AS8501T&R [AMSCO]

High precision voltage and current measurement sensor interface; 高精确度的电压和电流测量传感器接口
AS8501T&R
型号: AS8501T&R
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

High precision voltage and current measurement sensor interface
高精确度的电压和电流测量传感器接口

传感器
文件: 总40页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS8501  
Preliminary Data Sheet  
High precision voltage and current measurement sensor interface  
REF  
AGND  
VDDA  
VSSA  
1
Features  
INTERNAL TEMPERATURE  
1.26 V  
REFERENCE  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
16 bits resolution  
Differential inputs  
Single + 5V supply  
Low power 15 mW  
VDDD  
VSSD  
CALIBRATION  
DATA  
ETR  
ETS  
BUF  
INPUT MUX  
CHOPPER  
SOIC16 package  
DSP  
CONTROLLER  
FILTER  
INT. CLOCK  
TIMER  
CLK  
VBAT  
RSHH  
Self- and system-calibration  
with auto-calibration on power up  
16 kHz maximum sampling frequency  
Internal temperature measurement  
Internal factory trimmed precision reference  
Programmable current sources  
Digital comparator  
Active wake-up  
PGA gains 1, 6, 24, 50, 100  
Zero offset  
Zero offset TC  
Extremely low noise  
Internal oscillator with comparator for active wake up  
3-wire serial interface, μP compatible  
Temperature range – 40 to + 125 °C  
Individual 24-bit serial number  
16 BIT - CONVERTER  
PROTECTION  
EZPRG  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
PGA  
and  
LEVEL SHIFT  
COMPARATOR  
RSHL  
CURRENT  
SOURCES  
SERIAL INTERFACE / CONTROL REGISTERS  
SCLK  
SDAT  
INTN  
Figure 1: Functional Block Diagram  
the high internal chopping frequency the system is free of 1/f-noise down  
to DC.The 0-10 Hz noise is typical below 1 µV i.e. as good or better than  
any other available chopper amplifier.  
For high speed synchronous measurements the chip can run in an  
automatic switching mode between two input channels with pre-  
programmed parameter sets.  
The circuit has been optimised for the application in battery management  
systems in automotive systems. As a front end data acquisition system it  
allows an high quality measurement of current, voltage and temperature  
of the battery.  
2
Applications  
ƒ
ƒ
ƒ
ƒ
Battery management for automotive systems  
Power management  
mV/µV-meter  
High-precision voltage and current measurement  
3
General description  
With a high quality 100 μΩ resistor the system can handle the starter  
current of up to 1500 A, a continuous current of ± 300 A as well as the  
very low idle current of a few mA in the standby mode.  
For external temperature measurement the chip can use a wide variety of  
different temperature sensors such as RTD, PTC, NTC, thermocouples or  
even diodes or transistors. A built-in programmable current source can be  
switched to any input and activate these sensors without the need of  
other external components.  
The AS8501 is a complete, low power data acquisition system  
for very small signals (i.e. voltages from shunt resistors,  
thermocouples) that operates on a single 5 V power supply. The  
chip powers up with a set of default conditions at which time it  
can be operated as a read-only-converter. Reprogramming is at  
any time possible by just writing into two internal registers via  
the serial interface.  
The measurement of the chip temperature with the integrated internal  
temperature sensor allows in addition the temperature compensation of  
sensitive parameters which increases the total accuracy considerably.  
The AS8501 has four ground refering inputs which can be  
switched separately to the internal PGA. Two input channels can  
also be operated as a fully differential ground free input. The  
system can measure both positive and negative input signals.  
Sensor specific data can be stored in the internal Zener-Zap memory and  
are used to calibrate each measurement in the internal data processing  
unit before transmission to the external µC via the serial SDI interface.  
The flexibility of the system is further increased by a digital comparator  
that can be assigned to any measured property  
The PGA amplification ranges from 6 to 100 which enables the  
system to measure signals from 7mV to 120 mV full scale range  
with high accuracy, linearity and speed.  
The chip contains a high precision bandgap reference and an  
active offset compensation that makes the system offset free  
(better than 0,5 μV) and the offset-TC value negligible. The built-  
in programmable digital filter allows an effective noise  
(current, voltage, temperature) and an active wake-up in the sleep-mode.  
All analog input-terminals can be checked for wire break via the SDI-  
interface.  
suppression if the high speed is not necessary in the application.  
The input noise density is only 35 nV /  
and due to  
Hz  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 1 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
CONTENTS  
1
2
3
4
5
6
7
FEATURES.........................................................................................................................................................................................1  
APPLICATIONS .................................................................................................................................................................................1  
GENERAL DESCRIPTION.................................................................................................................................................................1  
PIN FUNCTION DESCRIPTION FOR SOIC 16 PACKAGE...............................................................................................................3  
ABSOLUTE MAXIMUM RATINGS.....................................................................................................................................................4  
ELECTRICAL CHARACTERISTICS..................................................................................................................................................5  
FUNCTIONAL DESCRIPTION ...........................................................................................................................................................9  
7.1 POWER ON RESET ...........................................................................................................................................................................9  
7.2 ANALOG PART, GENERAL DESCRIPTION .............................................................................................................................................9  
7.2.1  
7.2.2  
7.2.3  
Reference voltage .............................................................................................................................................................10  
Current sources.................................................................................................................................................................11  
Internal temperature sensor ..............................................................................................................................................12  
7.3 DIGITAL PART.................................................................................................................................................................................12  
7.3.1  
7.3.2  
Sampling rate ....................................................................................................................................................................12  
Calibration .........................................................................................................................................................................13  
7.4 MODES OF OPERATION ...................................................................................................................................................................13  
7.5 REGISTER DESCRIPTION .................................................................................................................................................................15  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
7.5.8  
7.5.9  
OPM operation mode register ( 4 bits ) .............................................................................................................................16  
CRG general configuration register ( 28 bits )...................................................................................................................16  
CRA measurement channel A configuration register ( 17 bits ) ......................................................................................17  
CRB measurement channel B configuration register ( 17 bits ) .......................................................................................19  
ZZR Zener-Zap register (188 bits )...................................................................................................................................20  
CAR calibration register ( 110 bits ) .................................................................................................................................22  
TRR trimming register ( 20 bits ) .......................................................................................................................................22  
THR alarm (Wake-up) threshold register ( 17 bits ) .........................................................................................................25  
MSR measurement result register ( 18 bits )....................................................................................................................25  
8
DIGITAL INTERFACE DESCRIPTION.............................................................................................................................................25  
8.1 CLK..............................................................................................................................................................................................25  
8.2 INTN ............................................................................................................................................................................................25  
8.3 SDI BUS OPERATION ......................................................................................................................................................................26  
8.4 DATA TRANSFERS ..........................................................................................................................................................................27  
8.5 SDI BUS TIMING .............................................................................................................................................................................28  
8.6 SDI ACCESS TO OTP MEMORY........................................................................................................................................................29  
8.6.1  
8.6.2  
ZZR register bit mapping...................................................................................................................................................29  
Stored ZZR-register mapping............................................................................................................................................33  
9
GENERAL APPLICATION HINTS ...................................................................................................................................................34  
9.1 GROUND CONNECTION, ANALOG COMMON .......................................................................................................................................34  
9.2 THERMAL EMF ..............................................................................................................................................................................34  
9.3 NOISE CONSIDERATIONS.................................................................................................................................................................35  
9.4 SHIELDING, GUARDING....................................................................................................................................................................35  
10 TYPICAL PERFORMANCE CHARACTERISTICS ..........................................................................................................................36  
