AS8506 [AMSCO]

Battery Cell Monitor and Balancer IC; 电池组电池监视器和平衡IC
AS8506
型号: AS8506
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Battery Cell Monitor and Balancer IC
电池组电池监视器和平衡IC

电池 监视器
文件: 总89页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS8506  
Battery Cell Monitor and Balancer IC  
The AS8506 is a battery management IC dedicated to support  
cell voltage measurement, monitoring, cell balancing and  
temperature measurement functions in Li-Ion battery stacks for  
electric/hybrid electric vehicles or in other  
General Description  
industrial/consumer/PV battery applications.  
There are two device versions available:  
• The AS8506 is AEC - Q100 automotive qualified.  
• The AS8506C is for industrial and other applications.  
Ambient temperature range for both products is from -40°C to  
+85°C.  
It features cell voltage diagnosis with externally adjustable  
upper and lower cell voltage limits, fast cell voltage capture on  
request through 12-bit SAR ADC, passive cell balancing by  
simultaneous comparison of actual cell voltages with a  
reference cell voltage and temperature measurement on two  
external NTC sensors through 12-bit ADC.  
Cells that are above reference will sequentially be discharged  
through integrated switches and one external resistor.  
There is also an active balancing option through factory setting  
to sequentially charge cells which are below reference from an  
external DC-DC Flyback converter and an integrated low side  
driver.  
The device can be used flexibly for battery stacks up to 7 cells  
with a minimum stack voltage of 6V and a maximum stack  
voltage of 32V.  
It can be chained to support battery packs of virtually any  
number of cells in synchronized mode through chained clock  
and trigger signal.  
The status of the battery stack is communicated to outside  
world through OR’d voltage_ok signal and balance ready signal.  
For further understanding in regards to the contents of the  
datasheet, please refer to the Reference Guide located at the end  
of the document.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 1  
G e n e r a l D e s c r i p t i o n  
Key Benefits & Features  
The benefits and features of AS8506, Battery Cell Monitor and  
Balancer IC are listed below:  
Figure 1:  
Added Value of using AS8506  
Benefits  
Features  
Reduce filter / synchronization effort. Acquired data  
have same time stamp to inherently generate  
Simultaneous cell voltage capture for safe operating  
accurate comparison results independent from load area (SOA) monitoring and balancing.  
transients.  
Strongly reduces data communication and data  
Autonomous balancing and SOA monitoring.  
processing and thereby improves EMC robustness.  
To compensate accumulative charge differences  
only. This mitigates cases of occasional wrong  
Autonomous passive balancing in the 100 mA range  
balance decisions due to flat OCV characteristic or  
mismatch in cell temperature  
Intrinsic inter module balancing through charge  
redistribution, efficiency improvement in case of  
leakage path due to defect induced leakage in  
particular cells.  
Option for active charge balancing with very few  
external components.  
For OCV capture, cell impedance calculation,  
diagnosis  
Absolute cell voltage read out, read out of two  
temperature sensors.  
40-pin MLF (6x6) package, very low number of external  
components.  
Small form factor, low BOM  
Applications  
The applications of AS8506 include:  
• The AS8506 is ideal for simultaneous cell monitoring and  
cell balancing in stacked energy storage systems. Current  
levels in the 100 mA range enables to compensate  
accumulative SOC mismatch over the entire cell pack.  
• Typical applications are  
- Li-Ion batteries up to 200 cells for electric vehicles,  
- Energy storage systems to buffer energy from PV  
panels or for emergency power supplies,  
- Battery management for e-scooters and e-bikes,  
- Li-Ion or ultra capacitor based board net battery  
management systems in the 12V/48V domain, for  
handheld applications like power tools, laptops and  
in general all Li-Ion battery powered systems.  
AS8506 – 2  
ams Datasheet, Confidential:2013-Sep [1-00]  
General Description  
Block Diagram  
The functional blocks of this device for reference are  
shown below:  
Figure 2:  
AS8506 Block Diagram  
VCELL7  
Level Shifters for Stack Communication / Status Signals  
Cnt7H  
Cnt7L  
EXT_RES_CTL  
Stack signals  
Balance and VREF_H  
Switches Level Shifters  
LDO  
V5V  
Pre-regulator  
VCELL6  
High  
REF_T  
Cnt6H  
Cnt6L  
Precision  
Reference  
CELL_THU  
CELL_THL  
VREF_IN  
Reference &  
Threshold  
AS8506  
VCELL7  
Generation Circuit  
VCELL5  
Cnt5H  
Over-temperature  
Monitor  
C_out7  
comp7  
Temperature  
Sensor /  
Switch  
Capacitor  
Circuit  
Cnt5L  
TEMP_IN1  
TEMP_IN2  
VCELL6  
VCELL5  
VCELL4  
C_out6  
comp6  
Cnt4H  
Cnt4L  
VCELL[7:1]  
C_out5  
C_out4  
C_out3  
Zero Cross  
Detection Circuit  
comp5  
comp4  
comp3  
VCELL3  
Cnt3H  
Stack  
signals  
VCELL4  
VCELL3  
Cnt3L  
VCELL2  
Cnt2H  
CLK_IN  
TRIG_IN  
CS  
FSM,  
Digital Registers,  
OTP Logic  
VCELL2  
VCELL1  
Cnt2L  
C_out2  
C_out1  
comp2  
comp1  
VCELL1  
Cnt1H  
SCLK  
SDO  
Cnt1L  
SDI  
C-GND  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 3  
P i n A s s i g n m e n t  
Pin Assignment  
Figure 3:  
Pin Diagram of AS8506  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
TSECH  
V5V  
TSECL  
VCELL7  
VCELL6  
VCELL5  
VCELL4  
VCELL3  
VCELL2  
VCELL1  
C-GND  
REF_T  
TEMP_IN1  
TEMP_IN2  
CELL_THL  
CELL_THU  
CS  
3
AS8506  
MLF 6x6  
4
5
6
7
GND  
(Exposed pad)  
8
SCLK  
9
SDI  
10  
SDO  
AS8506 – 4  
ams Datasheet, Confidential:2013-Sep [1-00]  
Pin Assignment  
Figure 4:  
Pin Description  
Pin Number  
Pin Name  
TSECH  
Pin Type  
Description  
Flyback converter transformer secondary high side  
Flyback converter transformer secondary low side  
Battery cell 7 high level pin  
1
2
3
4
5
6
7
8
9
TSECL  
VCELL7  
VCELL6  
VCELL5  
VCELL4  
VCELL3  
VCELL2  
VCELL1  
Battery cell 6 high level pin  
Analog input /  
output  
Battery cell 5 high level pin  
Battery cell 4 high level pin  
Battery cell 3 high level pin  
Battery cell 2 high level pin  
Battery cell 1 high level pin  
Power supply  
input  
10  
11  
12  
C-GND  
NC  
Battery cell 1 low level pin  
Not connected  
Analog input /  
output  
Cell voltage reference value (cell target voltage of  
battery)  
VREF_IN  
Power supply  
input  
13  
14  
GND  
Ground to the IC  
This pin triggers the cell balancing in the device.  
Short pulse is for receiving status and continuous  
‘High’ for cell balancing. It also acts as a data line  
during 3-wire communication.  
TRIG_IN  
Digital input  
Clock input pin in the Slave device. This pin also acts  
as a clock during 3-wire communication. Scan clock  
in scan mode.  
15  
16  
CLK_IN  
This pin alerts when the cell voltage or the  
device/cell temperature is not within limits. During  
3-wire communication, the CRC error is indicated on  
this pin. The internal device cell voltage or  
temperature status is ORed with CVT_NOK_IN on  
this pin.  
CVT_NOK_OUT  
Digital output  
The ‘device internal balance done’ and ‘balance done  
from above device’ are ANDed on this pin. This pin in  
Master device indicates the complete system  
balance done. During address allocation process,  
this pin will be ‘High’ if BD_IN is ‘High.  
17  
18  
BD_OUT  
FD_OUT  
Flyback converter gate/opto coupler drive (pad is  
push-pull type) can drive up to 12mA.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 5  
P i n A s s i g n m e n t  
Pin Number  
Pin Name  
Pin Type  
Description  
The wake pulse on this pin brings the IC into  
NORMAL mode. This pin has a pull-up resistor to the  
internal regulator. Should be driven with an open  
drain or external NMOS.  
Digital input  
with pull-up  
19  
WAKE_IN  
Analog input /  
output  
20  
NC_T  
Not connected. Only used in Test mode.  
21  
22  
23  
SDO  
SDI  
Digital output  
SPI data out  
SPI data in  
SPI clock  
Digital input  
SCLK  
Digital input  
with pull-up  
24  
CS  
SPI chip select  
25  
26  
CELL_THU  
CELL_THL  
Cell voltage upper threshold  
Cell voltage lower threshold  
Temperature input2 to the IC (NTC input; if NTC is not  
connected, then should be connected to GND with  
1K resistor).  
27  
TEMP_IN2  
Analog input /  
output  
Temperature input1 to the IC (NTC input; if NTC is not  
connected, then should be connected to GND with  
1K resistor).  
28  
29  
TEMP_IN1  
REF_T  
Supply to temperature sensor (Reference voltage to  
DAC and ADC).  
30  
31  
V5V  
LDO 5V output.  
Power supply  
input  
V5V_IN  
Supply to the bottom IC from the cascaded top IC.  
Digital output  
open drain  
Open drain o/p on the VSUP+5V domain. WAKE_IN  
information will be transmitted to top device.  
32  
33  
WAKE_OUT  
FD_IN  
Flyback converter gate drive input in daisy chain  
connection. (If FD_IN is ‘high’ then FD_OUT will be  
PWM o/p in balance mode).  
Digital input  
In cell stack system, the device gets balance done  
status of above device. During address allocation  
process if this pin is ‘High, then the device address is  
decremented by ‘1.  
34  
35  
BD_IN  
Digital input  
with pull-down  
Indicates cell voltage or temperature status of above  
device.  
CVT_NOK_IN  
AS8506 – 6  
ams Datasheet, Confidential:2013-Sep [1-00]  
Pin Assignment  
Pin Number  
Pin Name  
Pin Type  
Description  
This pin propagates the clock to next device in the  
stack system. In case of Master device internal RC  
clock is transmitted on this pin to Slave device.  
36  
CLK_OUT  
Digital output  
This pin transmits the data fromTRIG_IN for balance  
and measurement phase. This pin is also used for  
propagating the data information to next device in  
stack system in SPI3.  
37  
38  
39  
TRIG_OUT  
VSUP  
Power supply  
input  
Supply to the IC.  
This pin informs the device whether it should act as  
the Master or Slave. If this pin is connected to GND,  
then device will act as Master. If this pin is connected  
to VSUP then device will act as Slave.  
MS_SL  
Digital input  
High sides PMOS switch for external resistive divider.  
Input to VREF_IN can be taken from external  
resistive divider in one of the options.  
Analog input /  
output  
40  
VREF_H  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 7  
A b s o l u t e M a x i m u m R a t i n g s  
Stresses beyond those listed under “Absolute Maximum  
Absolute Maximum Ratings  
Ratings” may cause permanent damage to the device. These are  
stress ratings only. Functional operation of the device at these  
or any other conditions beyond those indicated under  
“Operating Conditions” on page 10 is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Figure 5:  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Comments  
Electrical Parameters  
Voltage at positive  
supply pin  
V
-0.3  
42  
0
V
V
V
VSUP pin  
VSUP  
Voltage at negative  
supply pin  
GND, C-GND; Reference  
potential  
V
-0.3  
-0.3  
GND  
Voltage at high side  
supply  
MS_SL,VREF_H, TSECH  
and TSECL  
V
VSUP + 0.3  
V5V_IN  
TRIG_OUT, CLK_OUT,  
CVT_NOK_IN, FD_IN,  
BD_IN, WAKE_OUT  
VSUP +  
V5V_IN  
High side supply  
from top device  
VSUP -  
0.3  
VSUP + 5.5  
7
V
V
Voltage at on LDO  
o/p pins  
V
-0.3  
-0.3  
V5V pin  
V5V  
All pins expect VSUP,  
VCELL1, VCELL2, VCELL3,  
VCELL4, VCELL5, VCELL6,  
VCELL7, MS_SL, WAKE_IN  
V
Voltage on 5V pins  
V5V+0.3  
V
ESD  
Voltage on pins  
VCELL1, VCELL2,  
VCELL3, VCELL4,  
VCELL5, VCELL6,  
VCELL7  
VCELL1  
to  
VCELL7  
-0.3  
7
V
Applied cell voltages  
AEC - Q100-004  
I
Latch-up Immunity  
-100  
+100  
mA  
SCR  
AS8506 – 8  
ams Datasheet, Confidential:2013-Sep [1-00]  
Absolute M aximum R atings  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Comments  
Electrostatic Discharge  
VSUP, VREF_IN, SDI, SDO,  
CS, SCLK, CELL_THU,  
CELL_THL, TEMP_IN1,  
TEMP_IN2, REF_T, V5V,  
V5V_IN, MS_SL, VREF_H,  
NC_T  
2
Electrostatic  
discharge voltage  
AEC - Q100-002  
GND, C-GND, CELL1 –  
CELL7 (Cell-voltage pins,),  
TSECH, TSECL, TRIG_IN,  
TRIG_OUT, CLK_IN,  
CLK_OUT, CVT_NOK_IN,  
CVT_NOK_OUT,  
ESD  
kV  
(1)  
HBM standard  
4
WAKE_IN, WAKE_OUT,  
FD_IN, FD_OUT, BD_IN  
and BD_OUT  
Continuous Power Dissipation  
Maximum power  
dissipation  
P
1
W
tot  
Temperature Ranges and Storage Conditions  
T
Storage temperature  
-55  
150  
ºC  
stg  
Thermal resistance  
package  
R
30  
3
ºC/W  
thj_36  
Norm: IPC/JEDEC  
Package body  
temperature  
T
260  
ºC  
BODY  
(2)  
J-STD-020  
Moisture Sensitive  
Level  
MSL  
Note(s) and/or Footnote(s):  
1. Human body model: R = 1.5kΩ; C = 100pF.  
2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity  
Classification for Non-hermetic Solid State Surface Mount Devices.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 9  
Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s  
All defined tolerances for external components in this  
specification need to be assured over the whole operation  
conditions range and also over lifetime.  
Typical Operating  
Characteristics  
Figure 6:  
