APW7063_09 [ANPEC]

Synchronous Buck PWM and Linear Controller; 同步降压PWM和线性控制器
APW7063_09
型号: APW7063_09
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM and Linear Controller
同步降压PWM和线性控制器

控制器
文件: 总22页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7063  
Synchronous Buck PWM and Linear Controller  
Features  
General Description  
The APW7063 integrates PWM and linear controller, as  
well as the monitoring and protection functions into a  
·
Provide Two Regulated Voltages  
- Synchronous Rectified Buck PWM Controller  
single package. The synchronous PWM controller which  
drives dual N-channel MOSFETs, which provides one  
controlled power outputs with under-voltage and over-  
current protections. Linear controller drives an external  
N-channel MOSFET with under-voltage protection.  
APW7063 provides excellent regulation for output load  
variation. An internal 0.8V temperature-compensated ref-  
erence voltage is designed to meet the various low out-  
put voltage applications. APW7063 includes a 250kHz  
free-running triangle-wave oscillator that is adjustable  
from 70kHz to 800kHz.  
- Linear Controller  
·
·
Fast Transient Response  
- 0~85% DutyRatio  
Excellent Output Voltage Regulation  
- 0.8V Internal Reference  
- ±1% Over Line Voltage and Temperature  
Over Current Protection  
·
- Sense Low-Side MOSFET’s RDS(ON)  
Under Voltage Lockout  
·
·
Small Converter Size  
A power-on-reset (POR) circuit limits the VCC minimum  
opearting supply voltage to assure the controller working  
well. Over current protection is achieved by monitoring  
the voltage drop across the low side MOSFET, eliminat-  
ing the need for a current sensing resistor and short cir-  
cuit condition is detected through the FB pin. The over-  
current protection triggers the soft-start function until the  
fault events be removed, but Under-voltage protection will  
shutdown IC directly.  
- 250kHz Free-Running Oscillator  
- Programmable From 70kHz to 800kHz  
14-Lead SOIC Package  
·
·
Lead Free and Green Devices Available  
(RoHS Compliant)  
Applications  
Pull the COMP pin below 0.4V will shutdown the controller,  
and both gate drive signals will be low.  
·
·
·
·
·
Graphic Cards  
Memory Power Supplies  
DSL or Cable MODEMs  
Set Top Boxes  
Pin Configuration  
Low-Voltage Distributed Power Supplies  
RT  
SS  
1
2
3
4
5
6
7
FBL  
14  
13  
12  
11  
10  
9
DRIVE  
VCC  
VREG  
LGATE  
PGND  
BOOT  
UGATE  
FB  
COMP  
GND  
8
PHASE  
SOP-14  
(Top View)  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise  
customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Ordering and Marking Information  
Package Code  
APW7063  
K : SOP-14  
Operating Ambient Temperature Range  
C : 0 to 70 oC  
Assembly Material  
Handling Code  
Handling Code  
Temperature Range  
Package Code  
TR : Tape & Reel  
Assembly Material  
G : Halogen and Lead Free Device  
APW7063  
XXXXX  
XXXXX - Date Code  
APW7063 K :  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
30  
Unit  
V
VCC  
VCC to GND  
LGATE  
DRIVE  
UGATE  
VBOOT  
LGATE to GND  
DRIVE to GND  
UGATE to GND  
BOOT to GND  
PHASE to GND  
30  
V
30  
V
30  
V
30  
V
30  
V
Operating Junction Temperature  
Storage Temperature  
0~150  
-65 ~ 150  
260  
oC  
oC  
oC  
TSTG  
TSDR  
Maximum Lead Soldering Temperature, 10 Seconds  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Junction to Ambient Resistance in Free Air (Note 2)  
160  
oC/W  
qJA  
SOP-14  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions  
Range  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
12  
-
Max.  
19  
VCC  
Supply Voltage  
Boot Voltage  
8
-
V
V
VBOOT  
26  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Electrical Characteristics  
Unless otherswise specified, these specifications apply over VCC = 12V, VBOOT = 12V, RT = OPEN and TA = 0 ~ 70oC. Typlcal values are  