11 PACKAGE DIMENSIONS ................................................................................................................................................................38  
12 REVISION HISTORY........................................................................................................................................................................38  
13 ORDERING INFORMATION ............................................................................................................................................................38  
14 CONTACT.........................................................................................................................................................................................39  
14.1  
14.2  
HEADQUARTERS .......................................................................................................................................................................39  
SALES OFFICES........................................................................................................................................................................39  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 2 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
4
PIN function description for SOIC 16 package  
PIN  
Name  
description  
Comment  
analog common for VBAT, ETS and ETR; return for internal  
current source  
1
2
3
RSHL  
anlalog input from shunt resistor low side  
anlalog input from shunt resistor high side  
analog input with reference to RSHL  
analog input for differential input ETS-VBAT  
analog output for current-source  
RSHH  
ETS  
4
5
VBAT  
VSS  
analog input with reference to RSHL  
analog input for differential input ETS-VBAT  
analog output for current-source  
0V-power supply for analog part  
This input must be open or connected to VDDD. It is not intended,  
that OTP content is modified by the user.  
6
7
EZPRG digital power input for programming Zener fuses.  
VSSD  
0V-power supply and ground reference point for digital part  
external clock typical 8.192 MHz; during MWU-mode external  
connection must be high impedance or connected to VDDD to  
reduce current consumption  
8
9
CLK  
digital input for external clock, master clock input  
serial port clock input for SDI-port  
serial data in- and output  
SCLK  
SDAT  
INTN  
the user must provide a serial clock on this input  
10  
11  
Digital I/O for interrupt from comparator  
signal wake-up to external µC  
conversion ready flag for external interupt and synchronisation in normal mode  
+ 5V digital power supply  
12  
13  
14  
VDDD  
VDDA  
REF  
+ 5V analog power supply  
reference input/output  
must be connected to VSS with a 30 nF capacitor  
this PIN must be connected with a 50-100nF-capacitor to VSS;  
no direct connection to VSSD/VSS allowed  
15  
16  
AGND  
ETR  
analog ground, ground reference for ADC  
analog input with reference to RSHL  
analog output for current-source  
Table 1: Pin Description  
Figure 2: Schematic Package outline SOIC 16  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 3 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
5
Absolute Maximum Ratings  
Stress beyond those listed under “Absolute Maximum Ratings“ may cause permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions beyond those indicated under “Operating Conditions” is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. All voltages are defined with respect to VSS and VSSD. Positive currents  
flow into the IC.  
Absolute maximum ratings (TA = -40°C to 125°C unless otherwise specified)  
Nr.  
PARAMETER  
Supply voltage  
Analogue VDDA and digital VDDD  
Input pin voltage  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
NOTE  
Polarity inversion externally  
protected  
0
VDD  
-0.3  
7.0  
V
V
1
2
-0.3  
VDD +0.3  
100  
V
in  
Input current  
ISCR  
-100  
mA  
JEDEC 17  
(latch-up immunity)  
Electrostatic discharge  
1)  
3
4
ESD  
TA  
-2  
2
kV  
OC  
Ambient temperature  
-40  
-55  
125  
(Tj = 150°C)  
5
6
7
8
9
Storage temperature  
Soldering conditions  
Humidity, non-condensing  
Thermal resistance  
Power dissipation  
TSTRG  
TLEAD  
150  
260  
85  
OC  
°C  
2)  
5
%
RthJA  
PTOT  
75  
K/W  
mW  
350  
Notes:  
1)  
MIL 883 E method 3015, HBM: R =1.5 kΩ, C =100pF.  
Jedec Std – 020C, lead free  
2)  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 4 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
6
Electrical characteristics  
VDDA=5V +/-0.1 V, fclk=8.192 MHz, chopping ratio MM=4 (see 7.5.3), oversampling frequency=2.048 MHz, oversampling ratio=128  
temperature range : -40 to 125°C if not otherwise noted  
symbol  
parameter  
conditions  
min  
typ  
max  
units  
input characteristics  
for gain 1 the input signal is connected directly to th input of the converter, this is not possible for the RSHH-RSHL  
input  
G1  
Gain  
AC_g6  
1)  
2)  
gains of PGA  
6, 24, 50, 100  
Accuracy at gain 6  
0 to 85 °C  
-40 to 125°C  
0 to 85 °C  
-40 to 125°C  
0 to 85 °C  
0 to 85 °C  
G1  
G6  
G24  
G50  
G100  
1.0  
1.5  
0.5  
1.5  
1.0  
% @-120mV  
% @-120mV  
% @+-20mV  
% @+-20mV  
% @+-10mV  
% @+-5mV  
mV  
mV  
mV  
mV  
mV  
3),4)  
2)  
AC_g24  
Accuracy at gain 24  
0.08  
0.3  
3) 4)  
4)  
AC_g50  
AC_g100  
Vin  
Accuracy at gain 50  
Accuracy at gain 100  
input voltage ranges  
(with reference to RSHL)  
4)  
1.0  
5) 6)  
5) 7)  
5) 7)  
5) 8)  
5) 8)  
-350  
-200  
-40  
-20  
-10  
-300 to + 800  
+/- 120  
+/- 30  
900  
160  
40  
20  
10  
+/- 15  
+/- 7.5  
Notes:  
1) the absolute gain values are subjected to a manufacturing spread of +/-30% max in the full temperature range. all gain values can be digitally  
calibrated together with the external circuitry with a resolution better than 0.065%  
2)  
Current measurement paths for G6 and G24 are trimmed for minimum Temperature coefficient. The trimm algorithm is based on a 2 temperature  
measurement at 23°C and 60°C.  
Accuracy is mainly determined by bandgap characteristic and gain variation over temperature.  
A TC shift of typically -15 ppm/K will occure during solder process which is compensated by a systematic offset during trimming.  
3) due to a nonlinear behaviour of the gain and reference voltage over temperature the accuracy is lower for the extended temperature range.  
4) The minimum limits for G50, G100 are derived from device characterization and not tested. Towards 125°C the TC values are higher.  
therefore it is recommended to use these gain settings only for applications in the temperature range 0 to 85°C.  
5)  
if not otherwise specified the ranges are calibrated to the typical values. The maximum and minimum value represent the maximum usable span  
accepting linearity deviation up to 1000 digits. Min, max limits are tested at room temperature only!  
6) this gain range is not using the internal PGA, the input is directely connected to the AD-converter. Therefore the input resistance is lower then for  
other gain ranges.  
It has been designed mainly for positive input voltages up to 0.8 V i.e. for measurements of temperature with transistors and diodes.  
The limitation for negative input voltages is due to the onset of conduction of the input protection diodes.  
7) the ASIC is optimised for G6 and G24 concerning linearity, speed and TC, therefore these ranges are recommended whenever possible.  
8) because of higher TC value at elevated temperature G50 and G100 are recommended for applications in the temperature range 0 to 85°C  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 5 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Electrical characteristics (continued)  
VDDA=5V +/-0.1 V, fclk=8.192 MHz, chopping ratio MM=4 (see 7.5.3), oversampling frequency=2.048 MHz, oversampling ratio=128  
temperature range : -40 to 125°C if not otherwise noted  
symbol  
cal_err  
parameter  
conditions  
G1, 720 mV  
G6, 120 mV  
G24, 30 mV  
min  
typ  
max  
0.2  
units  
%
1)  
calibration error  
for 30 000 digits output at  
full range  
0.1  
G50, 15 mV  
G100, 7.5 mV  
2)  
2)  
2)  
2)  
lin_err  
nonlinearity  
gain 6 @ room temp  
gain 24 @ room temp  
gain 50 @ room temp  
gain 100 @ room temp  
all gains  
0.1  
0.03  
0.05  
0.05  
1
0.3  
0.05  
0.07  
0.1  
5
% or 30 digits  
% or 10 digits  
% or 15 digits  
% or 20 digits  
ppm/K  
3)  
4)  
lin_errTC  
Vos  
TC of linearity error  
offset voltage:  
RSHH_RSHL  
-40 to 125°C  
-0.5  
0.2  
0.5  
µV  
offset voltage: ETS, ETR,  
VBAT  
4)  
4)  
-40 to 85°C  
85 to 125°C  
-2  
-4  
0.5  
1
1
2
µV  
µV  
Offset voltage drift: RSHH-  
RSHL  
input bias/leakage current,  
all channels  
voltage noise density  
(G=24)  
current noise density  
(G=24)  
dVos/dT  
Ib  
-40 to 85 °C  
room temperature  
f=0 to 1 kHz  
f=10 Hz  
0.002  
0.2  
µV/K  
nA  
5)  
6)  
-1  
1
Vndin  
35  
50  
nV//Hz  
6)  
6)  
6)  
Indin  
en p_p  
5
2
0.5  
20  
3
1
100  
5
1.5  
fA//Hz  
µV  
µV  
voltage noise, peak (G=24) 0 to 100 Hz  
0 to 10 Hz  
en_RMS  
SNR  
voltage noise, RMS (G=24) 1000 Hz  
signal to noise (G=24,  
1.5  
2
µV  
G4.8)  
room temperature  
room temperature  
90  
100  
dBmin  
signal to distortion (G24,  
G4.8)  
SDR  
CCI  
PSRR  
80  
-70  
-50  
100  
-90  
-60  
dBmin  
dBmax  
dBmax  
chanel to chanel insulation room temperature  
power supply rejection ratio 4.9 to 5.1 V  
Notes:  
1) at room temperature / corresponding calibration factors are stored within the ZZR-register  
2) whatever is lower. Maximum limits for gains 50 and 100 are derived from device characterization and are not tested.  
3) this value measured in raw mode at room temperature and at 60°C. Maximum limits over temperature range are derived from device characterization.  
4) TC variations are included in the above given maximum limit of linearity error. Max value is derived from device characterization and not tested  
5) Leakage current is specified for all gain settings (except G1) for positive input voltages below 200 mV. Test is done at different input voltages with  
subsequent extrapolation for 200mV. In the temperature range 85-125°C it may be as high as 5 nA at the upper limit. In normal operation a  
temperature independent digital offset of -0.7 digits is present due to internal rounding.  
6) This parameter is not measured directly. It is measured indirectly via gain measurement of the whole path at room temperature  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 6 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Electrical characteristics (continued)  
VDDA=5V +/-0.1 V, fclk=8.192 MHz, chopping ratio MM=4 (see 7.5.3), oversampling frequency=2.048 MHz, oversampling ratio=128  
temperature range : -40 to 125°C if not otherwise noted  
symbol  
data conversion  
RES  
parameter  
conditions  
min  
typ  
max  
units  
1) 2)  
3)  
resolution  
reference voltage  
temperature coefficient of Vref  
internal resistance of Vref  
clock frequency  
oversamplig ratio  
conversions during chopper cycle  
bandwidth  
all channels  
room temperature  
16  
1.21  
bits  
V
ppm/K  
Ohm  
MHz  
Vref  
1.13  
-50  
1.30  
50  
4)  
Vref_TC  
Vref_Ri  
fovs  
R1  
MM  
BW  
av  
fclk  
CLK_extdiv  
DR_clk  
int_fclk  
analog inputs  
Rin  
Rload > 50 kOhm  
200  
4.096  
128  
4
1000  
4
8.192  
2
50  
64  
8
7.8  
1
0.05  
16000  
1024  
10  
Hz  
cycles  
MHz  
internal averaging  
5)  
external clock frequency  
clock division factor  
duty ratio of external clock  
internal clock frequency  
4
%
kHz  
180  
250  
330  
30  
RSHH, VBAT, ETS, ETS  
Ue < 150 mV  
input resistance  
input capacitance at gain 24  
50  
8
100  
15  
MOhm  
pF  
Cin  
internal temperature sensor  
6)  
7)  
7)  
7)  
T_out20  
T_sl  
output at 23°C  
slope  
G 6, typical  
-20 to 100°C  
22500  
73  
23 000  
75  
0.5  
23500  
77  
2
digits  
digits/degC  
degC  
Terr85  
Terr125  
current source  
Icurr_rshh  
error of temperature measurement 0 to 85°C  
-40 to 125°C  
output to RSHH, RSHL  
1
3
degC  
1.5  
2
3
µA  
Notes:  
1)  
with external averaging the resolution can be increased up to 21 bits with an effective sampling rate below 10 Hz  
2) the system works in overflow condition without degradation of accuracy up to 1.4 * range width.  
This means that the overflow bit can work as bit no.17 in this range.  
the absolute value will be trimmed digitally to (1.28*/-0.01) V at 23°C, if not otherwise specified  
the TC-value will be trimmed digitally to end up with a typical TC-value of the output ( total measurement path) at G24 better than 20 ppm/K the  
