APW7083QBI-TRG [ANPEC]

5A, 26V, 380kHz, Synchronous Step-Down Converter; 5A , 26V , 380kHz ,同步降压型转换器
APW7083QBI-TRG
型号: APW7083QBI-TRG
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

5A, 26V, 380kHz, Synchronous Step-Down Converter
5A , 26V , 380kHz ,同步降压型转换器

转换器
文件: 总22页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7083  
5A, 26V, 380kHz, Synchronous Step-Down Converter  
Features  
General Description  
·
·
·
Wide Input Voltage from 4.5V to 26V  
Output Current Up to 5A  
The APW7083 is a 5A, synchronous, step-down converter  
with integrated 50mW P-channel power MOSFET and  
Adjustable Output Voltage from 0.8V to 90%VIN  
- 0.8V Reference Voltage  
20mW N-channel power MOSFET. The device, with cur-  
rent-mode control scheme, can convert 4.5~26V input volt-  
age to the output voltage adjustable from 0.8 to 90% VIN to  
provide excellent output voltage regulation.  
- ±2.5% System Accuracy  
·
Integrated 50mW P-Channel Power MOSFET and  
20mW N-Channel Power MOSFET  
High Efficiencyup to 95%  
The APW7083 regulates the output voltage in an auto-  
matic PSM/PWM mode operation, depending on the out-  
put current, for high efficiency operation over light to full  
load current. The APW7083 is also equipped with power-  
on-reset, soft-start, and whole protections (including over-  
voltage, under-voltage, over-temperature, and current-  
limit) in a single package. In shutdown mode, the supply  
current drops below 5mA.  
·
·
Current-Mode Operation  
- Stable with Ceramic Output Capacitors  
- Fast Transient Response  
·
·
·
Power-On-Reset Monitoring  
Fixed 380kHz Switching Frequencyin PWM Mode  
Automatic Pulse-Skipping Mode (PSM)/PWM  
Mode Operation  
This device, available in 28-pin TQFN5x6 package, pro-  
vides a very compact system solution with minimal exter-  
nal components and good thermal conductance.  
·
·
Built-in Digital Soft-Start  
Output Current-Limit Protection with Frequency  
Foldback  
·
·
·
·
·
·
·
70% Under-Voltage Protection  
Over-Temperature Protection  
118% Over-Voltage Protection  
<5mA Quiescent Current During Shutdown  
Thermal-Enhanced TQFN5x6-28 Package  
Pb-Free Available as an Option  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Simplified Application Circuit  
VIN  
4.5V~26V  
C1  
10mF  
C2  
1mF  
VIN  
L1  
5A  
VOUT  
0.8V~90%VIN, 5A  
VCC UGND  
C3  
1mF  
LX  
U1 ZCS  
APW7083  
PGND  
EN  
R5  
100kW  
C4  
22mF  
VIN  
Applications  
R1  
COMP  
GND  
FB  
1%  
R2  
1%  
R4  
C5  
·
·
·
·
·
·
·
LCD Monitor / TV  
C6  
C7  
(Optional)  
SetTop Box  
Portable DVD  
Wireless LAN  
ADSL, Switch HUB  
Notebook Computer  
Step-Down Converters Requiring High Efficiency  
and 5A Output Current  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Ordering and Marking Information  
Package Code  
QB : TQFN5x6-28  
APW7083  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
I : -40 to 85 oC  
Handling Code  
TR : Tape & Reel  
Assembly Material  
Temperature Range  
Package Code  
G : Halogen and Lead Free Device  
APW7083  
XXXXX  
APW7083 QB :  
XXXXX - Date Code  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Pin Configuration  
FB 1  
COMP 2  
ZCS 3  
22 PGND  
21 VIN  
20 LX  
PGND  
LX  
PGND 4  
PGND 5  
PGND 6  
PGND 7  
LX 8  
19 LX  
18 LX  
17 LX  
LX  
16 LX  
15 LX  
TQFN5x6-28  
(Top View)  
= Thermal Pad (connected to copper plane for better heat dissipation)  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Sep., 2011  
2
www.anpec.com.tw  
APW7083  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
-0.3 ~ 30  
-1 ~ VIN +0.3  
-5 ~ VIN +6  
-0.3 ~ 6.5  
VIN+0.3  
Unit  
VIN  
VIN Supply Voltage (VIN to GND)  
V
> 100ns  
< 100ns  
VLX  
LX to GND Voltage  
ZCS to GND Voltage  
V
V
VZCS  
V
V
IN > 6.2V  
IN £ 6.2V  
VCC  
VCC Supply Voltage (VCC to GND)  
VUGND_GND UGND to GND Voltage  
VVIN_UGND VIN to UGND Voltage  
EN to GND Voltage  
-0.3 ~ VIN+0.3  
-0.3 ~ 6.5V  
20  
V
V
V
FB, COMP to GND Voltage  
Maximum Junction Temperature  
-0.3 ~ VCC +0.3  
150  
V
oC  
oC  
oC  
TSTG  
TSDR  
Storage Temperature  
