
The hysteresis trimming is done at the final test (factory trimming) and set to 4 LSB, related to a 12 bit number.  
Incremental Output Hysteresis. To avoid flickering incremental outputs at a stationary magnet position, a hysteresis is introduced. In case  
of a rotational direction change, the incremental outputs have a hysteresis of 4 LSB. Regardless of the programmed incremental resolution, the  
hysteresis of 4 LSB always corresponds to the highest resolution of 12 bit. In absolute terms, the hysteresis is set to 0.35 degrees for all  
resolutions. For constant rotational directions, every magnet position change is indicated at the incremental outputs (see Figure 7). For example,  
if the magnet turns clockwise from position “x+3“ to “x+4“, the incremental output would also indicate this position accordingly. A change of the  
magnet’s rotational direction back to position “x+3“ means that the incremental output still remains unchanged for the duration of 4 LSB, until  
position “x+2“is reached. Following this direction, the incremental outputs will again be updated with every change of the magnet position.  
Figure 7. Hysteresis Window for Incremental Outputs  
Incremental  
Output  
Hysteresis :  
Indication  
0.35°  
X +6  
X +5  
X +4  
X +3  
X +2  
X +1  
X
Magnet Position  
X
X +1 X +2 X +3 X +4 X +5 X +6  
Clockwise Direction  
Counterclockwise Direction  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
13 - 31  
AS5245  
Data Sheet - Detailed Description  
Incremental Output Validity. During power on the incremental output is kept stable high until the offset compensation is finished and the  
CSn is low (internal Pull Up) the first time. In quadrature mode A = B = Index = high indicates an invalid output. If the interpolator recognizes a  
difference larger than 128 steps between two samples, it holds the last valid state. The interpolator synchronizes up again with the next valid  
difference. This avoids undefined output burst, e.g. if no magnet is present.  
8.2.4 Sync Mode  
This mode is used to synchronize the external electronic with the AS5245. In this mode, two signals are provided at the pins DTEST1_A and  
DTEST2_B. By setting of Md0=1 and Md1=1 in the OTP register, the Sync mode will be activated.  
Figure 8. DTest1_A and DTest2_B  
400µs (100µs)  
DTest1_A  
DTest1_B  
Every rising edge at DTEST1_A indicates that new data in the device is available. With this signal it is possible to trigger an external customer  
Microcontroller (interrupt) and start the SSI readout. DTEST2_B indicates the phase of available data.  
8.2.5 Sine/Cosine Mode  
This mode can be enabled by setting the OTP Factory-bit FS2. If this mode is activated, the 16 bit sinus and 16 bit cosines digital data of both  
channels will be switched out. Due to the high resolution of 16 bits of the data stream, an accurate calculation can be done externally. In this  
mode, the open drain outputs of DTEST1_A and DTEST2_B are switched to push-pull mode. At Pin MagDECn the clock impulse, at Pin  
MagINCn the Enable pulse will be switched out. The pin PWM indicates, which phase of signal is being presented. The mode is not available in  
the default mode.  
8.2.6 Daisy Chain Mode  
The Daisy Chain mode allows connection of several AS5245s in series, while still keeping just one digital input for data transfer (see “Data IN” in  
Figure 9). This mode is accomplished by connecting the data output (DO; pin 9) to the data input (PDIO; pin 8) of the subsequent device. The  
serial data of all connected devices is read from the DO pin of the first device in the chain. The length of the serial bit stream increases with every  
connected device, it is n * (18+1) bits: n= number of devices. E.g. 38 bit for two devices, 57 bit for three devices, etc.  
The last data bit of the first device (Parity) is followed by a dummy bit and the first data bit of the second device (D11), etc. (see Figure 10).  
Figure 9. Daisy Chain Hardware Configuration  
AS5245  
Bottom Die  
AS5245  
Top Die  
AS5245  
Top Die  
µC  
Data IN  
PDIO  
DO  
PDIO  
DO  
DO  
PDIO  
CSn  
CLK  
CSn  
CLK  
CSn  
CLK  
CLK  
CSn  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
14 - 31  
AS5245  
Data Sheet - Detailed Description  
Figure 10. Daisy Chain Mode Data Transfer  
CSn  
T
CLK/2  
t
CLK FE  
1
8
D
3
18  
1
2
CLK  
DO  
Mag Mag  
INC DEC  
Even  
PAR  
D9  
D11 D10  
D11  
D3 D2  
OCF  
D1 D0  
COF  
LIN  
D10 D9  
D8  
D7 D6  
D4  
D5  
t
DO valid  
Angular Position Data  
nd  
Angular Position Data  
Status Bits  