3)  
4)  
TC- value of the  
reference voltage after trimming may be typically as high as 50 ppm/K due to manufacturing spread. Min,max limits are not tested but derived  
from device  
characterization  
5)  
in the temperature range 0 - 85°C the clock frequency can be increased to 12 MHz  
6) value trimmed to +/- 30 digits during final test and stored into ZZR  
7)The slope of the sensor is measured on sample basis per lot and not tested per device. The specified limits are derived from device  
characterization.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 7 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Electrical characteristics (continued)  
VDDA=5V +/-0.1 V, fclk=8.192 MHz, chopping ratio MM=4 (see 7.5.3), oversampling frequency=2.048 MHz, oversampling ratio=128  
temperature range : -40 to 125°C if not otherwise noted  
symbol  
parameter  
conditions  
min  
typ  
max  
units  
programmable current source  
output to Vbat, ETS, or ETR  
Icurr_ON  
I_steps  
Dcurr  
TC_CS  
Icurr_OFF  
Icurr_Ri  
current level  
current steps  
accuracy, room temperature  
temperature coefficient  
current when off  
0
6
248  
10  
0.5  
1000  
0.01  
µA  
µA  
%
ppm/K  
µA  
8
0.2  
900  
0.001  
10  
248 µA  
1 )  
830  
room temperature  
internal resistance of current source Ua < 2 V  
MOhm  
digital CMOS inputs with pull up and schmidt-trigger  
input PINs CLK and SCLK  
3.5  
Vih  
Vil  
Iih  
Iil  
high level input voltage  
low level input voltage  
current level  
VDDD=5V  
VDDD=5V  
VDDD=5V, Vih=5V  
VDDD=5V, Vil=0  
V
1.5  
1
120  
V
µA  
µA  
-1  
30  
current level  
digital CMOS outputs  
output PINs SDAT and INTN  
Voh  
Vol  
Cl  
high level output voltage  
low level output voltage  
capacitive load  
VDDD=5V, -633uA  
VDDD=5V, 564uA  
4.5  
V
V
pF  
0.4  
20  
Tristate digital I/O  
Voh  
Vol  
high level output voltage  
low level output voltage  
tristate leakage current to  
VDDD,VSSD  
high level input voltage  
low level input voltage  
VDDD=5V, -633uA  
VDDD=5V, 564uA  
4.5  
V
V
0.4  
1
Ioz  
Vih  
Vil  
VDDD=5V  
VDDD=5V  
VDDD=5V  
-1  
3.5  
µA  
V
V
1.5  
EZPRG input  
programming voltage - for factory  
programming only  
2)  
Vprg  
VDDD=5V  
-
-
-
V
supply current  
Isup  
Iaw  
supply voltage  
VDDA  
VDDD  
VSS, VSSD  
Power On Reset  
Vporhi  
normal operation  
active wake-up  
VDDD=VDDA=5V  
VDDD=VDDA=5V  
3
40  
5
100  
mA  
µA  
3)  
4)  
positive analog supply voltage  
positive digital supply voltage  
negative supply voltage  
4.7  
4.5  
5.0  
5.0  
0
5.3  
5.5  
V
V
V
5)  
5)  
Power on reset Hi  
Hysteresis  
2.5  
0.1  
4.1  
0.3  
V
V
Vhyst  
Notes:  
1) not tested, derived from device characterization  
2) for factory calibration only. During normal operation this PIN must be connected to VDDD.  
3) the average current is dependent on the on-time of the measurement system i.e. it can be programed via the CRA register  
4) stability of analog supply should be within +/- 0.1 V  
5) tested at room temperature only  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 8 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7
Functional Description  
Power on Reset  
7.1  
The power on reset is iniciated during each power up of the ASIC and can be triggered purpously by reducing the analog supply voltage (VDDA) to a  
value lower than Vporlo for a time interval longer than 0.5 µsec.  
During power on reset sequence the following steps are performed automatically:  
-
-
-
The chip goes to mode MZL (see 7.4)  
Internal clock is enabled  
The calibration constants are loaded from Zener-zap memory to the appropriate registers (ZTR=>TRR, ZCL=>CAR). The load procedure is  
directed by the internal clock and can be monitored on INTN pin. 188 clock pulses are generated from the internal oscillator source. Pulse period  
is equal to internal clock period.  
After the power-on reset sequence is finished:  
-
-
-
-
the operation continues with internal clock if no external clock is detected. In this case the ASICs switches to mode MWU with default value of  
threshold register ( 214  
)
If external clock is available the ASIC switches to mode current measurement MMS (default measurement with default configuration: gain=100,  
fovs=4.096MHz, R1=64, MM=4, R2=1, NTH=214).  
The microcontroller can communicate via SDI interface whenever appropriate, i.e. CAR and TRR register can be rewritten from the µC if  
necessary.  
Because the automatic selected calibration factor (CGI4) is loaded with zeros, the ASIC delivers constant zero at the output to allow the µC to  
check for an unwanted POR. To bring the ASIC back into normal operation for current  
measurement with gain100 the µC has to copy the CAU4 content into the CGI4 factor in the CAR-register.  
(see also 7.5.5 and 8.6.2)  
7.2  
Analog part, general description  
The input signals are level shifted to AGND (+ 2.5 V) then switched by the special high quality MUX- which contains also the chopper – to the input of  
the programmable gain amplifier (PGA). This low noise amplifier is optimised for best linearity, TC- value and speed at gain 24.  
The systems contains an internal bandgap reference with high stability, low noise and low TC-value. The output of a programmable current source can  
be switched to the analog inputs VBAT, ETS and ETR for testing the sensor connections  
or for external activation of resistors, bridges or sensors (RTD, NTC). The voltage drop generated by the current is measured at the corresponding  
input/output PIN.  
For the wire break test of the RSHH and RSHL inputs special low noise current sources are implemented.  
The integrated temperature sensor can also be switched to the PGA by the MUX and measured any time. The chip temperature can be used for the  
temperature compensation of  
the gain of the different channels in the external µC, which increases the absolute accuracy considerably.  
The offset of the amplifier itself is already fairly low, but to guarantee the full dynamic range it can be trimmed via the digital interface to nearly zero  
independent of the autozero chopping function.  
In the same way the manufacturing spread of the absolute value of the reference voltage can be eliminated and the TC-value set to nearly zero by a  
trimming process via the SDI interface.  
For more details of the input multiplexer see the following schematic. The position of all switches is defined by writing into the registers CRA, CRB and  
CRG via the SDI bus, which is explained in 7.5.2 through 7.5.4.  
INTERNAL  
CURRENT  
TEMPERA-  
M 7  
SOURCE  
M 6  
M 8  
TURE  
ETR  
ETS  
M 9  
M 15  
M 2  
M 14  
VBAT  
M 10  
M 4  
M 3  
M 5  
AD-  
CON-  
RSHH  
RSHL  
PGA  
M 1  
VERTER  
M 12  
AUXILIARY  
CURRENT  
SOURCE  
M 13  
Figure 3: Multiplexer  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 9 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.2.1  
Reference voltage  
The ASIC contains a highly sophisticated precision reference voltage. Its typical temperature dependence is a slight parabola shaped curve and is  
shown in figure 21. This reference voltage is used mainly for the internal AD-converter, but can also be used for external purposes if the impedance of  
the external circuitry is high enough.  
1,26  
1,24  
1,22  
1,20  
1,18  
m easurem ent  
open loop value  
1,16  
1,14  
1,12  
10  
30  
50  
70  
90  
110  
resistance load in kOhm  
Figure 4: Reference voltage as function of resistance load  
The absolute value and its temperature coefficient (TC) is given by the content of the TRR register. This opens the possibility to calibrate the reference  
voltage to the optimum absolute value (i.e. 1.28 V) and the TC value to zero thus eliminating fully the production spread.  
Writing into subregister TRIMBV of TRR changes the absolute value linearly by 5.1 mV per digit as shown in the following graph and described in full  
detail in 7.5.7  
1 ,36  
1 ,32  
1 ,28  
75 °C  
24 °C  
1 ,24  
1 ,20  
1 ,16  
0
5
1 0  
15  
20  
25  
30  
co n ten t o f T R IM B V in b its  
Figure 5: Reference voltage as function of temperature  
Trimming the TC value is similarly done by writing into subregister TRIMBTC. Since the TC trimming is also changing the absolute value it is important  
to trim the TC first and then the absolute value.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 10 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
200  
150  
100  
50  
0
change 12.7 ppm /K  
per step  
-50  
-100  
-150  
-200  
-250  
0
5
10  
15  
20  
25  
30  
35  
setting of subregister TR IM B TC of TR R  
Figure 6: Temperature coefficient as function of TRIMBTC setting  
The TC trimming also opens the unique possibility to change the TC-value within the time of reprogramming of the TRR-register (i.e. within µsec) to  
allow the compensation of  
different TC-values of the external circuitry for different channels.  
In addition it can be used for very fast autocalibration of the total TC of a given channel. An external reference voltage is applied to the channel to be  
checked. Then all numbers from 0 to 31 are written into subregister TRIMBTC and a reading is done for the input voltage and the internal temperature  
as well. The same is repeated at any temperature above RT. From these data the TRIMBTC setting for a minimum drift can be easily calculated.  
7.2.2  
Current sources  
The AS8501 contains several current sources which can be used for checking all input lines for wire brake, to control external circuitry or to activate  
external sensors.  
Main current source  
The main current source can be digitally controlled via the content of the CRG register in 31 steps of 8 µA in the range of 0 to 248 µV. Its absolute  
value can be calibrated by writing in the subregister TRIMC of TRR.  
The current source can be switched to the inputs VBAT, ETR or ETS to activate external sensors like RTDs, NTCs or resistance briges and strain  
gages. It can also be used to detect a wire breake of external connected sensors. Performing a measurement with a high and a low (or zero) current  
opens the possiblity to eliminate thermal EMF voltages in external sensors.  
Secondary current sources  
The ASIC contains two other high quality current sources supplying a current of approx. 2µA at the inputs RSHL and RSHH. These current sources can  
be switched on and off at any time to check the correct connection of both terminals. During off state they must not interfere with the high sensitive  
voltage inputs, especially the noise level should not be increased. If one of the terminals is an open connection the amplifier goes into saturation and  
the overflow bit is set.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 11 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.2.3  
Internal temperature sensor  
The ASIC contains a high sensitive precision temperature sensor which can be used at any time. The sensor supplies a very linear voltage signal with  
an offset at 23 degC, which is calibrated and stored in the ZZR-register. The voltage can be measured using the internal circuitry with gain 6, with free  
selection of all other parameters defining the sampling rate.  
35000  
30000  
25000  
20000  
15000  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
output signal  
25  
linearity deviation  
cubic fit  
-50  
-25  
0
50  
75  
100  
125  
150  
175  
Temperature in deg C  
Figure 7: Measurement of internal temperature sensor over oil bath temperature  
The slope of the curve is approx. 75 digits per degC.  
The calculation of the temperature has to be done in the external µC acc. to the following simple formula:  
Tint=( Uint(T)-Uint(23) ) / 75 + 23°C  
Uint(T) is the measured result and Uint(23) is the reference value at 23°C, which is stored as an 11 bit-word in the ZZR-register.  
Bits 15, 14 ,13 and 12 will always be the same at room temperature (0101 bin or 20480 dec), therefore it makes no sense to store them for each single  
part. In addition we dont need the high resolution of one digit, which means 1/71.3 = 14 milli Kelvin. Therefore we cut the last bit and achieve a word of  
11 bit length, which finally is stored in the ZZR-register as shown in the ‚stored ZZR-register mapping‘ given in 8.6.2  
Example:  
value stored in the ZZR-register:  
1060 dez or 10000100100 bin  
Uint(23) = 0101 10000100100  
Add register content Add  
0
= 22600 dec  
If your measured value is : Uint(T) = 23767 dec  
Ti[°C]= ((23767-22600) / (75 digits / °C)) + 23 °C  