Operating Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Positive supply  
voltage  
VSUP  
6
32  
V
Normal operating condition  
Negative supply  
voltage  
With reference to all the  
voltages  
VSS  
-0.3  
-40  
2
0
85  
6
V
Maximum junction  
T
Ambient temperature  
ºC  
AMB  
temperature (T ) 115ºC  
J
Supply current,  
NORMAL mode  
3
mA  
VSUP=32V, in NORMAL mode  
I
SUPP, nom  
Supply current,  
NORMAL mode, With  
External Components  
VSUP=32V, in the balancing  
phase with stack connection  
(50% PWM duty cycle)  
15  
10  
20  
17  
40  
35  
mA  
μA  
Supply current, SLEEP  
mode  
I
SUPP, sleep  
AS8506 – 10  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
Electrical Characteristics  
Device Level Specifications  
-40°C < Tj < 115°C.  
Figure 7:  
Device Level Specifications  
Symbol  
Vcell_in  
Parameter  
Min Typ  
Max  
4.5  
Unit  
Note  
Cell Input voltage  
measurement  
1.8  
ADC/DAC  
ADC/DAC Reference  
7
15  
mV  
mV  
0.1% error because of  
the DAC/Guaranteed by  
design  
DAC_error  
Com_off  
Error of the DAC  
2
1
Error because of the  
comparator resolution  
mV  
mV  
Guaranteed by design  
Typical value is from the  
lab evaluation data.  
Maximum value is from  
the test data.  
Sign_path_accuracy  
Signal path accuracy  
Initialization time  
5
15  
50  
After Initialization, the  
system will go to sleep  
mode and waits for  
wake signal.  
T
ms  
ms  
INITIALIZATION  
After wake signal,  
device enters into wait  
mode and stays for two  
sec for TRIG_IN signal, if  
no TRIG_IN event  
occurs, device goes to  
sleep mode.  
Wake up time from the  
Wake signal to system  
wait mode  
T
75  
WAKE-UP  
Cell voltage and  
Temperature  
measurement time  
Tmeas  
16  
ms  
ms  
At10KHz clock time  
Tspi3_read5k  
Tspi3_read20k  
Tspi3_read40k  
13.6  
3.4  
At 5KHz clock time  
At 20KHz clock time  
At 40KHz clock time  
SPI3 read time for  
single channel  
measurement  
1.7  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 11  
E l e c t r i c a l C h a ra c t e r i s t i c s  
Low Dropout Regulator (5V Output LDO)  
-40ºC < T < 115ºC; all voltages are with respect to ground (GND);  
J
positive current flows into the pin, NORMAL operating mode, if  
not otherwise mentioned. The LDO block is a linear voltage  
regulator, which provides a regulated 5V.  
Figure 8:  
LDO Parameters  
Symbol  
Parameter  
Input supply voltage  
Output voltage range  
Load Current  
Min Typ Max  
Unit  
V
Note  
V
6
12  
32  
5.25  
50  
SUP  
V5V  
4.75  
5.0  
V
I
mA  
LOAD  
Output short circuit  
current  
ICC_SH  
85  
60  
35  
250  
mA  
NORMAL mode  
f=1kHz / No production  
test  
PSRR  
PSRR  
dB  
f=1MHz / No production  
test  
CL1  
ESR1  
CL2  
2.2  
1
10  
10  
220  
1
μF  
Ω
LDO output Capacitor 1  
LDO output Capacitor 2  
Electrolytic  
Ceramic  
100  
0.02  
nF  
Ω
ESR2  
Note(s) and/or Footnote(s):  
1. In NORMAL mode, maximum load current will be 50mA. After internal thermal shutdown, current limit is 20mA.  
2. The LDO is disabled in SLEEP mode.  
AS8506 – 12  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
High-precision Bandgap Reference  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 9:  
Bandgap Reference Parameters  
Symbol  
Parameter  
Min Typ Max  
Unit  
Note  
Reference output after  
trim  
BG_Out  
1.2  
1.235  
2.5  
1.27  
4
V
After temperature trim  
Reference variation with  
respect to Temperature  
BG_out_T  
mV  
After trim on the absolute  
No production test  
var  
PSRR1K  
PSRRDC  
PSRR at 1KHz  
PSRR at DC  
20  
80  
dB  
dB  
Note: This bandgap output is the reference for the V5V (LDO) regulator.  
Digital to Analog Converter  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 10:  
Digital to Analog Converter  
Symbol  
Parameter  
Min  
4.75  
Typ Max  
Unit  
V
Note  
V
Input supply voltage  
Input reference voltage  
Resolution  
5
5.25  
LDO output as supply  
After absolute trim  
Guaranteed by design  
SUP_DAC  
V
4.485  
4.5  
12  
10  
50  
4
4.515  
V
INREF  
D
bits  
KHz  
μs  
IN  
F
Update rate  
Settling time  
INL  
DAC  
SETT_DAC  
T
No production test  
DAC  
LSB  
LSB  
INL  
DAC  
DNL  
0.5  
DNL  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 13  
E l e c t r i c a l C h a ra c t e r i s t i c s  
Analog to Digital Converter  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 11:  
Analog to Digital Converter  
Symbol  
Parameter  
Min Typ  
Max  
5.25  
Unit  
V
Note  
LDO output as supply  
After absolute trim  
V
Input supply voltage  
Input reference voltage  
Resolution  
4.75  
5
SUP  
V
4.485  
4.5  
12  
4.515  
V
INREF  
D
bits  
OUT  
Measurement time per  
channel  
T
1.4  
ms  
MEAS_ADC  
ADC  
INL  
4
2
LSB  
LSB  
No production test.  
No production test.  
INL  
ADC  
DNL  
DNL  
Pre-Regulator  
This Pre_reg is an internal regulator which provides supply to  
digital and a few analog blocks..  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 12:  
Pre-reg Parameters  
Symbol  
Parameter  
Min Typ Max  
Unit  
Note  
V
Input supply voltage  
6
12  
32  
V
SUP  
Prereg_output voltage  
range  
P5V  
3V3  
4.3  
5.0  
5.5  
V
V
3.3V_output voltage  
range  
2.8  
3.3  
3.6  
AS8506 – 14  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
PWM Driver  
40ºC < T < 115ºC; all voltages are with respect to ground (GND).  
J
Figure 13:  
PWM Driver  
Symbol  
Parameter  
Min Typ Max Unit  
Note  
V5V  
Output voltage  
Frequency of PWM  
4.5  
25  
22  
12  
17  
27  
30  
37  
42  
47  
7
5
100  
25  
15  
20  
30  
35  
40  
45  
50  
12  
5.5  
200  
28  
18  
23  
33  
38  
43  
48  
53  
20  
V
KHz  
%
F
PWM  
%
%
%
CMOS load mode,  
Optocoupler load mode  
F
Duty cycle  
Duty  
%
%
%
%
F
Duty cycle error  
Rise time  
%
duty_error  
tr  
30  
30  
50  
50  
10  
60  
80  
80  
ns  
ns  
CMOS load mode,  
Optocoupler load mode  
Guaranteed by design  
pwm  
tf  
Fall time  
pwm  
Idrive  
Cload  
Driver strength  
Driver switch load capacitance  
12  
mA  
pF  
Optocoupler load mode  
opto  
100  
fd_out  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 15  
E l e c t r i c a l C h a ra c t e r i s t i c s  
PWM Oscillator  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 14:  
PWM Oscillator  
Symbol  
Parameter  
Frequency  
Accuracy  
Min Typ  
Max  
Unit  
kHz  
%
Note  
• After the frequency  
trim.  
• Programmable  
frequency options for  
25KHz, 50KHz and  
200KHz are available.  
f
90  
100  
15  
110  
OSC  
f
OSC_ACC  
Oscillator for Digital Circuit  
-40ºC < T < 115ºC; all voltages are with respect to ground  
J
(GND).  
Figure 15:  
Oscillator for Digital Circuit  
Symbol  
Parameter  
Min Typ Max  
Unit  
kHz  
%
Note  
f
Oscillator for Digital circuit  
Frequency  
Accuracy  
9
10  
15  
11  
OSC-DIG  
f
OSC_ACC  
AS8506 – 16  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
External Temperature Thresholds  
-40°C < T < 115°C; all voltages are with respect to ground (GND).  
J
Figure 16:  
External Temperature Thresholds  
Symbol  
Parameter  
Min  
3.084  
3.148  
3.213  
3.277  
3.341  
3.406  
3.470  
3.534  
3.599  
3.663  
3.727  
3.792  
3.856  
3.920  
3.984  
4.049  
Typ  
3.165  
3.231  
3.297  
3.363  
3.429  
3.495  
3.561  
3.627  
3.693  
3.759  
3.825  
3.891  
3.957  
4.023  
4.089  
4.155  
Max  
3.238  
3.306  
3.373  
3.441  
3.508  
3.576  
3.643  
3.711  
3.779  
3.846  
3.914  
3.981  
4.049  
4.116  
4.184  
4.25  
Unit  
Note  
Code 0000  
Code 0001  
Code 0010  
Code 0011  
Code 0100  
Code 0101  
Code 0110  
Code 0111  
Code 1000  
Code 1001  
Code 1010  
Code 0011  
Code 0100  
Code 0101  
Code 0110  
Code 0111  
16 reference  
thresholds are with a  
step of 66mV.  
Ref_ext_warn/sutdown  
V
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 17  
E l e c t r i c a l C h a ra c t e r i s t i c s  
Ron of the Shuttle Switches (Internal Switch for  
Charging/Discharging)  
-40°C < T < 115°C.  
J
Figure 17:  
Ron of the Shuttle Switches  
Symbol  
Parameter  
Min Typ Max Unit  
Note  
The maximum  
charging/discharging  
current limit through  
shuttle switch is 100mA.  
Only for Cell1 maximum  
charging/discharging  
current is limited to 30mA  
less than 2V of cell voltage  
at 115 junction of cell  
voltage.  
Ron_shut  
Shuttle switch ON resistance  
5
20  
Ω
Over-Temperature Measurement  
Figure 18:  
OTM Parameters  
Symbol  
Parameter  
Min Typ Max  
Unit  
Note  
Junction temperature for  
Shutdown  
T
Shut down temperature  
115  
100  
100  
135  
125  
115  
145  
140  
130  
ºC  
jshut  
Junction temperature for  
Warning  
T
Warning temperature  
Recovery temperature  
ºC  
ºC  
jwarn  
Junction temperature for  
Recovery  
T
jrecv  
AS8506 – 18  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
Weak Cell Detection (Voltage Comparator)  
Figure 19:  
Weak Cell Detection  
Symbol  
Parameter  
Min Typ  
Max  
4.5  
Unit  
V
Note  
V
Supply voltage  
-0.3  
3.6  
CELL  
LOW  
V
Low voltage detection  
-100  
100  
mV  
2
4
6
8
No production test.  
Programmable option.  
Tl_spike  
Minimum input spike filter  
μs  
Power on Voltage Detection  
Figure 20:  
Power on Voltage Detection  
Symbol  
Parameter  
Min Typ Max Unit  
Note  
VSUP Power-on-Reset  
threshold ON  
VSUP_POR  
5.2  
4.6  
3.8  
3.6  
4.1  
3.8  
5.5  
4.85  
4.45  
4.1  
5.8  
5.1  
4.8  
4.5  
4.7  
4.3  
V
V
V
V
V
V
Rising edge of VSUP  
VSUP Power-on-Reset  
threshold OFF  
VSUP_RESET  
V5V_IN_POR  
V5V_IN_RESET  
V5V_POR  
Master reset for device  
V5V_IN Power-on-Reset  
threshold ON  
Voltages are with respect to  
VSUP measure as pass fail  
test  
V5V_IN Power-on-Reset  
threshold OFF  
V5V Power-on-Reset  
threshold ON  
4.5  
Rising edge of V5V  
Falling edge of V5V  
V5V Power-on-Reset  
threshold OFF  
V5V_RESET  
4.1  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 19  
E l e c t r i c a l C h a ra c t e r i s t i c s  
Electrical Characteristics for Digital Inputs and  
Outputs  
All pull-up, pull-downs have been implemented with active  
devices.  
Figure 21:  
Digital Inputs and Outputs  
Port Type Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
CS  
Negative-going  
threshold  
Vt-  
1.62  
2.27  
2.22  
3.42  
V
V
V5V=5V  
Positive-going  
threshold  
INPUT  
Schmitt  
Trigger  
Vt+  
In CS pad, Pulled up to  
V5V. (ISUP_HV)  
I
Pull-up current  
-100  
-30  
0.4  
μA  
lil_cs  
SDO  
High level  
output voltage  
BBC4C_HV,  
PPTRIM_PDIO  
V
2.5  
V
V
OH  
Low level  
output voltage  
V
VSUP ≥ 6V  
OL  
OUTPUT  
Tristate  
High level input  
voltage  
V
0.7*V5V  
V
IH  
Low level input  
voltage  
V
0.3*V5V  
4
V
IL  
Output drive  
current  
I
mA  
O
SCLK, SDI  
High level input  
voltage  
SDI is ICC_HV  
(PPRTIM_MODE)  
V
0.7*V5V  
V
V
IH  
IO Buffer  
Low level input  
voltage  
SCLK is ICC_HV  
(PPRTIM_PCLK)  
V
0.3*V5V  
IL  
AS8506 – 20  
ams Datasheet, Confidential:2013-Sep [1-00]  
Elec trical Charac teristics  
Port Type Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
CVT_NOK_OUT, BD_OUT, TRIG_OUT, CLK_OUT  
BU2SC_HV for  
CVT_NOK_OUT,  
BU1C_HV for  
BD_OUT, BU4SC_HV  
for TRIG_OUT and  
CLK_OUT  
High level  
2.4  
V
V
V
OH  
output voltage  
OUTPUT  
Buffer  
Low level  
output voltage  
V
0.4  
VSUP ≥ 6V  
OL  
Output drive  
current  
I
4/2/1  
mA  
O
FD_OUT  
High level input  
voltage  
BU24SC_HV for  
FD_OUT  
V
2.4  
V
V
OH  
OUTPUT  
Buffer  
Low level input  
voltage  
V
0.4  
24  
VSUP ≥ 6V  
OL  
Output drive  
current  
I
mA  
O
MS_SL  
High level input  
voltage  
High voltage input  
pad  
V
VSUP  
V
V
IH  
INPUT Buffer  
Low level input  
voltage  
V
0.3*V5V  
IL  
CLK_IN, TRIG_IN  
High level input  
voltage  
Vt-  
1.62  
2.22  
V
V
ISC_V5_HV  
INPUT  
Schmitt  
Trigger  
Low level input  
voltage  
Vt+  
2.27  
0.3*V5V  
FD_IN,BD_IN, CVT_NOK_IN  
High level input  
voltage  
V
0.7*V5V  
V
V
ICC_V5_HV  
Internal pull  
IH  
INPUT Buffer  
Low level input  
voltage  
V
3.42  
-30  
IL  
WAKE_IN  
Pull up  
current  
Ipull_up  
Pull-up current  
-100  
μA  
Note: Test limits for Iih and Iil are 1.0uA and -1.0uA for input pads.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 21  
D e t a i l e d D e s c r i p t i o n  
The device consists of the following blocks:  
Detailed Description  
• PWM driver  
• LDO_5V with 5V / 50mA output  
• Temperature monitor block  
• High precision bandgap reference  
• DAC for the reference voltage generation  
• SAR ADC for cell voltage and external temperature  
measurement  
• Oscillators for PWM drive and for the digital logic  
• Pre-Regulator  
• SC Comparator  
• Weak cell detection logic  
• PORs on different supplies  
Voltage Regulator (LDO_5V)  
Power input to the LDO is VSUP pin. It is switched ON when the  
device is in NORMAL mode and switched OFF in SLEEP mode.  
The LDO takes the input from Bandgap and scales it up to the  
required voltage. It starts charging only after entering NORMAL  
mode. This LDO is the supply for DAC, the PWM driver and Cell  
voltage comparators.It’s additional features are as follows:  
• Stability is better than 2.5% over input range.  
• Load current up to 50mA.  
High Precision Bandgap (HPBG)  
AS8506 has a high precision bandgap to generate accurate  
reference. This reference voltage is used to generate reference  