-65 ~ 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Junction-to-Ambient Resistance in Free Air (Note 2)  
75  
oC/W  
qJA  
TQFN5x6-28  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions (Note 3)  
Symbol  
Parameter  
Range  
4.5 ~ 26  
Unit  
V
VIN  
VIN Supply Voltage  
VCC Supply Voltage  
4.0 ~ 5.5  
0.8 ~ 90% VIN  
0 ~ 5  
V
VOUT  
IOUT  
Converter Output Voltage  
Converter Output Current  
VCC Input Capacitor  
V
A
0.22 ~ 2.2  
0.22 ~ 2.2  
-40 ~ 85  
mF  
mF  
oC  
oC  
VIN-to-UGND Input Capacitor  
Ambient Temperature  
Junction Temperature  
TA  
TJ  
-40 ~ 125  
Note 3: Refer to the typical application circuits.  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Electrical Characteristics  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA=-40~85oC, unless  
otherwise specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7083  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
IVIN  
IVIN_SD  
IVCC  
VIN Supply Current  
VFB = 0.85V, VEN = 3V, LX = Open  
VEN = 0V, VIN = 26V  
-
-
-
-
1.0  
-
2.0  
5
mA  
mA  
VIN Shutdown Supply Current  
VCC Supply Current  
VEN = 3V, VCC = 5.0V  
0.7  
-
-
mA  
mA  
IVCC_SD  
VCC Shutdown Supply Current  
VEN = 0V, VCC = 5.0V  
1
VCC 4.2V LINEAR REGULATOR  
Output Voltage  
VIN = 5.2 ~ 26V, IO = 0 ~ 8mA  
IO = 0 ~ 8mA  
4.0  
-60  
8
4.2  
-40  
-
4.5  
0
V
Load Regulation  
mV  
mA  
Current-Limit  
VCC > POR Threshold  
30  
VIN-TO-UGND 5.5V LINEAR REGULATOR  
Output Voltage (VVIN-UGND  
)
VIN = 6.2 ~ 26V, IO = 0 ~ 10mA  
IO = 0 ~ 10mA  
5.3  
-80  
10  
5.5  
-60  
-
5.7  
0
V
Load Regulation  
mV  
mA  
Current-Limit  
VIN = 6.2 ~ 26V  
30  
POWER-ON-RESET (POR) AND LOCKOUT VOLTAGE THRESHOLDS  
VCC POR Voltage Threshold  
VCC POR Hysteresis  
VCC rising  
3.7  
-
3.9  
0.15  
2.5  
4.1  
-
V
V
V
V
EN Lockout Voltage Threshold  
EN Lockout Hysteresis  
VEN rising  
2.4  
-
2.6  
-
0.2  
VIN-to-UGND Lockout Voltage  
Threshold  
VVIN-UGND rising  
-
-
3.5  
0.2  
-
-
V
V
VIN-to-UGND Lockout Hysteresis  
REFERENCE VOLTAGE  
VREF  
Reference Voltage  
-
0.8  
-
-
V
TJ = 25oC, IOUT = 0A, VIN = 12V  
-1  
+1  
TJ = -40 ~ 125oC, IOUT = 0 ~ 3A,  
VIN = 4.5 ~ 26V  
Output Voltage Accuracy  
%
-2.5  
-
+2.5  
Line Regulation  
Load Regulation  
VIN = 4.5V to 26V, IOUT = 0A  
IOUT < 1A  
-
-
-
0.1  
-0.3  
-
-
-
%
%/A  
IOUT = 1 ~ 5A  
-0.53  
OSCILLATOR AND DUTY  
FOSC Oscillator Running Frequency  
VIN = 4.5 ~ 26V  
VFB = 0V  
340  
380  
80  
420  
kHz  
kHz  
%
Foldback Frequency  
-
-
-
-
-
-
Maximum Converter’s Duty Cycle  
Minimum Pulse Width of LX  
93  
VIN = 4.5 ~ 26V  
200  
ns  
CURRENT-MODE PWM CONVERTER  
Gm  
Error Amplifier Transconductance  
Error Amplifier DC Gain  
-
400  
80  
-
-
mA/V  
COMP = Open  
60  
dB  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Electrical Characteristics (Cont.)  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA=-40~85oC, unless  
otherwise specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7083  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
CURRENT-MODE PWM CONVERTER (CONT.)  
Current-Sense Resistance  
-
-
0.12  
50  
-
W
Between VIN and Exposed Pad,  
TJ = 25oC  
High-side Switch Resistance  
80  
mW  
Between GND and Exposed Pad,  
TJ = 25oC  
Low-side Switch Resistance  
-
20  
30  
mW  
PROTECTIONS  
P-Channel Power MOSFET  
Current-Limit  
ILIM  
Peak Current  
VFB falling  
6
8
10  
A
VUV  
FB Under-Voltage Threshold  
FB Under-Voltage Hysteresis  
FB Under-Voltage Debounce  
FB Over-Voltage Threshold  
FB Over-Voltage Hysteresis  
Over-Temperature Trip Point  
Over-Temperature Hysteresis  
Dead-Time  
66  
70  
40  
2
74  
%
mV  
ms  
-
-
-
-
VOV  
TOTP  
TD  
VFB Rising  
114  
118  
40  
150  
50  
30  
122  
%
-
-
-
-
-
-
-
-
mV  
oC  
oC  
ns  
VLX = -0.7V, VIN = 4.5 ~ 26V  
SOFT-START, ENABLE, AND INPUT CURRENTS  
tSS  
Soft-Start Interval  
-
-
8
11  
-
-
-
ms  
ms  
V
Preceding Delay before Soft-Start  
EN Logic Low Voltage  
EN Logic High Voltage  
EN Pin Clamped Voltage  
VEN falling, VIN = 4.5 ~ 26V  
VEN rising, VIN = 4.5 ~ 26V  
IEN = 10mA  
-
0.5  
-
2.1  
12  
-
V
-
17  
V