= 15.6 °C + 23 °C = 38.6 °C  
7.3  
Digital part  
In the digital part the result of the AD-converter is processed, i.e. calibration, active offset cancellation and filtering is done. In addition the  
communication via the serial SDI interface is handled and all circuit functions (like voltage and current path settings, chopping, dechopping) are  
controlled.  
Whenever the power supply line returns from below 2.0 V to above 3.5 V a power-up circuitry is activated which loads the internal calibration registers  
from the Zener-Zap memory into the working register and starts the chip in a special default mode.  
7.3.1  
Sampling rate  
the sampling rate (SR) is defined by the setting of parameters in register CRA or CRB. The oversampling frequency (OSF), the oversampling ratio  
(OSR), the chopping ratio (MM) and the averaging number (AV). The sampling rate can be calculated acc. to the following formula:  
SR= OSF/(OSR*MM*AV)  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 12 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
For an clock frequency of 8.192 MHz it can vary between  
16 000 kHz and 1.95 Hz.  
In the dual mode the ASIC is switching automatically between the two channels and it needs at least one measurement for each polarity to get a valid  
measurement. In addition the ASIC needs some time to reprogram the internal registers and switches. Therefore the maximum sampling frequency is  
limited to 7.5 kHz for the above given clock frequency. The internal averaging is not working in the dual mode, but the sampling frequency can be  
different for each channel.  
7.3.2  
Calibration  
The calibration of the ASIC is done by a test setup as follows:  
-
-
-
room temperature calibration of the internal temperature sensor  
absolute input-output calibration for all gain settings  
TC calibration for the measurement path for gain 24  
The absolute input-output calibration of the gain ranges is done that way that for a given input voltage 30 000 digits at the output are produced:  
Table 7.2.2  
gain  
input/mV  
output/digits  
1
6
720  
120  
30  
30 000  
30 000  
30 000  
30 000  
30 000  
24  
50  
100  
15  
7.5  
In addition the ASIC receives an individual 24-bit serial number.  
The TC-value of the output (total measurement path) for G24 is trimmed to a minimum value by selecting the best setting of the TRIMBTC subregister  
of the TRR register (see 7.5.7).  
A similar calibration is done for the other subregisters TRIMBV, TRIMA and TRIMC for the absolute value of the reference voltage, the offset of the PGA  
and the current source respectively.  
All these data are stored in the ZZR register according to the ‚stored ZZR-register mapping‘ given in 8.6.2  
7.4  
Modes of operation  
The AS8501 can run in different operation modes, which are selected and activated via the serial interface.  
Detailed description:  
Mode 0: MZL  
In power-on reset sequence, which is initiated by the on-chip power-on reset circuit whenever the power is connected , the registers are loaded from the  
Zener-Zap memory.  
Mode 1: MMS  
Measurement mode where the definition is taken from the registers CRA and CRG defined later on. The measurements are continuous and measured  
results are available after the ready flag (INTN pin) is set to LO. The result can be read by the µC any time after this bit is set to LO. However, to obtain  
the best noise performances the result should be read when INTN pin is at LO state. All modules are in power-up.  
Mode 2: MMD  
Dual channel measurement mode. Two consecutive different measurements are performed according to the settings in the configuration registers CRA,  
CRB and CRG defined later (usually CRA defining current measurements and CRB voltage measurement). One complete measurement is performed  
with each setting. CRG register holds common settings.  
The measurements are continuous (A,B,A,B). The 17th bit in the output register defines, which measurement has been executed according to the  
definition LO=A, HI=B.  
The number of consecutive measurements with equal configuration is defined in register CRG (bits s3,s2,s1,s0). All modules are in power-up.  
Mode 3: MWU  
In this wake-up mode the internal clock finclk=256kHz is running and one complete measurement is performed in the period from 1 to 1.5 s with the  
parameter settings of the CRA register. Before the actual measurement is performed the logic powers up all internal circuits especially the AGND and  
the Vref. If the external load is higher than 70 kOhms both signals can be used for external triggering or even as interrupt for the µC.  
If the external clock is not running, this input should be high impedance. To achieve a stable low idle current the oversampling ratio should be set to  
R1=128 and the CFG register must be programmed to x00003, see also 7.5 ‘Register description’. It is assumed that the threshold level in the THR  
register is defined within the 16 bit range, if not the default value is 210  
After one measurement is finished all modules except the on- board oscillator and divider are switched into power down condition to save power. The  
MSR register is updated with the last measurement result. Whenever this value exceeds the digital threshold the (wake-up) INTN pin goes LO for one  
clock cycle to trigger the wake-up event in the external µC.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 13 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
After that the circuit returns in power-down for approximately 1s. During this time the last measurement (MSR register) is available on the SDI interface.  
In this intermediate sleep-mode all modules except internal oscillator and divider are in power-down mode. The SDI interface works independent which  
means that the measurement result is available by reading the MSR register. At any time the microprocessor can start any other mode via SDI. In such  
a case the external clock must be switched on first.  
The chip goes in MWU mode (mode 3) after it received the command for that. After that command 6 or more additional CLK pulses are needed before  
external clock may go to power down mode (no CLK pulses, high level because of internal pull-up resistors). This 6 CLK pulses are needed for  
synchronisation. On the way back to normal mode this restriction is not needed.  
Mode 4: MAM  
In this alarm mode the measurement defined in CRA is going on. The channel bit in the THR register must be cleared (channel A). The threshold value  
may be positive or negative. Whenever the measured value exceeds the digital threshold value in the THR register the pin INTN (in this mode its  
function is to signal alarm-condition) goes LO for one clock cycle. For negative threshold value the signed measurement result must be more negative  
than the THR value to activate the alarm. During measurements the signal INTN is high. All modules are in power-up, measurements are continuously  
going on.  
Mode 5: MZP  
Zener-Zap programming/reading. This mode for factory programming only and should not be used by the customer.  
Mode 6: MPD  
Power down mode. Individual analog blocks can be disabled/enabled. The data acquisition system is not running during this mode is activated.  
Mode 7: MSI  
The operation in this mode is exactly the same as in MMS mode except that the internal clock is used.  
The SDI interface signals can become active whenever appropriate. This mode can be used if no external clock CLK is available. The measuring speed  
is reduced by a factor of 16.  
Modes 8-15: These modes are reserved for testing purposes and should not be used by the customer. Reading and writing of some registers is only  
possible in these higher modes. Write to registers CAR (calibration register) and TRR (trimming register) is allowed only in test modes.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 14 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Modes of operation, register OPM  
Mode  
Name  
MZL  
Description  
Power on, loading from Zener-Zap  
memory  
mo3  
mo2  
mo1  
mo0  
0
0
0
0
0
1
2
MMS  
MMD  
Single measurement  
0
0
0
0
0
1
1
0
Double measurement  
(A,B,A,B …)  
3
4
MWU  
MAM  
MZP  
MPD  
MSI  
Wake-up  
0
0
0
0
0
1
0
1
1
1
1
x
1
0
0
1
1
x
1
0
1
0
1
x
Alarm  
5
Zener program/read  
Power down  
6
7
1)  
8-15  
Reserved for testing  
Notes:  
1) Register addresses 12, 13, 14 and 15 are reserved for testing and future options; operations on these  
registers must be avoided  
7.5  
Register description  
In the following sections the register contents and their functions are described in detail. Since the length of some  
registers is too long to present clearly, the registers are logically subdivided according to their functions and described  
separately.  
All internal functions are controlled by the contents of these registers which can be reloaded via the serial SDI interface at  
any time. The AS8501 contains the following registers:  
REGISTER  
ADDRESS  
SIZE  
Contents  
Detailled description see  
OPM  
CRA  
Operating mode register  
7.5.1  
0
4
17  
17  
28  
18  
188  
110  
20  
17  
20  
Measurement A configuration register  
Measurement B configuration register  
General configuration register  
Measurement result register  
Zener-Zap register  
7.5.3  
7.5.4  
7.5.2  
1
CRB  
2
CRG  
MSR  
ZZR  
3
4
7.5.9  
7.5.5  
5
CAR  
6
Calibration register  
7.5.6  
7.5.7  
7.5.8  
TRR  
Trimming register  
7
8
THR  
Alarm or wake-up threshold register  
Test and special configuration register  
Test registers  
1)  
CFG  
9
reserved  
10-12  
1)  
Note:  
This register is reserved for testing modes. Writing is possible only in mode 8. In order to assure  
stable conditions in power-down modes MWU(3), MPD(6), TMSS(8) and MSI(13) the default  
setting of the CFG register must be changed to x00003. It is not necessary to change this value  
during normal operation.  
Write commands not supported in a certain mode can be released immediately after the register address. The ASIC will  
resume operation with the next start condition. Registers CAR and TRR are not buffered. Any read operation of the CAR  
or TRR register may generate transients in the analog circuitry; further accurate measurements require a delay time for  
settling.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 15 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.5.1  
OPM operation mode register ( 4 bits )  
no.  
Bit  
mo3  
mo2  
mo1  
mo0  
Note  
1)  
0
default  
0
0
0
0
1) This register has been described in detail under 7.4  
7.5.2  
CRG general configuration register ( 28 bits )  
no.  
CRG bits  
27-22 21-11  
CRS CRI  
10-7  
6-0  
NOTE  
0
CRV  
CRP  
subregister CRS: Sequence length, dechop and chop ( 6 bits )  
Nr.  
Bits  
5
4
3
2
1
0
NOTE  
1)  
2)  
0
CRS bit  
names  
Default  
s3  
s2  
s1  
s0  
d
c
1
0
0
0
1
1
1
Notes:  
1)  
This register defines the sequence length, chopping (c) and dechopping (d) of the input signal  
Default power-up state before any setting  
2)  
Sequence length bits ( 4bits)  
Nr.  
No. of measurements  
s3 s2 s1 s0  
NOTE  
1)  
0
16  
0
0
0
0
1
1
0
0
0
1
default  
14  
15  
1
1
1
0
14  
15  
1
1
1
1
Notes:  
1)Number of consecutive measurements of A and B with settings defined in CRA,CRB  
and other settings in CRG register. This setting is used only for mode MMD.  
DECHOPPING BIT  
Nr.  
Dechopping  
d
NOTE  
0
No dechopping  
0
1
Dechopping  
1
CHOPPING BIT  
Nr.  
Chopping  
c
NOTE  
0
No chopping  
0
1
chopping  
1
subregister CRI: Current configuration ( 11 bits )  
Nr.  
Bits  
10  
9
8
7
6
5
4
3
2
1
0
NOTE  
1),3)  
0
CRI bit  
names  
Default  
M14  
M13  
M12  
M11  
M8  
M6  
i4  
i3  
I2  
i1  
i0  
2)  
1
2
0
0
0
0
0
0
0
0
0
0
0
output  
VBAT  
RSHL  
RSHH  
no  
ETS  
ETR  
Notes:  
1) whenever M1=1 in (CRA,CRB) it is good practice to set all M6 to M14 to zero, but it is not mandatory  
2) default logic state after power up and before any setting  
3) All bits with names M14 to M1 represent control signals of the multiplexer with positive logic (for example M14=1  
means that corresponding switch is closed).  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 16 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Current source setting bits (5 bits)  
Nr.  
Current [uA]  
i4  
i3  
i2  
i1  
i0  
NOTE  
0
0
0
0
0
0
0
1
2
8
16  
24  
32  
0
0
0
0
0
0
0
0
0
1
1
0
3
0
0
1
1
4
0
1
0
0
31  
1
1
1
1
248  
1
subregister CRV: Voltage configuration (4 bits )  
Nr.  
Bits  
3
2
1
0
NOTE  
1),3)  
2)  
0
CRV bit  