t
DO active  
st  
1
2
Device  
Device  
8.3 Pulse Width Modulation (PWM) Output  
The AS5245 provides a pulse width modulated output (PWM), whose duty cycle is proportional to the measured angle. For angle position 0 to  
4094:  
ton 4098  
-------------------------  
Position =  
– 1  
(EQ 1)  
(ton + toff  
)
Examples:  
1. An angle position of 180º will generate a pulse width ton = 2049µs and a pause tOFF of 2049 µs resulting in Position = 2048 after the  
calculation: 2049 * 4098 / (2049 + 2049) -1 = 2048  
2. An angle position of 359.8º will generate a pulse width ton = 4095µs and a pause tOFF of 3 µs resulting in Position = 4094 after the cal-  
culation: 4095 * 4098 / (4095 + 3) -1 = 4094  
Exception:  
1. An angle position of 359.9º will generate a pulse width ton = 4097µs and a pause tOFF of 1 µs resulting in Position = 4096 after the cal-  
culation: 4097 * 4098 / (4097 + 1) -1 = 4096  
The PWM frequency is internally trimmed to an accuracy of ±5% (±10% over full temperature range). This tolerance can be cancelled by  
measuring the complete duty cycle as shown above.  
Figure 11. PWM Output Signal  
Angle  
PW  
MIN  
0 deg  
(Pos 0)  
1µs  
4097µs  
PW  
MAX  
359.91 deg  
(Pos 4095)  
4096µs  
1/f  
PWM  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
15 - 31  
AS5245  
Data Sheet - Detailed Description  
8.3.1 Changing the PWM Frequency  
The PWM frequency of the AS5245 can be divided by two by setting a bit (PWMhalfEN) in the OTP register (see Programming the AS5245 on  
page 17). With PWMhalfEN = 0, the PWM timing is as shown in Table 10:  
Table 10. PWM Signal Parameters (Default mode)  
Symbol  
Parameter  
Typ  
Unit  
Note  
fPWM  
Signal period: 4097µs  
PWM frequency  
244  
Hz  
- Position 0d  
- Angle 0 deg  
PWMIN  
PWMAX  
MIN pulse width  
MAX pulse width  
1
µs  
µs  
- Position 4095d  
- Angle 359,91 deg  
4096  
When PWMhalfEN = 1, the PWM timing is as shown in Table 11:  
Table 11. PWM Signal Parameters with Half Frequency (OTP option)  
Symbol  
Parameter  
Typ  
Unit  
Note  
- Position 0d  
- Angle 0 deg  
fPWM  
PWM frequency  
122  
Hz  
- Position 4095d  
- Angle 359,91 deg  
PWMIN  
PWMAX  
MIN pulse width  
MAX pulse width  
2
µs  
µs  
- Position 0d  
- Angle 0 deg  
8192  
8.4 Analog Output  
An analog output can be generated by averaging the PWM signal, using an external active or passive low pass filter. The analog output voltage  
is proportional to the angle: 0º= 0V; 360º = VDD5V.  
Using this method, the AS5245 can be used as direct replacement of potentiometers.  
Figure 12. Simple 2nd Order Passive RC Low Pass Filter  
R2  
R1  
analog out  
Pin12  
PWM  
VDD  
0V  
C2  
C1  
Pin7  
VSS  
0º  
360º  
Figure 12 shows an example of a simple passive low pass filter to generate the analog output.  
R1,R2 4k7 C1,C2 1µF / 6V  
(EQ 2)  
R1 should be greater than or equal to 4k7 to avoid loading of the PWM output. Larger values of Rx and Cx will provide better filtering and less  
ripple, but will also slow down the response time.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
16 - 31  
AS5245  
Data Sheet - Application Information  
9 Application Information  
The benefits of AS5245 are as follows:  
Complete system-on-chip  
Angle measurement with programmable range up to 360º  
High reliability due to non-contact magnetic sensing  
Ideal for applications in harsh environments  
Robust system, tolerant to magnet misalignment, airgap variations, temperature variations and external magnetic fields  
No calibration required  
Building of redundancy systems with plausibility checks  
9.1 Programming the AS5245  
After power-on, programming the AS5245 is enabled with the rising edge of CSn with PDIO = high and CLK = low.  
The AS5245 programming is a one-time programming (OTP) method, based on poly silicon fuses. The advantage of this method is that a  
programming voltage of only 3.3V to 3.6V is required for programming.  
The OTP consists of 52 bits, of which 21 bits are available for user programming. The remaining 31 bits contain factory settings and a unique  
chip identifier (Chip-ID).  
A single OTP cell can be programmed only once. Per default, the cell is “0”; a programmed cell will contain a “1”. While it is not possible to reset  
a programmed bit from “1” to “0”, multiple OTP writes are possible, as long as only unprogrammed “0”-bits are programmed to “1”.  
Independent of the OTP programming, it is possible to overwrite the OTP register temporarily with an OTP write command at any time. This  