for DAC and ADC.  
HPBG is trimmed with respect to temperature. Variation of the  
bandgap with temperature is 3mV in the temperature range  
from -40ºC to 115ºC.  
External Temperature Monitor and  
Measurement  
Two sensor inputs TEMP_IN1 and TEMP_IN2 with a comparator  
on each pin, are available. If the temperature sensor connected  
to TEMP_IN1 crosses its threshold, then a warning flag is set in  
the device (status can be read through SPI) and the device will  
continue balancing.  
If the temperature sensor connected to TEMP_IN2 crosses its  
threshold, then a flag is set in the device and balancing is  
stopped; but the device continues to stay in NORMAL mode for  
maintaining synchronism. In both the cases, the  
microcontroller will be interrupted by a pulse on  
CVT_NOK_OUT pin.  
AS8506 – 22  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
In case the external temperature sensors are not being used,  
then both the inputs must be connected to GND pin through  
1k resistor. In the measurement phase, external temperature is  
measured through the SAR ADC. Both channels of temperature  
will be measured and stored in temp_in1_lsb_reg to  
temp_in2_msb_reg.  
Internal Temperature Monitor  
The internal temperature monitor has two thresholds at T  
jwarn  
125ºC and T  
135ºC. If the internal temperature exceeds  
jshut  
125ºC, then a warning flag is set in the device (status can be  
read through SPI) and the device will continue balancing.  
If the internal temperature exceeds 135ºC, then a flag is set in  
the device and balancing is stopped; but the device continues  
to stay in NORMAL mode for maintaining synchronism. In both  
the cases, the microcontroller will be interrupted by a pulse on  
CVT_NOK_OUT pin. The balance recovery temperature is 115ºC.  
PWM Generator  
In the Balance phase of the AS8506, based on the decision made  
during the Compare phase, some part of the cell is charged with  
the Flyback converter. To drive the external Flyback converter,  
AS8506 generates a PWM signal to drive external FET or  
Optocoupler or Isolation device.  
The frequency and of the PWM generator can be controlled by  
timer_cntl_reg register.  
PWM frequency is not used for the passive balancing.  
RC Oscillator  
The AS8506 has a trimable RC oscillator. It is designed to  
generate f  
clock for the digital circuit and for the clocking  
osc-dig  
of the IC. Each oscillator will be trimmed with the process to get  
the accuracy to f with 5-bit OTP Factory trim code.  
osc-accy  
DAC for the Reference Generation  
AS8506 has a 12-bit DAC to generate the cell reference voltage,  
cell threshold low and high voltage. The DAC code is written  
into AS8506 with SPI interface from microcontroller. The output  
of the DAC is given to one of the inputs of the comparators, to  
compare the cell voltages synchronously. Reference for the DAC  
is 4.5V, which is internally generated and is available as  
reference for temperature inputs on REF_T.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 23  
D e t a i l e d D e s c r i p t i o n  
SAR ADC  
AS8506 has a 12-bit SAR ADC to measure the cell voltage and  
external temperature. The SAR ADC uses the 12-bit DAC to  
generate the digital code. The SAR ADC range is 1.8V to 4.5V for  
cell voltage measurement and 0.2V to 4.5V for the temperature  
measurement.  
Cell voltage and temperature is measured in the short trigger  
phase. After the trigger goes ‘high, compare phase starts and  
then all the cell voltages and external temperature are  
measured and stored in the digital registers.  
Pre-Regulator  
AS8506 has an internal pre-regulator, which generates supply  
voltages for the internal blocks. Pre-Regulator output is used as  
a supply for the oscillators. All the digital logic and the FSM will  
work on the pre-regulator supply.  
In SLEEP mode only the pre-regulator will be working along with  
the WAKE_IN detect circuit.  
Cell Threshold  
AS8506 has the potential to set the two threshold levels to the  
cell voltage through pins CELL_THU and CELL_THL. These  
values can be set externally, (or) through OTP trim bits, (or) from  
the external microcontroller by writing DAC code into the cell  
threshold registers in the register space.  
Weak Cell Detection  
AS8506 has the ability to detect the weak cell. During load  
conditions, if the cell reaches voltage of about 0.1V to -0.2V,  
then this variation is detected and stored in the zero cross  
detection register. This event is indicated to the master device  
by a pulse on CVT_NOK_OUT pin in Compare and Balance  
phase. The master device indicates the microcontroller by  
setting CVT_NOK_OUT ‘high. In WAIT mode only this will be  
stored in the register; there won’t be any CVT_NOK_OUT to μC.  
The register is cleared on μC reading.  
External Resister Divider Control  
AS8506 has the provision to enable the external divider to give  
the desired cell voltage to the at VREF_IN pin. External resister  
divider can be connected between VREF_H pin to ground.  
Calculate the external resister divider values such that the  
output of the divider will provide the desired reference value.  
When comparison is not happening, this divider can be  
disabled using SPI.  
AS8506 – 24  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
PORs on Different Supplies  
AS8506 has power-on-reset blocks on VSUP, V5Vand V5V_IN  
supply pins. The values for POR and Reset thresholds are given  
in Figure 20.  
Figure 22:  
Power-up Sequence of VSUP, V5V and VSUP+5V  
VSUP_POR  
VSUP_RESET  
VSUP  
VSUP_POR  
V5V_5V_POR  
V5V_5V  
V5V_5V_RESET  
V5V_5v_POR  
V5V_POR  
V5V_RESET  
V5V  
V5V_POR  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 25  
D e t a i l e d D e s c r i p t i o n  
AS8506 System Operation  
The AS8506 battery stack system can be set up by configuring  
one AS8506 device as ‘Master’ and the rest as ‘Slave’ devices.  
The AS8506 Master device is connected to the microcontroller,  
and the Slave devices are connected to Master through a  
daisy-chain of 3-wire customized SPI protocol. The  
microcontroller can communicate to the Slave devices through  
the Master. On power-up of the system, the microcontroller  
must assign an address to all AS8506 devices including the  
Master. The microcontroller can assign the address to AS8506  
devices by initiating the address allocation process, by writing  
a top most Slave device address into dadd_for_allc_reg register  
of Master and then writing ‘07’ data into spi3_cmd_reg. Once  
the address allocation process is successful, the microcontroller  
can start the cell balancing. If cell balancing or check status  
command is not triggered by the microcontroller, after WAIT  
mode timeout period all devices enter into SLEEP mode.  
The complete system communication procedure is explained  
below.  
• The microcontroller gives wake pulse on WAKE_IN to  
bring the Master and Slaves in NORMAL mode.  
• After the wake-up time period, the microcontroller (μC)  
sends the reference voltage digital code to the Master  
device through a 4-wire SPI.  
• After receiving the digital reference code from μC, the  
Master device initiates a 3-wire custom SPI operation to  
send the digital reference code to the Slave devices.  
• The microcontroller waits for the 3-wire SPI operation  
time period. After the 3-wire SPI time period, it initiates  
the cell balancing through TRIG_IN. The balancing will  
continue as long as TRIG_IN is ‘High’.  
• The microcontroller can change the reference value at any  
time by making TRIG_IN ‘Low’ and initiating a 4-wire SPI  
with new value of reference code. From here on, the  
procedure is same as from point 3.  
• The balance done is indicated on BD_OUT pin.  
• The failure in the 3-wire SPI operation is indicated on  
CVT_NOK_OUT pin.  
AS8506 – 26  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
Figure 23:  
Functional Diagram of AS8506  
uC reference voltage  
calculator found change in  
reference (average) voltage  
uC reference voltage  
calculator found change in  
reference (average) voltage  
MICRO  
PROCESSOR  
4-wire SPI  
4-wire SPI  
write  
write  
Wake  
up  
pulse  
by  
Trigger from uC  
on TRIG_IN pin  
for cell balancing  
operation  
Trigger from uC  
on TRIG_IN pin  
for cell balancing  
operation  
based on current  
status of stack  
voltage new  
Balance  
Balance  
Reference  
voltage from uc  
through 4 wire  
SPI operation  
(DAC code)  
uC  
Reference  
voltage from uc  
through 4 wire  
SPI operation  
(DAC code)  
MASTER  
3-wire  
CUSTOM  
write  
3-wire  
CUSTOM  
write  
4-wire SPI  
Read  
CELL  
Balancing  
4-wire SPI  
Read  
CELL  
Balancing  
Wake  
up  
pulse  
by  
Sleep  
mode  
MASTER module  
initiates a 2 wire  
SPI operation to  
send the new  
Balance  
MASTER module  
initiates a 2 wire  
SPI operation to  
send the Balance  
Reference voltage  
from uc to slave  
modules (DAC  
code)  
cell Balancing to  
reference value  
set by uC.  
cell Balancing to  
reference value  
set by uC.  
uC  
Reference  
voltage from uc  
to slave modules  
(DAC code)  
3-wire  
CUSTOM  
Read  
3-wire  
CUSTOM  
Read  
SLAVES  
CELL  
Balancing  
CELL  
Balancing  
Wake  
up  
pulse  
by  
Sleep  
mode  
Normal  
mode  
uC  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 27  
D e t a i l e d D e s c r i p t i o n  
Functional State Diagram  
Figure 24:  
Finite State Machine Mode  
Power ON  
Initialization Phase  
Vsup POR  
OSC clock ON  
V5V LDO ON  
V5V POR  
OTP Load  
OTP Load done  
Sleep Mode  
V5V LDO OFF  
OSC clock OFF  
Pre-reg ON  
Wake_pulse  
Wake Mode  
V5V LDO ON  
Timeout  
OSC clock ON  
&
No trigger  
V5V_por  
Wait Mode  
Wait for µC Trigger  
(X mS)  
V5V LDO ON  
OSC clock ON  
No trigger  
long_trigger  
short_trigger  
Normal Mode  
Normal Mode  
Compare phase  
cell  
balance  
phase  
and  
Compare  
phase  
ADC Measurement phase  
V5V LDO ON  
OSC clock ON  
V5V LDO ON  
OSC clock ON  
AS8506 – 28  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
Operating Modes  
The AS8506 has two main operating modes NORMAL and SLEEP,  
and has two transition modes WAIT and WAKE. The transition  
modes are intermediate modes for switching from SLEEP to  
NORMAL and vice versa. The detailed operation of each mode  
is explained in subsequent sections. The initialization phase is  
explained in“Initialization Sequence” on page 36.  
NORMAL Mode  
The device enters into NORMAL from WAKE when it receives a  
short or long trigger. The NORMAL mode is a full functional  
mode, where all the power supply and analog blocks are in  
ON-state and the digital is fully functional.  
The NORMAL mode has two phases of operation:  
• Diagnosis phase  
• Balance phase  
Diagnosis Phase  
In Diagnosis phase AS8506 detects the number of cells  
connected to the device. The connected cell voltages are then  
compared with upper & lower thresholds and target cell voltage  
of all cells connected. Upper and lower cell voltage thresholds  
as well as target cell voltages are provided from external in  
analog or digital format. The Diagnosis phase sequence of  
operation is explained below.  
• Detects number of cells connected to the device by  
comparing each cell terminals to cell detect threshold  
voltage.  
• Simultaneously compares each connected cell voltage  
with set lower operating voltage threshold Vlimit_L. If any  
of the cell voltages is less than the set lower operating  
threshold, then an indication is given on CVT_NOK_OUT  
pin stating that one/more cell voltages are not within the  
operating voltage threshold range. Each cell status is  
stored in cel_low_thsld_stat_reg register.  
• Simultaneously compares each connected cell voltage  
with set higher operating voltage threshold Vlimit_H. If  
any of the cell voltages is greater than the set higher  
operating threshold, then an indication is given on  
CVT_NOK_OUT pin stating that one/more cell voltages  
are not within the operating voltage threshold range. Each  
cell status is stored in cel_high_thsld_stat_reg register.  
• Simultaneously compares each connected cell voltage  
with reference value. This result is stored in  
cel_ref_stat_reg register and used in balance phase. Cell  
reference can be provided by microcontroller by writing  
into register or by providing input at external pin  
VREF_IN.  
• Enables the SAR ADC and measures each cell voltage and  
two temperature inputs sequentially. The 12 bits cell  
voltage and temperature inputs information is stored in  
respective registers.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 29  
D e t a i l e d D e s c r i p t i o n  
At the end of the Diagnosis phase, if trigger signal is ‘High’ then  
it enters into Balance phase. If trigger signal is ‘Low’ it enters  
into WAIT mode.  
The Diagnosis phase without the cell voltage measurement  
with SAR ADC is called Compare phase.  
Balance Phase  
The Balance phase is basically a charging cycle in case of active  
balancing and a discharging cycle in case of passive balancing.  
The Balance phase is divided into 7 time slots. The device will  
move through all 7 time slots irrespective of number of cells  