names  
Defaults  
M15  
M10  
M9  
M7  
1
2
0
0
0
0
channel  
VBAT- VBAT-ETS ETS-RSHL ETR-  
RSHL differential RSHL  
Notes:  
1)  
This register defines the connection of the analog voltage- bus to the input-PINs and to the A/D converter  
Default logic state after power-up and before any setting  
2)  
subregister CRP: Power down configuration ( 7 bits )  
Nr.  
Bits  
p6  
p5  
p4  
p3  
p2  
p1  
p0  
NOTE  
1),3)  
0
CRP bit  
names  
Defaults  
pdosc  
pda  
pdm  
pdb  
pdc  
pdi  
pdg  
2)  
1
2
0
0
0
0
1
0
0
block  
oscillator amplifier modu- ref. bias current internal analog  
lator  
source  
temp.  
GND  
Notes:  
1)  
This register defines the power-down signals of the building blocks  
Default power-up state before any setting  
The logic is positive (pdosc=1 means the corresponding block is in power-down)  
2)  
3)  
7.5.3  
CRA measurement channel A configuration register ( 17 bits )  
Nr.  
Bits  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
NOTE  
1), 3)  
0
CRA bit  
names  
Defaults  
cu2 cu1 cu0 M5 M4 M3 M2 M1 g1 g0  
f
r
mm n3 n2 n1 n0  
2)  
1
2
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
subreg.  
CRU  
CRM  
GN  
OSF OSR MM  
CRN  
Notes:  
1)  
This register defines the measurement channel A configuration  
Default power-up state before any setting  
2)  
3) Bit M1 is control signal of the multiplexer for current input  
(for example M1=1 means that corresponding switch is closed).  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 17 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
subregister CRU: calibration constant selection for voltage path ( 3 bits) in registers CRA,CRB  
Nr.  
Calibration const. U  
cu2 cu1 cu0 NOTE  
0
CAU0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
CAU1  
CAU2  
CAU3  
CAU4  
CAU5  
1548  
1548  
subregister CRM: measurement path for registers CRA,CRB  
Nr.  
Bits  
13 12 11 10  
9
NOTE  
1), 2)  
CRA bit  
names  
Defaults  
M5 M4 M3 M2 M1  
measurement RSHH-RSHL  
voltage bus  
1
0
0
0
0
1
1
1
0
1
1
1
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
0
0
0
0
2
voltage bus, internal temperature  
voltage bus, reference low=RSHL  
voltage bus, gain=1  
3
4
5
voltage bus,gain=1, internal temperature  
voltage bus, gain=1, reference low=RSHL  
6
7
Notes:  
1) these bits define the inner part of the voltage path settings  
2) only the listed combinations are allowed  
subregister GN: gain definition bits, Registers CRA,CRB  
Nr.  
GAIN  
g1 g0  
NOTE  
0
6
0
0
1
1
0
1
0
1
1
2
3
24  
50  
100  
subregister OSF: oversampling frequency bit, Registers CRA,CRB  
Nr.  
Fovs (fclk=8MHz)  
Fovs (internal osc)  
f
NOTE  
1)  
1)  
0
2.048MHz  
132kHz  
0
1
4.096MHz  
264kHz  
1
Notes:  
1)  
For internal oscillator typical values  
subregister OSR: oversampling ratio bit, Registers CRA, CRB  
Nr.  
R1  
r
NOTE  
0
64  
0
1
128  
1
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 18 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
subregister MM: chopping ratio bit, Registers CRA, CRB  
Nr.  
MM  
mm NOTE  
0
4
0
1
2
8
1
1
1)  
x
Notes:  
1) For c=0 and d=0 , chopping and dechopping is switched off and every cycle is active regardless  
of mm, i.e. the sampling frequenzy is higher by a factor of 4  
subregister CRN: averaging bits ( 4 bits), registers CRA,CRB  
Nr.  
R2  
n3 n2 n1 n0  
NOTE  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
x
0
0
1
1
0
0
1
1
0
0
1
x
0
1
0
1
0
1
0
1
0
1
0
x
1
2
2
4
3
4
8
16  
5
32  
6
64  
128  
7
8
256  
9
512  
10  
11-14  
15  
1024  
1)  
2)  
Reserved for test  
raw mode  
1
1
1
Note:  
1)  
combinations from B to E are reserved for test  
this mode delivers the AD-values without calibration and averaging but multiplied by a factor which is dependent on the  
2)  
setting of the oversampling ratio. It can be used for high resolution measurements of very low signals since it eliminates  
the internal rounding error.  
The ratio between raw result (Nr) and normal result (Nn) is given by: Nr/Nn = 2^(11+x)/CAL where x=6 for R=128 and x=3  
for R=64. CAL is the calibration constant used.  
7.5.4  
CRB measurement channel B configuration register ( 17 bits )  
Nr.  
Bits 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
NOTE  
1), 3)  
0
CRB bit cu2 cu1 cu0 M5 M4 M3 M2 M1 g1  
names  
g0  
f
r
mm n3 n2 n1 n0  
2)  
1
2
Defaults  
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
subreg.  
CRU  
CRM  
GN  
OSF OSR MM  
CRN  
Notes:  
1)  
This register defines the measurement channel B configuration, the functions of the subregisters are the same as  
described above for measurement channel A  
Default power-up state before any setting  
2)  
3) In this mode the chip cannot measure the current sensing input RSHH-RSHL, therefore M1=0 for all settings  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 19 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.5.5  
ZZR Zener-Zap register (188 bits )  
Nr.  
ZZR bits  
183-187  
163-182  
53-162  
0-52  
ZTC1)  
NOTE  
2)  
0
ZLO  
ZTR  
ZCL  
Notes:  
1) 5 bits are reserved for:  
- 1 bit eventually destroyed during testing,  
- 2 bits for testing programmed 0 and 1  
- 2 bits reserved for locking  
2) due to a limited driving capability of the ZZR-cells the maximum reading speed is limited to 500 kHz  
subregister ZLO: Zener spare bits ( 5 bits )  
Nr.  
Name  
SYMBOL  
WORD WIDTH  
Default Hex  
ZLO  
1
Reserved bits  
5
F
subregister ZTR: trimming bits (20 bits)  
Nr.  
PARAMETER  
SYMBOL  
WORD  
WIDTH  
Default  
Dec1)  
0
UNIT  
NOTE  
0
1
2
TC of reference  
TRIMBTC  
TRIMBV  
TRIMA  
5
Bits  
Bits  
Bits  
absolute value of reference  
amplifier offset  
5
5
0
0
3
current source for external  
temperature  
TRIMC  
5
0
Bits  
Bits  
4
trim bits  
TRIMREG  
20  
Notes:  
1)  
Default values must be written before start of the test  
subregister ZCL: calibration bits ( 110 bits )  
Nr.  
PARAMETER  
SYMBOL  
WORD  
WIDTH  
Default  
Dec3)  
UNIT  
NOTE  
1),4)  
1),4)  
1),4)  
1),4)  
1),4)  
1),4)  
1),4)  
1),4)  
1),4)  
2),4)  
CGI1  
CGI2  
CGI3  
CGI4  
CAU0  
CAU1  
CAU2  
CAU3  
CAU4  
CAU5  
ZCL  
0
1
Calibration G=6, I  
Calibration G=24, I  
Calibration G=50, I  
Calibration G=100, I  
Calibration U0  
Calibration U1  
Calibration U2  
Calibration U3  
Calibration U4  
Calibration U5  
cal. Bits  
11  
1548  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
11  
11  
11  
11  
11  
11  
11  
11  
11  
110  
1548  
1548  
1548  
1548  
1548  
1548  
1548  
1548  
1548  
2
3
4
5
6
7
8
9
10  
Notes:  
1)  
Decimal default value of the calibration constant for voltage and current is calculated  
/N =(V *1024)/(V *G )=1548  
using formula: CG =N  
2)  
def max ADdef ref in max  
Default calibration constant for absolute value of the voltage proportional to absolute  
temperature is the same as for any other range because it uses the same amplifier and  
max voltage at max. temperature is approx. 150mV and the gain selected must be g0.  
3)  
Default values must be written before start of the test  
4)  
Calibration constants are selected dependent on state of M1 ( see table below). For M1=1 one of  
CGI1 to CGI4 is selected according to selected gain of amplifier. For M1=0 the selection of the  
calibration constants is defined by bits (cu2,cu1,cu0), which are part of CRA and CRB registers and  
are defined via SDI interface independently of any other selection.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 20 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Calibration constant selection truth table  
Nr.  
cu2 cu1 cu0 M1 g1 g0  
CAL CONST  
NOTE  
1)  
1)  
1)  
1)  
2)  
2)  
2)  
2)  
2)  
2)  
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
0
0
1
1
0
0
1
1
x
x
x
x
0
1
0
1
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
x
x
x
x
x
x
x
x
0
1
0
1
x
x
x
x
x
x
x
x
CGI1  
0
CGI2  
CGI3  
CGI4  
CAU0  
CAU1  
CAU2  
CAU3  
CAU4  
CAU5  
1548  
1
2
3
4
5
6
7
8
9
10  
11  
1548  
Notes:  
1) CGIx calibration constants are selected when M1=1 according to selected gain  
2) CGUx calibration constants are selected when M1=0 according to bits cu2 to cu0 defined via SDI in CRA and/or CRB  
registers.  
Subregister ZTC: see register mapping 8.2.6  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 21 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.5.6  
CAR calibration register ( 110 bits )  
The calibration register holds the calibration constants that are used by the internal DSP for the correction of each  
measurement. At power-up sequence the Zener-Zap subregister ZCL is copied into the CAR register as shown in fig.  
7.4.6.1. The register can be read or written in mode 8 via the SDI bus at any time. In particular it is possible to write  
preliminary calibration constants with CAR or overwrite the loaded ZCL data, if a calibration has been changed.  
Nr.  
CAR bits 109-99 98-88 87-77 76-66 65-55 54-44 43-33 32-22 21-11 10-0  
NOTE  
1), 2)  
0
Subregister CGI1 CGI2 CGI3 CGI4 CAU0 CAU1 CAU2 CAU3 CAU4 CAU5  
1
default  
1548 1548 1548 1548 1548 1548 1548 1548 1548 1548  
Notes:  
1)  
Calibration register is composed of the following constants each having 11 bits:  
CGI1, CGI2, CGI3, CGI4, CAU0, CAU1, CAU2, CAU3, CAU4, CAU5  
This register can be read or written at any time via the SDI bus. In particular it is possible to write  
2)  
preliminary  
calibration constants with CAR or overwrite the loaded ZCL data, if a calibration has been  
changed.  
7.5.7 TRR trimming register ( 20 bits )  
In the TRR register the calibration constants for the reference voltage, for the amplifier-offset trim and for the current source setting are stored.  
At power-up sequence the Zener-Zap subregister ZTR is loaded into the TRR register. This register can be read or written in mode 8 via the  
SDI bus. In particular it is possible to write preliminary calibration constants into TRR or overwrite the loaded ZTR data, if a calibration has been  
changed. The trimming of the TRR-registors is usually done at the factory before supplying the part.  
Nr.  
TRR bits  
19-15  
14-10  
9-5  
4-0  
NOTE  
1)  
0
Subregister  
TRIMC  
TRIMA  
TRIMBV  
TRIMBTC  
1
default  
0
0
0
0
Notes:  
1)writing into TRR register is done as usual with the MSB first  
subregister TRIMC  
change of current source output with TRIMC bits  
Nr.  
trimcs  
trimc3  
trimc2  
trimc1  
trimc0  
dI/Io  
%
Notes  
1),2)  
1),2)  
1),2)  
0
1
0
0
0
..  
0
0
1
1
1
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
1
..  
1
1
0
0
1
..  
1
1
0
1
0
..  
0
1
0
1
0
..  
0
1
0
-1*2.3  
-2*2.3  
..  
2
..  
1),2)  
1),2)  
1),2)  
14  
15  
16  
17  
18  
..  
–14*2.3  
–15*2.3  
16*2.3  
15*2.3  
14*2.3  
..  
1),2)  
1),2)  
30  
31  
2*2.3  
1*2.3  
Notes:  
1) Io is the current in µA at TRIMC = 00000  
2) The output current of the internal current source can be controlled in a wide range via the bit setting in CRG. In some applications it may be  
necessary to trim the current in the rang of +/- 30% for an optimum result of the external temperature measurement. This trimming is achieved  
with writing into subregister TRIMC of the TRR register. The trimming is done in % for all ranges selected in CRG register.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 22 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
subregister TRIMA  
change of amplifier offset with TRIMA bits  
The offset of the PGA should be trimmed to a mimimum absolute value to guarantee the  
full dynamic range with all gain settings.  
Nr.  
trimas  
trima3  
trima2  
trima1  
trima0  
Voffset  
mV  
Notes  
1),2) ,3)  
0
1
0
0
0
..  
0
0
1
1
1
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
1
..  
1
1
0
0
1
..  
1
1
0
1
0
..  
0
1
0
1
0
..  
0
1
Uos  
1),2)  
1),2)  
Uos -1*1.34  
Uos -2*1.34  
..  
2
..  
1),2)  
1),2)  
1),2)  
14  
15  
16  
17  
18  
..  
Uos –14*1.34  
Uos –15*1.34  
Uos  
Uos +1*1.34  
Uos +2*1.34  
..  
1),2)  
1),2)  
30  
31  
Uos +14*1.34  
Uos +15*1.34  
Notes:  
1) Uos is the input offset voltage in mV at TRIMA = 00000  
2) Every step of TRIMA settings brings Δoffset=1.34 mV change in absolute value of the input offset voltage.  
If the measured value is Uos then the number that should be written into the TRIMA for minimum  
final absolute value is calculated as TRIMA=int((Uos)/1.34) for Uos above zero and  
TRIMA=16+int(-Uos)/1.34) for Uos below zero.  
3) The input offset voltage can be measured with chopping and dechopping bits being cleared in register CRG.  