setting will be cleared and overwritten with the hard programmed OTP settings at each power-up sequence or by a LOAD operation. Use  
application note AN514X_10 to get more information about the programming options.  
The OTP memory can be accessed in the following ways:  
Load Operation: The Load operation reads the OTP fuses and loads the contents into the OTP register. A Load operation is automatically  
executed after each power-on-reset.  
Write Operation: The Write operation allows a temporary modification of the OTP register. It does not program the OTP. This operation can  
be invoked multiple times and will remain set while the chip is supplied with power and while the OTP register is not modified with another  
Write or Load operation.  
Read Operation: The Read operation reads the contents of the OTP register, for example to verify a Write command or to read the OTP  
memory after a Load command.  
Program Operation: The Program operation writes the contents of the OTP register permanently into the OTP ROM.  
Analog Readback Operation: The Analog Readback operation allows a quantifiable verification of the programming. For each  
programmed or unprogrammed bit, there is a representative analog value (in essence, a resistor value) that is read to verify whether a bit  
has been successfully programmed or not.  
9.1.1 Zero Position Programming  
Zero position programming is an OTP option that simplifies assembly of a system, as the magnet does not need to be manually adjusted to the  
mechanical zero position. Once the assembly is completed, the mechanical and electrical zero positions can be matched by software. Any  
position within a full turn can be defined as the permanent new zero position.  
For zero position programming, the magnet is turned to the mechanical zero position (e.g. the “off”-position of a rotary switch) and the actual  
angular value is read.  
This value is written into the OTP register bits Z35:Z46.  
Note: The zero position value may also be modified before programming, e.g. to program an electrical zero position that is 180º (half turn)  
from the mechanical zero position, just add 2048 to the value read at the mechanical zero position and program the new value into the  
OTP register.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
17 - 31  
AS5245  
Data Sheet - Application Information  
9.1.2 OTP Memory Assignment  
Table 12. OTP Bit Assignment  
Bit  
Symbol  
Function  
Factory Bit 1  
mbit1  
51  
50  
49  
48  
47  
46  
:
PWMhalfEN_Index width  
PMW frequency Index pulse width  
Alarm mode  
MagCompEn  
pwmDIS  
Output Md0  
Output Md1  
Z0  
Disable PWM  
Default, 10 bit inc, 12 bit inc  
Sync mode  
:
12 bit Zero Position  
Direction  
35  
34  
33  
:
Z11  
CCW  
RA0  
:
Redundancy Address  
29  
28  
27  
26  
25  
24  
23  
:
RA4  
FS 0  
FS 1  
FS 2  
FS 3  
Factory Bit  
FS 4  
FS 5  
:
20  
17  
16  
:
FS 9  
ChipID0  
ChipID1  
:
18 bit Chip ID  
Factory Bit 0  
0
ChipID17  
mbit0  
9.1.3 User Selectable Settings  
The AS5245 allows programming of the following user selectable options:  
- PWMhalfEN_Indexwidth: Setting this bit, the PWM pulse will be divided by 2, in case of quadrature incremental mode A/B/Index setting  
of Index impulse width from 1 LSB to 3LSB.  
- MagCompEN: The green/yellow mode can be enabled by setting of this bit.  
- Output Md0: Setting this bit enables sync- or 10bit incremental mode (see Table 9). It is already set by Austriamicrosystems.  
- Output Md1: Setting this bit enables sync- or 12bit incremental mode (see Table 9)  
- Z [11:0]: Programmable Zero / Index Position  
- CCW: Counter Clockwise Bit  
ccw=0 – angular value increases in clockwise direction  
ccw=1 – angular value increases in counterclockwise direction  
- RA [4:0]: Redundant Address: an OTP bit location addressed by this address is always set to “1” independent of the corresponding  
original OTP bit setting  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
18 - 31  
AS5245  
Data Sheet - Application Information  
9.1.4 OTP Default Setting  
The AS5245 can also be operated without programming. The default, un-programmed setting is:  
- Output Md0, Output MD1: 00= Default mode  
- Z0 to Z11: 00 = no programmed zero position  
- CCW: 0 = clockwise operation  
- RA4 to RA0:0 = no OTP bit is selected  
- MagCompEN: 1 = The green / yellow mode is enabled.  
9.1.5 Redundancy  
For a better programming reliability, a redundancy is implemented. This function can be used in cases where the programming of one bit fails.  