P-Channel Power MOSFET Leakage  
Current  
VEN = 0V, VLX = 0V, VIN = 26V  
-
-
4
mA  
IFB  
IEN  
FB Pin Input Current  
EN Pin Input Current  
VFB = 0.8V  
VEN < 3V  
-100  
-500  
-
-
+100  
+500  
mA  
mA  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Typical Operating Characteristics  
Reference Voltage vs.  
Oscillator Frequency vs.  
Junction Temperature  
Junction Temperature  
420  
410  
400  
390  
380  
370  
360  
350  
340  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Junction Temperature, TJ (oC)  
Junction Temperature, TJ (oC)  
Output Voltage vs. Supply Voltage  
Output Voltage vs. Output Current  
3.34  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
IOUT=0.2A  
IOUT=1A  
IOUT=2A  
IOUT=3A  
VIN =12V, VOUT =3.3V  
5
4
0
1
2
3
4
6
8
10 12 14 16 18 20 22  
Supply Voltage, VIN (V)  
Output Current, IOUT (A)  
Current-Limit Level (Peak Current)  
vs. Junction Temperature  
VIN Input Current vs. SupplyVoltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
VFB=0.85V  
-50 -25  
0
25 50 75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20 22  
VIN Supply Voltage, VIN (V)  
Junction Temperature, TJ (oC)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Typical Operating Characteristics (Cont.)  
Efficiency vs. Output Current  
EN Clamp Voltage vs. EN Input Current  
100  
90  
18  
16  
14  
12  
10  
8
VOUT =5V  
80  
70  
60  
TJ=-30
°
C  
VOUT =3.3V  
50  
40  
30  
TJ=25
°
C  
6
4
TJ=100
°
C  
20  
10  
0
VIN =12V, L1=3.3mH,  
C4 =66mF, C1 =10mF  
2
0
0.001  
0.01  
0.1  
1
10  
1
10  
100  
1000  
10000  
Output Current, IOUT (A)  
EN Input Current, IEN (mA)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Operating Waveforms  
Refer to the “Typical Application Circuit”. The test conditions are VIN=12V, VOUT=3.3V, L1=3.3mH, C4=66mF, TA= 25oC  
unless otherwise specified.  
Load Transient Response  
Load Transient Response  
IOUT=50mA-5A-50mA,  
rise/fall time=10ms  
IOUT=1A-5A-1A,  
rise/fall time=10ms  
1
1
VOUT  
VOUT  
IL1  
IL1  
2
2
CH1: VOUT, 200mV/Div, offset=3.3V  
CH2: IL1, 2A/Div, DC  
CH1: VOUT, 200mV/Div, offset=3.3V  
CH2: IL1, 2A/Div, DC  
TIME: 100ms/Div  
TIME: 100ms/Div  
Power On  
Power Off  
IOUT=5A  
IOUT=5A  
VIN  
VIN  
1
1
VOUT  
VOUT  
2
3
2
3
IL1  
IL1  
CH1: VIN, 5V/Div, DC  
CH2: VOUT, 2V/Div, DC  
CH3: IL1, 5A/Div, DC  
TIME:5ms/Div  
CH1: VIN, 5V/Div, DC  
CH2: VOUT, 2V/Div, DC  
CH3: IL1, 5A/Div, DC  
TIME:5ms/Div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Operating Waveforms (Cont.)  
Refer to the “Typical Application Circuit”. The test conditions are VIN=12V, VOUT=3.3V, L1=3.3mH, C4=66mF, TA= 25oC  
unless otherwise specified.  
Enable Through EN Pin  
Shutdown Through EN Pin  
IOUT=5A  
IOUT=5A  
VEN  
VOUT  
IL1  
VEN  
1
1
VOUT  
2
3
2
3
IL1  
CH1: VEN, 5V/Div, DC  
CH2: VOUT, 2V/Div, DC  
CH3: IL1, 5A/Div, DC  
TIME:5ms/Div  
CH1: VEN, 5V/Div, DC  
CH2: VOUT, 2V/Div, DC  
CH3: IL1, 5A/Div, DC  
TIME:5ms/Div  
Over Current  
Short Circuit  
VOUT is shorted to ground by a wire 
0.3Ωload isswitchedintoVOUT  
while IOUT=1A  
VOUT  
1
VOUT  
1
IL1  
IL1  
2
2
CH1: VOUT, 1V/Div, DC  
CH2: IL1, 5A/Div, DC  
TIME:50ms/Div  
CH1: VOUT, 1V/Div, DC  
CH2: IL1, 5A/Div, DC  
TIME: 50ms/Div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Operating Waveforms (Cont.)  
Refer to the “Typical Application Circuit”. The test conditions are VIN=12V, VOUT=3.3V, L1=3.3mH, C4=66mF, TA= 25oC  
unless otherwise specified.  
Switching Waveform  
Switching Waveform  
IOUT=5A  
IOUT=0.5A  
VLX  
VLX  
1
2
1
2
IL1  
IL1  
CH1: VLX, 5V/Div, DC  
CH2: IL1, 2A/Div, DC  
TIME: 1ms/Div  
CH1: VLX, 5V/Div, DC  
CH2: IL1, 2A/Div, DC  
TIME: 1ms/Div  
Line Transient Response  
VIN=12 to 20V, rise/fall  
time=10ms, IOUT=1A  
VIN  
1
2
VOUT  
CH1: VIN, 10V/Div, DC  
CH2: VOUT, 100mV/Div, offset=3.3V  
TIME: 100ms/Div  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Pin Description  
PIN  
FUNCTION  
NO.  
NAME  
Feedback Input. The IC senses feedback voltage via FB and regulate the voltage at 0.8V.  
Connecting FB with a resistor-divider from the output set the output voltage in the range from  