Any input channel as well as gain settings can be used. The input should be shorted to avoid any external voltages to interfere with the  
measurement. If the measured output voltage is Va then the offset voltage is calculated acc. Vos = Va/gain.  
subregister TRIMBV  
change of reference voltage Uo with TRIMBV bits  
Nr.  
trimbvs  
trimbv3  
trimbv2  
trimbv1  
trimbv0  
VREF  
mV  
Notes  
1),2)  
1),2)  
1),2)  
0
1
0
0
0
..  
0
0
1
1
1
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
1
..  
1
1
0
0
1
..  
1
1
0
1
0
..  
0
1
0
1
0
..  
0
1
Ua  
Ua -1*5.1  
Ua -2*5.1  
..  
2
..  
1),2)  
1),2)  
1),2)  
14  
15  
16  
17  
18  
..  
Ua –14*5.1  
Ua –15*5.1  
Ua  
Ua +1*5.1  
Ua +2*5.1  
..  
1),2)  
1),2)  
30  
31  
Ua +14*5.1  
Ua +15*5.1  
Notes:  
1) Ua is the reference voltage in mV at TRIMBTC = 00000, the optimum value is 1.232V.  
2) Every step of TRIMBV settings brings ΔBV=5.1 mV change in absolute value of the reference voltage.  
For trimming the TC value and absolute value of the reference voltage it is recommended to trim the TC  
value first and then trim the absolute value since TRIMBTC is changing both TC and absolute value, whereas  
TRIMBV is changing only the absolute value.  
If the measured absolute value is Uam then the number that should be written into the TRIMBV for optimum  
final absolute value is calculated as TRIMBV=int((Uam-1.231)/0.0051) for Uam above the ideal value and  
TRIMBV=16+int(-(Uam-1.232)/0.0051) for Uam below the ideal value.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 23 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
subregister TRIMBTC  
change of reference voltage Uo and TC-value with TRIMBTC bits  
Nr.  
trimbtcs  
trimbtc3 trimbtc2 trimbtc1 trimbtc0  
VREF  
mV  
TC  
ppm/K  
Notes  
1
1
1),2)  
1),2)  
1),2)  
0
1
0
0
0
..  
0
0
1
1
1
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
0
..  
1
1
0
0
1
..  
1
1
0
0
1
..  
1
1
0
1
0
..  
0
1
0
1
0
..  
0
1
Uo  
TCo  
Uo -1*5.2  
Uo -2*5.2  
..  
TCo -1*12.7  
TCo -2*12.7  
2
..  
1),2)  
1),2)  
1),2)  
14  
15  
16  
17  
18  
..  
Uo –14*5.2  
Uo –15*5.2  
Uo  
TCo -14*12.7  
TCo -15*12.7  
Uo +1*5.2  
Uo +2*5.2  
..  
TCo +1*12.7  
TCo -2*12.7  
..  
1),2)  
1),2)  
30  
31  
Uo +14*5.2  
Uo +15*5.2  
TCo -14*12.7  
TCo -15*12.7  
Notes:  
1) Uo is the reference voltage in mV and TCo is the TC value in ppm/K at TRIMBV = 00000  
2) Every step of TRIMBTC settings brings ΔBTC=5.2 mV change in absolute value of the reference voltage and  
S=12.7 ppm/K change in the slope of temperature dependence. So for trimming the temperature coefficient of  
the band-gap reference 2 measurements are recommended ( at T1=25oC and at T2=125oC ). If the measured TC  
value is TCm then the number that should be written into the TRIMBTC for minimum final TC is calculated as  
trimBTC=int(TCM/12.7) for positive values and trimBTC=16+int(-TCM/12.7) for negative values.  
The absolute voltage is also changed in this way, which must be compensated by bringing back the absolute value by changing the TRIMBV  
register. Usually the TRIMBVx=-TRIMBTCx+1 is sufficient. If further accuracy or change of absolute value is necessary it can be adjusted by  
making some more measurements and adjustments.  
ZZR REGISTER:  
ZLO  
5
ZTR  
20  
ZCL  
110  
ZTC  
53  
188  
R/W  
TRR  
reg.7  
CAR  
reg.6  
bit0  
data in  
bit0  
CAR  
TRR  
ZLO  
bit0  
bit0  
Figure 8: Copying of ZCL and ZTR registers into CAR and TRR registers  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 24 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
7.5.8  
Nr.  
THR alarm (Wake-up) threshold register ( 17 bits )  
MR16 MR15 MR14 MR13 MR12 MR11 … MR1  
MR0 NOTE  
0
A/B  
0
s
Msb  
1
lsb  
1)  
default  
0
0
0
0
Notes:  
1) _ All measurements are performed in channel A therefore MR16 must be set to zero. When channel B is selected  
no interrupt will be generated.  
- The signed value is used. For positive THR values the ASIC will initiate an interrupt whenever the measured  
value is bigger than the THR value. For negtive THR values the interrupt will be generated for a negative  
result with an absolute value bigger than the absolute value of the THR register.  
7.5.9  
Nr.  
MSR measurement result register ( 18 bits )  
MR17  
MR16 MR15 MR14 MR13 MR12  
MR11 … MR1  
MR0  
NOTE  
1)  
Overflow/un A/B  
derflow  
S
msb  
lsb  
Notes:  
1)  
- Result word length is 16 bits because of calibration accuracy  
and to maintain all possible resolutions ( different setting ).  
- A/B bit signifies which measurement was performed: the one defined in CRA or CRB:  
MR16=0 -> A  
MR16=1 -> B  
- Overflow/underflow bit is set whenever the result after multiplication by calibration  
constant is bigger than 32767 or smaller than –32767.  
In Wake-up or Alarm mode the overflow/underflow always sets INTN signal to LO.  
8
Digital interface description  
The digital interface of the AS8501 consists of two input pins (CLK and SCLK) and two I/O pins (INTN and SDAT). The SCLK and SDAT pins  
are used as universal serial data interface (SDI). SDI operates only if external clock signal (CLK) is running.  
8.1  
CLK  
In all operating modes except the Wake-up mode this pin must be connected to 8 MHz clock signal. In the Wake-up mode (MWU) the CLK pin  
must be connected to logic HI or float.  
8.2  
INTN  
The INTN pin is used to signal various conditions to the microcontroller, depending on the operating mode.  
application modes of the INTN pin  
Mode  
Signal  
Direction  
Purpose  
Note  
1)  
2)  
0
Load clock (internal)  
Output  
Indicates progress of the Zener-Zap load process  
1, 2,7 SDI clock disable  
Output  
Signals new result and suggests when to disable SCLK in  
high-precision measurement phase  
3
4
idle / wake-up not  
Output  
Output  
Input  
Signals the wake-up condition  
idle / alarm not  
PW1  
Signals the alarm condition  
Shows the programming pulse width  
No purpose  
5
6,8,9  
10  
10  
Logic ‘0’  
t12  
Output  
Output  
Output  
Test mode  
t18  
Test mode  
Notes:  
1) 188 clock pulses are generated from the internal oscillator source during the loading time.  
2) In measurement modes (MMS and MMD) the INTN pin is used to synchronize the SDI bus operations (See Fig. 9).  
The trailing edge of INTN signals the start of a new measurement.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 25 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
i-1  
start measurement i  
Tcnv  
i+1  
INTN  
available  
results on SDI  
i-2  
i-1  
i
Tres  
Figure 9: INTN pin in modes 1 and 2  
The determination of Tcnv and Tres from the parameter settings is:  
Tcnv R1/(fovs*2)  
Tres = MM*Tcnv*R2*2  
with R1=OSR and R2=number of averages  
8.3  
SDI bus operation  
SDI bus is a 2-line bi-directional interface between one master and one slave unit. Typically the master unit is a microcontroller with software-  
implemented SDI protocol. The ASIC is always the slave unit. SDI bus operation is presented on Figure 10.  
During data transfers the sdat signal changes while sclk is low. The sdat signal can change while sclk is high only to generate start or  
exception conditions.  
Direction  
Address  
Register data  
sclk  
SDAT  
Start  
Data transfer  
Exception  
Figure 10: SDI bus operation  
Strobe ASIC  
The master unit always generates the sclk signal.  
The master unit generates the sdat signal in start, direction, address, master-write data and exception conditions. The master sdat pin is in  
high-impedance state in master-read data condition.  
The slave unit drives the sdat signal only in master-read data condition. In all other cases the slave sdat pin is in high-impedance state. During  
data transfer in read condition the internal AD-conversion in continuing but the data in the MSR-register is not updated and the output of the  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 26 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
INTN signal is suppressed. Only after the completion of the reading cycle the ASIC returns to the normal condition and updates the MSR-  
register immediately if a new AD-conversion has been finished during data transfer.  
The master unit does not detect any bus conditions since it generates them. Data transfer conditions (direction, register address and register  
data) must not be changed until the current condition is over. The slave unit does not detect start and exception condition when master-read is  
in progress.  
The exception condition is reserved for future use and should be avoided.  
8.4  
Data transfers  
Generally the SDI interface is active in all ASIC modes. For security reasons some write operations are restricted to certain modes. Read  
operations are never disabled in order to keep consistent sdat driving conditions.  
Writing to the result, trimming and calibration registers (MSR, CAR and TRR) is allowed only in test modes.  
Writing to the Zener-Zap register is allowed only in mode MZP.  
The first data bit after the start condition in each data transfer defines the data direction: sdat=high is used for master-read data (mr) condition  
and sdat=low for master-write data (mw) condition.  
Data is transferred with the most significant bit (MSB) first. Data bits are composed of register address and register data bits. Register address  
is transmitted first, followed by the register data bits. The register address is always 4 bits long. The number of register data bits in table 7.5 is  
implied by the register address.  
sclk  
mr  
sdat  
a3  
a2  
a1  
a0  
MSB  
LSB  
mw  
Direction  
Register address  
Register data  
Figure 11: SDI Data transfer  
The ASIC supports the data transfers presented in Table 8.1.  
master read-write operations  
REGISTER  
ADDRESS  
Contents  
read  
allowed in  
modes  
All  
write allowed in  
page  
modes  
0
1
2
3
4
5
6
7
8
OPM  
CRA  
CRB  
CRG  
MSR  
ZZR  
CAR  
TRR  
THR  
operating mode  
All  
All  
All  
All  
>7  
5
measurement set-up A  
measurement set-up B  
general measurement conditions  
measurement result  
All  
All  
All  
All  
All  
All  
All  
All  
Zener-Zap data  
calibration register  
>7  
>7  
All  
trimming register  
alarm or wake-up threshold register  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 27 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
8.5  
SDI bus timing  
Timing definitions for SDI bus are based on software-implemented master unit protocol  
MDE  
DV_m  
PW_sclk  
DV_m  
TS_m  
LO_sclk  
TS_m  
sclk  
(uP)  
master sdat  
(uP)  
HI - Z  
slave sdat  
(ASIC)  
HI - Z  
TS_s  
DV_s  
TS  
CDD  
strobe ASIC  
strobe µC  
Figure 12: SDI Bus timing  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 28 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
SDI bus timing  
Nr.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX Unit  
Conditions  
NOTE  
PW_sclk  
LO_sclk  
MDE  
0
1
2
SCLK pulse width  
SCLK low  
120  
120  
120  
ns  
ns  
ns  
All  
All  
All  
5), 6)  
Master SDAT exception  
after SCLK  
1)  
DV_m  
DV_s  
3
4
Master SDAT valid  
before/after SCLK  
Slave SDAT not valid  
after SCLK  
120  
TSW  
TSW  
ns  
All  
120  
120  
ns  
Master read  
TS_m  
TS_s  
CDD  
5
6
7
Master 3-state ON/OFF  
TS_s  
ns  
ns  
ns  
Master read  
Master read  
Master read  
Slave 3-state ON/OFF  
3)  
Bus condition detection  
disabled in slave unit  
Notes:  
1)TSW is typical time required by the microcontroller program to change or to read the state of  
the I/O pin  
3) Start detection is disabled when slave unit transmits data  
5) LO_sclk>300ns and PW_sclk> 2µsec required to read ZZR.  
6) LO_sclk > (3/2)*TCLK = (3/2)/f CLK = (3/2)/8MHz=187.5ns required for results synchronisation in MSR.  
8.6  
SDI can read the OTP memory in any mode by reading the register ZZR.  
8.6.1 ZZR register bit mapping  
SDI access to OTP memory  
Cell index  
0
1
2
3
4
5
6
7
pos B 2)  
4)  
Purpose  
ZZR field  
ZZR bit  
pos A 1)  
pos C 3)  
lock A  
lock B 5)  
trimcs  
trimc3  
ZTR  
181  
trimc2  
ZLO  
186  
ZLO  
ZLO  
185  
ZLO  
184  
ZLO  
183  
ZTR  
182  
ZTR  
180  
187 (msb)  
1) Always programmed to '0' during the production test  
2) Always programmed to '0' during the production test  
3) Always programmed to '1' during the production test  
4) Reserved  
5) Reserved  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 29 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Cell index  
8
9
10  
11  
12  
13  
14  
15  
trimc0  
Purpose  
trimc1  
trimas  
trima3  
trima2  
trima1  
trima0  
trimbvs  
ZTR  
178  
ZZR field  
ZZR bit  