connected to the device. This is done to keep synchronization  
between each module in case of battery stack system. One time  
slot is assigned to each cell (sequential order) for charging or  
discharging. The period of time slots is programmable (see  
“Status Registers” on page 52).  
In each time slot, following operations are done.  
• Check CVT_NOK flag status. If CVT_NOK flag is set, then  
no operation is done till time slot is over. If CVT_NOK flag  
is not set, then move to the next step.  
• Based on Diagnosis phase results, shuttle switch  
corresponding to current time slot cell is switched ON for  
charging that cell in case of active balancing, and  
discharging in case of passive balancing.  
• The PWM generator is enabled and PWM driver start  
driving the Flyback converter FET (external component)  
in case of active balancing. The PWM frequency and duty  
cycles are factory programmable and also register  
controllable. In case of stack system, the bottom module  
PWM driver is enabled when there is a request of charging  
or discharging from top module on FD_OUT pin.  
• At the end of the current time slot, stop the PWM  
generator and then open the corresponding shuttle  
switches. The device moves to the next time slot.  
In the Balance phase, at any point, if the trigger input goes ‘Low,  
then the device suspends balancing operation and enters into  
WAIT mode.  
Sleep Mode  
This is the least power consumption mode of AS8506. In this  
mode only pre-reg is ON, rest all analog blocks are OFF and  
digital clock is disabled. Only a digital wake detection circuit is  
active. The device enters into this mode when there is no trigger  
from microcontroller for time greater than WAIT mode timeout  
period.  
Wait Mode  
This mode is a transition mode, where the device waits for  
command on TRIG_IN pin either from microcontroller, (or) from  
below module in case of stack system. The device will be in this  
state for T  
period. After the timeout, the device  
WMODE_TOUT  
AS8506 – 30  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
enters into SLEEP mode. In the WAIT period all power blocks are  
ON, all analog blocks are ON and digital is also functional. In  
this mode, power consumption is lesser than NORMAL mode  
because there are no charge balancing activities being carried  
out.  
Wake Mode  
This is also a transition mode, where the device does  
initialization after exiting SLEEP mode. In the SLEEP mode if  
AS8506 receives a wake pulse of width T  
, the device enters  
WAKE  
into WAKE mode. In the WAKE mode device enables the V5V LDO  
and waits for V5V_por_n signal. Once V5V_por_n signal  
becomes ‘High, the device enters into WAIT mode.  
An example of Compare and Balance (active balance) phase  
sequence with respect to time is given in Figure 25. In this  
example it is assumed that only 6 cells are connected to AS8506  
and comparators’ outputs at Diagnosis phase is “010010X”;  
Where:  
‘0’ indicates respective cell voltage is less than target voltage  
and needs charging.  
‘1’ indicates respective cell voltage is more than target voltage  
and needs charging.  
‘X’ indicates no cell is connected to respective comparator and  
output is neglected.  
Figure 25:  
Diagnosis and Balance Phase with Time Sequence for AS8506  
Charging  
PWM  
Charging  
PWM  
Charging  
PWM  
Charging  
PWM  
Idle  
Time  
Idle  
Time  
Idle  
Time  
Cell  
Connected  
Cell  
Connected  
Cell  
Connected  
Cell  
Connected  
Cell  
Connected  
Cell  
Connected  
Cell  
Not  
Vcell1 < Vrdiv Vcell2 > Vrdiv Vcell3 < Vrdiv Vcell4 < Vrdiv  
Vcell5 > Vrdiv Vcell6 < Vrdiv  
Connected  
Need  
Charging  
Don’t Need  
Charging  
Need  
Charging  
Need  
Charging  
Don’t Need  
Charging  
Need  
Charging  
Tc_slot  
Tc_slot  
Tc_slot  
Tc_slot  
Tc_slot  
Tc_slot  
Tc_slot  
Compare Phase  
Balance Phase  
Compare Phase  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 31  
D e t a i l e d D e s c r i p t i o n  
Wake-up Event  
The AS8506 device comes out of SLEEP mode by a wake pulse  
on the WAKE_IN pin. To avoid false wake by noises on the  
WAKE_IN, the wake signal (Low pulse) is taken through a  
low-pass filter from WAKE_IN pin. When a pulse of width  
T
is given on the WAKE_IN by the microcontroller, the  
wake_pulse  
device wakes up and enters into WAKE mode. The low-pass filter  
discards all signals having width less than T and allows  
filter_min  
all signals with width greater than T  
. The filter is  
filter_max  
uncertain in T  
region. The negative edge which is  
uncertain  
passing through the filter will wake the device from SLEEP  
mode. In chain of AS8506 devices, to propagate the negative  
edge the microcontroller has to give minimum low pulse of  
width T  
. Before entering into SLEEP mode the wake  
wake_pulse  
pin must be ‘High.  
Figure 26:  
WAKE-UP Signaling  
WAKE_IN  
Tuncertain  
Tfilter_max  
Twake_pulse  
Tfilter_min  
Tuncertain  
wake_in_fltrd  
Tfilter_delay  
AS8506 – 32  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
Trigger Event  
The AS8506 device enters into NORMAL mode only when a valid  
command is present on the TRIG_IN pin. There are two  
commands in the device.  
• Diagnosis command  
• Cell balance command  
When a high pulse of width T  
as shown in Figure 27, is  
diag_cmd  
given on TRIG_IN pin, the device performs the following  
operations.  
• Compares all connected cell voltages with the set lower  
operating voltage threshold, and if any of the cell voltage  
is less than lower threshold, then sets a corresponding flag  
in the cel_low_thsld_stat_reg register. This is indicated by  
high pulse on CVT_NOK_OUT pin.  
• Compares all connected cell voltages with the set higher  
operating voltage threshold, and if any of the cell voltage  
is more than higher threshold, then sets a corresponding  
flag in the cel_high_thsld_stat_reg register. This is  
indicated by high pulse on CVT_NOK_OUT pin.  
• Sets a corresponding flag in the temp_stat_reg register if  
ambient temperature or internal chip temperature is  
higher than respective thresholds. This is indicated by  
high pulse on CVT_NOK_OUT pin.  
• It will enable SAR ADC and starts measuring each cell  
voltage, and then measures temperature channel  
measurement. The 12 bits digital value will be stored in  
corresponding registers.  
Thus, on diagnosis command the device gives the cell operating  
voltage, ambient temperature and internal temperature status  
with respect to its safe operating range.  
When the TRIG_IN pin is ‘High’ for longer than the status  
command, the device enters into Balance phase. Depending  
upon cell voltage status, the device starts balancing the cell  
voltages. The cell voltage balancing is continued till the high  
voltage on the TRIG_IN pin. As soon as TRIG_IN goes ‘Low, the  
device stops balancing and enters into WAIT mode. Thus, the  
microcontroller has full control over the balancing time and  
stop balancing whenever required.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 33  
D e t a i l e d D e s c r i p t i o n  
Figure 27:  
TRIG_IN Command Signaling  
Cell Balance  
Command  
Diagnosis  
Command  
TRIG_IN  
Tstatus_cmd  
Tbal_cmd  
Device  
State  
WAIT  
MODE  
NORMAL MODE  
(Diagnosis phase)  
WAIT  
MODE  
NORMAL MODE  
(Compare + Balance phase)  
WAIT  
MODE  
AS8506 – 34  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Descript ion  
Balancing Algorithm  
Figure 28:  
Cell Balancing Algorithm  
Trigger  
BD_IN  
compare all  
connected cells with  
reference voltage  
BD_OUT  
identify and store  
toggle of connected cell  
comparator outputs  
All  
connected  
cell comp  
toggle?  
generate Internal  
Balance done  
YES  
NO  
Active – balancing  
Charge cells with comp  
o/p = 0.  
Passive – balancing  
discharge cell with  
comp o/p = 1  
7 Time slot  
Over ?  
NO  
YES  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 35  
D e t a i l e d D e s c r i p t i o n  
Initialization Sequence  
The power-up initialization sequence diagram for AS8506 is  
shown in Figure 29.  
• When the power supply is switched ON, initially VSUP POR  
output Vsup_por_n is ‘Low’; hence all the digital logic will  
be in reset state.  
• Once the VSUP crosses the Vsup_por_th, the VSUP POR  
output becomes ‘High’ enabling the oscillator and  
high-precision bandgap (HPBG) block.  
• The digital block is now operational. It will now enable the  
V5V LDO and waits for V5V_por_n high signal from the  
V5V POR block.  
• Once the V5V crosses V5V_por_th, the V5V_por_n will be  
‘High’. The OTP auto load command is generated by ‘High’  
on otp_por_n signal. Now the device waits for T  
auto_load  
period for OTP contents to load into digital local registers.  
• After the OTP contents are loaded into digital local  
registers, the device power-up sequence is completed.  
The device enters into SLEEP mode. In SLEEP mode, the  
LDO, oscillator and HPBG are disabled.  
• The wake-up circuit monitors the WAKE_IN pin for  
wake-up pulse. When a wake-up pulse is received, the  
oscillator and HPBG block are enabled and device enters  
into WAKE mode. In the WAKE mode, the device enables  
V5V LDO and waits for V5V_por_n high signal.  
• Once the V5V crosses V5V_por_th, the V5V_por_n will be  
‘High’ and the device enters into WAIT mode. In WAIT  
mode the device waits for trigger pulse on TRIG_IN pin  
from microcontroller. In this state, if a short or long pulse  
trigger signal is received on TRIG_IN within T  
wmode_tout  
period, the AS8506 enters into NORMAL mode and  
performs required operations based on trigger pulse.  
AS8506 – 36  
ams Datasheet, Confidential:2013-Sep [1-00]  
Detailed Description  
Figure 29:  
Power-up Initialization Sequence  
Vsup_por_th  
VSUP  
Vsup_por_n  
Wake Pulse  
WAKE_IN  
TRIG_IN  
osc_en  
hp_bg_en  
ldo_en  
Thp_bg_stl  
V5V_por_th  
Thp_bg_stl  
V5V_por_th  
V5V_bor_th  
V5V  
V5V_por_n  
otp_por_n  
otp_load  
Tauto_laod  
wait_timer  
Continue  
WAKE MODE  
SLEEP MODE  
WAIT MODE  
NORMAL  
INITIALIZATION  
WAIT MODE  
TWAKE-UP  
TINITIALIZATION  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 37  
D e v i c e I n t e r f a c e  
A 4-wire SPI is used to communicate with the device. Pins CS,  
SCLK, SDI, and SDO are used for SPI interface.  
Device Interface  
Serial Peripheral Interface  
The Serial Peripheral Interface (SPI) provides the  
communication link with the microcontroller. The SPI is  
configured for half-duplex data transfer. The SPI in AS8506  
provides access to the status registers, control registers and test  
registers. The SPI is also used to enter into test and OTP modes.  
This interface is only Slave interface and only Master can initiate  
the SPI operation. The SPI also supports block data transfer  
where sequential register data can be accessed with single SPI  
command.  
The SPI can work on both the clock polarities. The polarity of  
the clock is dependent on the value of SCLK at the falling edge  
of CS.  
At the falling edge of CS,  
• If SCLK is “1”, then the SPI is negative edge triggered.  
• If the SCLK is “0, then SPI is positive edge triggered logic.  
see Figure 30 for more details.  
Figure 30:  
SPI Clock Polarity Table  
CS  
SCLK  
Description  
Low  
Serial data is transferred at rising edge and sampled at falling edge of SCLK.  
High  
Serial data is transferred at falling edge and sampled at rising edge of SCLK.  
AS8506 – 38  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
The SPI protocol frame is divided into two fields.  
• The header field  
• The data field  
The header field is 1 byte long; containing a read/write  
command bit, 1 reserved bit, and 6 address bits. The SPI frame  
format is shown in Figure 31. In the data phase MSB is sent first  
and LSB is sent last.  
Figure 31:  
SPI Frame Format  
Header Field  
Data Field  
1 byte  
Integer Multiple of Bytes  
R/W  
0
A5 A4 A3 A2 A1 A0  
DATA  
Reserved  
Bit  
6 bits  
Address  
0 – WRITE  
1 – READ  
SPI Write Operation  
The SPI write operation begins with clock polarity selection at  
negative edge of CS (see Figure 30). Once the clock polarity is  
selected, the SPI write command is given by providing ‘0’ in R/W  
bit of the header field in first sampling edge at SDI pin. The next  
bit in header field is reserved and set to ‘0. The 6 bits address  
of register to be written is provided at SDI pin in next six  
consecutive sampling edges of SCLK. The data to be written is  
followed by last bit of header field. With each sampling edge a  
bit is sampled starting from MSB to LSB. During complete SPI  
write operation the SCSN has to be ‘Low. The SPI write  
operation ends with positive edge of SCSN. The waveform for  
SPI write operation with single data byte is shown in Figure 32  
and Figure 33.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 39  
D e v i c e I n t e r f a c e  
Figure 32:  
SPI Write Operation with Negative Clock Polarity and 1 Byte of Data Field  
SCSN  
SCLK  
R0 A5  
A4  
A3  
A2  
A1  
A0 D7 D6  
D5  
D4  
D3  
D2  
D1 D0  
SDI  
SDO  
Figure 33:  
SPI Write Operation with Positive Clock Polarity and 1 Byte of Data Field  