0.8V to 90% VIN.  
1
FB  
Output of error amplifier. Connect a series RC network from COMP to GND to compensate the  
regulation control loop. In some cases, an additional capacitor from COMP to GND is required  
for noise decoupling.  
2
COMP  
3
ZCS  
PGND  
LX  
Zero-Crossing Sense pin. Please externally connect this pin with LX.  
4~7, 22  
8~20  
POWER Ground pins. All these pins must be connected externally to the power ground plane.  
Power Switching Output. Connect this pin to the underside Exposed Pad.  
Power Input. VIN supplies the power (4.5V to 26V) to the control circuitry, gate driver and  
step-down converter switch. Connecting a ceramic bypass capacitor and a suitably large  
capacitor between VIN and GND eliminates switching noise and voltage ripple on the input to  
the IC.  
21, 23, 24  
VIN  
EN  
Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the  
regulator, drive it low to turn it off. Pull up with 100kW resistor for automatic start-up.  
25  
26  
Gate driver power ground of the P-channel Power MOSFET. A linear regulator regulates a 5.5V  
voltage between VIN and UGND to supply power to P-channel MOSFET gate driver. Connect  
a ceramic capacitor (1mF typ.) between VIN and UGND for noise decoupling and stability of the  
linear regulator.  
UGND  
Bias input and 4.2V linear regulator’s output. This pin supplies the bias to some control circuits.  
The 4.2V linear regulator converts the voltage on VIN to 4.2V to supply the bias when no  
external 5V power supply is connected with VCC. Connect a ceramic capacitor (1mF typ.)  
between VCC and GND for noise decoupling and stability of the linear regulator.  
27  
28  
VCC  
GND  
Signal Ground.  
Block Diagram  
VIN  
Current Sense  
Amplifier  
4.2V Regulator  
Current-  
Limit  
and  
VCC  
Power-On-Reset  
VCC  
Zero-Crossing  
Comparator  
ZCS  
POR  
UG  
OVP  
118%VREF  
70%VREF  
Soft-Start  
and  
Fault Logic  
Gate  
Driver  
UGND  
LX  
UVP  
Soft-Start  
Inhibit  
Gate  
Control  
FB  
VCC  
Gm  
VREF  
0.8V  
Error  
Amplifier  
LG  
Current  
Compartor  
Gate  
Driver  
PGND  
COMP  
Slope  
Compensation  
ENOK  
2.5V  
0.8V  
Linear  
Regulator  
Oscillator  
380kHz  
Over-  
Temperature  
Protection  
Enable  
EN  
FB  
VIN  
GND  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Typical Application Circuit  
4.5~26V Single Power Input Step-down Converter (with Ceramic Input/Output Capacitors)  
VIN  
4.5~26V  
C1  
10mF  
21, 23, 24  
VIN  
C2  
1mF  
27  
26  
L1  
5A  
VCC  
UGND  
C3  
1mF  
8~20  
3
LX  
VOUT  
0.8V~90%VIN/5A  
U1  
APW7083  
ZCS  
C4  
22mF  
R5  
100kW  
4~7, 22  
25  
2
PGND  
VIN  
EN  
R1  
1%  
1
COMP  
FB  
R4  
3kW  
GND  
28  
R2  
1%  
C6  
22pF  
C7  
(Optional)  
C5  
4700pF  
Recommended Feedback Compensation Network Components List:  
L1  
(mH)  
C4  
(mF)  
C4 ESR  
(mW)  
R1  
(kW)  
R2  
(kW)  
R4  
(kW)  
VIN  
(V)  
VOUT  
(V)  
C7  
(pF)  
C5  
(pF)  
C6  
(pF)  
12  
12  
12  
5
3.3  
3.3  
3.3  
66  
66  
66  
3
3
3
63.4  
47  
12  
15  
15  
68  
82  
24  
20  
12  
1000  
1500  
2200  
22  
22  
22  
3.3  
1.2  
7.5  
270  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Function Description  
Main Control Loop  
good noise decoupling, please place the capacitor physi-  
cally close to the IC. The linear regulator is not intended  
for powering up any external loads. Do not connect any  
external load to VCC. The linear regulator is also equipped  
with current-limit protection to protect itself during over-  
load or short-circuit conditions on VCC pin.  
The APW7083 is a constant frequency current mode  
switching regulator. During normal operation, the inter-  
nal P-channel power MOSFET is turned on each cycle  
when the oscillator sets an internal RS latch and would  
be turned off when an internal current comparator (ICMP)  
resets the latch. The peak inductor current at which ICMP  
resets the RS latch is controlled by the voltage on the  
COMP pin, which is the output of the error amplifier  
(EAMP). An external resistive divider connected between  