ZTR  
179  
ZTR  
177  
ZTR  
176  
ZTR  
175  
ZTR  
174  
ZTR  
173  
ZTR  
172  
Cell index  
16  
17  
18  
19  
20  
21  
22  
23  
trimbv2  
Purpose  
trimbv3  
trimbv1  
trimbv0  
trimbtcs  
trimbtc3  
trimbtc2  
trimbtc1  
ZTR  
170  
ZZR field  
ZZR bit  
ZTR  
171  
ZTR  
169  
ZTR  
168  
ZTR  
167  
ZTR  
166  
ZTR  
165  
ZTR  
164  
Cell index  
24  
25  
26  
27  
28  
29  
30  
31  
cgi1_10  
Purpose  
trimbtc0  
cgi1_9  
cgi1_8  
cgi1_7  
cgi1_6  
cgi1_5  
cgi1_4  
ZCL  
162  
ZZR field  
ZZR bit  
ZTR  
163  
ZCL  
161  
ZCL  
160  
ZCL  
159  
ZCL  
158  
ZCL  
157  
ZCL  
156  
Cell index  
32  
33  
34  
35  
36  
37  
38  
39  
cgi1_2  
Purpose  
cgi1_3  
cgi1_1  
cgi1_0  
cgi2_10  
cgi2_9  
cgi2_8  
cgi2_7  
ZCL  
154  
ZZR field  
ZZR bit  
ZCL  
155  
ZCL  
153  
ZCL  
152  
ZCL  
151  
ZCL  
150  
ZCL  
149  
ZCL  
148  
Cell index  
40  
41  
42  
43  
44  
45  
46  
47  
cgi2_5  
Purpose  
cgi2_6  
cgi2_4  
cgi2_3  
cgi2_2  
cgi2_1  
cgi2_0  
cgi3_10  
ZCL  
146  
ZZR field  
ZZR bit  
ZCL  
147  
ZCL  
145  
ZCL  
144  
ZCL  
143  
ZCL  
142  
ZCL  
141  
ZCL  
140  
Cell index  
48  
49  
50  
51  
52  
53  
54  
55  
cgi3_8  
Purpose  
cgi3_9  
cgi3_7  
cgi3_6  
cgi3_5  
cgi3_4  
cgi3_3  
cgi3_2  
ZCL  
138  
ZZR field  
ZZR bit  
ZCL  
139  
ZCL  
137  
ZCL  
136  
ZCL  
135  
ZCL  
134  
ZCL  
133  
ZCL  
132  
Cell index  
56  
57  
58  
59  
60  
61  
62  
63  
cgi3_0  
Purpose  
cgi3_1  
cgi4_10  
cgi4_9  
cgi4_8  
cgi4_7  
cgi4_6  
cgi4_5  
ZCL  
130  
ZZR field  
ZZR bit  
ZCL  
131  
ZCL  
129  
ZCL  
128  
ZCL  
127  
ZCL  
126  
ZCL  
125  
ZCL  
124  
Cell index  
64  
65  
66  
67  
68  
69  
70  
71  
cgi4_3  
Purpose  
cgi4_4  
cgi4_2  
cgi4_1  
cgi4_0  
cau0_10  
cau0_9  
cau0_8  
ZCL  
122  
ZZR field  
ZZR bit  
ZCL  
123  
ZCL  
121  
ZCL  
120  
ZCL  
119  
ZCL  
118  
ZCL  
117  
ZCL  
116  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 30 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Cell index  
72  
73  
74  
75  
76  
77  
78  
79  
Purpose  
cau0_7  
cau0_5  
cau0_4  
cau0_3  
cau0_2  
cau0_1  
cau0_0  
cau0_6  
ZZR field  
ZZR bit  
ZCL  
115  
ZCL  
113  
ZCL  
112  
ZCL  
111  
ZCL  
110  
ZCL  
109  
ZCL  
ZCL  
114  
108  
Cell index  
Purpose  
80  
81  
cau1_9  
82  
83  
84  
85  
86  
87  
cau1_10  
ZCL  
cau1_8  
ZCL  
cau1_7  
ZCL  
cau1_6  
ZCL  
cau1_5  
ZCL  
cau1_4  
ZCL  
cau1_3  
ZCL  
ZZR field  
ZCL  
106  
ZZR bit  
107  
105  
104  
103  
102  
101  
100  
Cell index  
88  
89  
90  
91  
92  
93  
94  
95  
Purpose  
cau1_2  
cau1_0  
cau2_10  
cau2_9  
cau2_8  
cau2_7  
cau2_6  
cau1_1  
ZZR field  
ZZR bit  
ZCL  
99  
ZCL  
97  
ZCL  
96  
ZCL  
95  
ZCL  
94  
ZCL  
93  
ZCL  
92  
ZCL  
98  
Cell index  
96  
97  
98  
99  
100  
101  
102  
103  
Purpose  
cau2_5  
cau2_3  
cau2_2  
cau2_1  
cau2_0  
cau3_10  
cau3_9  
cau2_4  
ZZR field  
ZZR bit  
ZCL  
91  
ZCL  
89  
ZCL  
88  
ZCL  
87  
ZCL  
86  
ZCL  
85  
ZCL  
84  
ZCL  
90  
Cell index  
104  
105  
106  
107  
108  
109  
110  
111  
Purpose  
cau3_8  
cau3_6  
cau3_5  
cau3_4  
cau3_3  
cau3_2  
cau3_1  
cau3_7  
ZZR field  
ZZR bit  
ZCL  
83  
ZCL  
81  
ZCL  
80  
ZCL  
79  
ZCL  
78  
ZCL  
77  
ZCL  
76  
ZCL  
82  
Cell index  
112  
113  
114  
115  
116  
117  
118  
119  
Purpose  
cau3_0  
cau4_9  
cau4_8  
cau4_7  
cau4_6  
cau4_5  
cau4_4  
cau4_10  
ZZR field  
ZZR bit  
ZCL  
75  
ZCL  
73  
ZCL  
72  
ZCL  
71  
ZCL  
70  
ZCL  
69  
ZCL  
68  
ZCL  
74  
Cell index  
120  
121  
122  
123  
124  
125  
126  
127  
Purpose  
cau4_3  
cau4_1  
cau4_0  
cau5_10  
cau5_9  
cau5_8  
cau5_7  
cau4_2  
ZZR field  
ZZR bit  
ZCL  
67  
ZCL  
65  
ZCL  
64  
ZCL  
63  
ZCL  
62  
ZCL  
61  
ZCL  
60  
ZCL  
66  
Cell index  
128  
129  
130  
131  
132  
133  
134  
135  
cau5_5  
Purpose  
cau5_6  
cau5_4  
cau5_3  
cau5_2  
cau5_1  
cau5_0  
tcu1_8  
ZZR field  
ZZR bit  
ZCL  
59  
ZCL  
57  
ZCL  
56  
ZCL  
55  
ZCL  
54  
ZCL  
53  
ZTC  
52  
ZCL  
58  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 31 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Cell index  
136  
137  
138  
139  
140  
141  
142  
143  
Purpose  
tcu1_7  
tcu1_5  
tcu1_4  
tcu1_3  
tcu1_2  
tcu1_1  
tcu1_0  
ZTC  
44  
tcu1_6  
ZZR field  
ZZR bit  
ZTC  
51  
ZTC  
49  
ZTC  
48  
ZTC  
47  
ZTC  
46  
ZTC  
45  
ZTC  
50  
Cell index  
144  
145  
146  
147  
148  
149  
150  
151  
Purpose  
tcu0_8  
tcu0_6  
tcu0_5  
tcu0_4  
tcu0_3  
tcu0_2  
tcu0_1  
tcu0_7  
ZZR field  
ZZR bit  
ZTC  
43  
ZTC  
41  
ZTC  
40  
ZTC  
39  
ZTC  
38  
ZTC  
37  
ZTC  
36  
ZTC  
42  
Cell index  
152  
153  
154  
155  
156  
157  
158  
159  
Purpose  
tcu0_0  
trt0_9  
trt0_8  
trt0_7  
trt0_6  
trt0_5  
trt0_4  
trt0_10  
ZZR field  
ZZR bit  
ZTC  
35  
ZTC  
33  
ZTC  
32  
ZTC  
31  
ZTC  
30  
ZTC  
29  
ZTC  
28  
ZTC  
34  
Cell index  
160  
161  
162  
163  
164  
165  
166  
167  
Purpose  
trt0_3  
trt0_1  
trt0_0  
tcn3_7  
tcn3_6  
tcn3_5  
tcn3_4  
trt0_2  
ZZR field  
ZZR bit  
ZTC  
27  
ZTC  
25  
ZTC  
24  
ZTC  
23  
ZTC  
22  
ZTC  
21  
ZTC  
20  
ZTC  
26  
Cell index  
168  
169  
170  
171  
172  
173  
174  
175  
Purpose  
tcn3_3  
tcn3_1  
tcn3_0  
tcn2_7  
tcn2_6  
tcn2_5  
tcn2_4  
tcn3_2  
ZZR field  
ZZR bit  
ZTC  
19  
ZTC  
17  
ZTC  
16  
ZTC  
15  
ZTC  
14  
ZTC  
13  
ZTC  
12  
ZTC  
18  
Cell index  
176  
177  
tcn2_2  
ZTC  
178  
179  
180  
181  
182  
183  
Purpose  
tcn2_3  
tcn2_1  
tcn2_0  
tcn1_7  
tcn1_6  
tcn1_5  
tcn1_4  
ZZR field  
ZZR bit  
ZTC  
11  
ZTC  
9
ZTC  
8
ZTC  
7
ZTC  
6
ZTC  
5
ZTC  
4
10  
Cell index  
184  
185  
186  
187  
tcn1_2  
Purpose  
tcn1_3  
tcn1_1  
tcn1_0  
ZTC  
2
ZZR field  
ZZR bit  
ZTC  
3
ZTC  
1
ZTC  
0
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 32 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
8.6.2  
Stored ZZR-register mapping  
ZZR-Register  
bit no. in subregister  
ZZR-bits  
remarks  
ZZR subregister  
10  
9
8
7
6
5
4
3
2
1
0
msb  
lsb  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
187 183  
182 178  
177 173  
172 168  
167 163  
162 152  
151 141  
140 130  
129 119  
118 108  
107 97  
96 86  
85 75  
74 64  
63 53  
52 44  
43 35  
34 24  
23 16  
ZLO  
ZTR  
TRIMC  
TRIMA  
TRIMBV  
TRIMBTC  
CGI1  
CGI2  
CGI3  
CGI4  
CAU0  
CAU1  
CAU2  
CAU3  
CAU4  
CAU5  
TCU1  
TCU0  
TRT0  
current source calibration  
PGA offset calibration  
reference voltage calibration  
TC calibration  
c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0  
c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1  
c2 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2  
gain 6  
currrent 1500A  
current 300 A  
current 150 A  
current 75 A  
ZCL  
gain 24  
gain 50  
gain100  
0
0
0
0
0
0
0
0
0
0
0
c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1  
calibration factor for gain 24  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
c4 c4 c4 c4 c4 c4 c4 c4 c4 c4 c4  
c3 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3  
ct ct ct ct ct ct ct ct ct ct ct  
calibration factor for gain 1  
calibration factor for gain 100  
calibration factor for internal temperature  
8 bits for checksum  
1
1
t
cs cs cs cs cs cs cs cs  
1)  
2)  
ZTC  
1
t
n23  
n
1
t
n
n
n
fi  
t
n
n
n
fi  
t
n
n
n
fi  
t
n
n
n
fi  
t
n
n
n
fi  
t
n
n
n
fi  
t
n
n
n0  
6 bits for internal clock  
t
t
11 bits for internal temperature at 23°C  
high byte for serial number  
medium byte for serial number  
low byte for serial number  
TCN3  
TCN2  
TCN1  
15  
7
8
0
n
x
c0  
c1  
0
ct  
cs  
fi  
=
=
=
=
=
these fields are written during calibration  
these fields are written during calibration of G6  
these fields are written during calibration of G24 (i.e. 30 mV = 30 000 digits)  
Zero value of calibration constant for detection of unwanted POR  
calibration factor for slope of Tint : 75 digits/deg  
8-Bit checksum for ZZR-register  
=
=
6-bit for calibration of internal clock  
t
nr  
=
=
11 bits for Tint value at 23 °C  
24 bits serial number  
Notes:  
1) The checksum contains the added value of all bits in the ZZR register without the 6 checksum bits  
2) Tthe internal clock frequency can be calculated int_fclk= (240 + 6-bit fi-number) kHz  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 33 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
9
General application hints  
Since the AS8501 is optimised for low voltage applications extreme care should be taken that the signal is not disturbed by influences like bad ground  
reference, external noise pick-up, thermal EMFs generated at the transition of different materials or ground loops. The influence of these error sources  
can be quite high and they may completely shadow the excellent properties of the device if not handled properly. The following sections are supposed  
to supply additional informations to the design engineer how to get around some of these problems.  
9.1  
Ground connection, analog common  
The analog common terminal where all voltages are referring to is RSHL. All ground lines of the external circuitry of VBAT, ETS and ETR as well as the  
voltage sense line of the low ohmic current sensing resistor should be connected to each other in a star like ground point. It is recommended that this  
point is as close as possible situated to the low side sense terminal of the current sensing resistor. It should also be connected to the VSS and VSSD  
terminal, but the return line of both must leave this point separately. Also the power decoupling capacitors should be connected to the analog common.  
To give an example of the magnitude of possible errors consider that the ground return of the power supply is not connected properly and 5 mm of a  
copper track 35µm thick and 0.1 mm wide are within the measuring circuit with a current flow of 5 mA. This will result in an offset of 120 µV which is  
more than 500 times higher than the typical offset of the ASIC. In addition the current fluctuations will act as an extra noise voltage which is also way  
above that of the device itself.  
9.2  
Thermal EMF  
another major source of error for low level measurements are thermal voltages (electromotive force, thermal EMF) or Seebeck voltages which are  
principally produced by any junction of two dissimilar materials. On PC-boards pairs of dissimilar materials may consist of the copper tracks and the  
solder, the leads of different components or different materials used in the construction within the components. Any temperature difference between  
two connection produces a voltage which is superimposed to the measuring voltage.  
A number of strategies are known to detect or minimise their influence on the measuring result:  
-
in cases were a current has to be measured directly or a current is to be used to activate a resistive sensor (like  
Ohm-meter or temperature measurement with RTDs, NTC or PTC) a switch in the circuit could be used to interrupt or invert the current thus  
producing a current change dI. In the difference of the two voltage states dU the EMFs as well as the Offset voltages of the amplifier are fully  
eliminated. For resistance measurements this method is known as ‘true Ohm’ measurement.  
-
-
in applications were this is not possible and the problematic device (i.e. the input resistor of an amplifier) can be located it may help to place a  
dummy device of the same type in the circuit as close and thermally connected as good as possible to compensate the influence of the first one.  
Since the thermal EMFs are proportional to the temperature difference it is important to maintain a homogeneous temperature distribution in the  
vicinity of the sensitive area. This is possible by keeping this area as small as possible, by avoiding any heat sources nearby or by increasing the  
heat conductivity of the substrate, i.e. wide and thick copper tracks, multilayer board or even metal substrate.  
-
The best solution of all however is to avoid the thermal EMFs by using only components which are matched to the copper world which means  
that their thermo-electrical power against copper is zero. This is specially important for current measurements in the range of 10- 1000A. In this  
case the resistance value has to be very low (down to 100µOhms) to limit the measuring power and avoid an overheating of the sensing resistor.  
On the other hand the voltages to be detected are extremely low if a high resolution is required. If for instance a current of 10 mA has to be  