SCSN  
SCLK  
SDI  
R0  
A5  
A4  
A3 A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
Sampling Edge  
High Impedance Sate  
In case of SPI block write operation, first data byte is written  
into addressed register same as single byte write operation.  
After first data byte, Master can send next data byte by keeping  
CS ‘Low’ and giving clock on SCLK as per polarity selection. At  
the end of every eighth data bit, the byte is written into next  
consecutive address location (internally address is incremented  
by one location). In this way, Master can continue writing into  
consecutive address locations. The waveform is shown in  
Figure 34.  
AS8506 – 40  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 34:  
SPI Block Write Operation with Negative Clock Polarity  
CS  
SCLK  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
5
A
4
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
3
A
2
A
1
A
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
0
0
SDI  
SDO  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
moved to Address  
A5-A0 +1 here  
moved to Address  
A5-A0 +2 here  
moved to Address  
A5-A0 +3 here  
moved to Address  
A5-A0 here  
moved to Address  
A5-A0 +4 here  
SPI Read Operation  
The SPI read operation also begins with clock polarity selection  
at negative edge of SCSN (see Figure 30). Once the clock  
polarity is selected, the SPI read command is given by providing  
‘1’ in R/W bit of the header field in first sampling edge at SDI  
pin. The next bit in header fields is reserved and set to ‘0. The  
6 bits address of register to be read is provided at SDI pin in  
next six consecutive sampling edges of SCLK. The read data is  
followed by last bit of header field on SDO pin. With each  
sampling edge a bit can be read on SDO pin starting from MSB  
to LSB. In case of multi-data bytes, MSB of next data byte can  
be read after the LSB of previous data byte. During complete  
SPI read operation the SCSN has to be ‘Low. The SPI read  
operation ends with positive edge of SCSN. The wave form for  
SPI read operation with single data byte is shown in Figure 35  
and Figure 36.  
Figure 35:  
SPI Read Operation with Negative Clock Polarity and 1 Byte of Data Field  
SCSN  
SCLK  
R0  
A5  
A4  
A3  
A2  
A1 A0  
SDI  
SDO  
D7  
D6 D5  
D4  
D3  
D2  
D1  
D0  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 41  
D e v i c e I n t e r f a c e  
Figure 36:  
SPI Read Operation with Positive Clock Polarity and 1 Byte of Data Field  
SCSN  
SCLK  
A5  
A4  
A3  
A2  
A1  
A0  
R0  
SDI  
SDO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sampling Edge  
High Impedance Sate  
AS8506 – 42  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
In case of SPI block read operation, first data byte is read from  
addressed register same as single byte read operation. After  
first data byte read, Master can read next consecutive addressed  
data by keeping CS ‘Low’ and giving clock on SCLK as per clock  
polarity selection. At the end of every eighth data bit, the  
address pointer is incremented to next consecutive address  
location. In this way Master can continue reading from  
consecutive register address locations. The waveform is shown  
in Figure 37.  
Figure 37:  
SPI Block Read Operation with Negative Clock Polarity  
CS  
SCLK  
A
4
A
3
A
2
A
1
A
0
A
5
0
1
SDI  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDIO  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Address A5-A0  
is read here  
Address A5-A0 +1  
is read here  
Address A5-A0 +2  
is read here  
Address A5-A0 +3  
is read here  
Address A5-A0 +4  
is read here  
Address Allocation Process  
During the system configuration the microcontroller has to  
allocate a unique address to each of the AS8506 devices  
including the Master to communicate with SPI3. The  
microcontroller before initiating the address allocation process,  
it writes top most device address into allcd_dev_add_reg of the  
Master through 4-wire SPI. The microcontroller can initiate the  
address allocation process by writing ‘100’ command code and  
setting D0 to 1 in spi3_cmd_reg register. By sighting ‘1’ at  
spi3_cmd_reg [0], the Master initiates a SPI3 address allocation  
write with top most device address as data. The address  
“000000” is reserved as broadcast address visible to all devices.  
The address allocation process is explained for six AS8506  
devices (including Master) stack system in Figure 38.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 43  
D e v i c e I n t e r f a c e  
Figure 38:  
Address Allocation Process  
SPI3 address allocation write  
operation  
Address allocation process  
STOP  
CLK-IN/OUT  
TRIG-IN/OUT  
CVT_NOK_IN  
C1  
C0 TST  
Address of  
6th Device  
New  
Address = 6  
Address = X  
CVT_NOK_OUT6  
CVT_NOK_IN5  
New  
Address = 6  
Address of  
5th Device  
Address = X  
Final Address  
6 -1 = 5  
CVT_NOK_OUT5  
CVT_NOK_IN4  
New  
Address = 6  
Address of  
4th Device  
Address = X  
Final Address  
6-1=5 5-1=4  
CVT_NOK_OUT4  
CVT_NOK_IN3  
New  
Address = 6  
Address of  
3rd Device  
Address = X  
Final Address  
6-1=5 5-1=4 4-1=3  
CVT_NOK_OUT3  
CVT_NOK_IN2  
New  
Address = 6  
Address of  
2nd Device  
Address = X  
Final Address  
6-1=5 5-1=4 4-1=3 3-1=2  
CVT_NOK_OUT2  
CVT_NOK_IN1  
Address of  
1st Device  
(Master)  
New  
Address = 6  
Address = X  
Final Address  
6-1=5 5-1=4 4-1=3 3-1=2  
2-1=1  
CVT_NOK_OUT1  
(Master)  
AS8506 – 44  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
In the address allocation process, the  
CVT_NOK_IN/CVT_NOK_OUT pins of AS8506 are used. After  
the successful SPI3 address allocation write operation, all  
AS8506 devices including Master will store the top device  
address (sent by Master in SPI3 address allocation write) as its  
address. The top device identifies itself as top most device and  
registers the address as its final address and at first rising edge  
of clock all devices force ‘High’ on its CVT_NOK_OUT pin. The  
concept of address allocation is: after the STOP of SPI3, at every  
falling edge of the clock each device will sample its  
CVT_NOK_IN pin. If CVT_NOK_IN pin is ‘High, the device will  
decrement the assigned address by ‘1’ and continue to force  
‘High’ on its CVT_NOK_OUT pin at rising edge of clock. If  
CVT_NOK_IN is sampled to be ‘Low, then the address value at  
register will be stored as its final device address and it stops  
forcing ‘High’ on its CVT_NOK_OUT pin and makes it ‘Low’ at  
next rising edge of clock.  
In Figure 38, top most device pins are suffixed with ‘6’ down to  
lower most device (Master) pins suffixed with ‘1’ in descending  
order. There is no device above topmost device, CVT_NOK_IN6  
is always ‘Low’; therefore the address sent by Master is final  
address for the top device. For the fifth device the  
CVT_NOK_IN5 is ‘Low’ for one clock cycle, the address is  
decremented once. For the fourth device CVT_NOK_IN4 is ‘Low’  
for two clock cycles, the address is decremented twice before  
registering it as final address. This procedure is continued and  
finally the Master device CVT_ONK_IN1 is ‘Low’ for 5 clock  
cycles, the address is decremented five times and finally  
address register will have value of “000001” as its final address.  
The microcontroller can identify the end of address allocation  
procedure in two ways:  
• One way is by probing CVT_NOK_OUT of Master after  
initiating address allocation process for a pulse.  
• The other method is by polling bit0 of spi3_cmd_reg  
register for ‘0’ (Low) and no CRC errors.  
During SPI3 address allocation write operation, if a CRC error  
occurs in the any of the Slaves, the Master indicates this failure  
of SPI3 transaction to all Slaves by driving TST bit ‘High. All  
Slaves should terminate the address allocation process if a  
‘High’ TST bit is seen during start address allocation process  
SPI3 write operation. The Master will indicate the failure of  
address allocation process to μC by asserting a flag in the  
spi3_sts_reg register and sending interrupt pulse on its  
CVT_NOK_OUT pin.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 45  
D e v i c e I n t e r f a c e  
Communication to Slaves  
There are two modes of communication between the Master  
and Slaves in the AS8506 stack system:  
• Broadcast Communication  
• Communication with Individual Slave  
Broadcast Communication  
The Broadcast of communication is used to send the reference,  
lower, upper threshold limit codes and timer control register  
values for all the slaves.  
Reference and thresholds can be set by one of the two methods:  
• Through the external pins  
• Through the Internal DAC  
In case of the stacked system, reference and thresholds can be  
set by writing DAC values though broadcast SPI command.  
Write the corresponding data in the registers of timer_cntl_reg,  
ref_dcod_lsb_reg/ref_dcod_msb_reg,  
hlmt_dcod_lsb_reg/hlmt_dcod_msb_reg and  
llmt_dcod_lsb_reg/llmt_dcod_msb_reg and command in the  
Command Registers spi3_cmd_reg and spop_dadd_bcmd_reg.  
Example:  
To write DAC code of 0x0666 in the lower threshold register of  
all the devices, initiate a broadcast command as given in the  
below sequence.  
Figure 39:  
Threshold Setting through Broadcast Command to Slaves  
Command  
Register Name  
llmt_dcod_lsb_reg  
llmt_dcod_msb_reg  
spop_dadd_bcmd_reg  
spi3_cmd_reg  
Address  
0x23  
Data  
0x66  
0x06  
0x03  
0x09  
To set low threshold  
0x24  
Broadcast the cell lower limit DAC code  
Broadcast communication command  
0x25  
0x28  
Each broadcast write operation takes 35 clock cycles of the  
communication frequency. The default communication  
frequency is 5KHz.  
Broadcast slave register write is also possible other than above  
registers.  
If there any specific register of all the slaves to be written with  
the same content of Master then this feature is useful.  
Write register address in the spop_reg_add_reg.  
AS8506 – 46  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Example:  
To set the external temperature thresholds to 4.15V, initiate a  
broadcast command as given in the below sequence.  
Figure 40:  
External Temperature Threshold Setting through Broadcast Command to Slaves  
Command  
Register Name  
tflg_tshld_setg_reg  
spop_reg_add_reg  
spi3_cmd_reg  
Address  
0x1D  
Data  
0xFF  
0x1D  
0x0B  
To set the external temperature threshold  
Address of the register to broadcast  
Broadcast communication command  
0x26  
0x28  
Communication with Individual Slave  
Communication with an individual slave is done as SPI write or  
read.  
Write operation.  
To perform the write operation to one of the slave device,  
corresponding data should be written in these registers  
spop_dadd_bcmd_reg, spop_reg_add_reg, wrop_data_reg  
and spi3_cmd_reg.  
Example:  
To set the external temperature threshold of the slave device  
address 0x06 to 4.15V, initiate a broadcast command as given  
in the below sequence.  
Figure 41:  
Write Operation to the Individual Slave  
Command  
Slave device address  
Register Name  
spop_dadd_bcmd_reg  
spop_reg_add_reg  
wrop_data_reg  
Address  
0x25  
Data  
0x06  
0x1D  
0xFF  
0x05  
Address of the slave register  
To set the external temperature threshold  
Slave write command  
0x26  
0x27  
spi3_cmd_reg  
0x28  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 47  
D e v i c e I n t e r f a c e  
Read operation.  
To perform the read operation to one of the slave device,  
corresponding data should be written in these registers  
spop_dadd_bcmd_reg, spop_reg_add_reg and spi3_cmd_reg.  
Data from the slave device will be written in the register  
rdop_data_reg.  
Example:  
To read the temperature status register of the slave device  
address 0x06, initiate a broadcast command as given in the  
below sequence.  
Figure 42:  
Read Operation to the Individual Slave  
Command  
Register Name  
Address  
0x25  
Data  
0x06  
0x05  
0x03  
Slave device address Slave  
Address of the slave register  
write command  
spop_dadd_bcmd_reg  
spop_reg_add_reg  
spi3_cmd_reg  
0x26  
0x28  
AS8506 – 48  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
SPI Timing Diagrams  
Figure 43:  
Timing Diagram for Write Operation  
SCS  
...  
...  
tCPS  
tCPHD  
tSCLKH  
tSCLKL  
tCSH  
SCLK  
CLK  
polarity  
tDIS  
tDIH  
...  
...  
SDI  
DATAI  
DATAI  
DATAI  
SDO  
Figure 44:  
Timing Diagram for Read Operation  
SCS  
tSCLKH  
tSCLKL  
SCLK  
SDI  
DATAI  
DATAI  
tDOD  
tDOHZ  
SDO  
DATAO (D7)  
DATAO (D0)  
0
N
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 49  
D e v i c e I n t e r f a c e  
SPI Protocol  
Figure 45:  
SPI Timing Parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
General  
BR  
Bit rate  
1
Mbps  
ns  
SPI  
T
Clock high time  
Clock low time  
400  
400  
SCLKH  
T
ns  
SCLKL  
Write Operation Parameters  
Data in setup  
time  
t
20  
ns  
DIS  
t
Data in hold time  
SCSN hold time  
20  
ns  
ns  
DIH  
T
20  
CSH  
Read Operation Parameters  
t
Data out delay  
80  
ns  
ns  
DOD  
Data out to high  
impedance delay  
Time for the SPI to release  
the SDO bus  
t
80  
DOHZ  
Timing Parameters for SCLK Polarity Identification  