at TA = 25oC.  
APW7063  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
ICC  
VCC Nominal Supply  
UGATE and LGATE Open  
-
3
-
mA  
POWER-ON-RESET  
Rising VCC Threshold  
Falling VCC Threshold  
OSCILLATOR  
7.0  
6.6  
7.2  
6.8  
7.4  
7.0  
V
V
Free Running Frequency  
Total Variation  
RT = OPEN, VCC = 12V  
6kW < RT to GND < 200kW  
RT = OPEN  
220  
-15  
-
250  
-
280  
+15  
-
kHz  
%
Ramp Amplitude  
1.7  
VP-P  
REFERENCE  
VREF  
Reference Voltage  
-
0.80  
-
-
V
Reference Voltage Tolerance  
-1  
+1  
%
PWM EEEOR AMPLIFIER  
DC Gain  
-
0
-
75  
-
-
dB  
%
UGATE Duty Range  
FB Input Current  
GATE DRIVERS  
85  
0.1  
-
mA  
IUGATE  
RUGATE  
ILGATE  
RLGATE  
TD  
Upper Gate Source  
Upper Gate Sink  
Lower Gate Source  
Lower Gate Sink  
Dead Time  
VBOOT = 12V, VUGATE = 6V  
IUGATE = 0.3A  
650  
800  
4
-
8
-
mA  
W
-
VCC = 12V, VLGATE = 6V  
ILGATE = 0.3A  
550  
700  
4
mA  
W
-
-
8
-
50  
nS  
LINEAR REGULATOR  
Reference Voltage  
-
-
0.8  
2
-
-
V
%
Regulation  
Output Drive Current  
VDRIVE = 4V  
8
10  
12  
mA  
PROTECTION  
FB Under Voltage Level  
FBL Under Voltage Level  
OCSET Source Current  
-
-
-
50  
50  
-
-
-
%
%
250  
mA  
VREG  
VREG  
IOUT  
Output Voltage Accuracy  
Output Current Capacity  
VCC > 12V  
VCC = 12V  
5.5  
-
6
6.5  
-
V
20  
mA  
SOFT-START AND SHUTDOWN  
TSS  
ISS  
Internal Soft-Start Interval  
Soft-Start Charge Current  
Shutdown Threshold  
-
8
-
2
-
12  
-
mS  
mA  
V
CSS = 0mF  
10  
0.4  
50  
COMP Falling  
Shutdown Hysteresis  
-
-
mV  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics  
Power Up  
Power Down  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC(10V/div)  
SS(5V/div)  
VCC(10V/div)  
SS(5V/div)  
VOUT1(2V/div)  
VOUT1(2V/div)  
VOUT2(2V/div)  
VOUT2(2V/div)  
Time (10ms/div)  
Time (10ms/div)  
Enable (COMP is left open)  
Shutdown (COMP is pulled to GND)  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VCC=VIN1=12V  
VIN2=5V, CSS=0.1mF  
VOUT2(2V/div)  
VOUT2(2V/div)  
VOUT1(2V/div)  
VOUT1(2V/div)  
COMP(1V/div)  
COMP(1V/div)  
SS(5V/div)  
SS(5V/div)  
Time (2ms/div)  
Time (10ms/div)  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics (Cont.)  
UGATE Falling  
UGATERising  
VCC=2V, VIN=12V  
VCC=2V, VIN=12V  
LGATE(10V/div)  
LGATE(10V/div)  
PHASE(10V/div)  
PHASE(10V/div)  
UGATE(10V/div)  
UGATE(10V/div)  
Time (50ns/div)  
Time (50ns/div)  
Under Voltage Protection (PWM)  
Under Voltage Protection (Linear)  
VCC=12,VIN=12V  
VOUT=3.3V, L=2.2mH  
IL(10A/div)  
SS(5V/div)  
VCC=12V, VIN=5V  
VOUT2=2.5V  
SS(5V/div)  
VOUT2(2V/div)  
VOUT1 (2V/div)  
UGATE (10V/div)  
DRV(5V/div)  
Time (5ms/div)  
Time (5ms/div)  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics (Cont.)  
PWM Load Transient  
Linear Load Transient  
VCC=12V  
VIN=12V  
VCC=12V  
VOUT=3.3V  
COUT=470mFx2  
ESR=22.5mW  
L=1.5mH  
VIN=12V  
VOUT=2.5V  
COUT=470mF  
f=400kHz  
VOUT2(100mV/div)  
VOUT1(100mV/div)  
IOUT2(1A/div)  
IOUT1(5A/div)  
Time (20ms/div)  
Time (10ms/div)  
UGATE Sink Current vs. UGATE Voltage  
UGATE Source Current vs. UGATE Voltage  
1.2  
1
1.4  
1.2  
1
VBOOT=12V  
VBOOT=12V  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics (Cont.)  
LGATE Source Current vs. LGATE Voltage  
LGATE Sink Current vs. LGATE Voltage  
1.4  
1.2  
1
VCC=12V  
VCC=12V  
1.2  
1
0.8  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATE Voltage (V)  
LGATE Voltage (V)  
Over Current Protection  
VCC=12V,VIN=12V, VOUT=2.5V, ROCSET=1kW  
RDS(ON)=16mW, L=2.2mH, IOUT=15A  
Switching Frequence vs. RT Resistance  
10000  
1000  
100  
10  
IL(10A/div)  
SS(5V/div)  
RT pull up to 12V  
RT pull down to GND  
UGATE(20V/div)  
1
VOUT1(2V/div)  
10  
100  
1000  
Time (5ms/div)  
Switching Frequency (kHz)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics (Cont.)  