With an address RA(4:0), one bit can be selected and programmed.  
Table 13. Redundancy Addressing  
Address  
Z0  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z9 Z10 Z11 CCW  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10101  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
9.1.6 Redundant Programming Option  
In addition to the regular programming, a redundant programming option is available. This option allows that one selectable OTP bit can be set  
to “1” (programmed state) by writing the location of that bit into a 5-bit address decoder. This address can be stored in bits RA4…RA0 in the OTP  
user settings.  
Example: setting RA4…0 to “00001” will select bit 51 = PWhalfEN_Indexwidth, “00010” selects bit 50 = MagCompEN, “10010” selects bit 34  
=CCW, etc.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
19 - 31  
AS5245  
Data Sheet - Application Information  
9.2 Alignment Mode  
The alignment mode simplifies centering the magnet over the center of the chip to gain maximum accuracy.  
Alignment mode can be enabled with the falling edge of CSn while PDIO = logic high (see Figure 13). The Data bits D11-D0 of the SSI change to  
a 12-bit displacement amplitude output. A high value indicates large X or Y displacement, but also higher absolute magnetic field strength. The  
magnet is properly aligned, when the difference between highest and lowest value over one full turn is at a minimum.  
Under normal conditions, a properly aligned magnet will result in a reading of less than 128 over a full turn.  
The MagINCn and MagDECn indicators will be = 1 when the alignment mode reading is < 128. At the same time, both hardware pins MagINCn  
(#1) and MagDECn (#2) will be pulled to VSS. A properly aligned magnet will therefore produce a MagINCn = MagDECn = 1 signal throughout a  
full 360º turn of the magnet.  
Stronger magnets or short gaps between magnet and IC may show values larger than 128. These magnets are still properly aligned as long as  
the difference between highest and lowest value over one full turn is at a minimum.  
The Alignment mode can be reset to normal operation by a power-on-reset (disconnect / re-connect power supply) or by a falling edge on CSn  
with PDIO = low.  
Figure 13. Enabling the Alignment Mode  
PDIO  
Read-out  
via SSI  
AlignMode enable  
CSn  
2µs  
min.  
2µs  
min.  
Figure 14. Exiting Alignment Mode  
PDIO  
CSn  
Read-out  
via SSI  
exit AlignMode  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
20 - 31  
AS5245  
Data Sheet - Application Information  
9.3 3.3V / 5V Operation  
The AS5245 operates either at 3.3V ±10% or at 5V ±10%. This is made possible by an internal 3.3V Low-Dropout (LDO) Voltage regulator. The  
internal supply voltage is always taken from the output of the LDO, meaning that the internal blocks are always operating at 3.3V.  
For 3.3V operation, the LDO must be bypassed by connecting VDD3V3 with VDD5V (see Figure 15).  
For 5V operation, the 5V supply is connected to pin VDD5V, while VDD3V3 (LDO output) must be buffered by a 1...10µF capacitor, which is  
supposed to be placed close to the supply pin (see Figure 15).  
Note: The VDD3V3 output is intended for internal use only. It must not be loaded with an external load.  
The output voltage of the digital interface I/O’s corresponds to the voltage at pin VDD5V, as the I/O buffers are supplied from this pin.  
Figure 15. Connections for 5V / 3.3V Supply Voltages  
5V Operation  
3.3V Operation  
VDD5V  
1... 10µF  
VDD3V3  
VDD3V3  
100n  
100n  
Internal  
VDD  
Internal  
VDD  
VDD5V  
LDO  
LDO  
DO  
DO  
+
+
I
PWM  
CLK  
CSn  
I
PWM  
CLK  
CSn  
N
T
E
R
F
A
C
E
N
T
E
R
F
A
C
E
3.0 - 3.6V  
4.5 - 5.5V  
PDIO  
PDIO  
VSS  
VSS  
A buffer capacitor of 100nF is recommended in both cases close to pin VDD5V. Note that pin VDD3V3 must always be buffered by a capacitor. It  
must not be left floating, as this may cause an instable internal 3.3V supply voltage, which may lead to larger than normal jitter of the measured  
angle.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
21 - 31  
AS5245  
Data Sheet - Application Information  
9.4 Choosing the Proper Magnet  
Typically, the magnet should be 6mm in diameter and 2.5mm in height. Magnetic materials such as rare earth AlNiCo/SmCo5 or NdFeB are  
recommended. The magnetic field strength perpendicular to the die surface has to be in the range of ±45mT…±75mT (peak).  
The magnet’s field strength should be verified using a gauss-meter. The magnetic field Bv at a given distance, along a concentric circle with a  