Setup time of SCLK with  
respect to SCSN falling  
edge.  
Clock setup time  
(CLK polarity)  
t
20  
20  
ns  
ns  
CPS  
Hold time of SCLK with  
respect to SCSN falling  
edge.  
Clock hold time  
(CLK polarity)  
t
CPHD  
AS8506 – 50  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
System Timings  
Figure 46:  
System Timings  
Symbol  
Parameter  
Min  
Wake-up Timing  
100  
Typ  
Max  
Unit  
Note  
T
Wake pulse width  
μs  
μs  
μs  
wake_pulse  
Time between edge on TRIG_IN pin  
to trig_in_fltrd signal  
T
4
4
filter_delay  
T
WAKE_IN pin filter specification  
1
filter  
Trigger Timing  
T
Status request command pulse  
Cell balance command pulse  
500  
1000  
μs  
μs  
status_cmd  
T
7000  
bal_cmd  
Wait Mode Timing  
T
WAIT mode timeout  
2000  
ms  
wmode_tout  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 51  
D e v i c e I n t e r f a c e  
Register Space Description  
The AS8506 register space is divided into control registers and  
test registers. All of these registers are accessed through SPI.  
Status Registers  
Figure 47:  
Cell Detection Status Register  
SPI  
4
SPI  
3
POR  
Value  
Address Register Name  
Features and Bit Description  
Indicates the detected cells.  
0 Cell 1 is not detected  
1 Cell 1 is detected  
D0  
0 Cell 2 is not detected  
1 Cell 2 is detected  
D1  
0 Cell 3 is not detected  
1 Cell 3 is detected  
D2  
0 Cell 4 is not detected  
1Cell 4 is detected  
0000_0000  
POR_V5V  
0x00  
cel_det_stat_reg  
D3  
R
R
0 Cell 5 is not detected  
1 Cell 5 is detected  
D4  
0 Cell 6 is not detected  
1 Cell 6 is detected  
D5  
0 Cell 7 is not detected  
1 Cell 7 is detected  
D6  
D7  
Reserved  
AS8506 – 52  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 48:  
Diagnostic Status Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Diagnostic register. μC can read this  
register if pulse is detected on  
CVT_NOK_OUT pin, to diagnose cause  
of indication.  
1 Low Threshold limit cross  
Indicator  
D0  
1 High Threshold limit  
cross indicator  
D1  
1 Over-temperature  
indicator  
0000_0000  
POR_V5V  
D2  
0x01  
diag_sts_reg  
R
R
1 Address allocation  
procedure fail  
D3  
D4  
D5  
1 SPI3 read operation fail  
1 SPI3 write operation fail  
1 SPI3 Broadcast operation  
D6  
D7  
fail  
Reserved  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 53  
D e v i c e I n t e r f a c e  
Figure 49:  
Cell Lower Threshold Status Register  
Features and Bit  
Description  
POR  
Value  
Address  
Register Name  
SPI4 SPI3  
Indicates if a cell voltage crossed  
the lower threshold limit set by μC.  
0 Cell 1 voltage is more  
than Low Threshold limit  
set  
D0  
1 Cell 1 voltage is less  
than Low Threshold limit  
set  
0 Cell 2 voltage is more  
than Low Threshold limit  
set  
D1  
1 Cell 2 voltage is less  
than Low Threshold limit  
set  
0 Cell 3 voltage is more  
than Low Threshold limit  
set  
D2  
1 Cell 3 voltage is less  
than Low Threshold limit  
set  
0 Cell 4 voltage is more  
than Low Threshold limit  
set  
0000_0000  
POR_V5V  
D3  
0x02  
cel_low_thsld_stat_reg  
R
R
1 Cell 4 voltage is less  
than Low Threshold limit  
set  
0 Cell 5 voltage is more  
than Low Threshold limit  
set  
D4  
1 Cell 5 voltage is less  
than Low Threshold limit  
set  
0 Cell 6 voltage is more  
than Low Threshold limit  
set  
D5  
1 Cell 6 voltage is less  
than Low Threshold limit  
set  
0 Cell 7 voltage is more  
than Low Threshold limit  
set  
D6  
1 Cell 7 voltage is less  
than Low Threshold limit  
set  
D7  
Reserved  
AS8506 – 54  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 50:  
Cell Higher Threshold Status Register  
Features and Bit  
Description  
POR  
Value  
Address  
Register Name  
SPI4 SPI3  
Indicates if a cell voltage crossed  
the lower threshold limit set by μC.  
0 Cell 1 voltage is less  
than High Threshold limit  
D0  
D1  
D2  
D3  
D4  
D5  
set  
1 Cell 1 voltage is more  
than High Threshold limit  
0 Cell 2 voltage is less  
than High Threshold limit  
set  
1 Cell 2 voltage is more  
than High Threshold limit  
0 Cell 3 voltage is less  
than High Threshold limit  
set  
1 Cell 3 voltage is more  
than High Threshold limit  
0 Cell 4 voltage is less  
than High Threshold limit  
set  
1 Cell 4 voltage is more  
than High Threshold limit  
0000_0000  
POR_V5V  
0x03  
cel_high_thsld_stat_reg  
R
R
0 Cell 5 voltage is less  
than High Threshold limit  
set  
1 Cell 5 voltage is more  
than High Threshold limit  
0 Cell 6 voltage is less  
than High Threshold limit  
set  
1 Cell 6 voltage is more  
than High Threshold limit  
0 Cell 7 voltage is less  
than High Threshold limit  
set  
1 Cell 7 voltage is more  
than High Threshold limit  
D6  
D7  
Reserved  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 55  
D e v i c e I n t e r f a c e  
Figure 51:  
Cell Reference Status Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Indicates which cell has reached the  
reference value at least once. This  
status is cleared when new reference is  
selected.  
0 Cell 1 voltage is less than  
reference voltage  
1 Cell 1 voltage is more  
than reference voltage  
D0  
0 Cell 2 voltage is less than  
reference voltage  
1 Cell 2 voltage is more  
than reference voltage  
D1  
0 Cell 3 voltage is less than  
reference voltage  
1 Cell 3 voltage is more  
than reference voltage  
D2  
0000_0000  
POR_V5V  
0x04  
cel_ref_stat_reg  
0 Cell 4 voltage is less than  
R
R
reference voltage  
D3  
1 Cell 4 voltage is more  
than reference voltage  
0 Cell 5 voltage is less than  
reference voltage  
1 Cell 5 voltage is more  
than reference voltage  
D4  
0 Cell 6 voltage is less than  
reference voltage  
1 Cell 6 voltage is more  
than reference voltage  
D5  
0 Cell 7 voltage is less than  
reference voltage  
1 Cell 7 voltage is more  
than reference voltage  
D6  
D7  
Reserved  
AS8506 – 56  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 52:  
Temperature Status Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Indicates the status of temperature  
monitors.  
0 Ambient temperature is  
less than warning threshold  
1 Ambient temperature is  
more than warning threshold  
D0  
0 Internal temperature is  
less than warning threshold  
1 Internal temperature is  
more than warning threshold  
D1  
0 Ambient temperature is  
0000_0000  
POR_V5V  
0x05  
temp_stat_reg  
R
R
less than maximum  
threshold  
1 Ambient temperature is  
D2  
more than maximum  
threshold  
0 Internal temperature is  
less than maximum  
threshold  
1 Internal temperature is  
D3  
more than maximum  
threshold  
D7:D4  
Reserved  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 57  
D e v i c e I n t e r f a c e  
Figure 53:  
Zero Cross Status Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Indicates which cell voltage has crossed  
zero voltage and reached negative  
during sudden loading condition. This  
indirectly indicates the increasing status  
of cell internal impedance.  
0 Cell 1 voltage is normal  
1 Cell 1 voltage has  
crossed zero voltage towards  
D0  
negative direction  
0 Cell 2 voltage is normal  
1 Cell 2 voltage has  
crossed zero voltage towards  
D1  
negative direction  
0 Cell 3 voltage is normal  
1 Cell 3 voltage has  
crossed zero voltage towards  
D2  
negative direction  
0x06  
zero_crs_stat_reg  
R
R
0 Cell 4 voltage is less than  
reference voltage  
D3  
1 Cell 4 voltage is more  
than reference voltage  
0 Cell 5 voltage is normal  
1 Cell 5 voltage has  
crossed zero voltage towards  
D4  
negative direction  
0 Cell 6 voltage is normal  
1 Cell 6 voltage has  
crossed zero voltage towards  
D5  
negative direction  
0 Cell 7 voltage is normal  
1 Cell 7 voltage has  
crossed zero voltage towards  
D6  
negative direction  
D7  
Reserved  
AS8506 – 58  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 54:  
Cell1 Voltage LSB Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell1 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell1  
0000_0000  
POR_V5V  
0x07  
cell1_volt_lsb_reg  
R
R
D7:D0 Bit7 to Bit0 of ADC code  
Figure 55:  
Cell1 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description SPI4 SPI3  
Cell1 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell1  
0000_0000  
POR_V5V  
0x08  
cell1_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 56:  
Cell2 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell2 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell2  
0000_0000  
POR_V5V  
0x09  
Cell2_volt_lsb_reg  
R
R
D7:D0 Bit7 to Bit0 of ADC code  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 59  
D e v i c e I n t e r f a c e  
Figure 57:  
Cell2 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell2 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell2  
0000_0000  
POR_V5V  
0x0A  
cell2_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 58:  
Cell3 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell3 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell3  
0000_0000  
POR_V5V  
0x0B  
cell3_volt_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
Figure 59:  
Cell3 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell3 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell3  
0000_0000  
POR_V5V  
0x0C  
cell3_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 60:  
Cell4 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell4 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell4  
0000_0000  
POR_V5V  
0x0D  
cell4_volt_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
AS8506 – 60  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 61:  
Cell4 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4  
SPI3  
Cell4 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell4  
0000_0000  
POR_V5V  
0x0E  
cell4_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 62:  
Cell5 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell5 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell5  
0000_0000  
POR_V5V  
0x0F  
cell5_volt_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
Figure 63:  
Cell5 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell5 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell5  
0000_0000  
POR_V5V  
0x10  
cell5_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 64:  
Cell6 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell6 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell6  
0000_0000  
POR_V5V  
0x11  
cell6_volt_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 61  
D e v i c e I n t e r f a c e  
Figure 65:  
Cell6 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell6 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell6  
0000_0000  
POR_V5V  
0x12  
cell6_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 66:  
Cell7 Voltage LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell7 voltage measured. 8 least  
significant bits of 12-bit ADC code of  
Cell7  
0000_0000  
POR_V5V  
0x13  
cell7_volt_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
Figure 67:  
Cell7 Voltage MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Cell7 voltage measured. 4 most  
significant bits of 12-bit ADC code of  
Cell7  
0000_0000  
POR_V5V  
0x14  
cell7_volt_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 68:  
Temperature Input1 LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Temperature sensor input1 measured.  
8 least significant bits of 12-bit ADC  
code of temperature input1.  
0000_0000  
POR_V5V  
0x15  
temp_in1_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
AS8506 – 62  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 69:  
Temperature Input1 MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Temperature sensor input1  
measured. 4 most significant bits of  
12-bit ADC code of temperature  
input1.  
0000_0000  
POR_V5V  
0x16  
temp_in1_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
Figure 70:  
Temperature Input2 LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Temperature sensor input2 measured.  
8 least significant bits of 12-bit ADC  
code of temperature input1.  
0000_0000  
POR_V5V  
0x17  
temp_in2_lsb_reg  
R
R
D7:D0  
Bit7 to Bit0 of ADC code  
Figure 71:  
Temperature Input2 MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Temperature sensor input2 measured.  
4 most significant bits of 12-bit ADC  
code of temperature input2.  
0000_0000  
POR_V5V  
0x18  
temp_in2_msb_reg  
R
R
D3:D0 Bit11 to Bit8 of ADC code  
D7:D4 Reserved  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 63  
D e v i c e I n t e r f a c e  
Figure 72:  
SPI3 Status Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
This register has status of the latest SPI3  
operation.  
0 No CRC error.  
D0  
D1  
1 CRC error for data from  
Master to Slave  
0 No CRC error.  
1 CRC error for data from  
Slave to Master  
0000_0000  
POR_V5V  
0x19  
spi3_sts_reg  
R
R
0 Start address allocation  
process write pass  
1 Start address allocation  
process write fail  
D2  
D7:D3 Reserved  
AS8506 – 64  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Configuration and 3-Wire SPI Interface Related  
Registers  
Figure 73:  
Device Address for Address Allocation Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