Comp Source Current vs. Comp Voltage  
Comp Sink Current vs. Comp Voltage  
150  
125  
100  
75  
150  
125  
100  
75  
VCC=12V  
VCC=12V  
50  
50  
25  
25  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
1
1.5  
2
2.5  
3
3.5  
4
Comp Voltage (V)  
Comp Voltage (V)  
Drive Source Current vs. Drive Voltage  
Drive Sink Current vs. Drive Voltage  
40  
30  
20  
10  
0
10  
8
VCC=12V  
VCC=12V  
6
4
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Drive Voltage (V)  
Drive Voltage (V)  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Operating Characteristics (Cont.)  
VREG Voltage vs. SupplyVoltage  
VREG Voltage vs. Load Current  
6
5.5  
5
6.5  
6.25  
6
VCC=12V  
4.5  
4
5.75  
5.5  
0
2
4
6
8
10 12 14 16 18  
0
5
10  
15  
20  
Supply Voltage (V)  
Load Current (mA)  
SupplyCurrent vs. Supply Voltage  
Reference Voltage vs. Temperature  
4
0.8  
0.798  
0.796  
0.794  
0.792  
0.79  
3.5  
ICC  
3
2.5  
2
ICC(SHDN)  
1.5  
1
0.5  
0
-40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
10  
12  
Supply Voltage (V)  
Temperature (°C)  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Typical Application Circuit  
1. Boot-Strap - Use Internal Regulator  
12V  
C1  
1mF  
5V  
C2  
1mF  
12V  
L1  
1mH  
VIN  
R2  
2R2  
C3  
+
D1  
U1  
VIN  
R1  
+
+
C9  
470mF  
6.3V  
25mR  
NC  
NC  
C5  
+C6  
C4  
1N4148  
APW7063  
470mF  
16V  
25mR  
470mF  
470mF  
16V  
4.7mF  
R3  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
8
7
6
5
RT  
FBL  
DRIVE  
VCC  
C8  
1mF  
16V  
SS  
2
25mR  
VREG  
FB  
25mR  
C7  
0.1mF  
LGATE  
Q1  
APM3055L  
COMP PGND  
R4  
0R  
Q2  
APM4220  
1
GND  
BOOT  
3V3  
4
4
8
PHASEUGATE  
R14  
0R  
1
2
3
R13  
0R  
3
C12  
0.1mF  
2.5V  
L2  
2.2mH  
C11  
4.7mF  
C10  
R5  
3.125kF  
1%  
+
470mF  
6.3V  
C19  
220pF  
R6  
620R  
8
7
6
5
25mR  
+
+
C14  
R8  
C15  
4.7mF  
D2  
SR24  
NC  
C13  
R7  
1kF  
1%  
Q3  
2A/40V  
1000mF 1000mF  
C16  
0.01mF  
R10  
2.32kF  
1%  
APM4220  
6.3V  
6.3V  
1
2
3
R9  
0R  
30mR  
30mR  
C17  
56pF  
C18  
NC  
R11  
20K  
SHDN  
R12  
1.07kF  
1%  
2. Boot-Strap - Use External Power  
12V  
5V  
12V  
L1  
D1  
1mH  
C1  
VIN  
R1  
2R2  
1N4148  
1mF  
+
C2  
U1  
C7  
+
+C5  
+
NC  
NC  
C3  
VINR2  
R3  
C6  
470mF  
6.3V  
25mR  
APW7063  
470mF  
16V  
4.7mF  
470mF  
470mF  
16V  
25mR  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
8
7
6
5
C8  
1mF  
RT  
SS  
FBL  
DRIVE  
VCC  
16V  
25mR  
2
3
25mR  
C4  
0.1mF  
VREG  
FB  
R14  
0R  
LGATE  
Q1  
APM3055L  
R4  
0R  
COMP PGND  
Q2  
1
GND  
BOOT  
3V3  
4
4
APM4220  
8
PHASEUGATE  
1
2
3
R13  
0R  
C11  
0.1mF  
L2  
2.5V  
2.2mH  
R5  
3.125kF  
1%  
+
C9  
C10  
4.7mF  
C19  
220pF  
470mF  
6.3V  
R6  
820R  
8
7
+
+
6
25mR  
R7  
C12  
C13  
C14  
D2  
5
100R  
Q3  
R9  
0R  
1000mF 1000mF  
4.7mF  
6.3V  
30mR  
SR24  
2A/40V  
R8  
1kF  
1%  
C15  
0.01mF  
APM422  
6.3V  
R10  
2.32kF  
1%  
0
30mR  
1
2
3
C16  
56pF  
C17  
0.1mF  
R11  
20K  
SHDN  
R12  
1.07kF  
1%  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Block Diagram  
VCC  
SS  
vcc  
BOOT  
ISS  
10mA  
5.8V  
Power-On  
Reset  
Gate Control  
UGATE  
vcc  
Soft Start  
and  
Fault Logic  
IOCSET  
250mA  
GND  
PHASE  
VCC  
O.C.P  
Comparator  
U.V.P  
Comparator  
50%VREF  
:
2
LGATE  
PGND  
FBL  
50%VREF  
VCC  
:
2
PWM  
Comparator  
Error Amp  
VCC  
DRIVE  
VREF  
Oscillator  
RT  
Regulator  
VREF  
Triangle  
Wave  
FB  
COMP  
VREG  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Function Pin Description  
RT (Pin 1)  
VOLTAGE  
VSOFT-START  
This pin can adjust the switching frequency. Connect a  
resistor from RT to VCC for decreasing the switching  
frequency. Conversely, connect a resistor from RT to GND  
for increasing the switching frequency (See Typical  
Characteristics).  
VOUT2  
VOUT1  
SS (Pin 2)  