radius of 1.1mm (R1), should be in the range of ±45mT…±75mT (see Figure 16).  
Figure 16. Typical Magnet (6x3mm) and Magnetic Field Distribution  
typ. 6mm diameter  
N
S
Magnet axis  
R1  
Vertical field  
component  
R1 concentric circle;  
radius 1.1mm  
Vertical field  
component  
Bv  
(45…75mT)  
360  
0
360  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
22 - 31  
AS5245  
Data Sheet - Application Information  
9.5 Failure Diagnostics  
The AS5245 also offers several diagnostic and failure detection features, which are discussed in detail further in the document.  
9.5.1 Magnetic Field Strength Diagnosis  
By Software: The MagINC and MagDEC status bits will both be high when the magnetic field is out of range.  
By Hardware: Pins #1 (MagINCn) and #2 (MagDECn) are open-drain outputs and will both be turned on (= low with external pull-up resistor)  
when the magnetic field is out of range. If only one of the outputs are low, the magnet is either moving towards the chip (MagINCn) or away from  
the chip (MagDECn).  
9.5.2 Power Supply Failure Detection  
By Software: If the power supply to the AS5245 is interrupted, the digital data read by the SSI will be all “0”s. Data is only valid, when bit OCF is  
high, hence a data stream with all “0”s is invalid. To ensure adequate low levels in the failure case, a pull-down resistor (~10kΩ) should be added  
between pin DIO and VSS at the receiving side.  
By Hardware: The MagINCn and MagDECn pins are open drain outputs and require external pull-up resistors. In normal operation, these pins  
are high ohmic and the outputs are high (see Table 8). In a failure case, either when the magnetic field is out of range of the power supply is  
missing, these outputs will become low. To ensure adequate low levels in case of a broken power supply to the AS5245, the pull-up resistors  
(~10kΩ) from each pin must be connected to the positive supply at pin 16 (VDD5V).  
By Hardware, PWM Output: The PWM output is a constant stream of pulses with 1kHz repetition frequency. In case of power loss, these pulses  
are missing.  
9.6 Angular Output Tolerances  
9.6.1 Accuracy  
Accuracy is defined as the error between measured angle and actual angle. It is influenced by several factors:  
The non-linearity of the analog-digital converters,  
Internal gain and mismatch errors,  
Non-linearity due to misalignment of the magnet.  
As a sum of all these errors, the accuracy with centered magnet = (Errmax – Errmin)/2 is specified as better than ±0.5 degrees @ 25ºC (see  
Figure 19).  
Misalignment of the magnet further reduces the accuracy. Figure 18 shows an example of a 3D-graph displaying non-linearity over XY-  
misalignment. The center of the square XY-area corresponds to a centered magnet (see dot in the center of the graph). The X- and Y- axis  
extends to a misalignment of ±1mm in both directions. The total misalignment area of the graph covers a square of 2x2 mm (79x79mil) with a  
step size of 100µm.  
For each misalignment step, the measurement as shown in Figure 19 is repeated and the accuracy (Errmax – Errmin)/2 (e.g. 0.25º in Figure 19) is  
entered as the Z-axis in the 3D-graph.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
23 - 31  
AS5245  
Data Sheet - Application Information  
Figure 17. Example of Linearity Error Over XY Misalignment  
6
5
4
°
3
800  
500  
200  
2
1
0
-100  
-400  
-700  
-1000  
x
y
The maximum non-linearity error on this example is better than ±1 degree (inner circle) over a misalignment radius of ~0.7mm. For volume  
production, the placement tolerance of the IC within the package (±0.235mm) must also be taken into account. The total nonlinearity error over  
process tolerances, temperature and a misalignment circle radius of 0.25mm is specified better than ±1.4 degrees. The magnet used for this  
measurement was a cylindrical NdFeB (Bomatec® BMN-35H) magnet with 6mm diameter and 2.5mm in height.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
24 - 31  
AS5245  
Data Sheet - Application Information  
Figure 18. Example of Linearity Error Over 360º  
0.5  
0.4  
0.3  
0.2  
0.1  
0
transition noise  
Err max  
1
55  
109  
163  
217  
271  
325  
379  
433  
487  
541  
595  
649  
703  
757  
811  
865  
919  
973  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Errmin  
9.6.2 Transition Noise  
Transition noise is defined as the jitter in the transition between two steps. Due to the nature of the measurement principle (Hall sensors +  