VOUT and ground allows the EAMP to receive an output  
feedback voltage VFB at FB pin. When the load current  
increases, it causes a slight decrease in VFB relative to  
the 0.8V reference, which in turn causes the COMP volt-  
age to increase until the average inductor current matches  
the new load current.  
VIN-to-UGND 5.5V Linear Regulator  
The built-in 5.5V linear regulator regulates a 5.5V voltage  
between VIN and UGND pins to supply bias and gate  
charge for the P-channel Power MOSFET gate driver. The  
linear regulator is designed to be stable with a low-ESR  
ceramic output capacitor of at least 0.22mF. It is also  
equipped with current-limit function to protect itself dur-  
ing over-load or short-circuit conditions between VIN and  
UGND.  
The APW7083 shuts off the output of the converters  
when the output voltage of the linear regulator is below  
3.5V (typical). The IC resumes working by initiating a new  
soft-start process when the linear regulator’s output  
voltage is above the undervoltage lockout voltage  
threshold.  
VCC Power-On-Reset (POR) and EN Undervoltage  
Lockout  
The APW7083 keeps monitoring the voltage on VCC pin  
to prevent wrong logic operations which may occur when  
VCC voltage is not high enough for the internal control  
circuitry to operate. The VCC POR has a rising threshold  
of 3.9V (typical) with 0.15V of hysteresis.  
Digital Soft-Start  
The APW7083 has a built-in digital soft-start to control  
the output voltage rise and limit the input current surge  
during start-up. During soft-start, an internal ramp, con-  
nected to the one of the positive inputs of the error  
amplifier, rises up from 0V to 1V to replace the reference  
voltage (0.8V) until the ramp voltage reaches the refer-  
ence voltage.  
An external undervoltage lockout (UVLO) is sensed and  
programmed at the EN pin. The EN UVLO has a rising  
threshold of 2.5V with 0.2V of hysteresis. The EN UVLO  
should be programmed by connecting a resistive divider  
from VIN to EN to GND.  
After the VCC, EN, and VIN-to-UGNDvoltages exceed their  
respective voltage thresholds, the IC starts a start-up pro-  
cess and then ramps up the output voltage to the setting  
of output voltage. Connecting a RC network from EN to  
GND is for setting a turn-on delay that can be used to  
sequence the output voltages of multiple devices.  
The device is designed with a preceding delay about  
10.8ms (typical) before soft-start process.  
Enable/Shutdown  
Driving EN to ground places the APW7083 in shutdown.  
When in shutdown, the internal power MOSFET turns off,  
all internal circuitry shuts down and the quiescent supply  
current of VIN reduces to <1mA (typical).  
VCC 4.2V Linear Regulator  
VCC is the output terminal of the internal 4.2V linear regu-  
lator which is powered from VIN and provides power to  
the APW7083. The linear regulator designed to be stable  
with a low-ESR ceramic output capacitor powers the in-  
ternal control circuitry, then bypasses VCC to GND with a  
ceramic capacitor of at least 0.22mF. In order to provide  
Output Under-Voltage Protection  
In the process of operation, if a short-circuit occurs, the  
output voltage will drop quickly. Before the current-limit  
circuit responds, the output voltage will fall out of the re-  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Function Description (Cont.)  
Output Under-Voltage Protection (Cont.)  
FrequencyFoldback  
quired regulation range. The under-voltage continually  
monitors the FB voltage after soft-start is completed. If a  
load step is strong enough to pull the output voltage lower  
than the under-voltage threshold, the IC shuts down  
converter’s output. The under-voltage threshold is 70%  
of the nominal output voltage. The under-voltage com-  
parator has a built-in 2ms noise filter to prevent the chips  
from wrong UVP shutdown caused by noise. The under-  
voltage protection works in a hiccup mode without latched  
shutdown. The IC will initiate a new soft-start process at  
the end of the proceeding delay.  