Connect a capacitor from this pin to GND to set the soft-  
start interval of the converter. An internal 10mA current  
source charges this capacitor to 5.2V. The SS voltage  
clamps the reference voltage to the SS voltage, and Fig-  
ure1 shows the soft-start interval. At t0, the internal source  
current starts to charge the capacitor and the internal 0.8V  
reference also starts to rise and follows the SS. Until the  
internal reference reaches to 0.8V at t2, the soft-start in-  
terval is completed. This method provides a rapid and  
controlled output voltage rise. The way of the Soft-Start of  
the output2 is the same as the output1, but it starts from  
the SS at 2.2V to 3.0V. The APW7063 also provides the  
internal Soft-Start which is fixed to 2ms (t0 to t1). If the  
external Soft-Start interval is slower than the internal Soft-  
FB  
FBL  
TIME  
t0  
t1  
t2  
t3  
Figure 1. Soft-Start Interval  
VREG (Pin 3)  
An internal regulator will supply 6V for boost voltage, a  
1mF capacitor to GND is recommended for stability. If the  
VREG voltage has variation by other interference, the IC  
can not work normally. When the VCC<8V, don’t use the  
VREG for BOOST voltage.  
Start interval (CSS<0.025mF) or no external capacitor, FB (Pin 4)  
the Soft-Start will follow the internal Soft-Start.  
FB pin is the inverting input of the error amplifier, and it  
C SS  
ISS  
receives the feedback voltage from an external resistive  
divider across the output (VOUT). The output voltage is de-  
termined by :  
TSoft-Start = t1 - t0 =  
´ 0.8V  
C SS  
t3 = t2 +  
´ 0.8V  
ISS  
ROUT  
RGND  
æ
è
ö
÷
ø
VOUT = 0.8V´ 1+  
ç
Where:  
CSS = external Soft-Start capacitor  
where ROUT is the resistor connected from VOUT to FB,  
ISS = Soft-Start current = 10mA  
and RGND is the resistor connected from FB to GND.  
CSS ´ 2.2V  
ISS  
When the FB voltage is under 50% Vref, it will cause the  
under voltage protection and shutdown the device. Re-  
move the condition and restart the VCC voltage or pull the  
COMP from low to high once will enable the device again.  
t2 =  
COMP (Pin 5)  
This pin is the output of the error amplifier. Add an exter-  
nal resistor and capacitor network to provide the loop  
compensation for the PWM converter (See Applica-  
tion Information).  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Function Pin Description (Cont.)  
COMP (Pin 5) (Cont.)  
A 1mF decoupling capacitor to GND is recommended.  
Pull this pin below 0.4V will shutdown the controller, forc-  
ing the UGATE and LGATE signals to be 0V. A soft-start  
cycle will be initiated upon the release of this pin.  
DRIVE (Pin 13)  
Connect this pin to the gate of an external N-channel  
MOSFET transistor. This pin provides the gate voltage for  
the linear regulator pass transistor. It also provides a  
means of compensating the linear controller for applica-  
tions where the user needs to optimize the regulator tran-  
sient response.  
GND (Pin 6)  
Signal ground for the IC.  
PHASE (Pin 7)  
A resistor (ROCSET) is connected between this pin and the  
drain of the low-side MOSFET will determine the over  
current limit. An internal 250mA current source will flow  
through this resistor, creating a voltage drop. This volt-  
age will be compared with the voltage across the low-  
side MOSFET. The threshold of the over current limit is  
therefore given by :  
FBL (Pin 14)  
Connect this pin to the output of the linear regulator via a  
proper sized resistor divider. The voltage at this pin is  
regulated to 0.8V and the output voltage is determined  
using the following equation :  
ROUT  
RGND  
æ
è
ö
÷
ø
VOUT = 0.8V ´ 1+  
ç
ILIMIT ´ RDS(ON)  
ROCSET  
=
250uA  
where ROUT is the resistor connected from VOUT to FBL,  
and RGND is the resistor connected from FBL to GND.  
An over current condition will cycle the soft-start function  