measured with a 100µOhm resistor, the resolution of the measuring system must be better than 1µV and the error voltages due to thermal EMFs  
must be below this limit. Quite often people are trying to use the well known Konstantan (CuNi44) for current sensing resistors. This is a bad  
choice since the thermal EMF versus copper is very high.  
With –40µV/deg already a temperature difference of  
2.5 K is enough to produce an error which is 100 times lager than the required resolution. Or vice versa a temperature fluctuation of only 1/100 K  
produces a ‘thermal noise’ which is equivalent to the required resolution.  
With such materials and high currents of 10A and above the other thermoelectric effect, the so called Peltier-effect, can also play an important  
role. Under current flow this effect generates heat in one junction and destroys the same amount of heat in the other junction. The amount of  
heat is proportional to the current and its direction. The result is a temperature difference which in turn generates a thermal EMF proportional to it.  
Finally this means that such a resistor produces its own error voltage and it is never possible to measure better than 1-2% with such badly  
matched materials. The precision resistance materials Manganin, Zeranin and Isaohm are perfectly matched to the copper world and resistors  
made from these materials can achieve the high quality that is necessary for low  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 34 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
level measurements and high resolution.  
9.3  
Noise considerations  
for every low level measuring system it is essential to know the origin of noise and to accept the limitations given by it. Three major sources of noise  
have to be considered. The input voltage noise and the input current noise of the amplifier and the thermal noise (Johnson noise) of resistors in the  
external circuitry around the amplifier. Due to the fact that these three sources are not correlated they can be added in the well known square root  
equation.  
In most applications the input resistor or input divider is low ohmic (i.e. below 10 kOhms) which mean that the noise voltage produced by the input  
current noise is negligible compared to the input voltage noise. The input noise density (En) of the AS8501 is with only 35 nV/sqr(Hz) extremely low.  
This could be achieved with a special internal analog and digital chopper circuitry which eliminates the CMOS typical 1/f-noise completely. Even though  
the overall noise will be dominated by the input amplifier as long as the external resistors are below 10 kOhm.  
The total noise voltage generated at a given frequency resp. in a given frequency band (BW) is given by:  
Un= En*sqr(BW)  
This square root dependence can be seen very nicely in fig. 9.10. The typical square-root shaped dependence is found for both the peak to peak noise  
as well as for the equivalent RMS noise.  
The bandwidth resp. the sampling frequency of the AS8501 can be adapted to the requirements of the application by programming the internal digital  
filter via the SDI bus. For a sampling frequency of 16kHz the input voltage RMS noise is less than 5µV, whereas at 500 Hz already 1µV (or 1LSB) is  
reached.  
If the customer needs even higher resolution at a lower measuring speed the internal integration time can be further increased but due to the limitation  
of the digital noise ( 1LSB) it is better to perform an external averaging in the attached µC. In this way the resolution of the system can be considerably  
increased to less than 0.1 µV for sampling rates of 5 Hz and below which corresponds to an effective AD-converter width of more than 20 bits. (see fig.  
9.10)  
9.4  
Shielding, guarding  
In many applications it is difficult to gain full benefit from the AS8501 performance since a number of external error sources can disturb the  
measurement. To achieve the maximum performance the design engineer has to take care specially of the layout of the PC-board and the sense  
connections to the external components. To avoid noise pick-up from external magnetic fields all tracks on the PC-board should be parallel strip lines  
and they should be traced as close as possible to each other. External sensing cables should be twisted and kept away from current carrying cables as  
far as possible. For longer cables a shielding is sometimes helpful but care should be taken that the shield is not connected to one of the sense leads.  
For an optimum performance it should be open on one side, the other side should be connected to the central (star like) analog common point.  
In very sensitive applications it may be wise to use a guard ring around both inputs and it should be connected again to the analog common point. This  
procedure minimises leakage currents and parasitic capacitances between different terminals and components on the PC-board.  
EMV interferences can be affectively avoided in most cases by using standard SMD-type high frequency filters in the analog input lines  
as well as in the digital output lines.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 35 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
10 Typical performance characteristics  
parameters: 300A, G24, AV4, OSF 2.048, OSR 128  
parameters: 300A, G24, AV32, OSF 2.048, OSR 128  
250 A  
15 mA  
0 A  
-150 A  
-250 A  
10  
5
0,5  
0,3  
0
0,0  
-5  
-10  
-0,3  
-0,5  
0
500  
1000  
1500  
2000  
-25,0  
0,0  
25,0  
50,0  
75,0  
100,0  
125,0  
measurement no.  
temperature in deg C  
Figure 14: Linearity deviation for different currents over  
temperature  
Figure 13: Resolution and noise at zero input, sampling rate: 1kHz  
parameters: 300A, G24, AV4, OSF 2.048, OSR 128  
parameters: 300A, G24, AV4, OSF 2.048, OSR  
128  
0,03  
0,02  
0,01  
0,00  
30010  
30005  
30000  
29995  
29990  
-400  
-0,01  
-300  
-200  
-100  
0
100  
200  
300  
400  
-0,02  
-0,03  
0
500  
1000  
1500  
2000  
measurement no.  
input current in A  
Figure 15: Linearity deviation over input signal  
Figure 16: Resolution and noise at 95% full scale,  
sampling rate: 1kHz  
G24,AV=4,1000Hz, external averaging  
10  
dual channel measurement, sampling rate f=8  
RSHH-RSHL 100Hz square  
kHz  
VBAT  
220Hz sine  
10000  
5000  
0
p
p
1
0,1  
sigma  
2.048 MHz  
4.096 MHz  
'best chopper OPA of the world'  
peak to peak  
-5000  
0,01  
-10000  
1
10  
100  
final frequency in Hz  
1000  
10000  
200  
220  
240  
260  
280  
measurement number  
Figure 17: Dual mode measurement  
Figure 18: Output voltage noise over sampling rate  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 36 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
2,0  
1,5  
1,0  
5,0  
2,5  
change in %  
0,5  
change in %  
0,0  
-0,5  
-1,0  
-1,5  
0,0  
-2,5  
G6  
G24  
75  
G6  
G24  
G50  
G100  
-2,0  
-50  
-5,0  
-50  
0
-25  
25  
50  
100  
125  
0
-25  
25  
50  
75  
100  
125  
temperature deg C  
temperature deg C  
Figure 20: Typical output as function of temperature for all gains  
Figure 19: Typical output as function of temperature for gains 6 and 24  
300A, G24, AV1, OSF 2.048, OSR 128  
20  
15  
10  
5
2500  
2000  
1500  
1000  
500  
AC input frequency 100  
Hz  
0
0
-500  
-1000  
-1500  
-2000  
-2500  
-5  
-10  
-15  
-20  
0
2,5  
5
7,5  
10  
0
10  
20  
30  
40  
50  
time in sec  
measurement no.  
Figure 21: Noise at 125 Hz sampling rate, gain 24  
Figure 22: Real time AC measurement at 100 Hz  
temperature dependence of reference voltage  
0,4  
0,2  
0,0  
original  
-0,2  
-0,4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
temperature in °C  
Figure 23: temperature dependence of internal reference  
voltage (not trimmed)  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 37 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
11 Package Dimensions  
Thermal Resistance junction / ambient.: 66 K/W (typ.) in still air  
12 Revision History  
Revision  
Date  
Feb.10,2006  
March 23, 2006  
Description  
1.0  
1.1  
Initial Revision  
RthJA  
13 Ordering Information  
Delivery in Tape and Reel (1 reel = 1500 devices)  
Order AS8501 T&R  
Delivery in Tubes (1 Tube = 46 devices)  
Order AS8501 TUB  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 38 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
14 Contact  
14.1  
Headquarters  
austriamicrosystems AG  
A 8141 Schloss Premstätten, Austria  
Phone: +43 3136 500 0  
Fax:  
+43 3136 525 01  
industry.medical@austriamicrosystems.com  
www.austriamicrosystems.com  
14.2  
Sales Offices  
austriamicrosystems Germany GmbH  
austriamicrosystems USA, Inc.  
8601 Six Forks Road  
Suite 400  
Tegernseer Landstrasse 85  
D-81539 München, Germany  
Phone:  
Fax:  
+49 89 69 36 43 0  
Raleigh, NC 27615, USA  
+49 89 69 36 43 66  
Phone:  
Fax:  
+1 919 676 5292  
+1 509 696 2713  
austriamicrosystems Italy S.r.l.  
Via A. Volta, 18  
austriamicrosystems USA, Inc.  
4030 Moorpark Ave  
Suite 116  
I-20094 Corsico (MI), Italy  
Phone:  
Fax:  
+39 02 4586 4364  
+39 02 4585 773  
San Jose, CA 95117, USA  
Phone:  
Fax:  
+1 408 345 1790  
+1 509 696 2713  
austriamicrosystems France S.A.R.L.  
124, Avenue de Paris  
F-94300 Vincennes, France  
austriamicrosystems AG  
Phone:  
Fax:  
+33 1 43 74 00 90  
+33 1 43 74 20 98  
Suite 811, Tsimshatsui Centre  
East Wing, 66 Mody Road  
Tsim Sha Tsui East, Kowloon, Hong Kong  
austriamicrosystems Switzerland AG  
Rietstrasse 4  
Phone:  
Fax:  
+852 2268 6899  
+852 2268 6799  
CH 8640 Rapperswil, Switzerland  
Phone:  
Fax:  
+41 55 220 9008  
+41 55 220 9001  
austriamicrosystems AG  
AIOS Gotanda Annex 5th Fl., 1-7-11,  
Higashi-Gotanda, Shinagawa-ku  
Tokyo 141-0022, Japan  
austriamicrosystems UK, Ltd.  
88, Barkham Ride,  
Phone:  
Fax:  
+81 3 5792 4975  
+81 3 5792 4976  
Finchampstead, Wokingham  
Berkshire RG40 4ET, United Kingdom  
Phone:  
Fax:  
+44 118 973 1797  
+44 118 973 5117  
austriamicrosystems AG  
#805, Dong Kyung Bldg.,  
824-19, Yeok Sam Dong,  
Kang Nam Gu, Seoul  
Korea 135-080  
austriamicrosystems AG  
Klaavuntie 9 G 55  
FI 00910 Helsinki, Finland  
Phone:  
Fax:  
+82 2 557 8776  
Phone:  
Fax:  
+358 9 72688 170  
+358 9 72688 171  
+82 2 569 9823  
austriamicrosystems AG  
austriamicrosystems AG  
Bivägen 3B  
Singapore Representative Office  
83 Clemenceau Avenue, #02-01 UE Square  
239920, Singapore  
S 19163 Sollentuna, Sweden  
Phone:  
+46 8 6231 710  
Phone:  
Fax:  
+65 68 30 83 05  
+65 62 34 31 20  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 39 of 40  
AS8501 - Preliminary Data Sheet  
austriamicrosystems  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent identification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express,  
statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the  
right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current  
information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind,  
in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Copyright  
Devices sold by austriamicrosystems are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems makes no warranty, express,  
statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems reserves the right  
to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems for current  
information. This product is intended for use in normal commercial applications.  
Copyright © 2004 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct. However,  
austriamicrosystems shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of  
business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out of austriamicrosystems rendering of technical or other services.  
Revision 1.1, 04-April-06  
www.austriamicrosystems.com  
Page 40 of 40  

相关型号:

AS8501TR

High precision voltage and current measurement sensor interface
AMSCO

AS8501TUB

High precision voltage and current measurement sensor interface
AMSCO

AS8501_06

High precision voltage and current measurement sensor interface
AMSCO

AS85049-32-1

90° Adapter, Non-Environmental, RFI
GLENAIR

AS8506

Battery Cell Monitor and Balancer IC
AMSCO

AS8506-BQFM

Battery Cell Monitor and Balancer IC
AMSCO

AS8506-BQFP

Battery Cell Monitor and Balancer IC
AMSCO

AS8506C-BQFM

Battery Cell Monitor and Balancer IC
AMSCO

AS8506C-BQFP

Battery Cell Monitor and Balancer IC
AMSCO

AS8510

Data Acquisition Device for Battery Sensors
AMSCO

AS8510-ASSM

Data Acquisition Device for Battery Sensors
AMSCO

AS8510-ASSP

Data Acquisition Device for Battery Sensors
AMSCO