When the output is shortened to the ground, the frequency  
of the oscillator will be reduced to about 80kHz. This lower  
frequency allows the inductor current to safely discharge,  
thereby preventing current runaway. The oscillator’s fre-  
quency will gradually increase to its designed rate when  
the feedback voltage on FB approaches 0.8V again.  
Over-Temperature Protection (OTP)  
The over-temperature circuit limits the junction tempera-  
ture of the APW7083. When the junction temperature ex-  
ceeds TJ = +150oC, a thermal sensor turns off the power  
MOSFET, allowing the devices to cool. The thermal sen-  
sor allows the converter to start a start-up process and  
regulate the output voltage again after the junction tem-  
perature cools by 50oC. The OTP is designed with a 50oC  
hysteresis to lower the average TJ during continuous ther-  
mal overload conditions, increasing lifetime of the IC.  
Over-Voltage Protection  
The over-voltage function monitors the output voltage by  
FB pin. The FB voltage should increase over 118% of the  
reference voltage due to the high-side MOSFET failure,  
or for other reasons, the over-voltage protection  
comparator, will force the low-side MOSFET gate driver  
high. As soon as the output voltage is within regulation,  
the OVP comparator is disengaged. The chips will re-  
store its normal operation. This OVP scheme only clamps  
the voltage overshoot, and does not invert the output volt-  
age when otherwise activated with a continuously high  
output from low-side MOSFET driver - a common prob-  
lem for OVP schemes with a latch.  
Current-Limit Protection  
TheAPW7083 monitors the output current, flowing through  
the P-channel power MOSFET, and limits the current peak  
at current-limit level to prevent loads and the IC from dam-  
ages during overload or short-circuit conditions.  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Application Information  
VIN  
Power Sequencing  
VIN  
LX  
IQ1  
CIN  
The APW7083 can operate with single or dual power input  
(s). In dual-power application, the voltage (VCC) applied at  
VCC pin must be lower than the voltage (VIN) on VIN pin.  
The internal parasitic diode from VCC to VIN will conduct  
due to the forward-voltage between VCC and VIN.  
Therefore, VIN must be provided before VCC.  
Q1  
Q2  
IOUT  
IL  
VOUT  
L
ESR  
COUT  
ICOUT  
Setting Output Voltage  
T=1/FOSC  
The regulated output voltage is determined by:  
R1  
VOUT = 0.8×(1+  
)
(V)  
R2  
VLX  
DT  
I
Suggested R2 is in the range from 1k to 20kW. For por-  
table applications, a 10k resistor is suggested for R2. To  
prevent stray pickup, please locate resistors R1 and R2  
close to APW7083.  
IOUT  
IL  
IOUT  
IQ1  
Input Capacitor Selection  
I
Use small ceramic capacitors for high frequency  
decoupling and bulk capacitors to supply the surge cur-  
rent needed each time the P-channel power MOSFET (Q1)  
turns on. Place the small ceramic capacitors physically  
close to the VIN and between the VIN and GND.  
ICOUT  
VOUT  
VOUT  
The important parameters for the bulk input capacitor are  
the voltage rating and the RMS current rating. For reliable  
operation, select the bulk capacitor with voltage and cur-  
rent ratings above the maximum input voltage and larg-  
est RMS current required by the circuit. The capacitor volt-  
age rating should be at least 1.25 times greater than the  
maximum input voltage and a voltage rating of 1.5 times  
is a conservative guideline. The RMS current (IRMS) of the  
bulk input capacitor is calculated as the following equation:  
Figure 1. Converter Waveforms  
Output Capacitor Selection  
An output capacitor is required to filter the output and sup-  
ply the load transient current. The filtering requirements  
are a function of the switching frequency and the ripple  
current (DI). The output ripple is the sum of the voltages,  
having phase shift, across the ESR and the ideal output  
capacitor. The peak-to-peak voltage of the ESR is calcu-  
lated as the following equations:  
IRMS =IOUT × D×(1-D)  
(A)  
VOUT  