until the over current condition is removed. Because of  
the comparator delay time, the on time of the low-side  
MOSFET must be longer than 800ns to have the over  
current protection work.  
This pin also monitores the under-voltage events. If the  
linear regulator is not used, tie the FBL to VREG.  
UGATE(Pin 8)  
This pin provides gate drive for the high-side MOSFET.  
BOOT (Pin 9)  
This pin provides the supply voltage to the high side  
MOSFET driver. For driving logic levelN-channel MOSEFT,  
a bootstrap circuit can be used to create a suitable driver’s  
supply.  
PGND (Pin 10)  
Power ground for the gate diver. Connect the lower  
MOSFET source to this pin.  
LGATE(Pin 11)  
This pin provides the gate drive signal for the low side  
MOSFET.  
VCC (Pin 12)  
This pin provides a supply voltage for the device. When  
VCC is above the rising threshold 4.2V, it turns on the  
device is turned on. Conversely, when VCC is below the  
falling threshold 3.9V, the device is turned off.  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Application Information  
Component Selection Guidelines  
Output Capacitor Selection  
ripple current to be approximately 30% of the maximum  
output current.  
Once the inductance value has been chosen, selecting  
an inductor is capable of carrying the required peak cur-  
rent without going into saturation. In some types of  
inductors, especially core that is make of ferrite, the ripple  
current will increase abruptly when it saturates. This will  
result in a larger output ripple voltage.  
The selection of COUT is determined by the required effec-  
tive series resistance (ESR) and voltage rating rather than  
the actual capacitance requirement. Therefore, selecting  
high performance low ESR capacitors is intended for  
switching regulator applications. In some applications,  
multiple capacitors have to be paralled to achieve the  
desired ESR value. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Compensation  
The output LC filter of a step down converter introduces a  
double pole, which contributes with –40dB/decade gain  
slope and 180 degrees phase shift in the control loop. A  
compensation network between COMP pin and ground  
should be added. The simplest loop compensation net-  
work is shown in Figure 5.  
Input Capacitor Selection  
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, select  
the capacitor voltage rating to be at least 1.3 times higher  
than the maximum input voltage. The maximum RMS  
current rating requirement is approximately IOUT/2 where  
IOUT is the load current. During power up, the input capaci-  
tors have to handle large amount of surge current. If tanta-  
lum capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
The output LC filter consists of the output inductor and  
output capacitors. The transfer function of the LC filter is  
given by:  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR´ COUT +1  
GAINLC  
=
The poles and zero of this transfer function are:  
1
FLC  
=
For high frequency decoupling, a ceramic capacitor be-  
tween 0.1mF to 1mF can connect between VCC and ground  
pin.  
2´ p ´ L´ COUT  
1
FESR  
=
2 ´ p ´ ESR ´ COUT  
Inductor Selection  
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
The inductance of the inductor is determined by the out-  
put voltage requirement. The larger the inductance, the  
lower the inductor’s current ripple. This will translate into  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
L
Output  
PHASE  
COUT  
VIN - VOUT  
Fs x L  
VOUT  
VIN  
IRIPPLE  
=
x
ESR  
where Fs is the switching frequency of the regulator.  
DVOUT = IRIPPLE x ESR  
Figure 2. The Output LC Filter  
A tradeoff exists between the inductor’s ripple current and  
the regulator load transient response time. A smaller in-  