Preamplifier + ADC), there is always a certain degree of noise involved. This transition noise voltage results in an angular transition noise at the  
outputs. It is specified as 0.06 degrees rms (1 sigma)1 in fast mode (pin MODE = high) and 0.03 degrees rms (1 sigma) in slow mode (pin MODE  
= low or open). This is the repeatability of an indicated angle at a given mechanical position. The transition noise has different implications on the  
type of output that is used:  
Absolute Output; SSI Interface: The transition noise of the absolute output can be reduced by the user by implementing averaging of  
readings. An averaging of 4 readings will reduce the transition noise by 6dB or 50%, e.g. from 0.03º rms to 0.015º rms (1 sigma) in slow  
mode.  
PWM Interface: If the PWM interface is used as an analog output by adding a low pass filter, the transition noise can be reduced by lower-  
ing the cutoff frequency of the filter. If the PWM interface is used as a digital interface with a counter at the receiving side, the transition  
noise may again be reduced by averaging of readings.  
Incremental Mode: In incremental mode, the transition noise influences the period, width and phase shift of the output signals A, B and  
Index. However, the algorithm used to generate the incremental outputs guarantees no missing or additional pulses even at high speeds (up  
to 30.000 rpm and higher).  
9.6.3 High Speed Operation  
Sampling Rate. The AS5245 samples the angular value at a rate of 2.61k (slow mode) or 10.42k (fast mode, selectable by pin MODE)  
samples per second. Consequently, the absolute outputs are updated each 384µs (96µs in fast mode). At a stationary position of the magnet,  
the sampling rate creates no additional error.  
Absolute Mode. At a sampling rate of 2.6kHz/10.4kHz, the number of samples (n) per turn for a magnet rotating at high speed can be  
calculated by,  
60  
----------------------------------  
nslowmode  
nfastmode  
=
(EQ 3)  
(EQ 4)  
rpm ⋅ (384s  
60  
--------------------------  
=
rmp 96μs  
The upper speed limit in slow mode is ~6.000rpm and ~30.000rpm in fast mode. The only restriction at high speed is that there will be fewer  
samples per revolution as the speed increases (see Table 6). Regardless of the rotational speed, the absolute angular value is always sampled  
at the highest resolution of 12 bit.  
1. Statistically, 1 sigma represents 68.27% of readings; 3 sigma represents 99.73% of readings.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
25 - 31  
AS5245  
Data Sheet - Application Information  
Incremental Mode. Incremental encoders are usually required to produce no missing pulses up to several thousand rpms. Therefore, the  
AS5245 has a built-in interpolator, which ensures that there are no missing pulses at the incremental outputs for rotational speeds of up to  
30.000 rpm, even at the highest resolution of 10 bits (512 pulses per revolution).  
9.6.4 Propagation Delays  
The propagation delay is the delay between the time that the sample is taken until it is converted and available as angular data. This delay is  
96µs in fast mode and 384µs in slow mode.  
Using the SSI interface for absolute data transmission, an additional delay must be considered, caused by the asynchronous sampling (0 … 1/  
fsample) and the time it takes the external control unit to read and process the angular data from the chip (maximum clock rate = 1MHz, number  
of bits per reading = 18).  
Angular Error Caused by Propagation Delay. A rotating magnet will cause an angular error caused by the output propagation delay.  
This error increases linearly with speed:  
esampling = rpm * 6 * prop.delay  
(EQ 5)  
Where:  
esampling = angular error [º]  
rpm = rotating speed [rpm]  
prop.delay = propagation delay [seconds]  
Note: Since the propagation delay is known, it can be automatically compensated by the control unit processing the data from the AS5245.  
9.6.5 Internal Timing Tolerance  
The AS5245 does not require an external ceramic resonator or quartz. All internal clock timings for the AS5245 are generated by an on-chip RC  
oscillator. This oscillator is factory trimmed to ±5% accuracy at room temperature (±10% over full temperature range). This tolerance influences  
the ADC sampling rate and the pulse width of the PWM output:  
Absolute Output; SSI Interface: A new angular value is updated every 96µs (typ) in fast mode and every 384µs (typ) in slow mode.  
PWM Output: A new angular value is updated every 400µs (typ). The PWM pulse timings tON and tOFF also have the same tolerance as  