where D is the duty cycle of the power MOSFET.  
D =  
........... (1)  
V
IN  
For a through hole design, several electrolytic capacitors  
may be needed. For surface mount designs, solid tanta-  
lum capacitors can be used, but caution must be exer-  
cised with regard to the capacitor surge current rating.  
VOUT ·(1-D)  
FOSC ·L  
DI =  
........... (2)  
........... (3)  
VESR = DI×ESR  
The peak-to-peak voltage of the ideal output capacitor is  
calculated as the following equations:  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Application Information (Cont.)  
and greater core losses. A reasonable starting point for  
setting ripple current is DI £ 0.4 × IOUT(MAX). Remember, the  
maximum ripple current occurs at the maximum input  
voltage. The minimum inductance of the inductor is cal-  
culated by using the following equation:  
Output Capacitor Selection (Cont.)  
D I  
DVCOUT =  
(V)  
........... (4)  
8×FOSC ×COUT  
For the applications using bulk capacitors, the DVCOUT is  
much smaller than the VESR and can be ignored. Therefore,  
the AC peak-to-peak output voltage (DVOUT ) is shown as  
below:  
VOUT ·(VIN - VOUT)  
£ 2  
380000 ·L ·VIN  
VOUT ·(VIN - VOUT)  
DVOUT = D I×ESR  
(V)  
........... (5)  
........... (6)  
L ³  
(H)  
760000 ·VIN  
For the applications using ceramic capacitors, the VESR is  
much smaller than the DVCOUT and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT ) is  
where VIN = VIN(MAX)  
Layout Consideration  
close to DVCOUT  
.
In high power switching regulator, a correct layout is im-  
portant to ensure proper operation of the regulator. In  
general, interconnecting impedance should be minimized  
by using short, wide printed circuit traces. Signal and  
power grounds are to be kept separating and finally com-  
bined using ground plane construction or single point  
grounding. Figure 2 illustrates the layout, with bold lines  
indicating high current paths. Components along the bold  
lines should be placed close together. The following is a  
checklist for your layout:  
The load transient requirement is a function of the slew  
rate (di/dt) and the magnitude of the transient load current.  
These requirements are generally met with a mix of ca-  
pacitors and careful layout. High frequency capacitors ini-  
tially supply the transient and slow the current load rate  
seen by the bulk capacitors. The bulk filter capacitor val-  
ues are generally determined by the ESR (Effective Se-  
ries Resistance) and voltage rating requirements rather  
than actual capacitance requirements.  
High frequency decoupling capacitors should be placed  
as close to the power pins of the load as physically  
possible. Be careful not to add inductance in the circuit  
board wiring that could cancel the usefulness of these  
low inductance components. An aluminum electrolytic  
capacitor’s ESR value is related to the case size with lower  
ESR available in larger case sizes. However, the Equiva-  
lent Series Inductance (ESL) of these capacitors increases  
with case size and can reduce the usefulness of the ca-  
pacitor to high slew-rate transient loading.  
1. Firstly, to initial the layout by placing the power  
components. Orient the power circuitry to achieve a clean  
power flow path. If possible, make all the connections on  
one side of the PCB with wide, copper filled areas.  
2. In Figure 2, the loops with the same color bold lines  
conduct high slew rate current. These interconnecting  
impedances should be minimized by using wide, short  
printed circuit traces.  
3. Keep the sensitive small signal nodes (FB, COMP)  
away from switching nodes (LX or others) on the PCB.  
Therefore, place the feedback divider and the feedback  
compensation network close to the IC to avoid switching  
noise. Connect the ground of feedback divider directly to  
the GND pin of the IC using a dedicated ground trace.  
4. The VCC decoupling capacitor should be right next to  
the VCC andGND pins. Capacitor C2 should be connected  
as close to the VIN and UGND pins as possible.  
Inductor Value Calculation  