The device address for address  
allocation. In the address allocation  
process the μC writes top device  
address in this register. Address  
“00000” is reserved as broadcast  
address.  
0000_0000  
POR_VSUP  
0x1A  
dadd_for_allc_reg  
R/W  
R/W  
D5:D0  
D7:D6  
Device address  
Reserved  
Figure 74:  
Allocated Device Address Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description SPI4 SPI3  
Final device address after address  
allocation process is completed  
0000_0000  
POR_VSUP  
0x1B  
allcd_dev_add_reg  
R
R
D5:D0  
D7:D6  
Device address  
Reserved  
Figure 75:  
Device Configuration Setting Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Selects SPI3 frequency of operation.  
00 5 KHz  
01 20 KHz  
0000_0000  
POR_VSUP  
0x1C  
dev_cnfg_setg_reg  
D1:D0  
R/W  
-
10 40 KHz  
11 Reserved  
D7:D2  
Reserved  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 65  
D e v i c e I n t e r f a c e  
Figure 76:  
Temperature Threshold Setting Register  
Register  
Name  
POR  
Value  
Address  
Features and Bit Description  
SPI4 SPI3  
Sets over-temperature warning flag and  
shutdown flag threshold.  
D3:D0 Over temperature warning flag  
threshold selection  
Code Value Code Value Code Value  
0000 3.165 0110 3.561 1100 3.957  
0001 3.231 0111 3.627 1101 4.023  
0010 3.297 1000 3.693 1110 4.089  
0011 3.363 1001 3.759 1111 4.155  
XXXX_  
XXXX  
POR_  
VSUP  
0100 3.429 1010 3.825  
0101 3.495 1011 3.891  
-
-
-
-
tflg_tshld_setg  
_reg  
0x1D  
R/W  
R/W  
D7:D4 Over temperature shutdown flag  
threshold selection  
Code Value Code Value Code Value  
0000 3.165 0110 3.561 1100 3.957  
0001 3.231 0111 3.627 1101 4.023  
0010 3.297 1000 3.693 1110 4.089  
0011 3.363 1001 3.759 1111 4.155  
0100 3.429 1010 3.825  
0101 3.495 1011 3.891  
-
-
AS8506 – 66  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 77:  
Timer Control Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
000 25% duty cycle  
001 15% duty cycle  
010 20% duty cycle  
011 30% duty cycle  
100 35% duty cycle  
D2:D0  
101 40% duty cycle  
110 45% duty cycle  
111 50% duty cycle  
00 1s time slot  
01 8s time slot  
0000_0000  
POR_VSUP  
D4:D3  
0x1E  
timer_cntl_reg  
R/W  
R/W  
10 16s time slot  
11 32s time slot  
00 100 KHz  
01 25 KHz  
D6:D5  
10 50 KHz  
11 200 KHz  
0 5 clock cycles for  
comparator  
1 15 clock cycles for  
comparator  
D7  
Figure 78:  
Reference DAC Code LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Least Significant byte of 12-bit DAC  
code for setting reference voltage.  
0000_0000  
POR_VSUP  
0x1F  
ref_dcod_lsb_reg  
R/W  
R/W  
Bit7 to Bit0 of DAC  
D7:D0  
code  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 67  
D e v i c e I n t e r f a c e  
Figure 79:  
Reference DAC Code MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Most Significant byte of 12-bit DAC  
code for setting reference voltage.  
0000_0000  
POR_VSUP  
0x20  
ref_dcod_msb_reg  
Bit11 to Bit8 of DAC  
R/W  
R/W  
D3:D0  
code  
D7:D4  
Reserved  
Figure 80:  
Higher Limit DAC Code LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description SPI4 SPI3  
Least Significant byte of 12-bit DAC  
code for setting high limit voltage.  
0000_0000  
POR_VSUP  
0x21  
hlmt_dcod_lsb_reg  
R/W  
R/W  
Bit7 to Bit0 of DAC  
code  
D7:D0  
Figure 81:  
Higher Limit DAC Code MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description SPI4 SPI3  
Most Significant byte of 12-bit DAC  
code for setting high limit voltage.  
0000_0000  
POR_VSUP  
0x22  
hlmt_dcod_msb_reg  
Bit11 to Bit8 of DAC  
code  
R/W  
R/W  
D3:D0  
D7:D4  
Reserved  
Figure 82:  
Lower Limit DAC Code LSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Least Significant byte of 12-bit DAC  
code for setting low limit voltage.  
0000_0000  
POR_VSUP  
0x23  
llmt_dcod_lsb_reg  
R/W  
R/W  
Bit7 to Bit0 of DAC  
D7:D0  
code  
AS8506 – 68  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 83:  
Lower Limit DAC Code MSB Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description SPI4 SPI3  
Most Significant byte of 12-bit DAC  
code for setting low limit voltage.  
0000_0000  
POR_VSUP  
0x24  
llmt_dcod_msb_reg  
Bit11 to Bit8 of DAC  
code  
R/W  
R/W  
D3:D0  
D7:D4  
Reserved  
Figure 84:  
Device Address and Broadcast Command SPI Operation Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
Device address/ broadcast command  
register  
If spi3_cmd_reg [D3-D1] =  
001/010  
Address of Device to be  
accessed.  
(000000 address is broadcast  
address)  
If spi3_cmd_reg [D3-D1] =  
100  
Broadcast communication  
commands.  
000000 No operation  
000001 Timer control  
register write  
D5:D0  
spop_dadd_bcmd  
0000_0000  
POR_V5V  
0x25  
_reg  
000010 Cell reference DAC  
R/W  
-
code write  
000011 Cell lower limit DAC  
code write  
000100 Cell higher limit  
DAC code write  
If spi3_cmd_reg [D3-D1] =  
101  
000000 Data of register  
wrop_data_reg is written to  
address stored in  
spop_reg_add_reg in all  
devices.  
Reserved  
D7:D6 (accessible only in Master  
mode)  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 69  
D e v i c e I n t e r f a c e  
Figure 85:  
SPI Operation Register Address Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Address of register to be accessed  
during 3-wire read/write operation in  
the device selected in  
spop_dadd_bcmd_reg  
0000_0000  
POR_V5V  
0x26  
spop_reg_add_reg  
Address of Register to  
D6:D0  
R/W  
-
be accessed (R/W)  
Reserved  
D7:D4  
(accessible only in  
Master mode)  
Figure 86:  
SPI Write Operation Data Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Data to be written in the register  
addressed by spop_reg_add_reg of  
device selected in  
spop_dadd_bcmd_reg during SPI3  
write operation.  
0000_0000  
POR_V5V  
0x27  
wrop_data_reg  
R/W  
-
Bit7 to Bit0 of accessed  
register  
(accessible only in  
D7:D0  
Master mode)  
AS8506 – 70  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 87:  
SPI3 Command Register  
POR  
Value  
Address Register Name  
Features and Bit Description  
SPI4 SPI3  
3-wire SPI command register. Register is  
cleared once the SPI3 transaction is  
done.  
0 No SPI3 operation  
1 Start SPI3 operation  
corresponding to  
D0  
command code  
000 Reserved  
001 Slave register Read  
010 Slave register Write  
011 Start address  
allocation process  
0000_0000  
POR_V5V  
0x28  
spi3_cmd_reg  
R/W  
-
D3:D1  
D7:D4  
100 Broadcast  
configuration command  
101 Broadcast Slave  
register Write  
110 Reserved  
111 Reserved  
Reserved  
Figure 88:  
SPI Read Operation Data Register  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Read data from the register  
addressed by spop_reg_add_reg of  
device selected in  
spop_dadd_bcmd_reg during SPI3  
read operation.  
0000_0000  
POR_VSUP  
0x29  
rdop_data_reg  
R/W  
R/W  
Bit7 to Bit0 of accessed  
register  
(accessible only in  
D7:D0  
Master mode)  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 71  
D e v i c e I n t e r f a c e  
Figure 89:  
Feature Selection Register 1  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Feature selection register1.  
1 Zero cross  
D0  
detection enable  
Zero cross detection  
filter setting  
00 8μs  
01 6μs  
D2:D1  
10 4μs  
11 2μs  
D3  
D4  
Reserved  
1 External resistor  
divider enable  
0000_0000  
POR_VSUP  
0x2A  
feat_sel_reg_1  
R/W  
R/W  
0 Cell reference is  
generated from DAC  
1 Cell reference is  
supplied externally on  
VREF_IN pin  
D5  
0 Cell Lower/Higher  
limit is generated from  
DAC  
D6  
D7  
1 Cell Lower/Higher  
limit is supplied  
externally on CELL_THL  
and CELL_THU pins  
Reserved  
AS8506 – 72  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 90:  
Feature Selection Register 2  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
Feature selection register2.  
FD_OUT pad  
configuration  
10 Optocoupler  
driver  
0000_0010  
POR_V5V  
0x2B  
feat_sel_reg_2  
D1:D0  
D7:D2  
R/W  
-
11 Normal Pad  
Reserved  
Note: Registers from address 0x2C to 0x2F are ‘Reserved.  
OTP Reflection Registers  
Figure 91:  
OTP Reflection Register 1  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
OTP bits [0:7]  
D7:D0  
0000_0000  
POR_V5V  
0x30  
otp_refln_reg_1  
R
R
Chip ID [0:7]  
Figure 92:  
OTP Reflection Register 2  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
OTP bits [8:15]  
D7:D0  
0000_0000  
POR_V5V  
0x31  
otp_refln_reg_2  
R
R
Chip ID [8:15]  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 73  
D e v i c e I n t e r f a c e  
Figure 93:  
OTP Reflection Register 3  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
OTP bits [16:23]  
Chip ID [16:18], OTP bits  
[19:23]  
0000_0000  
POR_V5V  
0x32  
otp_refln_reg_3  
D7:D0  
R
R
Figure 94:  
OTP Reflection Register 4  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
0000_0000  
POR_V5V  
0x33  
otp_refln_reg_4  
D7:D0  
OTP bits [24:31]  
R
R
Figure 95:  
OTP Reflection Register 5  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
0000_0000  
POR_V5V  
0x34  
otp_refln_reg_5  
D7:D0  
OTP bits [32:39]  
R
R
Figure 96:  
OTP Reflection Register 6  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
0000_0000  
POR_V5V  
0x35  
otp_refln_reg_6  
D7:D0  
OTP bits [40:47]  
R
R
AS8506 – 74  
ams Datasheet, Confidential:2013-Sep [1-00]  
Device I nter face  
Figure 97:  
OTP Reflection Register 7  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
0000_0000  
POR_V5V  
0x36  
otp_refln_reg_7  
D7:D0  
OTP bits [48:55]  
R
R
Figure 98:  
OTP Reflection Register 8  
POR  
Value  
Address  
Register Name  
Features and Bit Description  
SPI4 SPI3  
0000_0000  
POR_V5V  
0x37  
otp_refln_reg_8  
D7:D0  
OTP bits [56:63]  
R
R
Note(s) and/or Footnote(s):  
1. Registers from address 0x38 to 0x39 are ‘Reserved.  
2. Registers from address 0x3A to 0x4E are OTP and Test registers. These are for factory use.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 75  
A p p l i c a t i o n I n fo r m a t i o n  
Application Information  
Figure 99:  
Application Schematic with Single Device  
VSUP  
40  
39  
38  
37  
36  
35  
34  
33  
32  
100nF  
31  
2-5uF  
TSECH  
TSECL  
VREF_H  
TSECH  
30  
29  
28  
1
2
V5V  
VREF_T  
TSECL  
REF_T  
TL1  
TL2  
NTC  
3
4
5
6
7
8
VCELL7  
VCELL6  
VCELL5  
TEMP_IN1  
27  
26  
25  
24  
TEMP_IN2  
CELL_THL  
R
1
R
1
THL  
TH  
U
AS8506  
CELL_THU  
CS  
VCELL4  
VCELL3  
CS  
R2  
R3  
Optional fixed  
reference  
SCLK  
SCLK 23  
VCELL2  
SDI  
22  
21  
SDI  
VREF_T  
9
VCELL1  
C-GND  
SDO  
Note: Max current on REF_T is 900uA  
including the Temperature sensors  
SDO  
10  
RF  
1
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CS  
VREF_IN  
SCLK  
SDI  
SDO  
WAKE  
RF  
2
Microcontroller  
Note: Open drain on  
BD  
WAKE_IN pin in the µC  
or Transistor as shown  
above.  
CVT_NOK  
Passive balancing  
TSECL TSECH  
CLK  
TRIG  
RLoad  
Supply from Stack  
TSECH  
100 mA load  
TSECL  
Optional factory setting for  
Active balancing  
AS8506 – 76  
ams Datasheet, Confidential:2013-Sep [1-00]  
Application I nform ation  
Passive balance  
Passive balance is to dissipate the energy from the cell with the  
higher cell voltage to the reference value (average of the stack  
e.g. max cell voltage in constant voltage charge phase or mean  
cell voltage as genertaed by resitor divider).  
Resistor value should be selected based on the cell chemistry  
and voltage limits. Maximum current capability of internal  
shuttle switch is 100mA. Internal resistance of the shuttle  
switch typically is 5Ω..  
Active balance  
In the active balance device charge the cells which are lower  
than the reference voltage. This is a method of charge transfer  
from the stack to the cell.  
Flyback converter is used for this charge transfer. Active  
balancing mode need to be enabled by factory setting. It is not  
available for the default ASSP.  
Flyback Converter (with external Transformer)  
The high-efficiency, high-voltage, DC-DC Flyback converter  
delivers current of 100mA to the lithium ion cell when the  
secondary side of the Flyback transformer is connected to the  
cell terminals. This also gives the isolation between the primary  
supply and the load cell. The Flyback converter is designed to  
charge the lithium-ion battery cells during the balancing mode  
of the IC. It consists of a PWM waveform generator with variable  
duty cycle and a driver. This driver can drive an external  
MOSFET, (or) the optocoupler, (or) an isolation device based on  
the requirement. During the ON-state of the PWM waveform,  
the primary side of the Flyback transformer conducts and stores  
the energy. In the other phase the stored energy in the  
secondary is transferred to the cell which will be connected to  
the secondary side of the transformer. The converter always  
works in discontinuous current mode (DCM).  
The advantages of this type of control system can be  
summarized as following:  
• High-efficiency even at light load  
• Intrinsically stable  
• Simplicity  
Figure 100:  
External Components  
Component  
Transformer  
Optocoupler  
Manufacturer Part Number  
Manufacturer  
WURTH ELECTRONICS  
AVAGO TECHNOLOGIES  