the internal oscillator. If only the PWM pulse width tON is used to measure the angle, the resulting value also has this timing tolerance.  
However, this tolerance can be cancelled by measuring both tON and tOFF and calculating the angle from the duty cycle (see Pulse Width  
Modulation (PWM) Output on page 15).  
Incremental Mode: In incremental mode, the transition noise influences the period, width and phase shift of the output signals A, B and  
Index. However, the algorithm used to generate the incremental outputs guarantees no missing or additional pulses even at high speeds (up  
to 30.000 rpm and higher).  
ton 4097  
-------------------------  
Position =  
– 1  
(EQ 6)  
(ton + toff  
)
9.6.6 Temperature  
Magnetic Temperature Coefficient. One of the major benefits of the AS5245 compared to linear Hall sensors is that it is much less  
sensitive to temperature. While linear Hall sensors require a compensation of the magnet’s temperature coefficients, the AS5245 automatically  
compensates for the varying magnetic field strength over temperature. The magnet’s temperature drift does not need to be considered, as the  
AS5245 operates with magnetic field strengths from ±45…±75mT.  
Example:  
A NdFeB magnet has a field strength of 75mT @ -40ºC and a temperature coefficient of -0.12% per Kelvin. The temperature change is from -40º  
to +125º = 165K.The magnetic field change is: 165 x -0.12% = -19.8%, which corresponds to 75mT at -40ºC and 60mT at 125ºC.  
The AS5245 can compensate for this temperature related field strength change automatically, no user adjustment is required.  
9.6.7 Accuracy over Temperature  
The influence of temperature in the absolute accuracy is very low. While the accuracy is less than or equal to ±0.5º at room temperature, it may  
increase to less then or equal to ±0.9º due to increasing noise at high temperatures.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
26 - 31  
AS5245  
Data Sheet - Application Information  
Timing Tolerance over Temperature. The internal RC oscillator is factory trimmed to ±5%. Over temperature, this tolerance may increase  
to ±10%. Generally, the timing tolerance has no influence in the accuracy or resolution of the system, as it is used mainly for internal clock  
generation. The only concern to the user is the width of the PWM output pulse, which relates directly to the timing tolerance of the internal  
oscillator. This influence, however, can be cancelled by measuring the complete PWM duty cycle instead of just the PWM pulse.  
9.7 AS5245 Differences to AS5045  
All parameters are according to AS5045 data sheet except for the parameters shown below:  
Table 14. Difference Between AS5245 and AS5045  
Building Block  
Resolution  
AS5245  
AS5045  
12bits, 0.088º/step.  
-40ºC to +150ºC  
read: 18bits  
12bits, 0.088º/step.  
-40ºC to +125ºC  
read: 18bits  
Ambient temperature range  
(12bits data + 6 bits status)  
OTP write: 18 bits  
(12bits zero position + 6 bits mode selection)  
(12bits data + 6 bits status)  
OTP write: 18 bits  
(12bits zero position + 6 bits mode selection)  
Data length  
Pins 1 and 2  
MagINCn, MagDECn: same feature as AS5045,  
additional OTP option for red-yellow-green magnetic  
range  
MagINCn, MagDECn  
Not used  
Pin 3: not used  
Pin 4:not used  
Pin3 (DTest1_A); Pin 4 (DTest2_B); Pin 6 (Mode_Index)  
2x1024 ppr (12-bit)  
2x256 ppr low-jitter (10-bit)  
Incremental encoder  
MODE_Index pin selects fast or slow mode in the  
default configuration. In case of incremental mode, the MODE_Index pin selects fast or slow mode in the  
Pin 6  
fast mode is selected and the pin is configured as  
output.  
default configuration.  
PWM output: frequency selectable by OTP:  
1µs / step, 4096 steps per revolution, f=244Hz 2µs/  
step, 4096 steps per revolution, f=122Hz  
PWM output: frequency selectable by OTP:  
1µs / step, 4096 steps per revolution, f=244Hz  
2µs/ step, 4096 steps per revolution, f=122Hz  
Pin 12  
selectable by MODE input pin:  
2.5kHz, 10,4kHz  
selectable by MODE input pin:  
2.5kHz, 10,4kHz  
Sampling frequency  
Propagation delay  
384µs (slow mode)  
384µs (slow mode)  
96µs (fast mode)  
96µs (fast mode)  
0.03 degrees maximum (slow mode)  
0.06 degrees maximum (fast mode)  
0.03 degrees maximum (slow mode)  
0.06 degrees maximum (fast mode)  
Transition noise  
(rms; 1sigma)  
PPTRIM; programming voltage 3.3V – 3.6V <70ºC;  
3.5V – 3.6V >70ºC;  
52-bit serial data protocol; CSn, PDIO and CLK  
EasyZap; programming voltage 7.3V – 7.5V; Csn;  