ductor will give the regulator a faster load transient re-  
sponse at the expense of higher ripple current and vice  
versa. The maximum ripple current occurs at the maxi-  
mum input voltage. A good starting point is to choose the  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Application Information (Cont.)  
Compensation (Cont.)  
The pole and zero of the compensation network are:  
1
FP =  
F
LC  
C1´ C2  
2´ p ´ R3´  
-40dB/dec  
C1+ C2  
1
FZ  
=
F
ESR  
2´ p ´ R3´ C1  
Gain  
V
OUT  
-20dB/dec  
Error  
R1  
Amplifier  
FB  
-
COMP  
Frequency  
Figure 3. The LC Filter Gain & Frequency  
R2  
+
R3  
C1  
The PWM modulator is shown in Figure 4. The input is  
the output of the error amplifier and the output is the PHASE  
node. The transfer function of the PWM modulator is given  
by:  
VREF  
C2  
VIN  
Figure 5. Compensation Network  
GAINPWM =  
DVOSC  
The closed loop gain of the converter can be written as:  
VIN  
R2  
Driver  
GAINLC x GAINPWM x  
x GAINAMP  
R1+ R2  
PWM  
Comparator  
Figure 6 shows the converter gain and the following guide-  
lines will help to design the compensation network.  
VOSC  
1.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) x FS >FO>FZ  
Output of  
PHASE  
Error  
Amplifier  
Use the following equation to calculate R3:  
DVOSC  
FESR  
R1+ R2 FO  
R3 =  
´
´
´
Driver  
2
VIN  
R2  
gm  
FLC  
Where:  
gm = 900mA/V  
Figure 4. The PWM Modulator  
The compensation circuit is shown in Figure 5. R3 and  
C1 introduce a zero and C2 introduces a pole to reduce  
the switching noise. The transfer function of error ampli-  
fier is given by:  
2.Place the zero FZ before the LC filter double poles  
FLC:  
FZ = 0.75 x FLC  
Calculate the C1 by the equation:  
é
ù
1
1
æ
ö
gm ´ R3 +  
//  
÷
gm´ Zo  
GAINAMP =  
=
ç
ê
ú
sC1  
sC2  
ø
è
ë
1
û
C1=  
2´ p ´ R1´ 0.75´ FLC  
1
æ
ö
s +  
ç
÷
R3 ´ C1  
3. Set the pole at the half the switching frequency:  
FP = 0.5xFS  
è
ø
gm ´  
=
C1+ C2  
R3 ´ C1´ C2  
æ
ö
÷
s ´ s +  
´ C2  
ç
è
ø
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Application Information (Cont.)  
Compensation (Cont.)  
Linear Regulator Input/Output Capacitor Selection  
Calculate the C2 by the equation:  
The input capacitor is chosen based on its voltage rating.  
Under load transient condition, the input capacitor will  
momentarily supply the required transient current. A 1mF  
C1  
C2 =  
p ´ R3 ´ C1 ´ FS - 1  
ceramic capacitor will be sufficient in most applications.  
The output capacitor for the linear regulator is chosen to  
minimize any droop during load transient condition. In  
addition, the capacitor is chosen based on its voltage  
rating.  
FZ=0.75FLC  
F
P
=0.5F  
S
20 ×log(gm×R3)  
Linear Regulator MOSFET Selection  
Compensation Gain  
The maximum DRIVE voltage is determined by the VCC.  
Since this pin drives an external N-channel MOSFET, the  
maximum output voltage of the linear regulator is depen-  
dent upon the VGS.  
Gain  
F
LC  
FO  
VIN  
20 ×log  
?VOSC  
Converter  
Gain  
F
ESR  
VOUT2MAX = VCC- VGS  
PWM &  
Filter Gain  
Another criteria is its efficiency of heat removal. The power  
dissipated by the MOSFET is given by:  
Frequency  
Figure 6. Converter Gain & Frequency  
Pdiss = Iout * (VIN - VOUT2  
)
where Iout is the maximum load current  
Vout2 is the nominal output voltage  
MOSFETSelection  
The selection of the N-channel power MOSFETs is deter-  
mined by the RDS(ON), reverse transfer capacitance (CRSS),  
and maximum output current requirement.The losses in  
the MOSFETs have two components: conduction loss and  
transition loss. For the upper and lower MOSFET, the  
losses are approximately given by the following equations:  
In some applications, heatsink may be required to help  
maintain the junction temperature of the MOSFET below  
its maximum rating.  
Layout Consideration  
In high power switching regulator, a correct layout is im-  