WE-FLEX 749196111  
ACPL-M72T-000E  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 77  
A p p l i c a t i o n I n fo r m a t i o n  
Figure 101:  
Application with Opto-Coupler/ Isolation Device  
VSUP2  
VSUP2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
V5V_U  
VREF_H  
30  
29  
28  
TSECH2  
TSECL2  
1
TSECH  
V5V  
7
6
5
2
TSECL  
REF_T  
100nF  
NTC  
2-5uF  
TU1  
3
4
5
VCELL7  
TEMP_IN1  
VSUP1  
AS8506  
MLF 6x6  
TU2  
27  
26  
25  
24  
VCELL6  
VCELL5  
TEMP_IN2  
CELL_THL  
NTC  
TU2  
TU1  
6
CELL_THU  
CS  
VCELL4  
VCELL3  
7
8
GND  
(Exposed Pad)  
SCLK  
SDI  
23  
22  
VCELL2  
1
VSUP1  
VSUP1  
9
VCELL1  
C-GND  
SDO  
10  
21  
Note: If slave has to drive  
FD pin then SDI has to be  
connected local ground  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSUP1  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
V5V  
VREF_H  
TSECH  
TSECH1  
TSECL1  
30  
29  
28  
1
2
V5V  
100nF  
TSECL  
REF_T  
2-5uF  
7
6
5
TL1  
TL2  
3
VCELL7  
TEMP_IN1  
AS8506  
MLF 6x6  
NTC  
NTC  
27  
26  
25  
24  
4
5
6
7
VCELL6  
VCELL5  
TEMP_IN2  
CELL_THL  
TL2  
TL1  
CELL_THU  
CS  
VCELL4  
VCELL3  
CS  
GND  
(Exposed Pad)  
SCLK  
SCLK  
SDI  
23  
22  
8
9
VCELL2  
VCELL1  
C-GND  
SDI  
1
SDO  
10  
21  
SDO  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CS  
SCLK  
SDI  
SDO  
WAKE  
BD  
Micro  
controller  
CVT_NOK  
CLK  
TRIG  
Optional Factory Setting for Active Balancing  
Note: Open drain on WAKE_IN  
pin in the µC or Transistor as  
shown above.  
TSECH1  
100 mA load  
TSECL1  
Supply from Stack  
TSECH2  
100 mA load  
TSECL2  
Non-inverting  
FD_OUT2  
Optocoupler/  
isolation device  
Converter  
for active  
balancing  
100 V device  
100 V device  
Caution: In the application it’s recommended to connect the AS8506 devices stacked first and connect the  
battery stack from bottom to top in sequence to avoid any possible damage of the system. While removing  
the battery pack its strictly recommended to remove the battery pack from the top. Removing the battery  
pack from bottom will damage the system.  
AS8506 – 78  
ams Datasheet, Confidential:2013-Sep [1-00]  
Application I nform ation  
Figure 102:  
Application Schematic  
VSUP2  
VSUP2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
V5V_U  
VREF_H  
30  
29  
28  
TSECH2  
TSECL2  
1
2
TSECH  
V5V  
7
6
5
TSECL  
REF_T  
100nF  
2-5uF  
TU1  
AS8506  
MLF 6x6  
3
VSUP1  
VCELL7  
TEMP_IN1  
TU2  
NTC  
TU2  
27  
26  
25  
24  
4
5
6
7
VCELL6  
VCELL5  
NTC  
TEMP_IN2  
CELL_THL  
TU1  
CELL_THU  
CS  
VCELL4  
VCELL3  
GND  
(Exposed Pad)  
SCLK  
SDI  
23  
22  
8
9
VCELL2  
1
V5V_U  
VSUP1  
VCELL1  
C-GND  
Note: If slave has to  
drive FD pin then SDI  
has to be connected  
local ground  
SDO  
10  
21  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSUP1  
40  
VREF_H  
39  
38  
37  
36  
35  
34  
33  
32  
31  
V5V  
TSECH1  
TSECL1  
30  
29  
28  
1
TSECH  
V5V  
100nF  
2
3
4
5
TSECL  
REF_T  
2-5uF  
7
6
5
TL1  
TL2  
AS8506  
MLF 6x6  
VCELL7  
TEMP_IN1  
NTC  
NTC  
27  
26  
25  
24  
VCELL6  
VCELL5  
TEMP_IN2  
CELL_THL  
TL2  
TL1  
6
CELL_THU  
CS  
VCELL4  
VCELL3  
CS  
7
8
GND  
SCLK  
SDI  
SCLK  
SDI  
23  
22  
VCELL2  
(Exposed Pad)  
9
VCELL1  
C-GND  
1
SDO  
10  
21  
SDO  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CS  
SCLK  
SDI  
SDO  
WAKE  
Micro  
Controller  
BD  
CVT_NOK  
CLK  
TRIG  
Note: Open drain on  
Optional Factory Setting for Active Balancing  
WAKE_IN pin in the µC or  
Transistor as shown  
above.  
TSECH1  
Supply from Stack  
100 mA load  
TSECL1  
TSECH2  
100 mA load  
TSECL2  
100 V device  
Converter  
for active  
balancing  
Caution: In the application it’s recommended to connect the AS8506 devices stacked first and connect the  
battery stack from bottom to top in sequence to avoid any possible damage of the system. While removing  
the battery pack its strictly recommended to remove the battery pack from the top. Removing the battery  
pack from bottom will damage the system.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 79  
A p p l i c a t i o n I n fo r m a t i o n  
Figure 103:  
Application with Opto-Coupler Device Stackable to Higher Numbers  
12V / 5V  
Stack n+1  
Vcc / V Auxiliary  
AS8506  
Cellx of  
stackn  
Optocoupler  
VCC  
RL  
Vb  
Vo  
Stack n  
Stack  
Ground  
AS8506  
100KHz  
12V / 5V  
Vcc / V Auxiliary  
Cellx of  
stack2  
Optocoupler  
VCC  
RL  
Vb  
Vo  
Stack2  
Stack  
Ground  
AS8506  
FDRIVE_OUT  
Vcc  
Cellx of  
stack1  
Stack1  
AS8506  
FDRIVE_OUT(100KHz  
Stack  
Ground  
Caution:: In the application it’s recommended to connect the AS8506 devices stacked first and connect the  
battery stack from bottom to top in sequence to avoid any possible damage of the system. While removing the  
battery pack its strictly recommended to remove the battery pack from the top. Removing the battery pack  
from bottom will damage the system.  
AS8506 – 80  
ams Datasheet, Confidential:2013-Sep [1-00]  
Pack age Drawings & M ark ings  
The AS8506 device is available in a 40-pin MLF (6x6) package.  
Package Drawings & Markings  
Figure 104:  
AS8506 Package Drawings and Dimensions  
AS8506  
YYWWIZZ  
(A)  
Note: ‘A’ is for active balancing and default is Passive Balancing.  
Symbol Min  
Nom  
0.90  
0.02  
0.65  
0.20 REF  
0.40  
0.15  
0.10  
-
0.25  
0.15  
6.00 BSC  
6.00 BSC  
Max  
1.00  
0.05  
1.00  
Symbol Min  
Nom  
0.50 BSC  
5.75 BSC  
5.75 BSC  
4.50  
4.50  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
40  
Max  
A
A1  
A2  
A3  
L
L1  
L2  
Θ
0.80  
0
-
e
D1  
E1  
D2  
E2  
4.40  
4.40  
4.60  
4.60  
0.30  
0.05  
0.05  
0º  
0.50  
0.25  
0.15  
14º  
0.30  
0.20  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
b
b1  
D
0.20  
0.10  
E
N
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 81  
P a c k a g e D r a w i n g s & M a r k i n g s  
Note(s) and/or Footnote(s):  
1. Dimensions and toleranceing conform to ASME Y14.5M. - 1994.  
2. All dimensions are in millimeters (angles in degrees).  
3. Bilateral coplanarity zone applies to the exposed pad as well as the terminal.  
4. Radius on terminal is optional.  
5. N is the number of terminals.  
Figure 105:  
AS8506 Packaging Code YYWWXZZ  
YY  
WW  
I
ZZ  
Last two digits of the year  
Manufacturing week  
Plant identifier  
Assembly traceability code  
AS8506 – 82  
ams Datasheet, Confidential:2013-Sep [1-00]  
Pack age Drawings & M ark ings  
The AS8506C device is available in a 40-pin MLF (6x6) package.  
Figure 106:  
AS8506C Package Drawings and Dimensions  
AS8506C  
YYWWIZZ  
(A)  
Note: ‘A’ is for active balancing and default is Passive Balancing.  
Symbol Min  
Nom  
0.90  
0.02  
0.65  
0.20 REF  
0.40  
0.15  
0.10  
-
0.25  
0.15  
6.00 BSC  
6.00 BSC  
Max  
1.00  
0.05  
1.00  
Symbol Min  
Nom  
0.50 BSC  
5.75 BSC  
5.75 BSC  
4.50  
4.50  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
40  
Max  
A
A1  
A2  
A3  
L
L1  
L2  
Θ
0.80  
0
-
e
D1  
E1  
D2  
E2  
4.40  
4.40  
4.60  
4.60  
0.30  
0.05  
0.05  
0º  
0.50  
0.25  
0.15  
14º  
0.30  
0.20  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
b
b1  
D
0.20  
0.10  
E
N
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 83  
P a c k a g e D r a w i n g s & M a r k i n g s  
Note(s) and/or Footnote(s):  
1. Dimensions and toleranceing conform to ASME Y14.5M. - 1994.  
2. All dimensions are in millimeters (angles in degrees).  
3. Bilateral coplanarity zone applies to the exposed pad as well as the terminal.  
4. Radius on terminal is optional.  
5. N is the number of terminals.  
Figure 107:  
AS8506C Packaging Code YYWWXZZ  
YY  
WW  
I
ZZ  
Last two digits of the year  
Manufacturing week  
Plant identifier  
Assembly traceability code  
AS8506 – 84  
ams Datasheet, Confidential:2013-Sep [1-00]  
RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams products fully  
comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams knowledge and belief as of the date  
that it is provided. ams bases its knowledge and belief on  
information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams has taken and continues to  
take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams  
and ams suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 85  
O r d e r i n g & C o n t a c t I n f o r m a t i o n  
The devices are available as the standard products shown in  
Ordering Information.  
Ordering & Contact Information  
Figure 108:  
Ordering Information  
Ordering Code  
AS8506-BQFP  
Description  
Delivery Form  
Tape and reel  
Package  
Reel Size  
4000  
Monitor and balancer IC  
Monitor and Balancer IC  
Monitor and Balancer IC  
40-pin MLF (6x6)  
40-Pin MLF (6x6)  
40-Pin MLF (6x6)  
AS8506-BQFM  
Tape and Reel  
Tape and Reel  
1000  
(1)  
4000  
AS8506C-BQFP  
(1)  
Monitor and Balancer IC  
Tape and Reel  
40-Pin MLF (6x6)  
1000  
AS8506C-BQFM  
Note(s) and/or Footnote(s):  
1. Non-automotive Version without AECQ 100 Qualification.  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
AS8506 – 86  
ams Datasheet, Confidential:2013-Sep [1-00]  
Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141  
Copyrights & Disclaimer  
Unterpremstaetten, Austria-Europe. Trademarks Registered. All  
rights reserved. The material herein may not be reproduced,  
adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner.  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its Term of Sale. ams  
AG makes no warranty, express, statutory, implied, or by  
description regarding the information set forth herein. ams AG  
reserves the right to change specifications and prices at any  
time and without notice. Therefore, prior to designing this  
product into a system, it is necessary to check with ams AG for  
current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This Product is provided by ams “AS IS” and  
any express or implied warranties, including, but not limited to  
the implied warranties of merchantability and fitness for a  
particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 87  
R e f e re n c e G u i d e  
1
2
2
3
General Description  
Key Benefits & Features  
Applications  
Reference Guide  
Block Diagram  
4
8
Pin Assignment  
Absolute Maximum Ratings  
10 Typical Operating Characteristics  
11 Electrical Characteristics  
11 Device Level Specifications  
12 Low Dropout Regulator (5V Output LDO)  
13 High-precision Bandgap Reference  
13 Digital to Analog Converter  
14 Analog to Digital Converter  
14 Pre-Regulator  
15 PWM Driver  
16 PWM Oscillator  
16 Oscillator for Digital Circuit  
17 External Temperature Thresholds  
18 Ron of the Shuttle Switches (Internal Switch for  
Charging/Discharging)  
18 Over-Temperature Measurement  
19 Weak Cell Detection (Voltage Comparator)  
19 Power on Voltage Detection  
20 Electrical Characteristics for Digital Inputs and Outputs  
22 Detailed Description  
22 Voltage Regulator (LDO_5V)  
22 High Precision Bandgap (HPBG)  
22 External Temperature Monitor and Measurement  
23 Internal Temperature Monitor  
23 PWM Generator  
23 RC Oscillator  
23 DAC for the Reference Generation  
24 SAR ADC  
24 Pre-Regulator  
24 Cell Threshold  
24 Weak Cell Detection  
24 External Resister Divider Control  
25 PORs on Different Supplies  
26 AS8506 System Operation  
28 Functional State Diagram  
29 Operating Modes  
29 NORMAL Mode  
29 Diagnosis Phase  
30 Balance Phase  
30 Sleep Mode  
30 Wait Mode  
31 Wake Mode  
32 Wake-up Event  
33 Trigger Event  
35 Balancing Algorithm  
36 Initialization Sequence  
AS8506 – 88  
ams Datasheet, Confidential:2013-Sep [1-00]  
Reference Guide  
38 Device Interface  
38 Serial Peripheral Interface  
39 SPI Write Operation  
41 SPI Read Operation  
43 Address Allocation Process  
46 Communication to Slaves  
46 Broadcast Communication  
47 Communication with Individual Slave  
47 Write operation.  
48 Read operation.  
49 SPI Timing Diagrams  
50 SPI Protocol  
51 System Timings  
52 Register Space Description  
52 Status Registers  
65 Configuration and 3-Wire SPI Interface  
Related Registers  
73 OTP Reflection Registers  
76 Application Information  
77 Passive balance  
77 Active balance  
77 Flyback Converter (with external Transformer)  
81 Package Drawings & Markings  
85 RoHS Compliant & ams Green Statement  
86 Ordering & Contact Information  
87 Copyrights & Disclaimer  
ams Datasheet, Confidential:2013-Sep [1-00]  
AS8506 – 89  

相关型号:

AS8506-BQFM

Battery Cell Monitor and Balancer IC
AMSCO

AS8506-BQFP

Battery Cell Monitor and Balancer IC
AMSCO

AS8506C-BQFM

Battery Cell Monitor and Balancer IC
AMSCO

AS8506C-BQFP

Battery Cell Monitor and Balancer IC
AMSCO

AS8510

Data Acquisition Device for Battery Sensors
AMSCO

AS8510-ASSM

Data Acquisition Device for Battery Sensors
AMSCO

AS8510-ASSP

Data Acquisition Device for Battery Sensors
AMSCO

AS8510_10

Data Acquisition Device for Battery Sensors
AMSCO

AS8515

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8515-ZMFM

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8515-ZMFP

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8520

LIN Transceiver with Voltage Regulator, Attenuator, Relay Drivers, MCU Interface for Automotive Applications
AMSCO