The operating frequency and inductor selection are inter-  
related in that higher operating frequencies permit the  
use of a smaller inductor for the same amount of inductor  
ripple current. However, this is at the expense of efficiency  
due to an increase in MOSFET gate charge losses. The  
equation (2) shows that the inductance value has a direct  
effect on ripple current.  
5. Place the decoupling ceramic capacitor C1 near the  
VIN as close as possible. The bulk capacitors C8 are also  
placed near VIN. Use a wide power ground plane to con-  
nect the C1, C8, and C4 to provide a low impedance  
Accepting larger values of ripple current allows the use of  
low inductances, but results in higher output voltage ripple  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Application Information (Cont.)  
Layout Consideration (Cont.)  
5mm  
0.34mm  
path between the components for large and high slew  
rate current.  
1.85mm  
1.38mm  
+
21 23  
VIN  
VIN  
-
24  
C2  
0.225mm  
PGND  
CIN  
26  
27  
LOUT  
UGND  
VCC  
8~20  
3
LX  
+
COUT  
L
ZCS  
o
a
d
C3  
LX  
APW7083  
VOUT  
25  
2
4~7,22  
1
EN  
-
PGND  
RTOP  
COMP  
FB  
C6  
LX  
R4  
C3  
GND  
28  
CTOP  
Feedbac  
k Divider  
RGND  
*Just  
Recommend  
Figure 2. Current Path Diagram  
0.45  
0.45  
3.57mm  
0.265mm  
mm mm*  
Figure 4. Recommended Minimum Footprint  
Power  
Ground  
VIN  
CIN  
FB 1  
22 PGND  
21 VIN  
20 LX  
19 LX  
18 LX  
17 LX  
COMP 2  
ZCS 3  
PGND  
LX  
PGND 4  
PGND 5  
PGND 6  
PGND 7  
LX 8  
VOUT  
COUT  
LX  
16 LX  
15 LX  
LOUT  
For dissipating heat  
Figure 3. Recommended Layout Diagram  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Package Information  
TQFN5x6-28  
D
A
Pin 1  
A1  
A3  
D1  
H
D2  
Pin 1 Corner  
D3  
e
TQFN5x6-28  
S
Y
M
B
O
MILLIMETERS  
INCHES  
MIN.  
MAX.  
MIN.  
MAX.  
0.032  
0.002  
L
A
0.70  
0.00  
0.80  
0.05  
0.028  
0.000  
A1  
A3  
b
0.20 REF  
0.008 REF  
0.010  
0.232  
0.107  
0.059  
0.071  
0.193  
0.071  
0.139  
0.052  
0.014  
0.240  
0.111  
0.063  
0.075  
0.201  
0.075  
0.143  
0.056  
0.25  
0.35  
6.10  
2.81  
1.60  
1.90  
5.10  
1.90  
3.62  
1.43  
D
5.90  
2.71  
1.50  
1.80  
4.90  
1.80  
3.52  
1.33  
D1  
D2  
D3  
E
E1  
E2  
E3  
e
0.65 BSC  
0.34 REF  
0.026 BSC  
0.013 REF  
0.014  
0.008  
0.018  
L
0.35  
0.20  
0.45  
K
H
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
TQFN5x6-28  
A
H
T1  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN. 12.0±0.30 1.75±0.10  
5.5±0.10  
K0  
P0  
P1  
8.0±0.10  
T
A0  
B0  
1.5+0.10  
-0.00  
4.0±0.10  
2.0±0.10  
1.5 MIN.  
0.3±0.05  
6.5±0.10  
5.3±0.10  
1.4±0.10  
(mm)  
Devices Per Unit  
Package Type  
TQFN5x6-28  
Unit  
Quantity  
2500  
Tape & Reel  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Taping Direction Information  
TQFN5x6-28  
USER DIRECTION OF FEED  
Classification Profile  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3 °C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
³ 2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ Tj=125°C  
PCT  
TCT  
HBM  
MM  
168 Hrs, 100 RH, 2atm, 121 C  
%
°
500 Cycles, -65°C~150°C  
VHBM2KV  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.5 - Sep., 2011  
APW7083  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.5 - Sep., 2011  
22  
www.anpec.com.tw  

相关型号:

APW7085

2A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7085KI-TRG

2A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7088

Two-Phase Buck PWM Controller with Integrated MOSFET Drivers
ANPEC

APW7088QAE-TRG

Two-Phase Buck PWM Controller with Integrated MOSFET Drivers
ANPEC

APW7089

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7089KAI-TRG

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7089QBE-TBG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TBL

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TRG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QBE-TRL

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TBG

6-Channel DC/DC Converter Control IC
ANPEC

APW7089QDE-TBL

6-Channel DC/DC Converter Control IC
ANPEC