portant to ensure proper operation of the regulator. In  
general, interconnecting impedances should be mini-  
mized by using short and wide printed circuit traces. Sig-  
nal and power grounds are to be kept separate and finally  
combined using ground plane construction or single point  
grounding. Figure 8 illustrates the layout, with bold lines  
indicating high current paths. Components along the bold  
lines should be placed close together. Below is a check-  
list for your layout:  
PUPPER = Iou2t (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
PLOWER = Io2ut (1+ TC)(RDS(ON))(1-D)  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tsw is the switching interval  
D is the duty cycle  
Note that both MOSFETs have conduction losses while  
the upper MOSFET include an additional transition loss.  
The switching internal, tsw, is the function of the reverse  
transfer capacitance CRSS. Figure 7 illustrates the switch-  
ing waveform internal of the MOSFET.  
· Keep the switching nodes (UGATE, LGATE, and PHASE)  
away from sensitive small signal nodes since these  
nodes are fast moving signals. Therefore, keep traces  
to these nodes as short as possible.  
The (1+TC) term factors in the temperature dependency  
of the RDS(ON) and can be extracted from the “RDS(ON) vs Tem-  
perature” curve of the power MOSFET.  
· The ground return of CIN must return to the combine  
COUT (-) terminal.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Application Information (Cont.)  
Layout Consideration (Cont.)  
· Capacitor CBOOT should be connected as close to  
the BOOT and PHASE pins as possible.  
VDS  
t
Time  
sw  
Figure 7. Switching waveform across MOSFET  
VIN  
CIN  
APW7063  
+
11  
PGND  
12  
LGATE  
L
O
A
D
COUT  
9
Q1  
UGATE  
Q2  
+
8
PHASE  
L1  
VOUT  
Figure 8. Recommended Layout Diagram  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Package Information  
SOP-14  
D
SEE VIEW A  
°
c
e
b
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-14  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.75  
0.25  
MIN.  
MAX.  
A
0.069  
0.010  
0.004  
0.049  
0.012  
0.007  
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
8.55  
5.80  
3.80  
0.020  
0.010  
0.51  
0.25  
8.75  
6.20  
4.00  
c
D
0.337  
0.228  
0.150  
0.344  
0.244  
0.157  
E
E1  
e
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0.020  
0.050  
0.25  
0.40  
0.50  
1.27  
h
L
°
°
°
°
0
0
8
0
8
Note: 1. Follow JEDEC MS-012 AB.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.  
3. Dimension “E” does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-14  
A
H
T1  
16.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
7.50±0.10  
K0  
330.0±2.00  
P0  
50 MIN.  
P1  
1.5 MIN.  
D1  
20.2 MIN. 16.0±0.30 1.75±0.10  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.10  
1.5 MIN.  
6.40±0.20 9.00±0.20 2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP-14  
Unit  
Tape & Reel  
Quantity  
2500  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Taping Direction Information  
SOP-14  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3°C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ 125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.10 - Aug., 2009  
APW7063  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.10 - Aug., 2009  
22  
www.anpec.com.tw  

相关型号:

APW7064

Synchronous Buck PWM Controller
ANPEC

APW7064KAE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065

Synchronous Buck PWM Controller
ANPEC

APW7065C

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TR

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TRL

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TU

Synchronous Buck PWM Controller
ANPEC

APW7065KE-TUL

Synchronous Buck PWM Controller
ANPEC

APW7065_09

Synchronous Buck PWM Controller
ANPEC