Prog and CLK; 16-bit (32-bit) serial data protocol;  
OTP programming options  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
27 - 31  
AS5245  
Data Sheet - Pack age Drawings and Markings  
10 Package Drawings and Markings  
The device is available in a QFN 32 (7mm x 7mm) package.  
Figure 19. Package Drawings  
AS5245  
25  
32  
Top View  
24  
1
8
17  
16  
9
Side View  
Bottom View  
Table 15. Package Dimensions  
mm  
inch  
Typ  
Symbol  
Min  
Typ  
7 BSC  
7 BSC  
4.28  
Max  
Min  
Max  
D
E
0.28 BSC  
0.28 BSC  
0.169  
D1  
E1  
L
4.18  
4.18  
0.45  
0.25  
4.38  
4.38  
0.65  
0.35  
0.165  
0.165  
0.018  
0.010  
0.172  
0.172  
0.026  
0.014  
4.28  
0.169  
0.55  
0.022  
b
0.30  
0.012  
e
0.65 BSC  
0.90  
A
0.80  
1.00  
0.031  
0.035  
0.039  
A1  
0.203 REF  
0.008 REF  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
28 - 31  
AS5245  
Data Sheet - Revision History  
Revision History  
Revision  
Date  
Owner  
Description  
Initial revision  
June 08, 2007  
July 24, 2008  
Changes made to values in Table 9 - Incremental Resolution  
apg  
Updated min, typ, max values for tDOvalid parameter in Table 5 - Timing  
Characteristics  
Feb 13, 2009  
July 15, 2009  
1) Note added under Table 6 - Slow and Fast Mode Parameters  
2) Output Md0, Md1 description updated, (see User Selectable Settings  
on page 18)  
rfu  
Updated values in Table 5 - Timing Characteristics for the following  
1.0  
parameters:  
- tDOvalid  
July 22, 2009  
July 23, 2009  
- fPWM  
- PWMIN  
- PWMAX  
mub  
Updated sections Electrical Characteristics on page 6, Timing  
Characteristics on page 9 and Detailed Description on page 10  
according to AS5145 datasheet.  
Deleted the following --  
1) ‘OTP Programming Connection’ figure  
2) Physical Placement of the magnet, Magnet Placement, Simulation  
Modeling  
1.1  
Oct 19, 2009  
Nov 05, 2009  
Timing Characteristics (page 9) - Deleted the parameter ‘PWM  
apg  
1.2  
1.3  
Frequency’ (fPWM  
)
Updated section Internal Timing Tolerance (page 26)  
Updated standards in Absolute Maximum Ratings on page 5  
Updated Package Drawings and Markings on page 28  
Dec 04, 2009  
Apr 01, 2010  
Apr 13, 2010  
1.4  
1.5  
Updated Mode_Index, PWM, Electrical Characteristics (page 6),  
fPWM (page 9), Figure 9, Table 11.  
Jun 17, 2010  
mub  
Info on ‘Magnet Input Specification’ deleted from the document.  
Note: Typos may not be explicitly mentioned under revision history.  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
29 - 31  
AS5245  
Data Sheet - Ordering Information  
11 Ordering Information  
The devices are available as the standard products shown in Table 16.  
Table 16. Ordering Information  
Ordering Code  
Description  
Delivery Form  
Package  
AS5245HQFT  
12-bit fully redundant magnetic rotary encoder  
Tape & Reel  
QFN 32 (7mm x 7mm)  
Note: All products are RoHS compliant and Pb-free.  
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect  
For further information and requests, please contact us mailto:sales@austriamicrosystems.com  
or find your local distributor at http://www.austriamicrosystems.com/distributor  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
30 - 31  
AS5245  
Data Sheet - Copyrights  
Copyrights  
Copyright © 1997-2010, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®.  
All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of  
the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale.  
austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding  
the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at  
any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for  
current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are  
specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100  
parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use,  
interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com/AS5245  
Revision 1.5  
31 - 31  

相关型号:

AS5261

12-Bit Automotive Angle Position Sensor
AMSCO

AS5261-HMFP

12-Bit Automotive Angle Position Sensor
AMSCO

AS5262

12-Bit Magnetic Angle Position Sensor
AMSCO

AS5262-HMFP

12-Bit Magnetic Angle Position Sensor
AMSCO

AS5263

12-Bit Redundant Automotive Angle Position Sensor
AMSCO

AS5263-HQFT

12-Bit Redundant Automotive Angle Position Sensor
AMSCO

AS52A10

Step Recovery Diode, Silicon,
ASI

AS52A42

Step Recovery Diode, Silicon,
ASI

AS52A51

Step Recovery Diode, Silicon,
ASI

AS52A52

Step Recovery Diode, Silicon,
ASI

AS52B10

Step Recovery Diode, Silicon,
ASI

AS52B42

Step Recovery Diode, Silicon,
ASI